A CHARACTERIZATION OF SPACE-FILLING CURVES

GASPAR MORA and JUAN A. MIRA Department of Mathematical Analysis and Applied Mathematics. Faculty of Sciences.University of Alicante.03080 ALICANTE (SPAIN). gaspar.mora@ua.es and jamira@ua.es

December 1, 2010

Abstract

A famous theorem discovered in 1936 by H.Steinhaus on a sufficient condition for obtaining the coordinate functions of a curve filling the unit square is revised in the present paper. Here we point out that the converse of the above theorem fails in the Lebesgue curve. A characterization of the space-filling curves by means of a filling condition is proposed. A constructive characterization of this filling condition, in terms of the Borel measures, is also settled.

KEYWORDS.

Borel measures, Jordan content, Space-filling curves, Stochastic independence.

1 INTRODUCTION and NOTATION.

In 1890, G.Peano [9] demonstrated that the interval I = [0, 1] could be mapped surjectively and continuously onto the square $Q = [0, 1]^2$. Immediately, furthers examples of such curves by D.Hilbert (1891) [3], E.H.Moore (1900) [7], H.Lebesgue (1904) [5,6] and others followed. In spite of each curve was greatly superior in simplicity and ingenuity to the previous, a method for generating them remained unsettled. H.Steinhaus in 1936 [11] solved the problem by means of a surpresively result : " if two continuous non-constant functions on I are stochastically independent with respect to Lebesgue measure, then they are the coordinate functions of a space-filling curve " (see [10], pp.2 and the original paper of Steinhaus [11]). The attainment of space-filling curves by means of stochastically independent functions, begun by Steinhaus, was soon forgotten and , apparently, Garsia [1] and others (see [4]) arrived to the same conclusions about forty years later. Following the way of the stochastic independence (in brief, *s.i.*), it is neccesary to remark the work of Holbrook in [4].Nevertheless, as we shall prove below, the *s.i.* is a too much strong condition for giving a characterization theorem on space-filling curves, which is exactly the objective of our paper. For this reason we introduce here (Definition 1) a *filling condition* (in brief *f.c.*), which will be appropriate to characterize the space-filling curves.

The f.c. is a concept ,implicitly handled in [8] ,that was given to characterize a class of curves that contains to the family of the space-filling , namely the α - dense curves in parallelepipeds H of \mathbb{R}^n . These curves have the property of densifying H ,i.e. for any point of H there is a point of the curve at distance less than or equal that $\alpha \geq 0$.

To avoid that the f.c. to be considered as a trivial characterization of spacefilling curves, a characterization theorem on the filling condition, in terms of Borel measures, will be also settled. Moreover, this result will point the way to the construction of the coordinate function of a space-filling curve.

In order to facilitate the reading of the text , recall some definitions, contained in [10], concerning to the concepts of space-filling curves, stochastically independent functions and others.

 Γ will denote the *Cantor set*, J_{n} the n-dimensional *Jordan content* of a Jordan measurable subset of R^{n} and Λ_{n} the n-dimensional *Lebesgue measure* of a Lebesgue measurable subset of R^{n} .

A continuous function $f: I \to \mathbb{R}^n$ with $n \ge 2$, is called a space – filling curve if $J_n(f(I)) > 0$.

Let $\varphi_1, ..., \varphi_n : I \to R$ be measurable functions. Then, $\varphi_1, ..., \varphi_n$ are called *stochastically independent* with respect to the Lebesgue measure (in brief r.L.m.) if, for any measurable sets $A_1, ..., A_n$ of R,

$$\Lambda_1\left[\varphi_1^{-1}(A_1)\cap\ldots\cap\varphi_n^{-1}(A_n)\right] = \Lambda_1\left[\varphi_1^{-1}(A_1)\right]\times\ldots\times\Lambda_1\left[\varphi_n^{-1}(A_n)\right].$$

A surjective function $f: I \to Q$ is said to be measure – preserving if, for any

measurable set A of Q,

$$\Lambda_1(f^{-1}(A)) = \Lambda_2(A).$$

2 The quasi-stochastic independence as a ...lling condition.

The purpose of this section is to prove that the stochastic independence is sufficient but it is not a necessary condition to define space-filling curves. A characterization of these curves will be given by means of the following simple concept .

De...nition 1 (Filling condition) We shall say that n measurable functions $\varphi_1, ..., \varphi_n$:

 $I \rightarrow R$ are quasi-stochastically independent (in brief q.s.i.) with respect to the Lebesgue measure, if for any open sets $A_1, ..., A_n$ of R the condition

 $\Lambda_1\left[\varphi_1^{-1}(A_1)\right] \times \dots \times \Lambda_1\left[\varphi_n^{-1}(A_n)\right] > 0$ implies

 $\Lambda_1\left[\varphi_1^{-1}(A_1)\cap\ldots\cap\varphi_n^{-1}(A_n)\right]>0.$ Our next result is immediate.

Proposition 2 Let $\varphi_1, ..., \varphi_n : I \to R$ be nonconstant continuous functions such that the curve $f = (\varphi_1, ..., \varphi_n) : I \to \mathbb{R}^n$ fills the parallelepiped $\sqcap_{i=1}^n \varphi_i(I)$. Thus $\varphi_1, \dots, \varphi_n$ are quasi-stochastically independent (r.L.m).

As a generalization of the classical result of Steinhaus (see [10, p.109] or [4, Prop.1]) we expose the following theorem.

Theorem 3 Let $\varphi_1,...,\varphi_n: I \to R$ be quasi-stochastically independent functions (r.L.m.). Assume also that they are continuous but not constant. Thus the curve defined by $f = (\varphi_1, ..., \varphi_n) : I \to \mathbb{R}^n$ fills the parallelepiped $\sqcap_{i=1}^n \varphi_i(I)$.

Proof. Let $x = (x_i)_{i=1}^n$ be a point of $\sqcap_{i=1}^n \varphi_i(I)$, so there exist $(t_i)_{i=1}^n$ in I such that $x_i = \varphi_i(t_i)$ for each i = 1, 2, ..., n. Given $\varepsilon > 0$, consider the open sets

 $A_{i} = \left(x_{i} - \frac{\varepsilon}{\sqrt{n}}, x_{i} + \frac{\varepsilon}{\sqrt{n}}\right) \text{ for } i = 1, 2, ..., n .$ (1) By continuinity, $\varphi_{i}^{-1}(A_{i})$ is open in I and contains t_{i} , therefore the condition $\Lambda_{1}\left[\varphi_{1}^{-1}(A_{1})\right] \times ... \times \Lambda_{1}\left[\varphi_{n}^{-1}(A_{n})\right] > 0$

holds.

 $\begin{array}{l} \text{Since } \varphi_1, ..., \varphi_\mathsf{n} \text{ are q-s.i. , one has} \\ \Lambda_1 \left[\varphi_1^{-1}(A_1) \cap \ldots \cap \varphi_\mathsf{n}^{-1}(A_\mathsf{n}) \right] > 0. \end{array}$ Thus there exists $t \in I$ such that $\varphi_i(t) \in A_i$. From (1)

$$|\varphi_{\mathsf{i}}(t) - x_{\mathsf{i}}| < \frac{\varepsilon}{\sqrt{n}}$$
 for $i = 1, 2, ..., n$,

so the euclidean norm $||f(t) - x|| < \varepsilon$. This proves that f(I) is dense in $\prod_{i=1}^{n} \varphi_i(I)$, but f(I) is a compact set, therefore $f(I) = \prod_{i=1}^{n} \varphi_i(I)$ and the result follows.

To expose our next results, we need recall some elementary properties on the Cantor set and the Lebesgue curve.

The binary representation of a number $a \in I$ will be denoted by

 $0_2, a_1 a_2 a_3 \dots$ where $a_i \in \{0, 1\}$. Analogously in the ternary basis, $a \in I$ is written as $0_3, a_1 a_2 a_3 \dots$ with $a_i \in \{0, 1, 2\}$.

The Cantor set, or the set of the excluded middle thirds , can be represented by all numbers of [0, 1] such that in the ternary basis, can be written only using the digits 0 and 2, i.e.

$$\Gamma = \{0_3, (2t_1)(2t_2)(2t_3)... : t_j = 0 \text{ or } 1\}.$$

A continuous mapping f can be defined from Γ onto the unit square Q by means of

$$f(0_3, (2t_1)(2t_2)(2t_3)...) = (0_2, t_1t_3t_5...; 0_2, t_2t_4t_6...).$$

H. Lebesgue extended this mapping continuously into I by linear interpolation, obtaining a continuous function f_1 defined on the complement Γ^c as

$$f_{\mathsf{I}}(t) = \frac{1}{b_{\mathsf{n}} - a_{\mathsf{n}}} \left[(b_{\mathsf{n}} - t) \cdot f(a_{\mathsf{n}}) + (t - a_{\mathsf{n}}) \cdot f(b_{\mathsf{n}}) \right]$$

, (a_{n}, b_{n}) being the interval that is removed in the construction of Γ at the *n*th step and $a_{n} \leq t \leq b_{n}$.

Then , the Lebesgue curve (also Lebesgue function), denoted by L, is defined by

$$L(t) = f(t) \text{ if } t \in \Gamma$$

$$L(t) = f_{\mathsf{I}}(t) \text{ if } t \in \Gamma^{\mathsf{c}}.$$

L is a continuous and surjective function onto the square Q, so a space-filling curve (is also differentiable almost everywhere ; for details see [10], theorem 5.4.2, pp.78).

The two following simple propositions shows just how fails the converse of the Steinhaus theorem in the Lebesgue Curve.

Proposition 4 The Lebesgue curve is not a measure-preserving function.

Proof. Consider the measurable set $A = [0, \frac{1}{2}) \times [0, \frac{1}{2})$, then we claim that $L^{-1}(A) \subset [0, \frac{1}{2})$.

Indeed, let (x, y) be an element belonging to A, then in the binary basis

 $x = 0_2, 0r_2r_3...$; $y = 0_2, 0s_2s_3...$,

where $r_i, s_i \in \{0, 1\}$ for any $i \ge 2$ and with some $r_i, s_i = 0$ (for instance, observe that if all $r_i = 1$, then $x = \frac{1}{2}$).

By denoting $t = L^{-1}(x, \bar{y})$, we have two cases.

Case 1 : $t \in \Gamma$, then $t = 0_3, 00(2r_2)(2s_2)...$ and consequently $t \in \left[0, \frac{1}{9}\right)$. Case 2 : $t \in \Gamma^c$, then we have again that $t \in \left[0, \frac{1}{9}\right)$. Indeed, suppose that there is a value $t \in \Gamma^c$ with $t > \frac{1}{9}$ and $L(t) \in A$. Let (a_{n}, b_{n}) be the interval that has been removed in the construction of Γ . Thus $a_{n} < t < b_{n}$ and noticing that $\frac{1}{9} \in \Gamma$, it follows that $a_{n} \geq \frac{1}{9}$.

On the other hand, as $L(\frac{1}{3}) = (\frac{1}{2}, 1)$ and $L(\frac{2}{3}) = (\frac{1}{2}, 0)$ one has that $t \notin (\frac{1}{3}, \frac{2}{3})$. Furthermore, since

$$L(\frac{1}{9}) = (\frac{1}{2}, \frac{1}{2}) , \quad L(\frac{2}{9}) = (0, \frac{1}{2}) , \quad L(\frac{7}{9}) = (1, \frac{1}{2}) \text{ and } L(\frac{8}{9}) = (\frac{1}{2}, \frac{1}{2})$$
, we conclude that $t \notin (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$

hence

$$\varphi(a) = 0_2, 0r_3r_5... \le 0_2, 011... = \frac{1}{2}.$$

Let $a_n, b_n \in \left[0, \frac{1}{3}\right) \cap \Gamma$ be the end-points of the interval (a_n, b_n) removed in the construction of Γ , then

$$b_{\mathsf{n}} = 0_3, 0(2s_2)(2s_3)....$$

has the following easy property :

" there exists $k\geq 2~$ such that $s_{\mathsf{k}}=1~$ and $s_{\mathsf{i}}=0~$ for all i>k " . As consequence

$$\varphi(b_{\mathsf{n}}) < 0_2, 011... = \frac{1}{2}.$$

For each $t \in \left[0, \frac{1}{3}\right) \setminus \Gamma$ denote by λ the number $\frac{t - a_{\mathsf{n}}}{b_{\mathsf{n}} - a_{\mathsf{n}}}$, then $\varphi(t) = (1 - \lambda)\varphi(a_{\mathsf{n}}) + \lambda\varphi(b_{\mathsf{n}}) \quad \text{with } 0 < \lambda < 1.$

4

Since $\varphi(a_{\mathsf{n}}) \leq \frac{1}{2}$ and $\varphi(b_{\mathsf{n}}) < \frac{1}{2}$, we deduce that $\varphi(t) < \frac{1}{2}$ and so $\left[0, \frac{1}{3}\right) \setminus \Gamma \subset \varphi^{-1}(A_1)$ is proved.

On the other hand, if $a \in \Gamma$ with $a \ge \frac{1}{3}$, one has that either $a = 0_3, 022.$. (for $a = \frac{1}{3}$) or $a = 0_3, 2(2r_2)(2r_3)...$ (for $a > \frac{1}{3}$). Therefore we get $\varphi(a) \ge \frac{1}{2}.$

Assume $t \in \left(\frac{1}{3}, 1\right] \setminus \Gamma$, then there exist $a_{n}, b_{n} \in \Gamma$ with $\frac{1}{3} \leq a_{n} < t < b_{n}$ and so

$$\varphi(t) = (1 - \lambda)\varphi(a_{\mathsf{n}}) + \lambda\varphi(b_{\mathsf{n}}) \ge \frac{1}{2}.$$

Therefore $\varphi^{-1}(A_1) \subset \left[0, \frac{1}{3}\right]$ and it proves i). Finally, as conclusion, since $\Lambda_1(\Gamma) = 0$, it follows that

$$\Lambda_1(\varphi^{-1}(A_1)) = \frac{1}{3}.$$
 (3)

For proving ii), first observe that if $a \in \left(\left[0, \frac{1}{9}\right) \cup \left[\frac{2}{3}, \frac{7}{9}\right)\right) \cap \Gamma$ thus

$$\psi(a) \le \frac{1}{2}.\tag{4}$$

Indeed, a number $a \in \left[0, \frac{1}{9}\right)$ is expressed as

$$a = 0_3, 00(2r_3)(2r_4)\dots,$$

with some $r_{\mathbf{i}} = 0$ for $i \geq 3$. Therefore $\psi(a) = 0_2, 0r_4r_6... \leq 0_2, 011... = \frac{1}{2}$. Analogously, if $a \in \left[\frac{2}{3}, \frac{7}{9}\right)$ then $a = 0_3, 20(2r_3)(2r_4)...$ with some $r_{\mathbf{i}} = 0$ for $i \geq 3$ and so $\psi(a) = 0_2, 0r_4r_6... \leq 0_2, 011... = \frac{1}{2}$. On the other hand, if $a \in \left(\left[\frac{1}{9}, \frac{2}{3}\right] \bigcup \left[\frac{7}{9}, 1\right]\right) \cap \Gamma$ thus $\psi(a) \geq \frac{1}{2}$. (5)

Indeed, whether $a \in \left[\frac{1}{9}, \frac{2}{3}\right)$ its expression is given by $a = 0_3, 02(2r_3)(2r_4)...$ and then $\psi(a) = 0_2, 1r_4... \ge 0_2, 1 = \frac{1}{2}$. If $a \in \left[\frac{7}{9}, 1\right)$, thus $a = 0_3, 2(2r_2)(2r_3)(2r_4)...$ Now ,noticing that $\frac{7}{9} = 0_3, 2022...$ we have that, either $r_2 = 1$ ($a > \frac{7}{9}$) or $r_2 = 0$ with $r_1 = 1$ for all $i \ge 3$ ($a = \frac{7}{9}$). Therefore, in both cases

$$\psi(a) = 0_2, r_2 r_4 \dots \ge 0_2, 1 = \frac{1}{2}$$

Whether $[a_{n}, b_{n}] = \left[\frac{1}{3}, \frac{2}{3}\right]$, since $\frac{1}{2} < t < \frac{2}{3}$, one has $\psi(t) = (1 - \lambda)\psi(a_{n}) + \lambda\psi(b_{n}) = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{1}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda = (1 - \lambda)\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda\psi(\frac{2}{3}) + \lambda\psi(\frac{2}{3}) = 1 - \lambda\psi(\frac$

and this shows the first part of ii).

Finally, if $\psi(x) < \frac{1}{2}$ and $x = a \in \Gamma$, from (6) we deduce that $x \in \left[0, \frac{1}{9}\right) \bigcup \left[\frac{2}{3}, \frac{7}{9}\right] \subset \left[0, \frac{1}{9}\right) \bigcup \left(\frac{1}{2}, \frac{7}{9}\right).$

On the other hand, if $\psi(x) < \frac{1}{2}$ and $x = t \notin \Gamma$, we obtain the same conclusion. Indeed, by supposing that $x \notin \left[0, \frac{1}{9}\right) \cup \left[\frac{2}{3}, \frac{7}{9}\right)$ and by applying again (5) to the end-points a_{\sqcap} and b_{\sqcap} of the removed interval (a_{\sqcap}, b_{\sqcap}) , with $a_{\sqcap} < t < b_{\sqcap}$, we are led to $\psi(t) \geq \frac{1}{2}$, which is a contradiction.

The above involves that for any x with $\psi(x) < \frac{1}{2}$, one follows that $x \in \left[0, \frac{1}{9}\right) \cup \left[\frac{2}{3}, \frac{7}{9}\right) \subset \left[0, \frac{1}{9}\right) \cup \left(\frac{1}{2}, \frac{7}{9}\right)$ and therefore ii) is proved. Now, i) and ii) imply that :

$$\Lambda_1(\psi^{-1}(A_2)) = \frac{7}{18}$$

and from (3) one has

$$\Lambda_1(\varphi^{-1}(A_1)).\Lambda_1(\psi^{-1}(A_2)) = \frac{7}{54}.$$

On the other hand, since $\varphi^{-1}(A_1) \cap \psi^{-1}(A_2) \subset \left[0, \frac{1}{9}\right]$, one deduces

$$\Lambda_1\left(\varphi^{-1}(A_1) \cap \psi^{-1}(A_2)\right) \le \frac{1}{9} < \frac{7}{54} = \Lambda_1(\varphi^{-1}(A_1)) \cdot \Lambda_1(\psi^{-1}(A_2)),$$

concluding that φ and ψ are not stochastically independent.

From this the following is clear.

Corollary 6 There are space-filling curves whose coordinate functions are not stochastically independent.

Corollary 7 There are Q.S.I. functions that are not stochastically independent.

.

3 CHARACTERIZATION OF THE Q.S.I. CON-DITION.

Though it is obvious that the Steinhaus theorem (Theorem 1) is not a trivial result, the characterization of space-filling curves by means of the Q.S.I. condition could seem it..Therefore, in this section we are going to prove that the Borel measures characterize the Q.S.I condition in such a way that the coordinate functions of a space-filling curve can be easily determined.

From the countably additivity of the Lebesgue measure and Theorem 3, the easy technical lemma follows immediately.

Lemma 8 Let $\varphi_1, \varphi_2, ..., \varphi_n : I \to R$ be nonconstant continuous functions .Suppose also they are Q.S.I. Then the set function μ defined by

$$\mu(\prod_{i=1}^{n} B_{i}) = \Lambda_{1}\left[\cap_{i=1}^{n} \varphi_{i}^{-1}(B_{i})\right],$$

is countably additive on the class C_H of all cubes $C = \prod_{i=1}^n B_i$ contained in the parallelepiped $H = \prod_{i=1}^n \varphi_i(I)$. Furthermore $\mu(H) = 1$.

With the help of this lemma we finally have what we wanted all along, the connection between the curves filling a parallelepiped and the Borel measures defined on it.

Theorem 9 Assume $\varphi_1, \varphi_2, ..., \varphi_n : I \to R$ are continuous nonconstant functions verifying the Q.S.I. condition. Then the set function $\mu(\prod_{i=1}^n B_i) = \Lambda_1 \left[\cap_{i=1}^n \varphi_i^{-1}(B_i) \right]$, on the class C_H of all cubes $\prod_{i=1}^n B_i$ contained in $H = \prod_{i=1}^n \varphi_i(I)$, defines a Borel measure on H such that

 $\mu(H) = 1$ and $\mu(C) > 0$ for any cube C of C_H with $int(C) \neq \emptyset$. (1) Reciprocally, any Borel measure μ on a parallelepiped $H = \prod_{i=1}^{n} [a_i; b_i]$ $(a_i < b_i, i = 1, 2, ..., n)$ satisfying (1) defines n continuous nonconstant functions that are Q.S.I. **Proof.** Suppose that the functions $\varphi_1, \varphi_2, ..., \varphi_{\mathsf{D}}$ are Q.S.I., then ,by Theorem 3, the curve $\varphi = (\varphi_1, \varphi_2, ..., \varphi_{\mathsf{D}})$ fills $H = \prod_{i=1}^{\mathsf{h}} \varphi_i(I)$. On the other hand, by the previous Lemma, μ is countably additive on the class C_{H} and satisfies $\mu(H) = 1$. Clearly, then, μ defines on the ring $\Re(K)$, of all finite disjoint unions of sets of C_{H} , a unique finite measure which is extended to finite meas0previo3th \mathfrak{A} to

This allows us to define on I the n functions

$$\begin{aligned} h_1^{(\mathsf{M})}(t) &= x_{(\mathsf{p})1}^{(\mathsf{M})} \text{ if } t \in I_{\mathsf{p}}^{(\mathsf{M})}, \\ h_2^{(\mathsf{M})}(t) &= x_{(\mathsf{p})2}^{(\mathsf{M})} \text{ if } t \in I_{\mathsf{p}}^{(\mathsf{M})}, ..., \\ h_{\mathsf{n}}^{(\mathsf{M})}(t) &= x_{(\mathsf{p})\mathsf{n}}^{(\mathsf{M})} \text{ if } t \in I_{\mathsf{p}}^{(\mathsf{M})}, \\ 1 &\leq p \leq 2^{\mathsf{M}\mathsf{n}}. \end{aligned}$$

(2)

Now, we are going to prove that the limits $\lim_{M\to\infty} h_1^{(M)}$, $\lim_{M\to\infty} h_2^{(M)}$, ..., $\lim_{M\to\infty} h_n^{(M)}$

there exist, define functions that are continuous (observe that $h_1^{(M)}, h_2^{(M)}, ..., h_n^{(M)}$ are not) and satisfy the Q.S.I. condition.

Indeed, let us take an index i with $1 \leq i \leq n~$ and denote by L_{i} the length of the interval $[a_i, b_i]$.Directly from the definition of $h_i^{(M)}$,

$$\left| h_{i}^{(\mathsf{M})}(t) - h_{i}^{(\mathsf{M}+1)}(t) \right| = \frac{1}{4} L_{i} 2^{-\mathsf{M}} \text{ for any } t \in I.$$
(3)

For N > M

$$\begin{aligned} \left| h_{i}^{(\mathsf{N})}(t) - h_{i}^{(\mathsf{M})}(t) \right| &\leq \left| h_{i}^{(\mathsf{N})}(t) - h_{i}^{(\mathsf{N}-1)}(t) \right| + \left| h_{i}^{(\mathsf{N}-1)}(t) - h_{i}^{(\mathsf{N}-2)}(t) \right| + \dots \\ &+ \left| h_{i}^{(\mathsf{M}+1)}(t) - h_{i}^{(\mathsf{M})}(t) \right|. \end{aligned}$$

Hence, given $\varepsilon > 0$, there exists a large enough M_0 such that for $M \ge M_0$,

$$\left| h_{i}^{(N)}(t) - h_{i}^{(M)}(t) \right| \leq \frac{1}{4} L_{i} \sum_{j=M}^{N} 2^{-j} < \varepsilon$$
 (4)

This proves that $\{h_i^{(N)}(t)\}_{N=1;2;:::}$ is a Cauchy sequence for any $t \in I$. Hence, there exists the pointwise limit

$$h_{\mathbf{i}}(t) = \lim_{\mathbf{N} \to \infty} h_{\mathbf{i}}^{(\mathbf{N})}(t).$$
(5)

Taking limits in inequality (4) when $N \to \infty$, one has

$$\left|h_{\mathbf{i}}(t) - h_{\mathbf{i}}^{(\mathsf{M})}(t)\right| \le \frac{1}{4} L_{\mathbf{i}} \sum_{\mathbf{j}=\mathsf{M}}^{\infty} 2^{-\mathbf{j}} < \varepsilon \text{ for all } M \ge M_0 \tag{6}$$

and , certainly, then, the limit (5) is also uniform.

Now, it remains to show that the $h_i(t)$ are continuous. Indeed, given $\varepsilon > 0$, let M > 1 be such that $L_i 2^{-M+1} < \varepsilon$. If t_0 is a fixed point of I, there exists some p for which $t_0 \in I_p^{(M)}$. Choose a number δ so that $0 < \delta < Min \left\{ \mu(C_p^{(M)}) : 1 \le p \le 2^{Mn} \right\}$.

Clearly, then , for t such that $|t - t_0| < \delta$ one has that either

 $t \in I_{p}^{(\mathsf{M})}$ or $t \in I_{p-1}^{(\mathsf{M})}$ or $t \in I_{p+1}^{(\mathsf{M})}$. Anyway, from (6) and (2) we have

$$\begin{aligned} &|h_{i}(t) - h_{i}(t_{0})| \leq \\ &|h_{i}(t) - h_{i}^{(\mathsf{M})}(t)| + \left|h_{i}^{(\mathsf{M})}(t_{0}) - h_{i}^{(\mathsf{M})}(t_{0})| + \left|h_{i}^{(\mathsf{M})}(t_{0}) - h_{i}(t_{0})\right| \leq \\ & L_{i}2^{-\mathsf{M}-1} + L_{i}2^{-\mathsf{M}} + L_{i}2^{-\mathsf{M}-1} = L_{i}2^{-\mathsf{M}+1} < \varepsilon \end{aligned}$$

This shows the continuity of h_i for all i = 1, 2, ..., n.

Finally, let $\{A_i : i = 1, ..., n\}$ be an arbitrary open sets of R such that the condition

 $\Lambda_1 \left[h_1^{-1}(A_1) \right] \times \ldots \times \Lambda_1 \left[h_n^{-1}(A_n) \right] > 0$ holds. Evidently, then, there exists a closed cube C in H with $int(C) \neq \emptyset$, such that $C \subset A = \bigcap_{i=1}^{n} A_i$. Given C, determine a cube $C_p^{(M)}$ of a certain partition P_M so that $C_p^{(M)} \subset C$. Denoting by h the function defined by $(h_1, h_2, ..., h_n)$, we are going to prove that $I_p^{(M)}$ (the corresponding interval to the cube $C_{p}^{(M)}$) verifies

$$I_{\mathsf{p}}^{(\mathsf{M})} \subset h^{-1}(C). \tag{6}$$

Indeed, let t be a point of $I_{p}^{(M)}$. From (1), the function $h^{(M)}$, defined as $\left(h_{1}^{(M)}, h_{2}^{(M)}, ..., h_{n}^{(M)}\right)$, satisfies

$$h^{(M)}(t) = P_{p}^{(M)}.$$
 (7)

In view of the given partitions, there exists a cube $C_{p_1}^{(M+1)} \subset C_p^{(M)}$ such that $t \in I_{p_1}^{(M+1)}$ and then,

$$h^{(\mathsf{M}+1)}(t) = \left(h_1^{(\mathsf{M}+1)}(t), h_2^{(\mathsf{M}+1)}(t), \dots, h_n^{(\mathsf{M}+1)}(t)\right) = P_{\mathsf{p}_1}^{(\mathsf{M}+1)}$$

In this way, we can inductively determine a sequence of cubes

$$\ldots \subset C_{\mathfrak{p}_N}^{(\mathsf{M}+\mathsf{N})} \subset \ldots \subset C_{\mathfrak{p}_1}^{(\mathsf{M}+1)} \subset C_{\mathfrak{p}}^{(\mathsf{M})} \subset C$$

and a sequence $\{h^{(\mathsf{M}+\mathsf{N})}(t): N = 1, 2, ..\}$ of points of R^{n} . Now, taking the limit, we have

$$\lim_{\mathsf{N}\to\infty} h^{(\mathsf{M}+\mathsf{N})}(t) = h(t) = \lim_{\mathsf{N}\to\infty} P_{\mathsf{p}_N}^{(\mathsf{M}+\mathsf{N})} = P \in C.$$

Therefore $t \in h^{-1}(C)$ and so (7) is showed. Consequently, we have

$$\Lambda_1\left[\cap_{\mathsf{i}=1}^{\mathsf{n}} h_{\mathsf{i}}^{-1}(A_{\mathsf{i}})\right] = \Lambda_1\left[h^{-1}(A)\right] \ge \Lambda_1(I_{\mathsf{p}}^{(\mathsf{iv})}). \tag{6}$$

By using (1), $\Lambda_1(I_p^{(M)}) = \mu(C_p^{(M)})$. Because of the assumption on the mea-

sure μ , $\mu(C_p^{(\mathsf{M})}) > 0$. Hence ,from (8), $\Lambda_1\left[\cap_{i=1}^{\mathsf{n}} h_i^{-1}(A_i)\right] > 0$ and the theorem is

Corollary 10 Under the same conditions as that of Theorem 2, a Borel measure on a parallelepiped H defines a curve that fills it.

Proof. .

References

- Garsia, A.M., Combinatorial inequalities and smoothness of functions, Bull. Amer. Math. Soc., 82 (1976), 157-170.
- [2] Halmos, Measure Theory, Springer-Verlag, New York Inc. (1974).
- [3] Hilbert, D., Über die stetige Abbildung einer Linie auf ein Flächenstück, Math. Annln., 38 (1891), 459-460.
- [4] Holbrook, John A.R., Stochastic independence and space-filling curves, Amer. Math. Monthly, 88 (1981), 426-432.
- [5] Lebesgue, H., Leçons sur l'Intégration et la Recherche des Fonctions Primitives, Gauthier-Villars, Paris (1904).
- [6] Lebesgue, H., Sur les fonctions représentables analytiquement, J. de Math., 6 (1), (1905), 139-216.
- [7] Moore, E.H., On certain crinkly curves, Trans. Amer. Math. Soc., 1 (1900), 72-90.
- [8] Mora, G. and Cherruault, Y., Characterization and Generation of α-dense Curves, Computers Math. Applic., 9 (1997),83-91.
- [9] Peano, G., Sur une courbe qui remplit toute une aire plaine, Math. Annln., 36 (1890), 157-160.
- [10] Sagan, H., Space-filling Curves, Springer-Verlag, New York (1994)
- [11] Steinhaus, H., La courbe de Peano et les Fonctions Indépendantes, C. R. Acad. Sci. Paris 202 (1936), 1961-1963.