A CHARACTERIZATION OF SPACE-FILLING CURVES

GASPAR MORA and JUAN A. MIRA
Department of Mathematical Analysis and Applied Mathematics.
Faculty of Sciences.University of Alicante. 03080
ALICANTE (SPAIN).
gaspar.mora@ua.es and jamira@ua.es

December 1, 2010

Abstract

A famous theorem discovered in 1936 by H.Steinhaus on a sufficient condition for obtaining the coordinate functions of a curve filling the unit square is revised in the present paper. Here we point out that the converse of the above theorem fails in the Lebesgue curve. A characterization of the space-filling curves by means of a filling condition is proposed. A constructive characterization of this filling condition, in terms of the Borel measures, is also settled.

KEYWORDS.

Borel measures, Jordan content, Space-filling curves, Stochastic independence.

1 INTRODUCTION and NOTATION.

In 1890, G.Peano [9] demonstrated that the interval $I=[0,1]$ could be mapped surjectively and continuously onto the square $Q=[0,1]^{2}$. Immediately, furthers examples of such curves by D.Hilbert (1891) [3] , E.H.Moore (1900) [7], H.Lebesgue (1904) [5, 6] and others followed. In spite of each curve was greatly superior in simplicity and ingenuity to the previous, a method for generating them remained unsettled. H.Steinhaus in 1936 [11] solved the problem by means of a surpresively result : " if two continuous non-constant functions on I are stochastically independent with respect to Lebesgue measure, then they are the coordinate functions of a space-filling curve " (see [10],pp. 2 and the original paper of Steinhaus [11]).

The attainment of space-filling curves by means of stochastically independent functions, begun by Steinhaus, was soon forgotten and, apparently, Garsia [1] and others (see [4]) arrived to the same conclusions about forty years later. Following the way of the stochastic independence (in brief, s.i.) , it is neccesary to remark the work of Holbrook in [4].Nevertheless, as we shall prove below, the s.i. is a too much strong condition for giving a characterization theorem on space-filling curves, which is exactly the objective of our paper. For this reason we introduce here (Definition 1) a filling condition (in brief f.c.), which will be appropriate to characterize the space-filling curves.

The $f . c$. is a concept ,implicitly handled in [8], that was given to characterize a class of curves that contains to the family of the space-filling, namely the α-dense curves in parallelepipeds H of R^{n}. These curves have the property of densifying H,i.e. for any point of H there is a point of the curve at distance less than or equal that $\alpha \geq 0$.

To avoid that the f.c. to be considered as a trivial characterization of spacefilling curves, a characterization theorem on the filling condition, in terms of Borel measures, will be also settled..Moreover, this result will point the way to the construction of the coordinate function of a space-filling curve.

In order to facilitate the reading of the text, recall some definitions, contained in [10], concerning to the concepts of space-filling curves, stochastically independent functions and others.
Γ will denote the Cantor set, J_{n} the n-dimensional Jordan content of a Jordan measurable subset of R^{n} and Λ_{n} the n-dimensional Lebesgue measure of a Lebesgue measurable subset of R^{n}.

A continuous function $f: I \rightarrow R^{\mathrm{n}}$ with $n \geq 2$, is called a space - filling curve if $J_{\mathrm{n}}(f(I))>0$.

Let $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}: I \rightarrow R$ be measurable functions. Then, $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}$ are called stochastically independent with respect to the Lebesgue measure (in brief r.L.m.) if, for any measurable sets $A_{1}, \ldots, A_{\mathrm{n}}$ of R,

$$
\Lambda_{1}\left[\varphi_{1}^{-1}\left(A_{1}\right) \cap \ldots \cap \varphi_{\mathrm{n}}^{-1}\left(A_{\mathrm{n}}\right)\right]=\Lambda_{1}\left[\varphi_{1}^{-1}\left(A_{1}\right)\right] \times \ldots \times \Lambda_{1}\left[\varphi_{\mathrm{n}}^{-1}\left(A_{\mathrm{n}}\right)\right]
$$

A surjective function $f: I \rightarrow Q$ is said to be measure - preserving if, for any
measurable set A of Q,

$$
\Lambda_{1}\left(f^{-1}(A)\right)=\Lambda_{2}(A)
$$

2 The quasi-stochastic independence as a Ölling condition.

The purpose of this section is to prove that the stochastic independence is sufficient but it is not a necessary condition to define space-filling curves. A characterization of these curves will be given by means of the following simple concept .

DeÖnition 1 (Filling condition) We shall say that n measurable functions $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}$:
$I \rightarrow R$ are quasi-stochastically independent (in brief q.s.i.) with respect to the Lebesgue measure, if for any open sets $A_{1}, \ldots, A_{\mathrm{n}}$ of R the condition
$\Lambda_{1}\left[\varphi_{1}^{-1}\left(A_{1}\right)\right] \times \ldots \times \Lambda_{1}\left[\varphi_{n}^{-1}\left(A_{\mathrm{n}}\right)\right]>0$
implies
$\Lambda_{1}\left[\varphi_{1}^{-1}\left(A_{1}\right) \cap \ldots \cap \varphi_{n}^{-1}\left(A_{\mathrm{n}}\right)\right]>0$.
Our next result is immediate.
Proposition 2 Let $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}: I \rightarrow R$ be nonconstant continuous functions such that the curve $f=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{n}}\right): I \rightarrow R^{\mathrm{n}}$ fills the parallelepiped $\sqcap_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$. Thus $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}$ are quasi-stochastically independent (r.L.m).

As a generalization of the classical result of Steinhaus (see [10, p.109] or [4, Prop.1]) we expose the following theorem.

Theorem 3 Let $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}: I \rightarrow R$ be quasi-stochastically independent functions (r.L.m.). Assume also that they are continuous but not constant. Thus the curve defined by $f=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{n}}\right): I \rightarrow R^{\mathrm{n}}$ fills the parallelepiped $\square_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$.

Proof. Let $x=\left(x_{\mathrm{i}}\right)_{\mathrm{i}=1}^{\mathrm{n}}$ be a point of $\prod_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$, so there exist $\left(t_{\mathrm{i}}\right)_{\mathrm{i}=1}^{\mathrm{n}}$ in I such that $x_{\mathrm{i}}=\varphi_{\mathrm{i}}\left(t_{\mathrm{i}}\right)$ for each $i=1,2, \ldots, n$. Given $\varepsilon>0$, consider the open sets $A_{\mathrm{i}}=\left(x_{\mathrm{i}}-\frac{\varepsilon}{\sqrt{n}}, x_{\mathrm{i}}+\frac{\varepsilon}{\sqrt{n}}\right)$ for $i=1,2, \ldots, n$.

By continuinity, $\varphi_{\mathrm{i}}^{-1}\left(A_{\mathrm{i}}\right)$ is open in I and contains t_{i}, therefore the condition $\Lambda_{1}\left[\varphi_{1}^{-1}\left(A_{1}\right)\right] \times \ldots \times \Lambda_{1}\left[\varphi_{n}^{-1}\left(A_{\mathrm{n}}\right)\right]>0$
holds.
Since $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}$ are q-s.i. ,one has
$\Lambda_{1}\left[\varphi_{1}^{-1}\left(A_{1}\right) \cap \ldots \cap \varphi_{\mathrm{n}}^{-1}\left(A_{\mathrm{n}}\right)\right]>0$.
Thus there exists $t \in I$ such that $\varphi_{\mathrm{i}}(t) \in A_{\mathrm{i}}$.From (1)

$$
\left|\varphi_{\mathrm{i}}(t)-x_{\mathrm{i}}\right|<\frac{\varepsilon}{\sqrt{n}} \text { for } i=1,2, \ldots, n,
$$

so the euclidean norm $\|f(t)-x\|<\varepsilon$. This proves that $f(I)$ is dense in $\prod_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$, but $f(I)$ is a compact set, therefore $f(I)=\prod_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$ and the result follows.

To expose our next results,we need recall some elementary properties on the Cantor set and the Lebesgue curve.

The binary representation of a number $a \in I$ will be denoted by
$0_{2}, a_{1} a_{2} a_{3} \ldots$ where $a_{\mathrm{i}} \in\{0,1\}$. Analogously in the ternary basis, $a \in I$ is written as $0_{3}, a_{1} a_{2} a_{3} \ldots$ with $a_{\mathrm{i}} \in\{0,1,2\}$.

The Cantor set,or the set of the excluded middle thirds ,can be represented by all numbers of $[0,1]$ such that ,in the ternary basis, can be written only using the digits 0 and 2, i.e.

$$
\Gamma=\left\{0_{3},\left(2 t_{1}\right)\left(2 t_{2}\right)\left(2 t_{3}\right) \ldots \quad: t_{\mathrm{j}}=0 \text { or } 1\right\}
$$

A continuous mapping f can be defined from Γ onto the unit square Q by means of

$$
f\left(0_{3},\left(2 t_{1}\right)\left(2 t_{2}\right)\left(2 t_{3}\right) \ldots\right)=\left(0_{2}, t_{1} t_{3} t_{5} \ldots ; 0_{2}, t_{2} t_{4} t_{6} \ldots\right) .
$$

H. Lebesgue extended this mapping continuously into I by linear interpolation, obtaining a continuous function f_{l} defined on the complement Γ^{C} as

$$
f_{\mathrm{l}}(t)=\frac{1}{b_{\mathrm{n}}-a_{\mathrm{n}}}\left[\left(b_{\mathrm{n}}-t\right) \cdot f\left(a_{\mathrm{n}}\right)+\left(t-a_{\mathrm{n}}\right) \cdot f\left(b_{\mathrm{n}}\right)\right]
$$

, $\left(a_{\mathrm{n}}, b_{\mathrm{n}}\right)$ being the interval that is removed in the construction of Γ at the nth step and $a_{\mathrm{n}} \leq t \leq b_{\mathrm{n}}$.

Then , the Lebesgue curve (also Lebesgue function), denoted by L, is defined by

$$
\begin{aligned}
L(t) & =f(t) \text { if } t \in \Gamma \\
L(t) & =f_{1}(t) \text { if } t \in \Gamma^{C} .
\end{aligned}
$$

L is a continuous and surjective function onto the square Q, so a space-filling curve (is also differentiable almost everywhere ; for details see [10], theorem 5.4.2, pp. 78).

The two following simple propositions shows just how fails the converse of the Steinhaus theorem in the Lebesgue Curve.

Proposition 4 The Lebesgue curve is not a measure-preserving function.
Proof. Consider the measurable set $A=\left[0, \frac{1}{2}\right) \times\left[0, \frac{1}{2}\right)$, then we claim that $L^{-1}(A) \subset\left[0, \frac{1}{9}\right)$.

Indeed, let (x, y) be an element belonging to A, then in the binary basis

$$
x=0_{2}, 0 r_{2} r_{3} \ldots \quad ; y=0_{2}, 0 s_{2} s_{3} \ldots
$$

where $r_{\mathrm{i}}, s_{\mathrm{i}} \in\{0,1\}$ for any $i \geq 2$ and with some $r_{\mathrm{i}}, s_{\mathrm{i}}=0$ (for instance, observe that if all $r_{\mathrm{i}}=1$, then $x=\frac{1}{2}$).

By denoting $t=L^{-1}(x, y)$, we have two cases.
Case $1: t \in \Gamma$, then $t=0_{3}, 00\left(2 r_{2}\right)\left(2 s_{2}\right) \ldots \quad$ and consequently $t \in\left[0, \frac{1}{9}\right)$.
Case $2: t \in \Gamma^{c}$, then we have again that $t \in\left[0, \frac{1}{9}\right)$. Indeed, suppose that there is a value $t \in \Gamma^{c}$ with $t>\frac{1}{9}$ and $L(t) \in A$. Let $\left(a_{\mathrm{n}}, b_{\mathrm{n}}\right)$ be the interval that has been removed in the construction of Γ. Thus $a_{\mathrm{n}}<t<b_{\mathrm{n}}$ and noticing that $\frac{1}{9} \in \Gamma$, it follows that $a_{\mathrm{n}} \geq \frac{1}{9}$.

On the other hand, as $L\left(\frac{1}{3}\right)=\left(\frac{1}{2}, 1\right)$ and $L\left(\frac{2}{3}\right)=\left(\frac{1}{2}, 0\right)$ one has that $t \notin\left(\frac{1}{3}, \frac{2}{3}\right)$. Furthermore, since

$$
L\left(\frac{1}{9}\right)=\left(\frac{1}{2}, \frac{1}{2}\right) \quad, \quad L\left(\frac{2}{9}\right)=\left(0, \frac{1}{2}\right) \quad, \quad L\left(\frac{7}{9}\right)=\left(1, \frac{1}{2}\right) \text { and } L\left(\frac{8}{9}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

, we conclude that $t \notin\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9},{ }^{8}\right.$
hence

$$
\varphi(a)=0_{2}, 0 r_{3} r_{5} \ldots \leq 0_{2}, 011 \ldots=\frac{1}{2}
$$

Let $a_{\mathrm{n}}, b_{\mathrm{n}} \in\left[0, \frac{1}{3}\right) \cap \Gamma$ be the end-points of the interval $\left(a_{\mathrm{n}}, b_{\mathrm{n}}\right)$ removed in the construction of Γ, then

$$
b_{\mathrm{n}}=0_{3}, 0\left(2 s_{2}\right)\left(2 s_{3}\right) \ldots
$$

has the following easy property :
"there exists $k \geq 2$ such that $s_{\mathrm{k}}=1$ and $s_{\mathrm{i}}=0$ for all $i>k "$.As consequence

$$
\varphi\left(b_{\mathrm{n}}\right)<0_{2}, 011 \ldots=\frac{1}{2}
$$

For each $t \in\left[0, \frac{1}{3}\right) \backslash \Gamma$ denote by λ the number $\frac{t-a_{\mathrm{n}}}{b_{\mathrm{n}}-a_{\mathrm{n}}}$, then

$$
\varphi(t)=(1-\lambda) \varphi\left(a_{\mathrm{n}}\right)+\lambda \varphi\left(b_{\mathrm{n}}\right) \quad \text { with } \quad 0<\lambda<1
$$

Since $\varphi\left(a_{\mathrm{n}}\right) \leq \frac{1}{2}$ and $\varphi\left(b_{\mathrm{n}}\right)<\frac{1}{2}$, we deduce that $\varphi(t)<\frac{1}{2}$ and so $\left[0, \frac{1}{3}\right) \backslash \Gamma \subset$ $\varphi^{-1}\left(A_{1}\right)$ is proved.

On the other hand, if $a \in \Gamma$ with $a \geq \frac{1}{3}$, one has that either $a=0_{3}, 022$..
.(for $a=\frac{1}{3}$) or $a=0_{3}, 2\left(2 r_{2}\right)\left(2 r_{3}\right) \ldots\left(\right.$ for $\left.a>\frac{1}{3}\right)$. Therefore we get $\varphi(a) \geq \frac{1}{2}$.
Assume $t \in\left(\frac{1}{3}, 1\right] \backslash \Gamma$, then there exist $a_{\mathrm{n}}, b_{\mathrm{n}} \in \Gamma$ with $\frac{1}{3} \leq a_{\mathrm{n}}<t<b_{\mathrm{n}}$ and so

$$
\varphi(t)=(1-\lambda) \varphi\left(a_{\mathrm{n}}\right)+\lambda \varphi\left(b_{\mathrm{n}}\right) \geq \frac{1}{2}
$$

Therefore $\varphi^{-1}\left(A_{1}\right) \subset\left[0, \frac{1}{3}\right)$ and it proves i). Finally, as conclusion, since $\Lambda_{1}(\Gamma)=0$, it follows that

$$
\begin{equation*}
\Lambda_{1}\left(\varphi^{-1}\left(A_{1}\right)\right)=\frac{1}{3} \tag{3}
\end{equation*}
$$

For proving ii), first observe that if $a \in\left(\left[0, \frac{1}{9}\right) \cup\left[\frac{2}{3}, \frac{7}{9}\right)\right) \cap \Gamma$
thus

$$
\begin{equation*}
\psi(a) \leq \frac{1}{2} \tag{4}
\end{equation*}
$$

Indeed, a number $a \in\left[0, \frac{1}{9}\right)$ is expressed as

$$
a=0_{3}, 00\left(2 r_{3}\right)\left(2 r_{4}\right) \ldots
$$

with some $r_{\mathrm{i}}=0$ for $i \geq 3$. Therefore $\psi(a)=0_{2}, 0 r_{4} r_{6} \ldots \leq 0_{2}, 011 \ldots=\frac{1}{2}$. Analogously, if $a \in\left[\frac{2}{3}, \frac{7}{9}\right)$ then $a=0_{3}, 20\left(2 r_{3}\right)\left(2 r_{4}\right) \ldots$ with some $r_{\mathrm{i}}=0$ for $i \geq 3$ and so $\psi(a)=0_{2}, 0 r_{4} r_{6} \ldots \leq 0_{2}, 011 \ldots=\frac{1}{2}$.

On the other hand, if $a \in\left(\left[\frac{1}{9}, \frac{2}{3}\right) \cup\left[\frac{7}{9}, 1\right)\right) \cap \Gamma$
thus

$$
\begin{equation*}
\psi(a) \geq \frac{1}{2} \tag{5}
\end{equation*}
$$

Indeed, whether $a \in\left[\frac{1}{9}, \frac{2}{3}\right)$ its expression is given by $a=0_{3}, 02\left(2 r_{3}\right)\left(2 r_{4}\right) \ldots$ and then $\psi(a)=0_{2}, 1 r_{4} \ldots \geq 0_{2}, 1=\frac{1}{2}$.
If $a \in\left[\frac{7}{9}, 1\right)$, thus $a=0_{3}, 2\left(2 r_{2}\right)\left(2 r_{3}\right)\left(2 r_{4}\right) \ldots$. Now , noticing that $\frac{7}{9}=$ $0_{3}, 2022 \ldots$ we have that, either $r_{2}=1\left(a>\frac{7}{9}\right)$ or $r_{2}=0$ with $r_{\mathrm{i}}=1$ for all $i \geq 3\left(a=\frac{7}{9}\right)$. Therefore, in both cases

$$
\psi(a)=0_{2}, r_{2} r_{4} \ldots \geq 0_{2}, 1=\frac{1}{2}
$$

Whether $\left[a_{\mathrm{n}}, b_{\mathrm{n}}\right]=\left[\frac{1}{3}, \frac{2}{3}\right]$, since $\frac{1}{2}<t<\frac{2}{3}$, one has

$$
\begin{aligned}
\psi(t) & = \\
(1-\lambda) \psi\left(a_{\mathrm{n}}\right)+\lambda \psi\left(b_{\mathrm{n}}\right) & =(1-\lambda) \psi\left(\frac{1}{3}\right)+\lambda \psi\left(\frac{2}{3}\right)=1-\lambda= \\
1-\frac{t-a_{\mathrm{n}}}{b_{\mathrm{n}}-a_{\mathrm{n}}} & =\frac{\frac{2}{3}-t}{\frac{2}{3}-\frac{1}{3}}<\frac{1}{2}
\end{aligned}
$$

and this shows the first part of ii).
Finally, if $\psi(x)<\frac{1}{2}$ and $x=a \in \Gamma$, from (6) we deduce that

$$
x \in\left[0, \frac{1}{9}\right) \bigcup\left[\frac{2}{3}, \frac{7}{9}\right) \subset\left[0, \frac{1}{9}\right) \bigcup\left(\frac{1}{2}, \frac{7}{9}\right)
$$

On the other hand, if $\psi(x)<\frac{1}{2}$ and $x=t \notin \Gamma$, we obtain the same conclusion. Indeed, by supposing that $x \notin\left[0, \frac{1}{9}\right) \cup\left[\frac{2}{3}, \frac{7}{9}\right)$ and by applying again (5) to the end-points a_{n} and b_{n} of the removed interval ($a_{\mathrm{n}}, b_{\mathrm{n}}$), with $a_{\mathrm{n}}<t<b_{\mathrm{n}}$, we are led to $\psi(t) \geq \frac{1}{2}$, which is a contradiction.

The above involves that for any x with $\psi(x)<\frac{1}{2}$, one follows that $x \in$ $\left[0, \frac{1}{9}\right) \cup\left[\frac{2}{3}, \frac{7}{9}\right) \subset\left[0, \frac{1}{9}\right) \cup\left(\frac{1}{2}, \frac{7}{9}\right)$ and therefore ii) is proved.

Now, i) and ii) imply that :

$$
\Lambda_{1}\left(\psi^{-1}\left(A_{2}\right)\right)=\frac{7}{18}
$$

and from (3) one has

$$
\Lambda_{1}\left(\varphi^{-1}\left(A_{1}\right)\right) \cdot \Lambda_{1}\left(\psi^{-1}\left(A_{2}\right)\right)=\frac{7}{54}
$$

On the other hand, since $\varphi^{-1}\left(A_{1}\right) \cap \psi^{-1}\left(A_{2}\right) \subset\left[0, \frac{1}{9}\right)$, one deduces

$$
\Lambda_{1}\left(\varphi^{-1}\left(A_{1}\right) \cap \psi^{-1}\left(A_{2}\right)\right) \leq \frac{1}{9}<\frac{7}{54}=\Lambda_{1}\left(\varphi^{-1}\left(A_{1}\right)\right) \cdot \Lambda_{1}\left(\psi^{-1}\left(A_{2}\right)\right)
$$ concluding that φ and ψ are not stochastically independent.

From this the following is clear.
Corollary 6 There are space-filling curves whose coordinate functions are not stochastically independent.

Corollary 7 There are Q.S.I. functions that are not stochastically independent.

3 CHARACTERIZATION OF THE Q.S.I.CONDITION.

Though it is obvious that the Steinhaus theorem (Theorem 1) is not a trivial result, the characterization of space-filling curves by means of the Q.S.I. condition could seem it..Therefore, in this section we are going to prove that the Borel measures characterize the Q.S.I condition in such a way that the coordinate functions of a space-filling curve can be easily determined.

From the countably additivity of the Lebesgue measure and Theorem 3, the easy technical lemma follows immediately.

Lemma 8 Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{n}}: I \rightarrow R$ be nonconstant continuous functions .Suppose also they are Q.S.I. Then the set function μ defined by

$$
\mu\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} B_{\mathrm{i}}\right)=\Lambda_{1}\left[\cap_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}^{-1}\left(B_{\mathrm{i}}\right)\right]
$$

is countably additive on the class C_{H} of all cubes $C=\prod_{\mathrm{i}=1}^{\mathrm{n}} B_{\mathrm{i}}$ contained in the parallelepiped $H=\prod_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$. Furthermore , $\mu(H)=1$.

With the help of this lemma we finally have what we wanted all along, the connection between the curves filling a parallelepiped and the Borel measures defined on it.

Theorem 9 Assume $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{n}}: I \rightarrow R$ are continuous nonconstant functions verifying the Q.S.I.condition. Then the set function $\mu\left(\prod_{i=1}^{n} B_{\mathrm{i}}\right)=\Lambda_{1}\left[\cap_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}^{-1}\left(B_{\mathrm{i}}\right)\right]$, on the class C_{H} of all cubes $\prod_{\mathrm{i}=1}^{\mathrm{n}} B_{\mathrm{i}}$ contained in $H=\prod_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$, defines a Borel measure on H such that
$\mu(H)=1$ and $\mu(C)>0$ for any cube C of C_{H} with $\operatorname{int}(C) \neq \emptyset$. (1) Reciprocally, any Borel measure μ on a parallelepiped $H=\prod_{\mathrm{i}=1}^{\mathrm{n}}\left[a_{\mathrm{i}} ; b_{\mathrm{i}}\right] \quad\left(a_{\mathrm{i}}<\right.$ $\left.b_{\mathbf{i}}, i=1,2, \ldots, n\right)$ satisfying (1) defines n continuous nonconstant functions that are Q.S.I.

Proof. Suposse that the functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{n}}$ are Q.S.I., then ,by Theorem 3 , the curve $\varphi=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{n}}\right)$ fills $H=\prod_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(I)$. On the other hand, by the previous Lemma, μ is countably additive on the class C_{H} and satisfies $\mu(H)=1$. Clearly, then, μ defines on the ring $\Re(K)$, of all finite disjoint unions of sets of C_{H}, a unique finite measure which is extended to finite meas0previo3thentio

This allows us to define on I the n functions

$$
\begin{aligned}
h_{1}^{(\mathrm{M})}(t) & =x_{(\mathrm{p}) 1}^{(\mathrm{M})} \text { if } t \in I_{\mathrm{p}}^{(\mathrm{M})}, \\
h_{2}^{(\mathrm{M})}(t) & =x_{(\mathrm{p}) 2}^{(\mathrm{M})} \text { if } t \in I_{\mathrm{p}}^{(\mathrm{M})}, \ldots, \\
h_{\mathrm{n}}^{(\mathrm{M})}(t) & =x_{(\mathrm{p}) \mathrm{n}}^{(\mathrm{M})} \text { if } t \in I_{\mathrm{p}}^{(\mathrm{M})}, \\
1 & \leq p \leq 2^{\mathrm{Mn}} .
\end{aligned}
$$

(2)

Now, we are going to prove that the limits
$\lim _{\mathrm{M} \rightarrow \infty} h_{1}^{(\mathrm{M})}, \lim _{\mathrm{M} \rightarrow \infty} h_{2}^{(\mathrm{M})}, \ldots, \lim _{\mathrm{M} \rightarrow \infty} h_{\mathrm{n}}^{(\mathrm{M})}$
there exist, define functions that are continuous (observe that $h_{1}^{(\mathrm{M})}, h_{2}^{(\mathrm{M})}, \ldots, h_{\mathrm{n}}^{(\mathrm{M})}$ are not) and satisfy the Q.S.I. condition.

Indeed, let us take an index i with $1 \leq i \leq n$ and denote by L_{i} the length of the interval $\left[a_{\mathrm{i}}, b_{\mathrm{i}}\right]$.Directly from the definition of $h_{\mathrm{i}}^{(\mathrm{M})}$,

$$
\begin{equation*}
\left|h_{\mathrm{i}}^{(\mathrm{M})}(t)-h_{\mathrm{i}}^{(\mathrm{M}+1)}(t)\right|=\frac{1}{4} L_{\mathrm{i}} 2^{-\mathrm{M}} \text { for any } t \in I \tag{3}
\end{equation*}
$$

For $N>M$

$$
\begin{aligned}
\left|h_{\mathrm{i}}^{(\mathrm{N})}(t)-h_{\mathrm{i}}^{(\mathrm{M})}(t)\right| \leq & \left|h_{\mathrm{i}}^{(\mathrm{N})}(t)-h_{\mathrm{i}}^{(\mathrm{N}-1)}(t)\right|+\left|h_{\mathrm{i}}^{(\mathrm{N}-1)}(t)-h_{\mathrm{i}}^{(\mathrm{N}-2)}(t)\right|+\ldots \\
& +\left|h_{\mathrm{i}}^{(\mathrm{M}+1)}(t)-h_{\mathrm{i}}^{(\mathrm{M})}(t)\right| .
\end{aligned}
$$

Hence, given $\varepsilon>0$, there exists a large enough M_{0} such that for $M \geq M_{0}$,

$$
\begin{equation*}
\left|h_{\mathrm{i}}^{(\mathrm{N})}(t)-h_{\mathrm{i}}^{(\mathrm{M})}(t)\right| \leq \frac{1}{4} L_{\mathrm{i}} \sum_{\mathrm{j}=\mathrm{M}}^{\mathrm{N}} 2^{-\mathrm{j}}<\varepsilon . \tag{4}
\end{equation*}
$$

This proves that $\left\{h_{\mathrm{i}}^{(\mathrm{N})}(t)\right\}_{\mathrm{N}=1 ; 2 ;:::}$ is a Cauchy sequence for any $t \in I$.Hence, there exists the pointwise limit

$$
\begin{equation*}
h_{\mathrm{i}}(t)=\lim _{\mathrm{N} \rightarrow \infty} h_{\mathrm{i}}^{(\mathrm{N})}(t) \tag{5}
\end{equation*}
$$

Taking limits in inequality (4) when $N \rightarrow \infty$, one has

$$
\begin{equation*}
\left|h_{\mathrm{i}}(t)-h_{\mathrm{i}}^{(\mathrm{M})}(t)\right| \leq \frac{1}{4} L_{\mathrm{i}} \sum_{\mathrm{j}=\mathrm{M}}^{\infty} 2^{-\mathrm{j}}<\varepsilon \text { for all } M \geq M_{0} \tag{6}
\end{equation*}
$$

and, certainly, then, the limit (5) is also uniform.
Now, it remains to show that the $h_{\mathrm{i}}(t)$ are continuous. Indeed, given $\varepsilon>0$, let $M>1$ be such that $L_{\mathrm{i}} 2^{-\mathrm{M}+1}<\varepsilon$..If t_{0} is a fixed point of I, there exists some p for which $t_{0} \in I_{\mathrm{p}}^{(\mathrm{M})}$. Choose a number δ so that $0<\delta<\operatorname{Min}\left\{\mu\left(C_{\mathrm{p}}^{(\mathrm{M})}\right): 1 \leq p \leq 2^{\mathrm{M} \mathrm{n}}\right\}$.

Clearly, then ,for t such that $\left|t-t_{0}\right|<\delta$ one has that either
$t \in I_{\mathrm{p}}^{(\mathrm{M})}$ or $t \in I_{\mathrm{p}-1}^{(\mathrm{M})}$ or $t \in I_{\mathrm{p}+1}^{(\mathrm{M})}$.
Anyway, from (6) and (2) we have

$$
\begin{aligned}
\left|h_{\mathrm{i}}(t)-h_{\mathrm{i}}\left(t_{0}\right)\right| & \leq \\
\left|h_{\mathrm{i}}(t)-h_{\mathrm{i}}^{(\mathrm{M})}(t)\right|+\left|h_{\mathrm{i}}^{(\mathrm{M})}(t)-h_{\mathrm{i}}^{(\mathrm{M})}\left(t_{0}\right)\right|+\left|h_{\mathrm{i}}^{(\mathrm{M})}\left(t_{0}\right)-h_{\mathrm{i}}\left(t_{0}\right)\right| & \leq \\
L_{\mathrm{i}} 2^{-\mathrm{M}-1}+L_{\mathrm{i}} 2^{-\mathrm{M}}+L_{\mathrm{i}} 2^{-\mathrm{M}-1} & =L_{\mathrm{i}} 2^{-\mathrm{M}+1}<\varepsilon .
\end{aligned}
$$

This shows the continuity of h_{i} for all $i=1,2, \ldots, n$.
Finally, let $\left\{A_{\mathrm{i}}: i=1, \ldots, n\right\}$ be an arbitrary open sets of R such that the condition
$\Lambda_{1}\left[h_{1}^{-1}\left(A_{1}\right)\right] \times \ldots \times \Lambda_{1}\left[h_{\mathrm{n}}^{-1}\left(A_{\mathrm{n}}\right)\right]>0$
holds.Evidently, then, there exists a closed cube C in H with $\operatorname{int}(C) \neq \emptyset$, such that $C \subset A=\square_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}$. Given C, determine a cube $C_{\mathrm{p}}^{(\mathrm{M})}$ of a certain partition P_{M} so that $C_{\mathrm{p}}^{(\mathrm{M})} \subset C$. Denoting by h the function defined by $\left(h_{1}, h_{2}, \ldots, h_{\mathrm{n}}\right)$, we are going to prove that $I_{\mathrm{p}}^{(\mathrm{M})}$ (the corresponding interval to the cube $\left.C_{\mathrm{p}}^{(\mathrm{M})}\right)$ verifies

$$
\begin{equation*}
I_{\mathrm{p}}^{(\mathrm{M})} \subset h^{-1}(C) \tag{6}
\end{equation*}
$$

Indeed, let t be a point of $I_{\mathrm{p}}^{(\mathrm{M})}$.From (1), the function $h^{(\mathrm{M})}$, defined as $\left(h_{1}^{(\mathrm{M})}, h_{2}^{(\mathrm{M})}, \ldots, h_{\mathrm{n}}^{(\mathrm{M})}\right)$, satisfies

$$
\begin{equation*}
h^{(\mathrm{M})}(t)=P_{\mathrm{p}}^{(\mathrm{M})} . \tag{7}
\end{equation*}
$$

In view of the given partitions, there exists a cube $C_{\mathrm{p}_{1}}^{(\mathrm{M}+1)} \subset C_{\mathrm{p}}^{(\mathrm{M})}$ such that $t \in I_{\mathbf{p}_{1}}^{(\mathrm{M}+1)}$ and then,
$h^{(\mathrm{M}+1)}(t)=\left(h_{1}^{(\mathrm{M}+1)}(t), h_{2}^{(\mathrm{M}+1)}(t), \ldots, h_{\mathrm{n}}^{(\mathrm{M}+1)}(t)\right)=P_{\mathrm{p}_{1}}^{(\mathrm{M}+1)}$.
In this way, we can inductively determine a sequence of cubes

$$
\ldots \subset C_{\mathrm{p}_{N}}^{(\mathrm{M}+\mathrm{N})} \subset \ldots \subset C_{\mathrm{p}_{1}}^{(\mathrm{M}+1)} \subset C_{\mathrm{p}}^{(\mathrm{M})} \subset C
$$

and a sequence $\left\{h^{(\mathrm{M}+\mathrm{N})}(t): N=1,2, ..\right\}$ of points of R^{n}. Now, taking the limit, we have

$$
\lim _{\mathrm{N} \rightarrow \infty} h^{(\mathrm{M}+\mathrm{N})}(t)=h(t)=\lim _{\mathrm{N} \rightarrow \infty} P_{\mathbf{p}_{N}}^{(\mathrm{M}+\mathrm{N})}=P \in C .
$$

Therefore $t \in h^{-1}(C)$ and so (7) is showed.Consequently, we have

$$
\begin{equation*}
\Lambda_{1}\left[\cap_{\mathrm{i}=1}^{\mathrm{n}} h_{\mathrm{i}}^{-1}\left(A_{\mathrm{i}}\right)\right]=\Lambda_{1}\left[h^{-1}(A)\right] \geq \Lambda_{1}\left(I_{\mathrm{p}}^{(\mathrm{M})}\right) \tag{8}
\end{equation*}
$$

By using (1) , $\Lambda_{1}\left(I_{\mathrm{p}}^{(\mathrm{M})}\right)=\mu\left(C_{\mathrm{p}}^{(\mathrm{M})}\right)$. Because of the assumption on the measure μ,
$\mu\left(C_{\mathrm{p}}^{(\mathrm{M})}\right)>0$. Hence ,from (8), $\Lambda_{1}\left[\cap_{\mathrm{i}=1}^{\mathrm{n}} h_{\mathrm{i}}^{-1}\left(A_{\mathrm{i}}\right)\right]>0$ and the theorem is demonstrated.

Corollary 10 Under the same conditions as that of Theorem 2, a Borel measure on a parallelepiped H defines a curve that fills it.

Proof. .

R eferences

[1] Garsia, A.M., Combinatorial inequalities and smoothness of functions, Bull. Amer. Math. Soc., 82 (1976), 157-170.
[2] Halmos, Measure Theory, Springer-Verlag, New York Inc. (1974).
[3] Hilbert, D. , Über die stetige Abbildung einer Linie auf ein Flächenstück, Math. Annln. , 38 (1891), 459-460.
[4] Holbrook, John A.R., Stochastic independence and space-filling curves, Amer. Math. Monthly , 88 (1981), 426-432.
[5] Lebesgue, H. , Leçons sur l'Intégration et la Recherche des Fonctions Primitives, Gauthier-Villars, Paris (1904).
[6] Lebesgue, H. , Sur les fonctions représentables analytiquement , J. de Math., 6 (1), (1905), 139-216.
[7] Moore, E.H. , On certain crinkly curves , Trans. Amer. Math. Soc. , 1 (1900), 72-90.
[8] Mora, G. and Cherruault, Y., Characterization and Generation of α-dense Curves , Computers Math. Applic., 9 (1997),83-91.
[9] Peano, G. , Sur une courbe qui remplit toute une aire plaine, Math. Annln., 36 (1890), 157-160.
[10] Sagan, H. , Space-filling Curves, Springer-Verlag, New York (1994)
[11] Steinhaus, H. , La courbe de Peano et les Fonctions Indépendantes, C. R. Acad. Sci. Paris 202 (1936), 1961-1963.

