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Abstract

A famous theorem discovered in 1936 by H.Steinhaus on a su¢ cient
condition for obtaining the coordinate functions of a curve �lling the unit
square is revised in the present paper. Here we point out that the converse
of the above theorem fails in the Lebesgue curve. A characterization of
the space-�lling curves by means of a �lling condition is proposed. A
constructive characterization of this �lling condition, in terms of the Borel
measures, is also settled.
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1 INTRODUCTION and NOTATION.

In 1890, G.Peano [9] demonstrated that the interval I = [0; 1] could be mapped
surjectively and continuously onto the square Q = [0; 1]

2. Immediately, fur-
thers examples of such curves by D.Hilbert (1891) [3] , E.H.Moore (1900) [7],
H.Lebesgue (1904) [5; 6] and others followed. In spite of each curve was greatly
superior in simplicity and ingenuity to the previous, a method for generating
them remained unsettled. H.Steinhaus in 1936 [11] solved the problem by
means of a surpresively result : � if two continuous non-constant functions on
I are stochastically independent with respect to Lebesgue measure, then they
are the coordinate functions of a space-�lling curve � ( see [10] ; pp:2 and the
original paper of Steinhaus [11]).
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The attainment of space-�lling curves by means of stochastically independent
functions, begun by Steinhaus, was soon forgotten and , apparently, Garsia [1]
and others ( see [4] ) arrived to the same conclusions about forty years later.
Following the way of the stochastic independence ( in brief, s:i: ) , it is neccesary
to remark the work of Holbrook in [4].Nevertheless, as we shall prove below, the
s:i: is a too much strong condition for giving a characterization theorem on
space-�lling curves, which is exactly the objective of our paper. For this reason
we introduce here (De�nition 1) a filling condition ( in brief f:c: ) , which
will be appropriate to characterize the space-�lling curves.
The f:c: is a concept ,implicitly handled in [8] ,that was given to characterize

a class of curves that contains to the family of the space-�lling , namely the
� � dense curves in parallelepipeds H of Rn.These curves have the property
of densifying H ,i.e. for any point of H there is a point of the curve at distance
less than or equal that � � 0:
To avoid that the f:c: to be considered as a trivial characterization of space-

�lling curves, a characterization theorem on the �lling condition , in terms of
Borel measures, will be also settled..Moreover, this result will point the way to
the construction of the coordinate function of a space-�lling curve.

In order to facilitate the reading of the text , recall some de�nitions, con-
tained in [10], concerning to the concepts of space-�lling curves, stochastically
independent functions and others.
� will denote the Cantor set , Jn the n-dimensional Jordan content of a

Jordan measurable subset of Rn and �n the n-dimensional Lebesgue measure
of a Lebesgue measurable subset of Rn.
A continuous function f : I ! Rn with n � 2 , is called a space� filling

curve if Jn(f(I)) > 0.
Let '1,...,'n : I ! R be measurable functions. Then, '1,...,'n are called

stochastically independent with respect to the Lebesgue measure ( in brief
r.L.m.) if, for any measurable sets A1; :::; An of R ,

�1
�
'�11 (A1) \ ::: \ '�1n (An)

�
= �1

�
'�11 (A1)

�
� :::� �1

�
'�1n (An)

�
:

A surjective function f : I ! Q is said to be measure� preserving if, for any

measurable set A of Q,
�1(f

�1(A)) = �2(A):

2 The quasi-stochastic independence as a Ölling
condition.

The purpose of this section is to prove that the stochastic independence is
su¢ cient but it is not a necessary condition to de�ne space-�lling curves. A
characterization of these curves will be given by means of the following simple
concept .
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DeÖnition 1 (Filling condition )We shall say that n measurable functions '1,...,'n :

I ! R are quasi-stochastically independent ( in brief q.s.i. ) with respect to
the Lebesgue measure, if for any open sets A1; :::; An of R the condition
�1
�
'�11 (A1)

�
� :::� �1

�
'�1n (An)

�
> 0

implies

�1
�
'�11 (A1) \ ::: \ '�1n (An)

�
> 0:

Our next result is immediate.

Proposition 2 Let '1,...,'n : I ! R be nonconstant continuous functions such
that the curve f = ( '1,...,'n) : I ! Rn �lls the parallelepiped un

i=1'i(I): Thus
'1,...,'n are quasi-stochastically independent (r.L.m).

As a generalization of the classical result of Steinhaus ( see [10; p:109] or
[4;Prop.1] ) we expose the following theorem.

Theorem 3 Let '1,...,'n : I ! R be quasi-stochastically independent func-
tions ( r.L.m.). Assume also that they are continuous but not constant.Thus the
curve de�ned by f = ( '1,...,'n) : I ! Rn �lls the parallelepiped un

i=1'i(I):

Proof. Let x = (xi)
n
i=1 be a point of un

i=1'i(I), so there exist (ti)
n
i=1 in I

such that xi = 'i(ti) for each i = 1; 2; :::; n :Given " > 0, consider the open sets

Ai =

�
xi �

"p
n
; xi +

"p
n

�
for i = 1; 2; :::; n . (1)

By continuinity, '�1i (Ai) is open in I and contains ti, therefore the condition
�1
�
'�11 (A1)

�
� :::� �1

�
'�1n (An)

�
> 0

holds.
Since '1,...,'n are q-s.i. ,one has
�1
�
'�11 (A1) \ ::: \ '�1n (An)

�
> 0:

Thus there exists t 2 I such that 'i(t) 2 Ai .From (1)

j'i(t)� xij <
"p
n
for i = 1; 2; :::; n;

so the euclidean norm kf(t)� xk < ".This proves that f(I) is dense in
Qn

i=1 'i(I),
but f(I) is a compact set, therefore f(I) =

Qn
i=1 'i(I) and the result follows.

To expose our next results,we need recall some elementary properties on the
Cantor set and the Lebesgue curve.
The binary representation of a number a 2 I will be denoted by
02; a1a2a3::: where ai 2 f0; 1g :Analogously in the ternary basis, a 2 I is

written as 03; a1a2a3::: with ai 2 f0; 1; 2g :
The Cantor set,or the set of the excluded middle thirds ,can be represented

by all numbers of [0; 1] such that ,in the ternary basis, can be written only using
the digits 0 and 2, i.e.

� = f03; (2t1)(2t2)(2t3)::: : tj = 0 or 1g :
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A continuous mapping f can be de�ned from � onto the unit square Q by
means of

f(03; (2t1)(2t2)(2t3)::: ) = (02; t1t3t5::: ; 02; t2t4t6:::):

H. Lebesgue extended this mapping continuously into I by linear interpolation,
obtaining a continuous function fl de�ned on the complement �c as

fl(t) =
1

bn � an
[(bn � t):f(an) + (t� an):f(bn)]

, (an; bn) being the interval that is removed in the construction of � at the nth
step and an � t � bn .
Then ,the Lebesgue curve (also Lebesgue function), denoted by L, is de�ned

by

L(t) = f(t) if t 2 �
L(t) = fl(t) if t 2 �c:

L is a continuous and surjective function onto the square Q, so a space-�lling
curve ( is also di¤erentiable almost everywhere ; for details see [10], theorem
5.4.2, pp.78 ).

The two following simple propositions shows just how fails the converse of
the Steinhaus theorem in the Lebesgue Curve.

Proposition 4 The Lebesgue curve is not a measure-preserving function.

Proof. Consider the measurable set A =
�
0; 12

�
�
�
0; 12

�
, then we claim that

L�1(A) �
�
0; 19

�
.

Indeed, let (x; y) be an element belonging to A, then in the binary basis

x = 02; 0r2r3::: ; y = 02; 0s2s3::: ;

where ri; si 2 f0; 1g for any i � 2 and with some ri; si = 0 ( for instance, observe

that if all ri = 1 , then x =
1

2
).

By denoting t = L�1(x; y), we have two cases.

Case 1 : t 2 � , then t = 03; 00(2r2)(2s2)::: and consequently t 2
�
0;
1

9

�
.

Case 2 : t 2 �c;then we have again that t 2
�
0;
1

9

�
. Indeed, suppose that

there is a value t 2 �c with t >
1

9
and L(t) 2 A. Let (an; bn) be the interval

that has been removed in the construction of �. Thus an < t < bn and noticing

that
1

9
2 � , it follows that an �

1

9
:

On the other hand, as L(
1

3
) = (

1

2
; 1) and L(

2

3
) = (12 ; 0) one has that

t =2 (1
3
;
2

3
): Furthermore, since
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L(
1

9
) = (

1

2
;
1

2
) , L(

2

9
) = (0;

1

2
) , L(

7

9
) = (1;

1

2
) and L(

8

9
) = (

1

2
;
1

2
)

;we conclude that t =2 (1
9
;
2

9
) [ (7
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hence
'(a) = 02; 0r3r5::: � 02; 011::: =

1

2
:

Let an; bn 2
�
0;
1

3

�
\ � be the end-points of the interval (an; bn) removed in

the construction of �, then

bn = 03; 0(2s2)(2s3)::::

has the following easy property :
�there exists k � 2 such that sk = 1 and si = 0 for all i > k � .As

consequence

'(bn) < 02; 011::: =
1

2
:

For each t 2
�
0;
1

3

�
n� denote by � the number t� an

bn � an
, then

'(t) = (1� �)'(an) + �'(bn) with 0 < � < 1:

Since '(an) �
1

2
and '(bn) <

1

2
, we deduce that '(t) <

1

2
and so

�
0;
1

3

�
n� �

'�1(A1) is proved.

On the other hand, if a 2 � with a � 1

3
, one has that either a = 03; 022::

:( for a =
1

3
) or a = 03; 2(2r2)(2r3)::: ( for a >

1

3
). Therefore we get

'(a) � 1

2
.

Assume t 2
�
1
3 ; 1
�
n� , then there exist an; bn 2 � with

1

3
� an < t < bn

and so
'(t) = (1� �)'(an) + �'(bn) �

1

2
:

Therefore '�1(A1) �
�
0;
1

3

�
and it proves i). Finally, as conclusion, since

�1(�) = 0, it follows that

�1('
�1(A1)) =

1

3
: (3)

For proving ii), �rst observe that if a 2
��
0;
1

9

�
[
�
2

3
;
7

9

��
\ �

thus
 (a) � 1

2
: (4)

Indeed, a number a 2
�
0;
1

9

�
is expressed as

a = 03; 00(2r3)(2r4):::;
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with some ri = 0 for i � 3. Therefore  (a) = 02; 0r4r6::: � 02; 011::: =
1

2
.

Analogously, if a 2
�
2

3
;
7

9

�
then a = 03; 20(2r3)(2r4)::: with some ri = 0 for

i � 3 and so  (a) = 02; 0r4r6::: � 02; 011::: =
1

2
.

On the other hand, if a 2
��
1

9
;
2

3

�S�7
9
; 1

��
\ �

thus
 (a) � 1

2
: (5)

Indeed, whether a 2
�
1

9
;
2

3

�
its expression is given by

a = 03; 02(2r3)(2r4)::: and then  (a) = 02; 1r4::: � 02; 1 =
1

2
.

If a 2
�
7

9
; 1

�
, thus a = 03; 2(2r2)(2r3)(2r4)::: .Now ,noticing that

7

9
=

03; 2022::: we have that, either r2 = 1 ( a >
7

9
) or r2 = 0 with ri = 1 for all

i � 3 ( a = 7

9
) . Therefore, in both cases

 (a) = 02; r2r4::: � 02; 1 =
1

2
:



Whether [an; bn] =

�
1

3
;
2

3

�
, since

1

2
< t <

2

3
, one has

 (t) =

(1� �) (an) + � (bn) = (1� �) (1
3
) + � (

2

3
) = 1� � =

1� t� an

bn � an
=

2

3
� t

2

3
� 1
3

<
1

2

and this shows the �rst part of ii).

Finally, if  (x) <
1

2
and x = a 2 �, from (6) we deduce that

x 2
�
0;
1

9

�[�
2

3
;
7

9

�
�
�
0;
1

9

�[�
1

2
;
7

9

�
:

On the other hand, if  (x) <
1

2
and x = t =2 �, we obtain the same conclusion.

Indeed, by supposing that x =2
�
0;
1

9

�S�2
3
;
7

9

�
and by applying again (5) to

the end-points an and bn of the removed interval (an; bn) ; with an < t < bn;

we are led to  (t) � 1

2
,which is a contradiction.

The above involves that for any x with  (x) <
1

2
, one follows that x 2�

0;
1

9

�S�2
3
;
7

9

�
�
�
0;
1

9

�S�1
2
;
7

9

�
and therefore ii) is proved.

Now, i) and ii) imply that :

�1( 
�1(A2)) =

7

18

and from (3) one has

�1('
�1(A1)):�1( 

�1(A2)) =
7

54
:

On the other hand, since '�1(A1) \  �1(A2) �
�
0;
1

9

�
, one deduces

�1
�
'�1(A1) \  �1(A2)

�
� 1

9
<
7

54
= �1('

�1(A1)):�1( 
�1(A2));

concluding that ' and  are not stochastically independent.

From this the following is clear.

Corollary 6 There are space-�lling curves whose coordinate functions are not
stochastically independent.
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Corollary 7 There are Q.S.I. functions that are not stochastically independent.

.

3 CHARACTERIZATION OF THE Q.S.I. CON-
DITION.

Though it is obvious that the Steinhaus theorem ( Theorem 1 ) is not a trivial
result, the characterization of space-�lling curves by means of the Q.S.I. condi-
tion could seem it..Therefore, in this section we are going to prove that the Borel
measures characterize the Q.S.I condition in such a way that the coordinate
functions of a space-�lling curve can be easily determined.

From the countably additivity of the Lebesgue measure and Theorem 3, the
easy technical lemma follows immediately.

Lemma 8 Let '1; '2; :::; 'n : I ! R be nonconstant continuous functions .Sup-
pose also they are Q.S.I. Then the set function � de�ned by

�(
nY

i=1

Bi) = �1
�
\n

i=1'
�1
i (Bi)

�
;

is countably additive on the class CH of all cubes C =
Qn

i=1Bi contained in the
parallelepiped H =

Qn
i=1 'i(I) . Furthermore ,�(H) = 1:

With the help of this lemma we �nally have what we wanted all along, the
connection between the curves �lling a parallelepiped and the Borel measures
de�ned on it.

Theorem 9 Assume '1; '2; :::; 'n : I ! R are continuous nonconstant func-
tions verifying the Q.S.I.condition.Then the set function �(

Qn
i=1Bi) = �1

�
\n

i=1'
�1
i (Bi)

�
,

on the class CH of all cubes
Qn

i=1 Bi contained in H =
Qn

i=1 'i(I), de�nes a
Borel measure on H such that

�(H) = 1 and �(C) > 0 for any cube C of CH with int(C) 6= ; . (1)
Reciprocally, any Borel measure � on a parallelepiped H =

Qn
i=1 [ai;bi] (ai <

bi; i = 1; 2; :::; n) satisfying (1) de�nes n continuous nonconstant functions that
are Q.S.I.
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Proof. Suposse that the functions '1; '2; :::; 'n are Q.S.I., then ,by Theo-
rem 3, the curve ' = ('1; '2; :::; 'n) �lls H =

Qn
i=1 'i(I). On the other hand,

by the previous Lemma, � is countably additive on the class CH and satis�es
�(H) = 1. Clearly, then, � de�nes on the ring <(K), of all �nite disjoint
unions of sets of CH



This allows us to de�ne on I the n functions

h
(M)
1 (t) = x

(M)
(p)1 if t 2 I

(M)
p ;

h
(M)
2 (t) = x

(M)
(p)2 if t 2 I

(M)
p ; :::;

h(M)
n (t) = x

(M)
(p)n if t 2 I

(M)
p ;

1 � p � 2Mn:

(2)
Now, we are going to prove that the limits
limM!1 h

(M)
1 , limM!1 h

(M)
2 , ..., limM!1 h

(M)
n

there exist, de�ne functions that are continuous ( observe that h(M)
1 ; h

(M)
2 ; :::; h

(M)
n

are not ) and satisfy the Q.S.I. condition.
Indeed,let us take an index i with 1 � i � n and denote by Li the length of

the interval [ai; bi] .Directly from the de�nition of h(M)
i ,���h(M)

i (t)� h(M+1)
i (t)

��� = 1

4
Li2

�M for any t 2 I: (3)

For N > M���h(N)
i (t)� h(M)

i (t)
��� �

���h(N)
i (t)� h(N�1)

i (t)
���+ ���h(N�1)

i (t)� h(N�2)
i (t)

���+ :::
+
���h(M+1)

i (t)� h(M)
i (t)

��� :
Hence, given " > 0, there exists a large enough M0 such that for M �M0;���h(N)

i (t)� h(M)
i (t)

��� � 1

4
Li

NX
j=M

2�j < " : (4)

This proves that
n
h
(N)
i (t)

o
N=1;2;:::

is a Cauchy sequence for any t 2 I .Hence,

there exists the pointwise limit

hi(t) = lim
N!1

h
(N)
i (t): (5)

Taking limits in inequality (4) when N !1, one has���hi(t)� h(M)
i (t)

��� � 1

4
Li

1X
j=M

2�j < " for all M �M0 (6)

and , certainly, then, the limit (5) is also uniform.
Now, it remains to show that the hi(t) are continuous. Indeed, given " > 0,

letM > 1 be such that Li2
�M+1 < ":.If t0 is a �xed point of I, there exists some

p for which t0 2 I(M)
p :Choose a number � so that 0 < � < Min

n
�(C

(M)
p ) : 1 � p � 2Mn

o
.

Clearly, then ,for t such that jt� t0j < � one has that either
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t 2 I(M)
p or t 2 I(M)

p�1 or t 2 I
(M)
p+1 :

Anyway, from (6) and (2) we have

jhi(t)� hi(t0)j ����hi(t)� h(M)
i (t)

���+ ���h(M)
i (t)� h(M)

i (t0)
���+ ���h(M)

i (t0)� hi(t0)
��� �

Li2
�M�1 + Li2

�M + Li2
�M�1 = Li2

�M+1 < ":

This shows the continuity of hi for all i = 1; 2; :::; n.
Finally, let fAi : i = 1; :::; ng be an arbitrary open sets of R such that the

condition
�1
�
h�11 (A1)

�
� :::� �1

�
h�1n (An)

�
> 0

holds.Evidently, then, there exists a closed cube C in H with int(C) 6= ;,
such that C � A = un

i=1Ai. Given C, determine a cube C(M)
p of a certain

partition PM so that C(M)
p � C. Denoting by h the function de�ned by

(h1; h2; :::; hn), we are going to prove that I
(M)
p ( the corresponding interval

to the cube C(M)
p ) veri�es

I(M)
p � h�1(C): (6)

Indeed, let t be a point of I(M)
p .From (1);the function h(M) ,de�ned as

�
h
(M)
1 ; h

(M)
2 ; :::; h

(M)
n

�
;

satis�es
h(M)(t) = P (M)

p : (7)

In view of the given partitions, there exists a cube C(M+1)
p1 � C

(M)
p such that

t 2 I(M+1)
p1 and then,

h(M+1)(t) =
�
h
(M+1)
1 (t); h

(M+1)
2 (t); :::; h

(M+1)
n (t)

�
= P

(M+1)
p1 .

In this way, we can inductively determine a sequence of cubes

::: � C(M+N)
pN � ::: � C(M+1)

p1 � C(M)
p � C

and a sequence
�
h(M+N)(t) : N = 1; 2; ::

	
of points of Rn: Now, taking the limit,

we have
lim

N!1
h(M+N)(t) = h(t) = lim

N!1
P (M+N)

pN = P 2 C:

Therefore t 2 h�1(C) and so (7) is showed.Consequently, we have
�1
�
\n

i=1h
�1
i (Ai)

�
= �1

�
h�1(A)

�
� �1(I(M)

p ): (8)

By using (1) ,�1(I
(M)
p ) = �(C

(M)
p ): Because of the assumption on the mea-

sure �;
�(C

(M)
p ) > 0 . Hence ,from (8), �1

�
\n

i=1h
�1
i (Ai)

�
> 0 and the theorem is

demonstrated.

Corollary 10 Under the same conditions as that of Theorem 2, a Borel mea-
sure on a parallelepiped H de�nes a curve that �lls it.

Proof. .
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