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1 Introduction

Throughout this paper we consider given an infinite compact Hausdorff topo-
logical space T and a natural number n ≥ 2. We associate with each triple
π = (a, b, c) ∈ Π := C (T )n × C (T ) × Rn a (continuous) linear semi-infinite
programming (LSIP) problem

P : Min c′x
s.t. a′tx ≥ bt, t ∈ T,

and its corresponding Haar’s dual problem

D : Max
∑
t∈T

λtbt

s.t.
∑
tεT

λtat = c,

λt ≥ 0, t ∈ T,

where λ : T 7→ R satisfies that λt = 0 for all t ∈ T except maybe for a
finite number of indices. The decision space of D is denoted by R(T ) (the linear
space of generalized finite sequences) and its positive cone by R(T )

+ . The feasible
(optimal) sets of D and P are denoted by Λ and F (Λ∗ and F ∗, respectively)

Among the well-known applications of continuous LSIP let us mention that
problems like P arise in functional approximation, separation, pollution con-
trol, finance, Bayesian statistics and the design of telecommunications net-
works, whereas problems like D have been used in robust Bayesian analysis and
optimization under uncertainty. These applications are described in [8, Chap-
ters 1-2], [7], and the references therein. Recall that, in contrast with ordinary
linear programming, in continuous LSIP the bounded (primal or dual) prob-
lems are not necessarily solvable (i.e., there exist finite-valued problems with
no optimal solution).

We consider R(T ) equipped with one of the norms l∞ or l1. The space of
parameters Π can be interpreted as the set of triples (or dual pairs of prob-
lems) obtained by means of arbitrary perturbations performed on a fixed triple
π = (a, b, c) , provided such perturbations preserve the structure of π, i.e., the
number of variables, the index set and the continuity of the coefficient func-
tions. We say that a certain desirable property holds generically in a certain set
∆ ⊂ Π when this property holds for all the elements of an open dense subset
of ∆ (for the topology of the uniform convergence on Π defined in Section 2).
Typical desirable properties of convex optimization problems are uniqueness
of the optimal solution (strong uniqueness in the case of linear objective func-
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tion) or at least non-emptyness and boundedness of the optimal set. This last
property plays a crucial role in convergence analysis (see, e.g., [1, Chapter 3]).

We denote by ΠP
C , ΠP

IC , ΠP
B, and ΠP

UB (ΠD
C , ΠD

IC , ΠD
B , and ΠD

UB) the classes
of parameters providing primal (dual) consistent, inconsistent, bounded (i.e.,
with finite optimal value), and unbounded problems, respectively. We are con-
cerned with those parameters which are stable for the corresponding property
in the sense that sufficiently small perturbations of the parameter preserve
its membership. The interior of ΠP

C , ΠP
IC , ΠD

C , and ΠD
IC where characterized

in [9] and [10], whereas [3], [12] and [13] have characterized the interior of the
elements of the primal partition (of Π),

{
ΠP

IC ,ΠP
B,ΠP

UB

}
, the dual partition,{

ΠD
IC ,ΠD

B ,ΠD
UB

}
, and the primal-dual partition, which is formed by the non-

empty pairwise intersections of the primal and the dual partitions, identifying
those elements of the mentioned partitions which have non-empty interior and
showing that each non-empty interior is a dense subsets in the corresponding
class. Concerning the primal-dual partition, let us observe that its elements are
formed by those parameters sharing the same duality state (see [2], [17], [21]
and [18] for duality states in mathematical programming, the last one dealing
with LSIP and semi-definite programming).

In this paper we extend the previous analysis to the refined partitions which
result of classifying any bounded problem as having a non-empty bounded op-
timal set or not satisfying this desirable property (in which case the bounded
problem can be either unsolvable or solvable with an unbounded optimal set).
This criterion splits ΠP

B into the sets ΠP
S and ΠP

N . Similarly, from the dual per-
spective, we decompose ΠD

B into the sets of parameters providing dual problems
with bounded optimal sets, ΠD

S , and its complement relative to ΠD
B , denoted by

and ΠD
N . Thus, we obtain the refined primal partition,

{
ΠP

IC ,ΠP
S ,ΠP

N ,ΠP
UB

}
,

the refined dual partition,
{
ΠD

IC ,ΠD
S ,ΠD

N ,ΠD
UB

}
, and the refined primal-dual

partition, which is formed by the non-empty pairwise intersections of the last
two partitions.

In [22] was shown that ΠP
B contains a Gδ (intersection of a countable family

of open sets) dense subset of parameters with strongly unique primal optimal
solution. In [6] the Gδ-set was replaced by an open set, i.e., it was shown that
the strong uniqueness holds generically in ΠP

B. The generic property analyzed
in this paper is the primal-dual solvability (i.e., of both associated problems),
with bounded optimal sets. This property is weaker than the previous one in
the sense that it does not imply the primal strongly uniqueness of the approx-
imating problems, but it is also stronger in the sense that the approximating
problems and their dual problems are simultaneously solvable with bounded
optimal sets.

The new results appear in Sections 3 and 4. In Section 3 we identify the
elements of the refined primal-dual partition, characterizing their respective
interiors whereas in Section 4 we provide similar results for the elements of the
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refined primal and dual partitions. From the characterizations of the interiors of
these sets we prove, in both sections, that primal-dual solvability with bounded
optimal set is a generic property in ΠP

B ∪ΠD
B (the class of parameters for

which at least one of the two associated problems is bounded). A suitable
counterexample shows that the last statement is not true in general LSIP.

2 Preliminaries

The null-vector in Rp is denoted by 0p and the j th element of the canonical
basis by ej . Given a non-empty set X ⊂ Rp, conv X and cone X denote the
convex hull of X and the conical convex hull of X ∪ {0p}, respectively (so
that cone ∅ = {0p}). If X is convex, dim X denotes its dimension. From the
topological side, if X is a subset of any topological space, intX, cl X, bd X,
and acc X represent the interior, the closure, the boundary, and the set of ω-
accumulation points of X, respectively. Finally, limrxr = x (in short xr → x)
must be interpreted as limr→∞xr = x.

The next lemma guarantees the existence of continuous real functions on T
satisfying certain conditions. Such elements of C (T ) will allow us to construct
ad hoc elements of Π.

Lemma 2.1 Let T be an infinite compact Hausdorff space and m ∈ N. Then
there exists a point t ∈ acc T , m subsets of T , S1, ..., Sm, and m functions in
C (T ) and values in [0, 1], ϕ1, ..., ϕm, such that ϕi (Si) ⊂ R++ and ϕi

(
t
)

= 0 ∈
acc ϕi (Si) , for all i = 1, ...,m, and ϕi (Sj) = {0} for all i, j = 1, ...,m such
that i 6= j.

Proof We use the following consequence of Urisohn’s Lemma (already used
in the proof of [10, Theorem 6.4(iii)]): there exists a point t ∈ acc T and a
sequence of non-repeated indices {tr}∞r=1 ⊂ T , with tr → t, and a sequence
{fr} ⊂ C (T ), with fr : T → [0, 1], such that fr (tr) = 1 and fr (tk) = 0 for all
k 6= r.

It is easy to see that the sets Si := {tmr+i, r = 1, 2, ...} and the functions

ϕi :=
∞∑

r=1

2−(mr+i)fmr+i, i = 1, ...,m, satisfy all the requirements. �

We denote by vP (π) (vD (π)) the optimal value of P (D), defining as usual
vP (π) = +∞ (vD (π) = −∞, respectively) when the corresponding problem
is inconsistent. Since P and D can be either inconsistent (IC) or bounded (B)
or unbounded (UB), we get at most nine possible duality states, which are
reduced to six by the weak duality theorem: vD (π) ≤ vP (π). The first row in
Table 1 contains the elements of the primal partition, the first column are the
elements of the dual partition, and the sets in the remaining cells, Π1, ...,Π6, are
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the non-empty intersections of the corresponding entries (i.e., Π1 = ΠP
B ∩ΠD

B ,
etc.), so that they are the elements of the primal-dual partition.

ΠP
IC ΠP

B ΠP
UB

ΠD
IC Π4 Π5 Π2

ΠD
B Π6 Π1

ΠD
UB Π3

Table 1

As most of the works on perturbation theory in continuous LSIP (e.g., the
classical paper [20]), we consider Π equipped with the metric of the uniform
convergence, i.e., given πi =

(
ai, bi, ci

)
∈ Π, i = 1, 2, the distance between π1

and π2 is

d(π1, π2) = max
{∥∥c1 − c2

∥∥
∞ ,max

t∈T

∥∥∥∥(
a1

t

b1
t

)
−

(
a2

t

b2
t

)∥∥∥∥
∞

}
. (1)

From now on, the same subscripts or superscripts that distinguish the ele-
ments of Π will distinguish also their corresponding objects: πr = (ar, br, cr),
Dr, Pr, Λr, Fr, and so on. Thus, according to Farkas lemma, if π1, π2 ∈ ΠP

C ,
then F1 = F2 if and only if cl K1 = clK2.

We will show that some results in this paper are not valid for general LSIP,
where T is an arbitrary infinite set (not even a topological space) and the
functions in the triple π = (a, b, c) are also arbitrary. To do that we need
some additional notation. In this general setting the space of parameters is
Θ := (Rn)T × RT × Rn equipped with the pseudometric which generates in
Θ the topology of the uniform convergence (replacing "max" with "sup" in
(1)) introduced in [14]. We denote the relevant subsets of Θ with the same
subscripts and upperscripts as for the corresponding subsets of Π (i.e., ΘP

C
stands for the parameters with consistent primal problem, etc.).

Next we recall some concepts and basic results we will use on general LSIP
(all the proofs and references can be found in [8]). We associate with π =
(a, b, c) its first and second moment cones of π, M := cone {at, t ∈ T} and N :=
cone {(at, bt) , t ∈ T}, and its characteristic cone, K := N + R+ {(0n,−1)}.
Moreover, if P is consistent and N is closed, then K is closed too. If D is
consistent and K is closed, then sup {α ∈ R | (c, α) ∈ K} is attained and, so,
D is solvable. The existence theorem establishes that P is consistent if and only
if (0n, 1) /∈ cl K. In such a case, the non-homogeneous Farkas lemma establishes
that the inequality c′x ≥ d holds for all x ∈ F if and only if (c, d) ∈ cl K.

The above results are also valid in continuous LSIP, where the Slater con-
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straint qualification plays a crucial role. Recall that π = (a, b, c) satisfies the
Slater condition if there exists x ∈ Rn such that a′tx > bt for all t ∈ T . The
Slater condition holds if and only if 0n+1 /∈ conv {(at, bt) , t ∈ T} . If π satisfies
the Slater condition, then N is closed.

We use the following characterizations of ΠP
S and ΠD

S (see [8, Corollary 9.3.1
and Theorem 9.8]).

Lemma 2.2 (i) π ∈ ΠP
S if and only if (0n, 1) /∈ cl K and c ∈ intM.

(ii) π ∈ ΠD
S if and only if c ∈ M and Slater condition holds.

The next example shows that Lemma 2.2 is not true in general LSIP

Example 2.3 Let T = N2, n = 2 and π = (a, b, c) ∈ Θ be such that a is
the identity map on T , b = −1 and c = (1, 1) . It is easy to see that K1 =(
R2

++ × R−
)
∪ {02} , c1 ∈ intM1 = R2

++, the Slater condition holds (take
x = 02), F ∗

1 = {02} , and sup
{
α ∈ R |

(
c1, α

)
∈ K1

}
= 0 is not attained for all

π1 =
(
a1, b1, c1

)
∈ Θ such that d

(
π1, π

)
< 1

2 . Thus we have an open subset of
ΠP

S where statement (ii) in Lemma 2.2 fails.

Let us interpret the topological interior of some elements of the partitions
considered in this paper. A LSIP problem is called ill-posed in the feasibility
sense if arbitrarily small perturbations provide both consistent and inconsis-
tent problems (the distance to ill-posedness in Θ has been characterized in [3]).
Consequently, the sets intΠP

C and intΠP
IC (intΠD

C and intΠD
IC) can be seen as

the set of primal (dual) stable problems (these interiors have been character-
ized in [9], [8] and [10]). On the other hand, [19] defines a conic programming
problem to be ill-posed (in primal-dual feasibility sense) when it lays on the
boundary of the set of parameters providing consistent primal and dual prob-
lems. This class of primal-dual ill-posed parameters is, in our setting, bd Π1.
The following lemma summarizes results on the primal-dual partition which
appeared in [22] (where intΠ1 was characterized), [3], [12, Section 4] (tak-
ing into account that N can be replaced with K in all the characterizations)
and [13].

Lemma 2.4 The elements of the primal-dual partition are neither open nor
closed and satisfy the following statements:
(i) π ∈ Π1 if and only if (0n, 1) /∈ cl K and c ∈ M. In particular, π ∈ intΠ1 if
and only if Slater condition holds and c ∈ intM. Moreover, intΠ1 is dense in
Π1.
(ii) π ∈ Π2 if and only if (0n, 1) /∈ cl K, c /∈ M and ({c} × R) ∩ cl K = ∅. In
particular, π ∈ intΠ2 if and only if there exists y ∈ Rn such that c′y < 0 and
a′ty > 0 for all t ∈ T. Moreover, intΠ2 is dense in Π2.
(iii) π ∈ Π3 if and only if (0n, 1) ∈ cl K, c ∈ M and {c}×R ⊂K. In particular,
π ∈ intΠ3 if and only if (0n, 1) ∈ intK. Moreover, intΠ3 is dense in Π3.
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(iv) π ∈ Π4 if and only if (0n, 1) ∈ cl K and c /∈ M. Moreover, intΠ4 = ∅.
(v) π ∈ Π5 if and only if (0n, 1) /∈ cl K, c /∈ M and ({c} × R) ∩ cl K 6= ∅.
Moreover, intΠ5 = ∅.
(vi) π ∈ Π6 if and only if (0n, 1) ∈ cl K, c ∈ M and {c} × R *K. Moreover,
intΠ6 = ∅.
(vii) Πi ⊂ cl int Πj for all (i, j) 6= (4, 1), i = 4, 5, 6, j = 1, 2, 3.

Let us observe that the recent paper [5] provides characterizations of the
interior, the boundary and the exterior of the sets ΘD

C and Θ1 in general LSIP.
Obviously, these characterizations become sufficient conditions in the context
of continuous LSIP. In general LSIP, intΘP

B coincides with the interior of the
class of those π ∈ Θ such that the corresponding primal problem is solvable
( [4, Theorem 1]).

3 The refined primal-dual partition

Table 2 is the counterpart of Table 1 for the refined partitions, although some
of the crossed intersections could be empty:

ΠP
IC ΠP

S ΠP
N ΠP

UB

ΠD
IC Π4 Π5 Π2

ΠD
S Π1

1 Π3
1

ΠD
N Π6 Π2

1 Π4
1

ΠD
UB Π3

Table 2

We must justify the empty cells in Table 2, i.e., that ΠP
S ∩ΠD

IC = ΠP
IC∩ΠD

S =
∅.

First, if π ∈ ΠP
S ∩ ΠD

IC , then c ∈ intM and c /∈ M (contradiction). Thus
ΠP

S ∩ΠD
IC = ∅ and, so, ΠP

N ∩ΠD
IC = Π5.

Second, if π ∈ ΠP
IC ∩ ΠD

S , then π is primal inconsistent and satisfies Slater
condition (contradiction). Thus ΠP

IC ∩ΠD
S = ∅ and ΠP

IC ∩ΠD
N = Π6.

The next result shows that all the intersections in Table 2 are non-empty
(Πi 6= ∅, i = 2, ...6, was shown in [12]).

Theorem 3.1 Πj
1 6= ∅, j = 1, .., 4.

Proof The basic tool of the proof is Lemma 2.1.
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Π1
1 6= ∅: Let t ∈ T , Sk

i ⊂ T and ϕk
i ∈ C (T ) , i = 1, ..., n, k = 1, 2, such that

ϕk
i

(
t
)

= 0 ∈ acc ϕk
i

(
Sk

i

)
⊂ R++,

for all i and k, and ϕk
i

(
Sl

j

)
= {0} if (i, k) 6= (j, l) . Consider π = (a, b, c)

such that a :=
(
ϕ1

1 − ϕ2
1, ..., ϕ

1
n − ϕ2

n

)
, b := −1 and c ∈ Rn arbitrary.

Given i ∈ {1, ..., n} , since a
(
S1

i

)
= {0i−1} × ϕ1

i

(
S1

i

)
× {0n−i} , we have

cone
{
at, t ∈ S1

i

}
= R+ei; similarly, cone

{
at, t ∈ S2

i

}
= −R+ei. Then

n∑
i=1

cone
{
at, t ∈ S1

i

}
+

n∑
i=1

cone
{
at, t ∈ S2

i

}
=

n∑
i=1

R+ei −
n∑

i=1

R+ei = Rn,

and so M = Rn and c ∈ intM = Rn. Moreover, {(at, bt) , t ∈ T} ⊂ Rn×{−1} ,
so that 0n+1 /∈ conv {(at, bt) , t ∈ T} . Thus π ∈ Π1

1.
Π2

1 6= ∅: Let t ∈ T, Sk
i ⊂ T, ϕk

i ∈ C (T ) , i = 1, ..., n, k = 1, 2, and a be as in

the previous proof. Let b := −
n∑

i=1

(
ϕ1

i + ϕ2
i

)2
, and π := (a, b, c), where c ∈ Rn

is taken arbitrarily. We have again c ∈ intM = Rn. On the other hand, K ⊂
Rn × R− (because b ≤ 0) and (at, bt) = 0n+1, so that Slater condition fails.
Thus π ∈ Π2

1.
Π3

1 6= ∅: Let t ∈ T, S ⊂ T and ϕ ∈ C (T ) be such that ϕ
(
t
)

= 0 ∈ acc ϕ (S) ⊂
R++. Let π = (a, b, c), where a := (ϕ, 0n−1), b := −1 and c := e1. Then we
have c ∈ M = R+e1, intM = ∅ and {(at, bt) , t ∈ T} ⊂ Rn × {−1}, so that
Slater condition holds. Thus π ∈ Π3

1.
Π4

1 6= ∅: Let t, S, ϕ and a be as in the last proof. Let π = (a, b, c), where
b := −ϕ2 and c := e1. We have again c ∈ M and intM = ∅. Moreover,
(at, bt) = 0n+1 and K ⊂ Rn × R− (because b ≤ 0), so that Slater condition
fails and (0n, 1) /∈ cl K. Hence π ∈ Π4

1. �

Concerning the parameter π ∈ Π1
1 constructed in the first part of the proof of

Theorem 3.1, we cannot assert the uniqueness of the primal and dual optimal
solutions. For particular compact Hausdorff spaces T , it is possible to give
examples where this double uniqueness holds.

Example 3.2 Let T = {t ∈ Rn | ‖t‖ = 1} and π = (a, b, c) such that a is the
identity mapping on T , b := −1 and c := e1. Then F = T, F ∗ = {−e1},
vP (π) = vD (π) = −1 and Λ∗ = {λ∗} , where λ∗t = 1 if t = e1 and λ∗t = 0
otherwise.
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Lemma 2.4 characterizes Π1, ...,Π6 and their corresponding interiors, show-
ing that intΠi 6= ∅ is dense in Πi, i = 1, 2, 3, whereas intΠi = ∅, i = 4, 5, 6.
Now we consider the partition of Π1, i.e., the sets Πj

1, j = 1, ..., 4.

Theorem 3.3 (i) π ∈ Π1
1 if and only if c ∈ intM and the Slater condition

holds. Moreover, Π1
1 is an open dense subset of Π1.

(ii) π ∈ Π2
1 if and only if (0n, 1) /∈ cl K, c ∈ intM, and the Slater condition

fails. Moreover, Π2
1 is neither closed nor open and intΠ2

1 = ∅.
(iii) π ∈ Π3

1 if and only if Slater condition holds and c ∈ M\ (int M) .
Moreover, Π3

1 is neither closed nor open and intΠ3
1 = ∅.

(iv) π ∈ Π4
1 if and only if (0n, 1) /∈ cl K, c ∈ M\ (int M) , and the Slater

condition fails. Moreover, Π4
1 is neither closed nor open and intΠ4

1 = ∅.

Proof The characterizations of the four sets Πj
1, j = 1, ..., 4, are consequence of

Lemmas 2.2 and 2.4. Since these sets are cones, with the null triple belonging
to Π4

1, only Π4
1 could be closed. Once we prove that Π1

1 is an open dense subset
of Π1, we must have intΠj

1 = ∅, j = 2, 3, 4, and, by Theorem 3.1, none of the
sets Πj

1, j = 2, 3, 4, can be open. Thus we just have to study Π1
1 and Π4

1.
Analyzing Π1

1 : It is open because, by Lemma 2.4, Π1
1 = int Π1, with this set

being a dense subset of Π1. Thus, Π1
1 is a dense subset of Π1.

Analyzing Π4
1 : We have just to prove that Π4

1 is non-closed. By Lemma 2.1,
there exists S ⊂ T and ϕ ∈ C (T ) be such that 0 ∈ acc ϕ (S) ⊂ R++. Let {µr} ⊂
R++ be an increasing sequence such that µr → π

2 and consider the sequence
{πr} ⊂ Π such that πr := (ar, br, cr), where ar =

(
ϕ cos µr + ϕ2 sinµr, 0n−1

)
,

br = ϕ sinµr − ϕ2 cos µr and cr = e1, r = 1, 2, .... We have c ∈ Mr and
intMr = ∅. Moreover,

(
ar

t
, br

t

)
= 0n+1, so that Slater condition fails, and

(0n, 1) /∈ cl Kr. Hence {πr} ⊂ Π4
1 and πr → π = (a, b, c) , with a =

(
ϕ2, 0n−1

)
,

b = ϕ and c = e1. Since (0n, 1) ∈ cl K, c ∈ M, and {c}×R ⊂K, we get π ∈ Π3.
Hence Π4

1 is non-closed. �

In Example 2.3, the given neighborhood of π is contained in Θ2
1 although the

Slater condition holds for all its elements. Thus Theorem 3.3(ii) fails in general
LSIP.

As a consequence of Theorem 3.3, the elements of the refined primal-dual
partition are neither open nor closed, with the unique exception of Π1

1, which is
open. The density of Π1

1 in Π1 means that primal-dual solvability, with bounded
optimal set, is a generic property in Π1 = ΠP

B∩ΠD
B . The next corollary improves

this generic result.

Corollary 3.4 Primal-dual solvability, with bounded optimal sets, is a
generic property in the set ΠP

B∪ ΠD
B .
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Proof By Theorem 3.3(i), Π1
1 is open and dense in Π1. By Lemma 2.4(vii),

Π5 ∪Π6 ⊂ cl Π1 ⊂ cl Π1
1. Therefore ΠP

B ∪ΠD
B = Π1 ∪Π5 ∪Π6 ⊂ cl Π1

1. �

Example 2.3 shows that the continuity assumption is essential for the validity
of this generic result. In fact, the open neighborhood of π is contained in ΘP

S
whereas all its elements are contained in ΘD

B\ΘD
S , i.e., intΘP

S contains an open
set of parameters which are not even dual solvable. Hence the primal-dual
solvability is not a generic property in ΘP

B (or in ΘD
B ) and Corollary 3.4 is not

true in general LSIP.

4 The refined primal and dual partitions

Corollary 4.1 The elements of the refined primal partition are neither open
nor closed and satisfy the following statements:
(i) π ∈ ΠP

IC if and only if (0n, 1) ∈ cl K. Moreover, intΠP
IC = intΠ3 is dense

in ΠP
IC .

(ii) π ∈ ΠP
S if and only if (0n, 1) /∈ cl K and c ∈ intM. Moreover, intΠP

S = Π1
1

is dense in ΠP
B.

(iii) π ∈ ΠP
N if and only if (0n, 1) /∈ cl K and c /∈ intM , and ({c} × R)∩cl K 6=

∅ if c ∈ M. Moreover, intΠP
N = ∅.

(iv) π ∈ ΠP
UB if and only if (0n, 1) /∈ cl K, c /∈ M and ({c} × R) ∩ cl K = ∅.

Moreover, intΠP
UB = int Π2 is dense in ΠP

UB.

Proof (i) It is straightforward consequence of the existence theorem and [13,
Theorem 2(i)] (it also follows from Lemma 2.4, parts (iii), (iv), (vi), (vii)).

(ii) The characterization of ΠP
S was established in Lemma 2.2(i). This, to-

gether with Table 2 and Lemma 2.4(i) gives Π1
1 ⊂ ΠP

S ⊂ Π1. On the other
hand, by Lemma 2.4(i) and Theorem 3.3, intΠ1 = Π1

1. Hence intΠP
S = Π1

1.
The density of Π1

1 in ΠP
B follows from the density of Π1

1 in Π1 (again by Lemma
2.4(i)) and the density of Π1 in Π1 ∪Π5 = ΠP

B (by Lemma 2.4(vii)).
(iii) The characterization of ΠP

N is consequence of those corresponding to the
remaining elements of the refined primal partition. Concerning intΠP

N , observe
that ΠP

N = Π5 ∪ Π3
1 ∪ Π4

1. Since Π5 ⊂ cl int Π1 and Π3
1 ∪ Π4

1 ⊂ Π1, we have
ΠP

N ⊂ cl int Π1 = clΠ1
1, with ΠP

N ∩Π1
1 = ∅. Then intΠP

N = ∅.
(iv) It is Lemma 2.4(ii) because ΠP

UB = Π2.
It remains to prove that the elements of the refined primal partition are

neither open nor closed.
The elements of the refined primal partition are cones, and the null parameter

belongs to ΠP
N , so that the remaining elements are non-closed. On the other

hand, since there exists a sequence {πr} ⊂ Π4
1 ⊂ ΠP

N such that πr → π ∈ Π3 ⊂
ΠP

IC (recall the last part of the proof of Theorem 3.3), ΠP
N is non-closed too.

On the other hand, since the null parameter belongs to ΠP
N\

(
intΠP

N

)
, ΠP

N is
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non-open. Concerning ΠP
S , (ii) asserts that intΠP

S = Π1
1 6= ΠP

S because Π2
1 6= ∅

(Theorem 3.1), so that ΠP
S cannot be open. Finally, ΠP

UB = Π2 is non-open by
Lemma 2.4(ii) and the same applies to ΠP

IC by [13, Proposition 2]. �

The proof of the next result is similar to the last one and will be omitted.

Corollary 4.2 The elements of the refined dual partition are neither open
nor closed and satisfy the following statements:
(i) π ∈ ΠD

IC if and only if c /∈ M. Moreover, intΠD
IC = intΠ2 is dense in ΠD

IC .
(ii) π ∈ ΠD

S if and only if Slater condition holds and c ∈ M . Moreover,
intΠD

S = Π1
1 is dense in ΠD

B .
(iii) π ∈ ΠD

N if and only if Slater condition fails and c /∈ M, and {c} × R "K
if (0n, 1) ∈ cl K. Moreover, intΠD

N = ∅.
(iv) π ∈ ΠD

UB if and only if (0n, 1) ∈ cl K, c ∈ M and {c} × R ⊂K. Moreover,
intΠD

UB = int Π3 is dense in ΠD
UB.

Observe that, from Corollaries 4.1 and 4.2, part (ii), we get that Π1
1 is dense

in ΠP
B ∪ΠD

B . This is an alternative proof of Corollary 3.4.
Corollary 4.2(ii) fails in the context of general LSIP, as Example 2.3 shows.

The situation is much better in the open and closed linear subspace of
the parameters with bounded data, say Γ, which is formed by those triples
(a, b, c) ∈ Θ such that the functions a and b are bounded. Obviously, if T is a
compact Hausdorff space, then Π ⊂ Γ. In [11] (using ad hoc tools for Γ intro-
duced in [15]) and in [16] it is proved that the strong uniqueness of the primal
problem and the primal-dual solvability are generic properties in ΓP

B and in
int ΓP

B, respectively. The next example shows that the generic property proved
in this paper fails in Γ.

Example 4.3 Let T = [0, 1] and n = 2. Let π = (a, b, c) be such that at =
(t, 1) for all t ∈ T ,

bt =

1, if t = 0,
0, if 0 < t < 1,
−1 if t = 1,

and c = (1
3 , 1). Since F =

{
x ∈ R2 | x1 + x2 ≥ 0, x2 ≥ 1

}
, x∗ = (−1, 1) is

strongly unique solution of π and π ∈ ΓP
S . Even more, since c ∈ intM , we have

π ∈ int ΓP
S . Nevertheless, since there is no duality gap (because c ∈ intM) and

({c} × R)∩K is not closed, we have Λ∗ = ∅ and, so, π ∈ ΓD
B but π /∈ Γ1

1. This
means that int ΓP

S 6= Γ1
1 (i.e., Theorem 4.2(ii) fails). Consider the sequence

πr = (ar, br, cr) , r = 2, ..., such that ar = a, cr = c and br
t = bt if t 6= r−1

r

and br
t = 1

r if t = r−1
r , r = 1, 2, ... Given r ≥ 2, we have F ∗

r = {x∗} (because
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cl Kr = clK is equivalent to Fr = F ) and Λ∗r = {λr}, with

λr
t =


2r−3

3(r−1) , if t = 0,
r

3(r−1) , if t = r−1
r ,

0, otherwise.

Since {πr} ⊂ Γ1
1 and πr → π, we have π ∈

(
cl Γ1

1

)
\Γ1

1 ⊂ bd Γ1
1 (as expected,

taking into account the mentioned generic results).

Concerning the dual problem in continuous LSIP, examples have been given
in [23] of compact Hausdorff spaces T such that, in an open set, the dual
problems have more than one optimal solutions, so that the generic results on
unicity of saddle points fail. This implies that the problem of obtaining generic
results for the dual problem is very difficult even in the continuous case. The
extension of the generic results in this paper from continuous LSIP to LSIP
with bounded data will be the object of further study.

Acknowledgement. The authors wish to thank one anonymous referee for
its valuable comments and suggestions.
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