2010 International Conference on Pattern Recognition

A Constant average time algorithm to allow insertions in the LAESA fast Nearest
Neighbour Search index

Luisa Micé
Dept. Lenguajes y Sistemas Informticos
Universidad de Alicante (SPAIN)
Email: mico@dlsi.ua.es

Abstract—Nearest Neighbour search is a widely used tech-
nique in Pattern Recognition. In order to speed up the search
many indexing techniques have been proposed. However, most
of the proposed techniques are static, that is, once the index
is built the incorporation of new data is not possible unless a
costly rebuilt of the index is performed. The main effect is that
changes in the environment are very costly to be taken into
account.

In this work, we propose a technique to allow the insertion
of elements in the LAESA index. The resulting index is exactly
the same as the one that would be obtained by building it from
scratch. In this paper we also obtain an upper bound for its
expected running time. Surprisingly, this bound is independent
of the database size.

Keywords-nearest neighbour; metric spaces; distance; inser-
tion; index;

I. INTRODUCTION

LAESA [1] is a fast Nearest Neighbour search algorithm.
It is simple to implement and is able to find the nearest
neighbour computing, in average, a constant number of
distance computations. The algorithm uses a linear size
structure (the LAESA index) that is built during the pre-
processing phase. The LAESA has a very wide application
range since the only property demanded to the dissimilarity
function is to fulfil the triangular inequality ([2]). This
property makes the algorithm to be relevant when large
databases and expensive distance computations are involved.

Unfortunately the LAESA index is static, that is, the
insertion or deletion of one element to the index requires a
complete rebuilding of the index. This is a serious drawback
when these techniques should be applied to interactive
systems [3].

In this work we propose an algorithm that allows the in-
sertion of elements in constant expected time to the LAESA
index. The index obtained after the insertion is the same
as the one obtained if a complete rebuild would be made.
This bound is theoretically derived and some experiments
are performed to illustrate its validity.

1051-4651/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPR.2010.951

3911

Jose Oncina
Dept. Lenguajes y Sistemas Informticos
Universidad de Alicante (SPAIN)
Email: oncina@dlsi.ua.es

II. THE LAESA INDEX

The LAESA [1] computes an index during the preprocess
to speed up the search. This index is made of two compo-
nents:

o a subset B (pivots) of the elements in a database D,

 a table T that stores the distances (d(-,-)) from any

pivot to any element in the database.

Mic6 et al. [1] showed that the optimal pivot set size (| B|)
does not depend on the database size, but it depends only
on the dissimilarity function. This is the unique parameter
to be fixed in order to use the LAESA.

In order to simplify the notation, given a set of elements
S and an element p, let we denote d(S, p) = mingecg d(s, p).

In the static algorithm the pivots are selected incremen-
tally among the elements in the database. Although several
methods are proposed for selecting the pivots [4], we are
going to use the so called maxmin (algorithm 1) that has
been used with excellent results:

« the first pivot (by) is randomly chosen. Let By = {b;},

o the following pivot (b;) is chosen incrementally as

the farthest element to the actual pivot set (b;
argmazpepd(B;—1,p)). Let B; = B;_1 U {b;}.

Given a database D and the size k& for the pivot set, the
pivot set is defined as B = By = {b1,...,b;}. The table
T will store the distance from each pivot to each element
in D. It is obvious that this table can be built performing
|B||D| distance computations at most.

A. The dynamic case

Suppose we have an index (B,T) and we want to add
a new element p to the index. The aim of the dynamic
algorithm is to check iteratively (from ¢ = 2 to k) which
should be the i-th pivot, b; or p.
o If it is b; then almost no modifications to the table are
needed (just add d(b;_1, p) to the table) and we test for
the next 4.
o If it is p, the rest of the table and the pivot set are
recomputed.

The proposed method can be found in algorithm 2.

IEEE
computer
® psouety

Algorithm 1: build_LAESA_index(D, k)

Algorithm 2: update_LAESA _index(z, D, B, T)

Input:
D ={p1,...,pn}: database
k: number of pivots
Output:
B = {by,...,bx}: k size pivot set
T : B x D distance table
begin
b = random(D)
B = {b}

foreach p € D do T'[b,p] = d(b,p)
for i =2 to k do
b= argmazyep-p)d(B,p)
foreach p € D do T'[b, p| = d(b,p)
B=BU{b}
end
end

Suppose z is going to be selected as the i-th pivot, then:

e ¢ — 1 distances should be computed to find that z is
really the ¢-th pivot (while loop),

e at most (|B| —i+ 1)(|D|+ 1) distances are computed
when rebuilding the rest of the table (foreach loops).

That is, a total of (|B| — i + 1)|D| + |B| distances are
computed.

The worst case is when z is the second pivot. In this
case (|B| — 1)|D| + |B| distances are computed (it grows
linearly with the database size). The best case, is when x
is not selected as pivot. In this case only |B| distances are
computed (then, it does not depend of the database size).

In the next section we are going to see that, in the average
case like in the best case, the expected time does no depend
on the database size.

B. Average time complexity

In order to obtain the expected number of distance com-
putations we have first to find the probability of being
x the i-th pivot. Let us assume that all the elements in
DU {p} where extracted i.i.d. from an unknown probability
distribution. Note that once fixed the first pivot (b;), the
property “being the i-th pivot” establishes an order on the
remaining elements. Then, the probability of being x the
second pivot is exactly the same as being the third and so
on'. As we have |D| possibilities (b; is fixed), the probability
of being x the i-th pivot is ﬁ.

! Note that this is only true if there are no ties for the candidates of being
the i-th pivot. That is, for each step the farthest element to the actual pivot
set is unique. If it is not the case, the algorithm is conservative and chooses
the previously known element as pivot. Then, as x is the last element, in
case of ties z is not selected, decreasing the probability of being the i-th
pivot for small . If we are in a space where the probability of ties is high
(typically discrete spaces) the expectation we get is an upper bound of the
real one.

Input:
x: element to insert
D ={p1,...,pn}: database
B = {b1,...,bg}: pivot set

T: B x D distance table
Output:

D': database

B’: k size pivot set

T'": B’ x D' table of distances

begin
=T // extend T one column
D' =DU{x}
B = {1}
=2
while d(B’,xz) < d(B',b;) and i < k do
B' =B U{b;}
T'[bs, z] = d(b;,)
=141
end
if 7 < k then
B' = B' U{x}
foreach p € D' do T[z,p] = d(x,p)
for j =i+ 1tok do
b= argmax,e(p—pHd(B', p)
foreach p € D do T'[b,p] = d(b,p)
B' = B'U {b}
end
end
end

Now, the expected value can be computed as the sum of
the probability of being the i-th pivot times its cost (for
i = 2 to |B|) plus the probability of not being one of the
| B| pivots times its cost.

Formally:

|B|
E=;@waHw+m]

|D| — |B|+1

+ ——F—F|B 1
B|(|B|+1

_ 1Bl 1) o

Surprisingly, this expression does not depends on the
database size.

Intuitively, what is happening here is that pivots are very
low probability elements. In the algorithm, the high cost
of replacing a pivot is overcome by the low probability of
finding a new one.

In the next section we are going to design some experi-
ments to illustrate the validity of this result.

3912

III. EXPERIMENTAL RESULTS
A. Uniform distribution

In this experiment, artificial data was extracted from a
uniform distribution over a 5, 10 and 15 dimension unit hy-
percube. As it is usual using LAESA, previous experiments
were performed to fix the pivot set size: 9, 50 and 270 pivots
were use respectively.

Each experiment counts the number of distance computa-
tions needed to insert a random element in an existing index.
Database sizes range from 100 to 10000 in steps of 100. For
each database size, 10000 random databases were generated.
Fig. 1 shows the results of the experiments.

For each database size, the average number of distance
computations provoked by an insertion was represented. In
order to have an idea of the distribution of the number
of distance computations, the 95% percentile is also rep-
resented. That means the 95% of the insertions worked
out a number of distance computations below the line.
Note that in all cases the 95% percentile is a constant that
corresponds to the number of pivots used in the experiment.
In other words, in more than the 95% of the cases the
number of distance computations is the lowest possible. The
theoretical prediction of the expected value of the distance
computations in equation 2 is also plotted. As it can be seen,
the experimental results fits very well with the theoretical
prediction.

B. Contour chains

In order to assess the relevance of our model in a pattern
recognition task, we applied it on the real world problem
of handwritten digit classification. We used the NIST Spe-
cial Database 3 of the National Institute of Standards and
Technology. This database consists in 128 x 128 bitmap
images of handwritten digits and letters. In this series of
experiments, we only focus on digits written by 100 different
writers. Each class of digit (from 0 to 9) has about 1,000
instances, then the whole database we used contains about
10,000 handwritten digits.

In our experiments each digit was coded as a contour
chain [5] and as dissimilarity measure the edit distance [6]
was used. Note that as the edit distance can not be bigger
than the longest contour chain, we are going to have many
ties in the distances and then, as stated in the footnote 1,
our theoretical prediction becomes an upper bound.

Figure 2 shows the result for increasing size databases
(from 100 to 8000 in steps of 100). Each point is the average
of 10000 random databases of the given size. Form 100 to
8000 in steps of 100 sizes for the databases where used.

IV. CONCLUSIONS

In this work we have addressed the problem of inserting
new elements into an existing LAESA index. We have
proposed an algorithm that works in average constant time,
and we have proved this result both, theoretically and

3913

Dimension 5, 9 pivots

100 T T
average —
95% percentile -
80 theoretical prediction -
° L J
e
K]
§ A
] 60 ’ /\ A A A
Qo
: I
3 AP [I AHM LAY AJ
=i irtieh il
i}
@
° 20t 1
O 1 1 1 1
0 2000 4000 6000 8000 10000
database size
Dimension 10, 50 pivots
' ' averade —
L 95% percentile x|
2000 theoretical prediction -
2
K]
3 f\/\/\ﬂﬁ[\x ‘
2 L ﬁﬂ f onl
s ol A
o 1000 -
(8]
C
i}
@
° 500 1
0 T i\ T T
0 2000 4000 6000 8000 10000
database size
Dimension 15, 270 pivots
60000 T T T
average ———
95% percentile --—-x---
50000 theoretical prediction - 1
2
k<]
g uwvwv phafp ! @f www
& 30000 [
(&)
[0]
e
§ 20000 r 1
@
©
10000 r 1
0
0 2000 4000 6000 8000 10000
database size
Figure 1. Distance computations caused by an insertion for increasing size

databases. Uniform distribution in dimensions 5, 10, 15 unit hypercube.
Average of 10000 repetitions.

experimentally. This problem is so important because it
opens the door to use this type of indexes in incremental
learning frameworks.

The technique introduced here is clearly extensible to
other “robust” indexes. That is, when it is very unlikely that
the addition of new elements provokes a big changes in the

Contour strings, 240 pivots

40000 ‘ ‘
average ——
L 95% percentile - x|
35000 theoretical prediction -
g 30000 F
©
5 25000 [1
o
g 20000 B
o
8 15000 | 1
S
£ 10000 1
5000 | 1
0
0 1000 2000 3000 4000 5000 6000 7000 8000
database size
Figure 2. Distance computations caused by an insertion for handwrit-

ten characters contour chains using the edit distance. Average of 10000
repetitions.

index.

Moreover, the algorithm can be largely improved by
introducing some heuristics i.e. do not change the actual
pivot if the new candidate is not further than a threshold.
Although in such cases the resulting index is not exactly
the same as the one that would be obtained building it
from scratch and some trade off between insertion speed
and search speed is introduced.

ACKNOWLEDGEMENTS

This work has been supported in part by grants TIN2009-
14205-C04-01 from the Spanish CICYT (Ministerio de
Ciencia e Innovacién), the IST Programme of the European
Community, under the Pascal Network of Excellence, IST-
2002-506778, and the program CONSOLIDER INGENIO
2010 (CSD2007-00018).

REFERENCES

[1] L. Micé, J. Oncina, and E. Vidal, “A new version of the
nearest-neighbour approximating and eliminating search al-
gorithm (aesa) with linear preprocessing time and memory
requirements,” Pattern Recognition Letters, vol. 15, pp. 9-17,
1994.

[2] S. Battiato, G. D. Blasi, and D. Reforgiato, “Advanced indexing

schema for imaging applications: three case studies,” Image

Processing, IET, vol. 1, no. 3, pp. 249-268, 2007.

[3] G. P. Nguyen and M. Worring, “Interactive access to large

image collections using similarity-based visualization,” J. Vis.

Lang. Comput., vol. 19, no. 2, pp. 203-224, 2008.

[4] B. Bustos, G. Navarro, and E. Chavez, “Pivot selection tech-

niques for proximity searching in metric spaces,” Pattern

Recogn. Lett., vol. 24, no. 14, pp. 2357-2366, 2003.

3914

[5] T. T. O. Due Trier, Anil K. Jain, “Feature extraction methods
for character recognition - a survey,” Pattern Recognition,
vol. 29, no. 4, pp. 641-662, 1996.

[6] V. 1. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions, and revers als,” Doklady Akademii Nauk
SSSR, vol. 163, no. 4, pp. 845-848, 1965.

