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Resumen: En este artı́culo estudiamos el problema de la estimación de gramáticas in-
contextuales estocásticas en formato general y su uso en unmodelo de lenguaje hı́brido.
En este trabajo se propone la estimación de una gramática incontextual estocástica usando
una nueva versión del algoritmo de Earley que permite manejar muestras parentizadas. El
modelo de lenguaje hı́brido es definido como una combinación lineal de un modelo de n-
gramas basado en palabras, que se utiliza para capturar las relaciones locales entre palabras,
y una gramática estocástica, basada en categorı́as juntocon una distribución de palabras en
categorı́as, que se utiliza para representar las relaciones a largo término entre estas cate-
gorı́as. Se han realizado experimentos usando el corpus UPenn Treebank. La evaluación
de los modelos se ha realizado desde el punto de vista de la perplejidad de un conjunto
de test, y desde el punto de vista de la tasa de errores por palabra en un experimento de
reconocimiento automático del habla.
Palabras clave: Modelado del lenguaje, estimación de gramáticas, reconocimiento au-
tomático del habla.

Abstract: In this paper, we study the problem of estimating StochasticContext-Free Gram-
mars (SCFGs) in general format and their use in a hybrid language model. In this work,
we propose the estimation of a SCFG by means of a new bracketedversion of the Earley
algorithm. A hybrid language model is defined as a combination of a word-based n-gram,
which is used to capture the local relations between words, and a category-based SCFG
with a word distribution in categories, which is defined to represent the long-term relations
between these categories. Experiments on the UPenn Treebank corpus are reported. These
experiments have been carried out in terms of the test set perplexity and the word error rate
in a speech recognition experiment.
Keywords: Language modeling, grammar estimation, automatic speech recognition.

1 Introduction

Over the last few years, there has been increas-
ing interest in Stochastic Context-Free Gram-
mars (SCFGs) for use in different tasks within
the framework of Syntactic Pattern Recogni-
tion (Baker, 1979; Lari and Young, 1990; Ney,
1992) and Computational Linguistics (Jelinek
and Lafferty, 1991). The reason for this can be
found in the capability of SCFGs to model the
long-term dependencies established between the
different linguistic units of a sentence, and the
possibility of incorporating the stochastic infor-
mation that allows for an adequate modeling of
the variability phenomena that are always present� This work has been partially supported by the Spanish
CICYT under contract (TIC2002/04103-C03-03)

in complex problems. Thus, SCFGs have been
successfully used on limited-domain tasks of low
perplexity. However, the general-purpose SCFGs
work poorly on large vocabulary tasks. The main
obstacles to using these models in complex real
tasks are the difficulties of learning and integrat-
ing SCFGs.

With regard to the learning of SCFGs, two
aspects must be considered: first, the learning
of the structural component, that is, the rules of
the grammar, and second, the estimation of the
stochastic component, that is, the probabilities
of the rules. Although interesting grammatical
inference techniques have been proposed else-
where for learning the grammar rules, computa-
tional restrictions limit their use in complex real
tasks. Taking into account the existence of robust



techniques for the automatic estimation of the
probabilities of the SCFGs from samples (Lari
and Young, 1990; Pereira and Schabes, 1992;
Stolcke, 1995), other possible approaches for the
learning of SCFGs by means of a probabilistic
estimation process have been explored (Pereira
and Schabes, 1992; Sánchez and Benedı́, 1999).

In this paper, we propose a new estimation al-
gorithm of SCFGs in general format based on the
Earley algorithm. This estimation algorithm is a
simple extension of the classical reestimation al-
gorithm proposed in (Pereira and Schabes, 1992)
for SCFGs in Chomsky Normal Form.

All of these estimation algorithms are based
on gradient descendent techniques, and it is well-
known that their behavior depends on the appro-
priate choice of the initial grammar. When the
SCFG is in general format and a treebank corpus
is available, it is possible to directly obtain an ini-
tial SCFG from the syntactic structures which are
present in the treebank corpus (Charniak, 1996).

With regard to the problem of the integra-
tion of a SCFG in a recognition system, several
proposals have attempted to solve these prob-
lems by combining a word n-gram model and
a structural model in order to take into account
the syntactic structure of the language (Chelba
and Jelinek, 2000; Roark, 2001). In the same
way, a general hybrid language model is pro-
posed in (Benedı́ and Sánchez, 2000). This is
defined as a linear combination of a word n-gram
model, which is used to capture the local rela-
tion between words, and a stochastic grammati-
cal model, which is used to represent the global
relation between syntactic structures. In order to
capture the long-term relations between syntactic
structures and solve the main problems derived
from large-vocabulary complex tasks, a stochas-
tic grammatical model is proposed which is de-
fined by a category-based SCFG together with a
probabilistic model of word distribution into the
categories.

In this paper, we present the hybrid language
model, based on SCFGs in general format and
the Earley algorithm, together with the results of
their evaluation processes.

The evaluation processes have been done us-
ing the UPenn Treebank corpus. Firstly, we de-
scribe the experiments to test the estimation algo-
rithm proposed. Then, we also compare the final
hybrid language model with other stochastic lan-
guage models in terms of thetest set perplexity
and theword error rate.

2 Earley-based SCFG estimation
In this section, we first give some basic defi-
nitions and then we describe an expression for
probability estimation. We rewrite this expres-
sion based on Earley parser definitions and ex-
plain how to adapt the rewrite expression to take
advantage of the bracketed corpus.

A Context-Free Grammar(CFG)G is a four-
tuple (N;�; P; S), whereN is a finite set of
non-terminal symbols,� is a finite set of ter-
minal symbols(N \ � = ;), P is a finite set
of rules of the formA ! � (A 2 N and� 2 (N [ �)+) (we only consider grammars
with no empty rules) andS is the initial symbol(S 2 N). A CFG is in Chomsky Normal Form
(CNF) if the rules are of the formA ! BC orA ! a (A;B;C 2 N and a 2 �). We say
that the CFG is in General Format (GF) if no re-
striction is imposed on the format of the rules.
A left-derivationof x 2 �+ in G is a sequence
of rulesdx = (p1; p2 : : : ; pm), m � 1 such that:(S p1) �1 p2) �2 : : : pm) x), where�i 2 (N[�)+,1 � i � m�1, andpi rewrites the left-most non-
terminal of�i�1. The language generatedby G
is defined asL(G) = fx 2 �+ j S +) xg.

A Stochastic Context-Free Grammar(SCFG)Gs is defined as a pair(G; q), whereG is a
CFG andq : P !℄0; 1℄ is a probability func-
tion of rule application such that8A 2 N :P�2(N[�)+ q(A ! �) = 1. We define the
probability of the derivationdx of the stringx,Pr(x; dx j Gs), as the product of the probability
application function of all the rules used in the
derivationdx. We define theprobability of the
stringx as:Pr(x j Gs) =P8dx Pr(x; dx j Gs);
and theprobability of the best derivationof the
string x as: 
Pr(x j Gs) = max8dx Pr(x; dx jGs): Thelanguage generatedbyGs is defined asL(Gs) = fx 2 L(G)jPr(x j Gs) > 0g.

In order to estimate the probabilities of a
SCFG, it is necessary to define both a framework
to carry out the optimization process and an ob-
jective function to be optimized. In this work, we
have used the framework of Growth Transforma-
tions (Baum and Sell, 1968) in order to optimize
the objective function.

In reference to the function to be optimized,
we consider the likelihood of a sample which is
defined as:Pr(
 j Gs) =Qx2
 Pr(x j Gs), and
the likelihood of the best derivation of a sample
which is defined as:
Pr(
 j Gs) =Qx2

Pr(x jGs), where
 is a multiset of strings.

Given an initial SCFGGs and a finite training
sample
, the iterative application of the follow-



ing function can be used to modify the probabil-
ities (8(A! �) 2 P ):q0(A! �) =Px2
 1Pr(xjGs)P8dx N(A! �; dx)Pr(x; dx j Gs)Px2
 1Pr(xjGs)P8dx N(A; dx) Pr(x; dx j Gs) :

(1)
The expressionN(A ! �; dx) represents the
number of times that the ruleA ! � has been
used in the derivationdx, andN(A; dx) is the
number of times that the non-terminalA has been
derived indx. This transformation optimizes the
functionPr(
 j Gs). When the grammar is in
CNF, transformation (1) can be adequately for-
mulated and it becomes the well-known IO algo-
rithm (Lari and Young, 1990). When the gram-
mar is in GF, we can use a probabilistic version
of the Earley algorithm (Earley, 1970). We now
describe the SCFG estimation based on the Ear-
ley algorithm.

The Earley algorithm constructs a set of listsL0; : : : Ljxj, whereLi keeps track of all possi-
ble derivations that are consistent with the input
string until xi. An item is an element of a list
and has the formjk A! � � �, wherej is the cur-
rent position in the input and is thereby in theLj list. k is the position in the input when the
item was selected to expandA. The dot indicates
that � acceptsxk+1 : : : xj and that� is pend-
ing expansion. This item records the previous
history: S �) x1x2 : : : xkAÆ �) x1x2 : : : xk��Æ�) x1x2 : : : xkxk+1 : : : xj�Æ.

The probabilistic version attaches two values
called inner probabilityandouter probabilityto
each item (Stolcke, 1995).

The inner probability is denoted as
( ji A! � � �). This value represents the
sum of probabilities of all partial derivations that
begin with the item ii A! ��� and end with
the item ji A! � � �, generating the substringxi+1 : : : xj. For each item,inner probability
can be calculated with the following recursive
definition:
( ii A! ��) = q(A ! �); 0 � i < n;
( ji A! �Æ � �) =8><>: 
( j�1i A! � � Æ�) if Æ = xjPj�1k=i 
( ki A! � � Æ�)PC RU (Æ; C)
( jk C ! ��) if Æ 2 N

In this expression, RU (A;B) =Pr(A �)U B), which is computed from
the probabilistic unit production relation

PU (A;B) = q(A ! B), 8A;B 2 N .RU (A;B) = (I � PU )�1 when the grammar is
consistent (Jelinek and Lafferty, 1991).

This way,Pr(xjGs) = 
( n0$! S�), where$ ! S is a dummy rule which is not inP . The
expressionq($! S) is always one and it is used
for initialization. The time complexity of com-
puting theinner probability is O(jP jjxj3), and
its spatial complexity isO(jP jjxj2).

The outer probability is denoted as�( ji A! � � �). This value represents the
sum of probabilities of all partial derivations
that begin with the item (00 $! �S), generate
the prefixx1; x2; : : : ; xi, pass through the itemii A! ���, for some �, generate the suffixxj+1; : : : ; xn and end in the final itemn0 $! S�.
The outer probability is the complement of the
inner probability and, therefore, the choice of the
ruleA! �� is not part of the outer probability.

For each item, theouter probability can be
calculated using the following recursive defini-
tion:�( n0 $! S�) = 1�( ji A! � � Æ�) =8>>>>><>>>>>: �( j+1i A! �Æ � �) if Æ 2 �Pnk=j+1 �( ki A! �Æ � �)Pnk=j+1PB2N RU (Æ;B)
( kj B ! ��) if Æ 2 NPB2NPik=0 
( ik B ! � � C�0)�( jk B ! �C � �0)RU (C;A) if Æ� = �

The time complexity of theouter probabil-
ity is O(jP jjxj3), and its spatial complexity isO(jP jjxj2).

In order to rewrite (1) in terms of theinner
andouterprobabilities, we need to note that these
definitions associate several items to a rule. Here,
we considered only the items with the dot at the
beginning of the right side (ii A! ��) to repre-
sent the rule (A! �).

Let A ! � be a rule, and letdx be a set of
derivations that uses this rule. We assume that the
Earley algorithm selects this rule at thei position
to extend derivations from the positioni + 1 of
the string input.

The algorithm inserts the itemii A! ��, recording the information:S �) x1 : : : xiA�, � 2 (N [ �)+. Given
that A! � is in dx, then, S �)x1; : : : ; xiAxi+1 : : : xn. And its probability is:Pr(S �) x1; : : : xi; A; xi+1; : : : xnjA! �;Gs)q(A! �).



Using theinner andouter probabilities this
expression becomes:�( ii A! ��)
( ii A! ��)

This expression adds up the probabilities of
all derivations that have selected the ruleA! �
at the positioni. If we sum for all positions, we
can rewrite the numerator of (1). And if we sum
for all positions and for all rules with the same
left non terminal, we can rewrite its denominator.
This way (1) can be written as:q(A! �) =Px2
 1Pr(xjGs)Pn�1i=0 �( ii A! ��)
( ii A! ��)Px2
 1Pr(xjGs)P�0Pn�1i=0 �( ii A! ��0)
( ii A! ��0)

(2)
The time complexity of this transformation

per iteration isO(j
jjxjjP j). However, due to
the fact thatinnerandouterprobabilities are bothO(jP jjxj3), the overall time complexity per iter-
ation isO(j
jjx3jjP j).

We now describe how the structural informa-
tion represented by parentheses can be treated.

2.1 Estimation with bracketed corpus

Informally, a partially bracketed corpus is a set
of sentences which is annotated with parentheses
marking constituent frontiers (Pereira and Sch-
abes, 1992). More precisely, a bracketed corpus
 is a set of pairs(x;B) wherex is a string andB the bracketing ofx.

Given the stringx = x1x2 : : : xn, the pair of
integers(i; j), 1 � i � j � n forms a span ofx.
A span(i; j) delimits substringxi : : : xj.

A bracketingB of x is a finite set of spans
on x, B = f(i; j)j1 � i � j � ng such that
every two spans(i; j), (k; l) 2 B accomplishes
that i � k � l � j, or k � i � j � l. In such a
case the spans do not overlap.

Given(x;B), any parse ofx must respect the
limits defined byB. The following concepts es-
tablish the conditions for a derivation ofx to be
compatible withB. First, we define the bracket-
ing defined by a derivation.

Let (x;B) be a bracketed string, and letdx be
a derivation ofx with the SCFGGs. If the SCFG
does not have useless symbols, then every non-
terminal that appears in every sentential form of
the derivation generates a substringxi : : : xj ofx, 1 � i � j � jxj and defines a span(i; j).
A derivation ofx is compatible withB if all the
spans defined by it are compatible withB.

Given a SCFG and a bracketed corpus
, for
each bracketed string(x;B), we define the func-

tion:
(i; j) = � 1 if (i; j) does not overlap anyb 2 B,0 otherwise.

This function filters those derivations (or par-
tial derivations) whose parsing is not compatible
with the bracketing defined on the sample. With
this function the bracketed version ofinner and
outer probabilities for each item can be calcu-
lated as:
B( ji A! �Æ � �) = 
(i; j)
( ji A! �Æ � �):�B( ji A! � � Æ�) = 
(i; j)�( ji A! � � Æ�):

These modifications can affect the time com-
plexity of the estimation algorithm per iteration,
which in a full bracketed input isO(j
jjxjjP j).
3 The language model
An important problem related to language mod-
eling is the computation ofPr(wkjw1 : : : wk�1).
In order to calculate this probability, a general
hybrid language model was proposed in (Benedı́
and Sánchez, 2000), which is defined as a linear
combination of a word n-gram model. It is used
to capture the local relation between words and
a word stochastic grammatical modelMs. This
model is used to represent the global relation be-
tween syntactic structures and allows us to gen-
eralize the word n-gram model. In this way, this
expression is formulated as:Pr(wkjw1 : : : wk�1) =�Pr(wkjwk�n+1 : : : wk�1)+(1� �) Pr(wkjw1 : : : wk�1;Ms);(3)

where 0 � � � 1 is a weight factor which
depends on the task. Similar proposals along
the same line have been presented by other au-
thors (Chelba and Jelinek, 2000; Roark, 2001).

The first term of expression (3) is the
word probability ofwk given by the word n-
gram model. The parameters of this model
can be easily estimated, and the expressionPr(wkjwk�n+1 : : : wk�1) can be efficiently com-
puted.

In order to capture the long-term relations be-
tween syntactic structures and solve the main
problems derived from large vocabulary com-
plex tasks, a stochastic grammatical modelMs
was proposed. It is defined as a combination
of two different stochastic models: a category-
based SCFG (G
) and a stochastic model of word



distribution into categories (Cw). Thus, the sec-
ond term of the expression (3) can be written as:Pr(wkjw1 : : : wk�1; G
; Cw).

There are two important questions to con-
sider: the learning ofG
 andCw, and the com-
putation of the probability of the following wordPr(wkjw1 : : : wk�1; G
; Cw).
3.1 Learning of the models

The parameters of the models,G
 andCw, are
estimated from a set of sentences from a training
sample. We work with a treebank corpus, where
each word of the sentence is labeled with part-
of-speech tags (POStags). These POStags are re-
ferred to as word categories inCw and are the
terminal symbols of the SCFG inG
.

With regard to the learning of theG
, when
the grammar is in GF, several estimation algo-
rithms based on the Earley algorithm have been
proposed (Stolcke, 1995; Linares, Benedı́, and
Sánchez, 2003). In this paper, we consider two
estimation algorithms, one from structural infor-
mation, and the other defined in terms of the
Viterbi score.

The parameters of the word-category distri-
bution,Cw = Pr(wj
) are computed in terms of
the number of times that the wordw has been la-
beled with the POStag
. It is important to note
that a wordw can belong to different categories.
In addition, it may happen that a word in a test set
does not appear in the training set, and, therefore,
its probabilityPr(wj
) is not defined. We solve
this problem by adding the termPr(UNKj
) for
all categories, wherePr(UNKj
) is the probability
for unseen words of the test set.

3.2 Probability of the following word

The expressionPr(wkjw1 : : : wk�1; G
; Cw) can
be formulated as:Pr(wkjw1 : : : wk�1; G
; Cw) =Pr(w1 : : : wk : : : jG
; Cw)Pr(w1 : : : wk�1 : : : jG
; Cw) ;
wherePr(w1 : : : wk : : : jG
; Cw) represents the
probability of generating an initial substring
givenG
 andCw.

This expression is computed by means of a
simple adaptation of the Earley algorithm in or-
der to obtain the probability of generating an
initial substring (Linares, Benedı́, and Sánchez,
2003).

4 Experiments with the UPenn Treebank
corpus

The corpus used in the experiments was the
UPenn Treebank corpus (Marcus, Santorini, and
Marcinkiewicz, 1993). The size of the vocabu-
lary is greater than 49,000 words, but we only
used the 10,000 most frequent words. For the
experiments, the corpus was divided into three
sets: training (directories 00-20, 42,075 sen-
tences, 1,004,073 words), tuning (directories 21-
22, 3,371 sentences, 80,156 words) and test (di-
rectories 23-24, 3,762 sentences, 89,537 words).

4.1 Perplexity Results

4.1.1 Model estimation

The parameters of a 3-gram model were
estimated using the software tool described
in (Rosenfeld, 1995)1. Linear discounting was
used as a smoothing technique with the default
parameters. The out-of-vocabulary words were
used in the computation of the perplexity, and
back-off from context cues was excluded. The
tuning set perplexity with this model was 160.26
and the test set perplexity was 167.30.

A SCFG in GF was extracted from the train-
ing directories of the training directories of the
corpus, using the software tool developed by
Mark Johnson2(Johnson, 1998). It was trained
with the bracketed version of the Earley-based
algorithm describe above.

Finally, the parameters of the word-category
distributionCw = Pr(wj
) were computed from
the POStags and the words of the training corpus.
The unseen events of the test corpus were con-
sidered as the same wordUNK. A small probabil-
ity � was assigned if no unseen event was associ-
ated to the category. The percentage of unknown
words in the training set was 4.47% distributed
in 31 categories, and the percentage of unknown
words in the tuning set was 5.53% distributed in
23 categories.

4.1.2 Evaluation of the hybrid language
model

Once the parameters of the hybrid language
model were estimated, we applied expression (3).
The tuning set was used in order to determine the
best value of� for the hybrid model.

Table 1 shows the test set perplexity obtained
for the hybrid language model and the results

1Release 2.05 is available at http://svr-
www.eng.cam.ac.uk/� prc14/toolkit.html.

2Available at http://www.cog.brown.edu/�mj/ Soft-
ware.htm



obtained by other authors who define left-to-
right hybrid language models of the same na-
ture (Chelba and Jelinek, 2000; Roark, 2001;
Benedı́ and Sánchez, 2000). The first row (CJ00)
corresponds to the model proposed by (Chelba
and Jelinek, 2000). The second row (R01) corre-
sponds to the model proposed by (Roark, 2001).
The third row (BS00) corresponds to the model
proposed by (Benedı́ and Sánchez, 2000) with
the best results (Garcı́a, Sánchez, and Benedı́,
2003). The fourth row (HLM-0) corresponds to
our proposed hybrid language model with the ini-
tial treebank grammar. The fifth row (HLM-VS)
corresponds to our proposed hybrid language
model with the treebank grammar estimated us-
ing the Viterbi-Score algorithm. The sixth row
(HLM-Eb) corresponds to our proposed hybrid
language model with the treebank grammar es-
timated using the Earley-based bracketed algo-
rithm.

Model Perplexity � %
Trig. Interp. improv.

CJ00 167.14 148.90 0.4 10.9
R01 167.02 137.26 0.4 17.8
BS00 167.30 142.29 0.65 14.9
HLM-0 167.30 145.14 0.72 13.5
HLM-VS 167.30 140.41 0.67 16.1
HLM-Eb 167.30 142.12 0.67 15.7

Table 1: Test set perplexity using a 3-gram model
(Trig.) and the hybrid language mode (Interp.).
Column� is the weight factor used in the inter-
polated model. The last column represents the
percentage of improvement with respect to the
trigram model.

It should be noted that the differences in the
perplexity of the trigram model were due mainly
to the different smoothing techniques. Both mod-
els (HLM-VS and HLM-Eb) improved HLM-0
perplexity result. In addition it is important to
note that HLM-VS obtain better results than the
HLM-Eb. This may be due to the fact that HLM-
VS was not using bracketed information, and it
could select a derivation with a high probability,
which was not compatible with the bracketing of
the sentence. It can also be observed that the
results obtained by our models (rows HLM-VS
and HLM-Eb) are very good, especially if you
consider that both the models and their learning
methods are simple and well-consolidated. The
weights of the structural models in our proposals
were less than the other models. This may be due
to the fact that our models are not lexicalized.

4.2 Word error rate results
We reproduced the experiments described
in (Chelba and Jelinek, 2000; Roark, 2001;
Garcı́a, Sánchez, and Benedı́, 2003) in order to
compare our results with those reported in those
works. This experiment was carried out with the
DARPA ’93 HUB1 test setup. This test consists
of 213 utterances read from theWall Street
Journalwith a total of 3,446 words. The corpus
comes with a baseline trigram model using a
20,000-word open vocabulary and is trained on
approximately 40 million words.

The experiment consisted of rescoring a list ofn best hypotheses provided by the speech recog-
nizer described in (Chelba and Jelinek, 2000). A
better language model was expected to improve
the results provided by a less powerful language
model.

The hybrid language model was used in or-
der to compute the probability of each word in
a list of hypotheses. The probability obtained
with the hybrid language model was combined
with the acoustic score using the language model
weight. This weight multiplies the probability of
the language model in the same way done by oth-
ers authors. The results can be seen in Table 2 to-
gether with the results obtained for different lan-
guage models. The first row (LT) corresponds to
the lattice trigram provided with the HUB1 test.
The second row (CJ00) corresponds to the model
proposed by (Chelba and Jelinek, 2000). The
third row (R01) corresponds to the model pro-
posed by (Roark, 2001), The fourth row (BT)
corresponds to the baseline trigram. The fifth
row corresponds to the results without the lan-
guage model. The sixth row (BS00) corresponds
to the model proposed by (Benedı́ and Sánchez,
2000) with the best results (Garcı́a, Sánchez, and
Benedı́, 2003). The seventh row (HLM-VS) cor-
responds to our language model using the tree-
bank grammar estimated with the Viterbi-Score
algorithm. The eighth row (HLM-Eb) corre-
sponds to our proposed hybrid language model
using the treebank grammar estimated with the
Earley-based bracketed algorithm.

Table 2 shows that our hybrid language model
with the initial treebank grammar slightly im-
proved the results obtained by the baseline
model, in accordance with the results obtained
by other authors.

An important aspect to be noted is that, al-
though the improvement in perplexity is impor-
tant (the same order of magnitude of other au-
thors (Roark, 2001)), this improvement is not re-
flected in this error rate experiment. This may be



Training Voc. LM
Model Size Size Weight WER
LT 40M 20K 16 13.7
CJ00 20M 20K 16 13.0
R01 1M 10K 15 15.1
BT 1M 10K 5 16.6
No LM 0 16.8
BS00 1M 10K 6 16.0
HLM-VS 1M 10K 6.0 16.3
HLM-Eb 1M 10K 6.1 16.2

Table 2: Word error rate results for several mod-
els, with different training and vocabulary sizes
and the best language model weight.

due to the fact that our model is not structurally
rich enough, and it suggests that better estimation
algorithms should be explored.

5 Conclusions

We have described a new method in order to es-
timate a SCFG in GF by means of a bracketed
version of the Earley algorithm. The SCFGs es-
timated with this method have been tested on a
hybrid language and the results of their evalua-
tions have also been provided. The test set per-
plexity results were as good as the ones obtained
by other authors, especially if you consider that
the models are very simple and they are not lexi-
calized.

The word error rate results were slightly
worse than the ones obtained by other authors.
However, we point out that these results tended
to improve without including any additional lin-
guistic information.

For future work, we propose extending the ex-
perimentation by increasing the size of the train-
ing corpus in accordance with the work of other
authors.
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