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Molecular Genetics of Vestibular
Organ Development

WEISE CHANG, LAURA COLE, RAQUEL CaNTOs, and Doris K. Wu

1. Introduction

Normal development of the vertebrate inner ear depends on signals ema-
nating from multiple surrounding tissues, including the hindbrain, neural
crest, mesenchyme, and notochord (for reviews, see Fritzsch et al. 1998;
Torres and Giraldez 1998; Fekete 1999; Kiernan et al. 2002). Primarily
through the analyses of mutant mice with spontaneous mutations or tar-
geted deletions (knockouts), several genes involved in the patterning of the
inner ear have been identified. Analyses of the phenotypes resulting from
mutations within some of these genes, as well as analyses of their spatial
and temporal expression patterns, indicate that they play specific, and
sometimes multiple, roles in the patterning of the vestibular and auditory
components of the inner ear (Table 2.1). Here, we summarize our current
knowledge of the molecular mechanisms governing the development of the
inner ear and the roles played by a variety of genes, focusing on the vestibu-
lar apparatuses of the chicken and mouse.

2. Gross Development of the Vestibular Apparatus

The membranous portion of the vertebrate inner ear originates from a
thickening of the ectoderm adjacent to the hindbrain (Fig. 2.1). This
thickened epithelium, known as the otic placode, invaginates to form the
otic cup, which closes to form the otic vesicle/otocyst. A subpopulation of
epithelial cells in the anteroventral lateral region of the otic cup and otic
vesicle delaminate and coalesce to form the eighth (vestibulocochlear)
ganglion. The otic vesicle proper undergoes a series of elaborate morpho-
genetic changes to give rise to an intricate, mature inner ear.

Figure 2.2 illustrates the gross development of the mouse inner ear from
a late stage of otic vesicle formation through maturity, a period covering
the complete development of the vestibular apparatus (Morsli et al. 1998).
The vestibular component of the inner ear develops largely from the dorsal
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FIGURE 2.1. A schematic diagram summarizing the stages of inner ear development
from an otic placode to an otic vesicle. These stages span approximately 8.5-9.5 dpc
(days postcoitium) in mice, and embryonic days 1.5-2.5 (Hamburger and Hamilton
stages 9-17) in chickens. Orientations: D, dorsal; M, medial. (Adapted from Wu and
Choo 2003.)

FiGure 2.2. Lateral views of paint-filed membranous labyrinths of mice from
11.5dpc to postnatal day 1. Specimens were fixed in paraformaldehyde, dehydrated
in ethanol, and cleared in methyl salicylate. The gross anatomy of the developing
inner ears was revealed by microinjecting a 0.1% white latex paint solution in
methyl salicylate to the lumen of the membranous labyrinths. Abbreviations: aa,
anterior ampulla; asc, anterior semicircular canal; cc, common crus; co, cochlea; dpc,
days postcoitium; ed, endolymphatic duct; es, endolymphatic sac; fp, fusion plate; hp,
horizontal canal plate; la, lateral ampulla; Isc, lateral semicircular canal; pa, poste-
rior ampulla; psc, posterior semicircular canal; s, saccule; u, utricle; vp; vertical canal
plate. Orientations: D, dorsal; A, anterior. Scale bar = 30 um.
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region of the otic vesicle, and it consists of the utricle, saccule, and three
semicircular canals (anterior, lateral, and posterior) and their associated
ampullae. At one end of each semicircular canal is an enlarged structure
known as the ampulla that contains a sensory organ, the crista ampullaris.
Together, the three cristae sense angular acceleration. Two additional
sensory organs, the maculae of the utricle and saccule, are located in their
respective chambers. The macula of the utricle detects gravity, and the
macula of the saccule detects linear acceleration. The total number of
vestibular sensory organs varies among different vertebrate species. For
example, there are seven vestibular sensory organs in the chicken (three
cristae, two maculae, the lagena, and macula neglecta) and only five major
ones in the mouse. The number varies even more among anamniotes
(Wersill and Bagger-Sjobick 1974). However, the five vestibular sensory
organs in the mouse (three cristae and two maculae) are consistently found
among all species of amniotes, including humans.

The anterior and posterior semicircular canals develop from the vertical
canal plate, and the lateral semicircular canal develops from the horizontal
plate (vp, hp in Fig. 2.2). Over time, the opposing epithelia in the central
region of each presumptive canal merge to form a fusion plate (fp), which
is eventually resorbed, leaving behind a tube-shaped canal. In mice, this
process is completed by 13 days postcoitium (dpc). After the canals and
ampullae are formed, they continue to increase in size at least until birth.
During this same developmental period, the auditory component of the
inner ear, the cochlea, develops from the ventral portion of the otocyst and
assumes its characteristic coiled structure (Cantos et al. 2000). The devel-
opment of the chicken inner ear closely parallels that of the mouse except
that the cochlear duct in the chicken is a relatively straight tube rather than
a coiled structure (Bissonnette and Fekete 1996).

Although not generally considered part of the vestibular apparatus, the
endolymphatic duct is the first structure that forms on the medial side of
the otic vesicle. Fate mapping studies of the rim of the chicken otic cup using
lipophilic dye have shown that the endolymphatic duct derives from the
dorsal rim of the otic cup. Three lineage-restricted boundaries appear to
specify the position of the endolymphatic duct: anterior and posterior
boundaries at the dorsal pole of the otic cup that bisect the endolymphatic
duct into anterior and posterior halves, and a lateral boundary that defines
the lateral edge of the duct. It has been proposed that signaling across com-
partment boundaries may play a role in duct specification (Brigande et al.
2000a, 2000b). Thus, failure in the formation of these boundaries would
result in the absence or improper specification of the endolymphatic duct
and may have other deleterious effects on inner ear development. Consis-
tent with this hypothesis, malformed inner ears that lack an endolymphatic
duct are often associated with other abnormalities of the inner ear (see
below). As the endolymphatic duct and sac mature, they become essential
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for maintaining the fluid homeostasis of the endolymph that fills the mem-
branous labyrinth. Abnormal fluid homeostasis also leads to functional
deficits in vestibular and auditory systems (see below). Molecular mecha-
nisms regulating the proper development and function of the vestibular
apparatus involve signals that originate from several different tissues,
including the hindbrain, periotic mesenchyme, and otic epithelium itself. In
the following discussion, we address the roles played by each of these
tissues, beginning with the hindbrain.

3. Genes Expressed in the Hindbrain

Experimental manipulations have established a critical role of the hind-
brain in the development of the inner ear (for reviews, see Fritzsch et al.
1998; Torres and Giraldez 1998; Fekete 1999; Anagnostopoulos 2002). Based
on analyses of mutant and knockout mice, several genes expressed in the
hindbrain have been shown to be required for normal development of the
inner ear, including the vestibular system. HoxAl, HoxA2, Kreisler, and
Raldh?2 are all expressed in the developing hindbrain. Loss of function of
these gene products affects the development of the hindbrain—in particu-
lar,rhombomeres 4, 5, and 6, regions that are closest to the developing inner
ear (for a review, see Kiernan et al. 2002). Inner ears of all of these mutant
mice often fail to form endolymphatic ducts and remain cystlike, suggest-
ing that rhombomeric regions 4 to 6 of the hindbrain, in particular rhom-
bomere 5, are required for the formation of vestibular and auditory
structures.

The expression of the Fibroblast growth factor 3 (Fgf3) in rhombomeres
5 and 6 is also thought to be important for inner ear development. In both
Kreisler and HoxAl mutant mice, Fgf3 expression in the hindbrain is down-
regulated (Carpenter et al. 1993; Mark et al. 1993; McKay et al. 1996). This
down-regulation of Fgf3 expression has been proposed to contribute to the
Kreisler and HoxAl phenotypes. This hypothesis is supported by the fact
that inner ears of Fgf3 knockout mice also lack endolymphatic ducts. Fur-
thermore, morphogeneses of the mutant inner ears are often incomplete,
and the spiral ganglia are reduced in size (Mansour et al. 1993; Mansour
1994; McKay et al. 1996). It is interesting that the knockout of one of the
FGF3 receptors, Fgfr-2 (111b), that is expressed in the otic epithelium results
in severe dysmorphogenesis of the inner ear, including the absence of the
endolymphatic duct and sac (Pirvola et al. 2000). Part of the phenotype
observed in Fgfr-2 (IIIb) knockout mice might be attributable to the
inability of the otic epithelium to respond to FGF3 signals produced in the
hindbrain (Pirvola et al. 2000).

Analysis of the role of hindbrain-derived FGF3 in the development of
vestibular structures has been compounded by the observation that Fgf3 is
expressed not only in the hindbrain but also within the inner ear itself. Early
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in development, Fgf3 is expressed in the head ectoderm, including the otic
placode region. It is also expressed in the presumptive neurogenic region
of the otocyst as well as in individual sensory organs of the inner ear before
birth (Wilkinson et al. 1989; Mansour 1994; McKay et al. 1996; Pirvola et al.
2000). Whereas the endolymphatic duct phenotype is thought to be medi-
ated by hindbrain-derived FGF3, Fgf3 expression in the neurogenic region
is thought to be important for the proper formation of the spiral ganglion
that is reduced in the Fgf3 knockout mice (Mansour et al. 1993; Mansour
1994; McKay et al. 1996). Although Fgf3 is presumably expressed in the
sensory regions, no obvious sensory phenotypes were associated with the
Fgf3 knockout (Mansour et al. 1993; Mansour 1994). Because Fgfl0 is
expressed in the sensory regions as well, there could be overlapping func-
tions among Fgfs in these regions (Pirvola et al. 2000). Therefore, in the case
of genes such as Fgf3 that have a dynamic spatial and temporal expression
pattern in the hindbrain as well as in the otic epithelium, it is important to
decipher its specific function in each expression domain.

A more recently identified dominant mouse mutant, Wheels, may also
serve as a model for studying effects of the hindbrain on inner ear devel-
opment (Alavizadeh et al. 2001). Wheels homozygotes are embryonic lethal
and have an abnormal hindbrain with an extended rhombomere 4 that
could affect inner ear development. Although the hindbrain segmentation
in heterozygotes appears normal, these mice have a truncated lateral canal
and small or absent posterior canal, suggesting that the otic epithelium itself
and/or tissues other than the hindbrain are involved. Identification of the
mutated gene and determination of its normal expression pattern will help
to discern the role of this gene in inner ear patterning.

All of the hindbrain genes that have been discussed thus far most likely
function to ensure correct positioning of the developing inner ear along the
anterior/posterior axis of the body. The hindbrain could also function to
specify the dorsal/ventral axis of the inner ear. Mutations in genes such as
(Sonic Hedgehog) (Shh), Pax3, and LmxI that are known to perturb the
dorsal/ventral patterning of the neural tube also affect inner ear develop-
ment. Because these genes may be expressed in both the inner ear and hind-
brain, it is often difficult to determine the relative contributions played by
signals produced by the hindbrain or inner ear. Nonetheless, due to the
severe inner ear phenotypes observed in mice with mutant alleles of these
neural tube specifying genes, it is clear that these genes are also essential
for proper inner ear development.

Inner ears of Shh knockout mice have no discernible ventral structures,
including the utricle, saccule, and cochlea. The delamination of neuroblasts
from the anteroventral region of the otic cup or otocyst is also affected in
these mutant ears. Even though it has been postulated that SHH released
from the ventral midline patterns the inner ear (Riccomagno et al. 2002),
the presence of low levels of Shh within the otic epithelium has been
reported (Liu et al. 2002). Although the source of SHH for patterning the

e



HVS2

11/18/2003 3:02 PM Page 20 CE

20 W. Chang et al.

inner ear remains an open question, it is clear that the otic epithelium
responds directly to SHH as indicated by the presence of Patched (recep-
tor for Shh) and Glil (a downstream target of Shh) mRNA transcripts
within the epithelium (Liu et al. 2002; Riccomagno et al. 2002).

Furthermore, two additional mouse models, Splotch and Dreher, have dis-
rupted neural tubes along the dorsal/ventral axis as well as malformed inner
ears. Splotch mutants have an open neural tube and inner ear defects that
include vestibular and auditory components (Deol 1966; Epstein et al. 1991;
Goulding et al. 1991; Rinkwitz et al. 2001). Consistent with the phenotype,
Pax3, which is mutated in Splotch, is expressed in the dorsal one-third of
the neural tube. A detailed study of Pax3 expression in the inner ear has
not been reported, although Pax3 does not appear to be expressed during
early stages of inner ear development (Goulding et al. 1991).

In Dreher, the roof plate of the neural tube fails to form, and defects in
the inner ear involve both vestibular and cochlear components (Deol 1983).
In addition, the endolymphatic duct and sac are greatly distended. The gene
responsible for this mutant is Lmx/a, a LIM homeodomain transcription
factor (Manzanares et al.2000; Millonig et al. 2000). The expression of Lmx]
or Lmxla has been described in both chickens and mice, respectively
(Giraldez 1998; Failli et al. 2002). This gene is expressed in the roof plate of
the neural tube as well as the dorsal and lateral regions of the otocyst. Its
expression domain in the otic placode is altered as a result of neural tube
ablation, suggesting that the otic expression of this gene, at least in the
chicken, is regulated by hindbrain signals (Giraldez 1998).

4. Genes Expressed in the Mesenchyme

In addition to signals produced by the hindbrain, the development of the
inner ear is also influenced by mesenchyme-derived signals. In fact, the
epithelium of the otic placode/otocyst and the surrounding periotic mes-
enchyme are thought to exert reciprocal influences on each other during
normal inner ear development. Results from explant cultures show that
morphogenesis of the inner ear does not proceed when the majority of the
periotic mesenchyme is removed (Van de Water et al. 1980). Similarly, chon-
drogenesis in vitro requires growth factors that are thought to be released
by the otic epithelia such as bone morphogenetic proteins (BMP), trans-
forming growth factor-f (TGF-B), and FGF2 (Frenz et al. 1992, 1994, 1996).
Recently, ectopic expression studies in the chicken using avian retroviruses
encoding dominant-negative or a constitutive active form of bone mor-
phogenetic protein receptor IB (BMPRIB) show that BMPs are indeed
important for otic chondrogenesis in vivo. BMPs for some regions of the
otic capsule, such as areas around the canals, are thought to emanate from
the otic epithelium (Chang et al. 2002).
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Analyses of genetically altered mice indicate that three transcription
factors, PrxI, Prx2, and Brn4, regulate genes important for mesenchy-
mal-epithelial signaling. Prx/ and Prx2 are paired-related homeobox genes.
Prx1 is expressed in the periotic mesenchyme, and Prx2 is expressed in the
otic epithelium as well as the periotic mesenchyme. A knockout of Prx/
results in a reduction in the size of the otic capsule, whereas a knockout of
Prx2 has no apparent phenotype in the inner ear (ten Berge et al. 1998).
Prxl1 and Prx2 share redundant functions in other tissues. Therefore, it is
not surprising that the double knockout of both Prx/ and Prx2 results in a
more severe inner ear phenotype. In addition to the reduction in the size
of the otic capsule observed in the knockout of PrxI, in the double knock-
out, the lateral semicircular canal does not form, and there is a reduction
in the size of both the anterior and posterior canals (ten Berge et al. 1998).
These results suggest that the coexpression of Prx/ and Prx2 in the peri-
otic mesenchyme is important for mediating mesenchymal-epithelial sig-
naling in the vestibular apparatus.

Brn4 (Pou3f4), a transcription factor belonging to the POU-domain gene
family, is expressed in the periotic mesenchyme (Phippard et al. 1998).
Knockout mice of Brn4 are deaf, and vestibular phenotypes such as head
bobbing have been reported in one of the two knockout lines (Minowa et
al. 1999; Phippard et al. 1999). The primary cell type affected in the Brn4
knockout mice appears to be the fibrocytes of the spiral ligament that have
been postulated to be important in maintaining the endocochlear potential
(Minowa et al. 1999; Phippard et al. 1999). Interestingly, in one of the Brn4
knockout lines, patterning defects in the cochlea were reported (Phippard
et al. 1999). The number of cochlear turns in this mutant line is often
affected, and the anterior semicircular canal is constricted. The constriction
of the anterior semicircular canal is thought to be the cause of the vestibu-
lar deficits (Phippard et al. 1999). The reason for the phenotypic variation
observed between the two knockout lines is not clear because the gene-
targeted region and the genetic background of the mutant mice are similar.
However, sex-linked fidget (slf) mice have an inversion on the X chromo-
some that eliminates expression of Brn4 in the developing inner ear but not
the neural tube. These mice, like one of the Brn4 knockout lines, display
both cochlear and vestibular deficits (Phippard et al. 2000). These results
provide the first evidence that a gene, expressed primarily in the periotic
mesenchyme, mediates otic epithelial morphogenesis. Identifying possible
upstream signaling molecules and downstream targets for this transcrip-
tional factor, whether they are epithelium- or mesenchyme-derived, will be
important. It is interesting that, in the Shh mutants, both Brn4 and TbxI are
down-regulated in the otic mesenchyme (Riccomagno et al. 2002). The otic
capsule is reduced in Shh mutants, indicating that other molecular pathways
that mediate otic chondrogenesis are not perturbed by the loss of Shh.
However, the cochlear defects observed in Brn4 knockout mice suggest that
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Shh could mediate its effects on inner ear patterning through activating
Brn4 as well as Thx1 in the mesenchyme.

5. Genes Expressed within the Otic Epithelium

It is not surprising that genes expressed in the otic epithelium itself are
important for the development of the vestibular apparatus (Table 2.1).
Some of these genes, when knocked out, result in a rudimentary inner
ear with poorly developed vestibular as well as cochlear components. These
inner ears often lack endolymphatic ducts as well as the vestibular and
spiral ganglia. Fgfr-2 (I1Ib), GATA-3, and Eyes absent (Eyal) are good
examples of genes in this category (Xu et al. 1999; Pirvola et al. 2000;
Karis et al. 2001). All three genes are activated early in development
and are broadly expressed in the inner ear, particularly during the otic
cup and otocyst stages (Xu et al. 1997; Pirvola et al. 2000; Karis et al. 2001).
As described above, the severe phenotype of the Fgfr-2 (I1Ib) knockout
could be a result of its inability to respond to growth factor signals
produced by the hindbrain as well as by sensory regions of the otic
epithelium.

GATA-3 is a member of a zinc-finger transcription factor family that
recognizes a specific GATA consensus sequence in promoter regions.
Genes in this family are important for differentiation of multiple tissues
during embryogenesis, including the brain and hematopoietic system
(Simon 1995). In the otocyst, GATA-3 is broadly expressed within the otic
epithelium, and, as differentiation progresses, GATA-3 is expressed in all of
the vestibular sensory organs except the saccule. The vestibular ganglion is
also devoid of GATA-3 expression (Karis et al. 2001). Within the auditory
structures of the inner ear, both the cochlear duct and spiral ganglion are
positive for GATA-3. Interestingly, the repression of GATA-3 expression is
correlated spatially and temporally with hair cell differentiation, which pro-
ceeds in a gradient from the base to the apical region of the cochlea (Rivolta
and Holley 1998). GATA-3 null mutants die between 11 and 12 dpc and have
rudimentary inner ears (Karis et al. 2001). Correlating phenotypes with
expression domains will be a challenge for this gene because GATA-3 is
expressed not only in the inner ear but also in the hindbrain and periotic
mesenchyme (Nardelli et al. 1999).

Eya-1 is a homolog of the Drosophila eyes absent gene. In the Drosophila
eye imaginal disk, eya functions as a transcription coactivator that interacts
with other transcription factors but does not bind DNA directly (Chen et
al. 1997; Pignoni et al. 1997). Mutations in this gene in humans cause bran-
chiootorenal syndrome, which is associated with defects in the kidney as
well as the external, middle, and inner ear (Abdelhak et al. 1997). Expres-
sion of Eya-1 in the inner ear is extensive at the otocyst stage, and Eya-1/
null mutants have rudimentary inner ears that lack the eighth ganglion (Xu
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et al. 1999). A hypomorphic allele of Eya-1 has also been identified. In this
case, the vestibular portion of the inner ear appears intact but the cochlear
duct is truncated, suggesting that Eya-/ is particularly essential for cochlear
development (Johnson et al. 1999).

Because knockouts of genes such as Fgfr-2 (I11b), GATA-3, and Eya-1
have such deleterious effects on inner ear development in general, it is often
difficult to discern their specific effects on individual inner ear components.
On the other hand, knockouts of transcription factor genes such as Otx/,
Hmx2 and Hmx3 (Nkx5.2 and Nkx5.1), and DIx5 affect the development
of specific components of the inner ear (Hadrys et al. 1998; Wang et al. 1998;
Acampora et al. 1999b; Depew et al. 1999). More detailed descriptions of
the functions of these and other genes in the development of individual
vestibular components are given below.

5.1. Development of the Sensory Organs

The origin and the lineage relationships among the vestibular sensory
organs within the inner ear are not known. However, early in inner ear
development, prior to any discernible histological differentiation, the pre-
sumptive cristae of the semicircular canals can be molecularly distinguished
from the presumptive maculae of the utricle and saccule. Based on the dif-
ferent morphologies of the cristae and maculae at maturity, it is not sur-
prising that multiple genes are differentially expressed in these sensory
organs during the course of their development. Therefore, it is important to
identify those essential for the specification and differentiation of each type
of sensory organ.

Thus far, genes that are expressed in the sensory tissues can be divided
into two groups: those that do and do not act in the Notch-signaling
pathway (Fig. 2.3). The Notch signaling pathway is used in a variety of
tissues to generate cell type diversity during development (for reviews, see
Artavanis-Tsakonas and Simpson 1991; Artavanis-Tsakonas et al. 1999).
Originally delineated by studies of neurogenesis in invertebrate systems,
the Notch signaling pathway relies on local cell interactions to control the
differential specification of otherwise equivalent cells. For example, in the
case of invertebrate neurogenesis, Notch signaling mediates the decision of
whether ectodermal cells become neuroblasts or epidermal cells. Several
molecules acting in the Notch pathway have been identified and include the
Notch receptors and several membrane-associated Notch ligands such as
Delta and Serrate. During fruit fly (Drosophila) central nervous system
development, clusters of neural precursor cells develop within the ectoder-
mal epithelium via the expression of proneural genes, encoded by the
achaete-scute complex. Then, one cell from each cluster will become com-
mitted to the neural fate, and others will cease to express achaete-scute
genes and switch to the epidermal fate. This process is mediated by the
Notch pathway. Notch ligands displayed on the committed neural cell acti-
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Ficure 2.3. A schematic diagram outlining genes expressed in different stages of
the crista and macula development. For simplification, sensory organ development
is divided into three stages corresponding to 9.5-11, 12-14, and 15-18dpc in mice.
Readers should refer to cited references for specific timing of individual gene
activation. (+) represents initiation of gene expression in the indicated prospective
sensory organ before others. (#) represents expression only in the lateral crista and
not the anterior or posterior cristae. (*) represents expression data from chickens.
Hesl is expressed in supporting cells of the rat utricle at 17.5dpc, and it is not clear
whether it is expressed in other vestibular sensory tissues as well. In mice, Bmp4 is
only expressed in supporting cells of cristae and not in maculae.

vate Notch receptors in its neighboring cells and thus activate an alternate
developmental pathway, an epidermal fate in this case.

The development of the sensory patches in the vertebrate inner ear has
been compared with that of the mechanoreceptor organs in fruit flies
(Drosophila) (Adam et al. 1998; Eddison et al. 2000; Fritzsch et al. 2000;
Caldwell and Eberl 2002). Based on expression studies of Notch signaling
molecules, it has been proposed that the expression of Notch ligands, Delta
and Jagged/Serrate, on the surface of presumptive sensory hair cells acti-
vated Notch receptors present on neighboring cells (Adam et al. 1998;
Lewis et al. 1998). This activation of Notch receptors in the neighboring
cells induced them to develop into supporting cells. Consistent with this
model, mutation of genes in the Notch signaling pathway usually results in
changes in the number of hair cells and presumably supporting cells in the
sensory organs. For example, knockout of a Notch ligand, Jagged?2, results
in an increase in the number of inner and outer hair cells in the cochlea
(Lanford et al. 1999). In the zebrafish (Brachydanio rerio) mind bomb
mutant, in which the Delta—Notch signaling pathway is thought to be
affected, the inner ear contains only hair cells and no supporting cells
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(Haddon et al. 1998). In addition, treatment of rat cochlear cultures with
antisense oligonucleotides of Jaggedl and Notchl result in supernumerary
hair cells (Zine et al. 2000).

5.1.1. Development of the Crista Ampullaris
5.1.1.1 Notch Signaling Pathway

In the mouse, both Notchl and Serratel/Jaggedl are expressed in all pre-
sumptive sensory organs of the inner ear. During later stages of develop-
ment, the expression domains of both of these genes are restricted to
nonsensory cells within each sensory patch (Lewis et al. 1998; Morrison et
al. 1999; Shailam et al. 1999). Recent data suggest that the function of the
Notch signaling pathway is not restricted to hair cell/supporting cell deter-
mination in the inner ear but is also required for the patterning of the
ampulla and canal. Two mouse mutants, Headturner and Slalom, with mis-
sense mutations in the Notch ligand, Jaggedl, have recently been charac-
terized. Homozygotes of both mutants die at early embryonic stages due to
vasculature defects, and heterozygotes have an aberrant number of hair
cells in the cochlea (Kiernan et al. 2001; Tsai et al. 2001). Interestingly, Head-
turner and Slalom are missing one or both of the anterior and posterior
ampullae. The ampulla phenotype is accompanied by truncation of its cor-
responding canal. Despite the phenotype in the anterior and posterior
canals, the lateral canal and ampulla appear to be intact in these mutants.
It is not clear why the anterior and posterior ampullae are preferentially
affected because Jaggedl is expressed in all prospective sensory organs
(Morrison et al. 1999). Coincidentally, in the chicken, Jaggedl/Serratel is
expressed in the presumptive anterior and posterior cristae earlier than in
other sensory organs (Myat et al. 1996; Cole et al. 2000). Therefore, if the
expression pattern of Jagged! in mice is similar to that of the chicken, the
patterning phenotype observed in Slalom and Headturner might be due
to the requirement of Jagged! function prior to hair cell/supporting cell
determination.

Some genes in the Notch signaling pathway, such as Jagged2 and Hes),
however, are activated slightly later during sensory organ development and
are correlated with the period of hair cell and supporting cell commitment
(Fig. 2.3). Jagged? is expressed in presumptive hair cells of each sensory
patch (Lanford et al. 1999; Shailam et al. 1999). Hes5, a basic-helix-loop-
helix (bHLH) transcription factor, is a homolog of the Drosophila hairy and
enhancer-of-split. 1t is one of the downstream genes activated by Notch.
Hes)5 is preferentially expressed in the presumptive cristae at 12.5dpc and
is later expressed in supporting cells of the cristae and striolar region of the
utricle (Shailam et al. 1999; Zheng et al. 2000). In other systems, members
of the bHLH family of transcription factors have been shown to be both
upstream mediators and downstream targets of the Notch signaling
pathway (for a review, see Anderson and Jan 1997). In addition to
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Hes5, other examples of downstream targets of the Notch signaling pathway
that are expressed in the inner ear include Hesl, Hes6, Heyl, and Hey2
(Leimeister et al. 1999; Pissarra et al. 2000; Zheng et al. 2000). Detailed
expression studies and the consequences of loss of some of these encoded
proteins during inner ear development have not been reported. However,
Mathl,a bHLH transcription factor, might be an upstream mediator of the
Notch pathway in the inner ear. Mathl is a homolog of the fruit fly
(Drosophila) proneural gene atonal, which is important for the formation
of chordotonal organs (mechanoreceptor organ) in flies. In mice, Mathl
—/— inner ears have no sensory hair cells even though the gross anatomy of
the sensory organs appears normal (Bermingham et al. 1999). In addition,
ectopic expression of Mathl in rat cochlear cultures resulted in an ectopic
appearance of sensory hair cells in nonsensory regions (Zheng and Gao
2000). The onset of Mathl expression in individual sensory organs appears
to precede that of Jagged2, consistent with its postulated role as a proneural
gene (Shailam et al. 1999; Liu et al. 2000). However, more recent studies
suggest that Mathl functions in hair cell determination rather than specifi-
cation of the sensory primordium (Chen et al. 2002). The important role of
Mathl in sensory development will undoubtedly be revealed with further
experiments.

NeuroD belongs to a subfamily of bHLH proteins that are widely
expressed in the nervous system of vertebrates and are potent neuronal dif-
ferentiation factors (Lee et al. 1995). NeuroD is expressed in the presump-
tive cristae, but the cristae of NeuroD knockout mice appeared normal,
even though the number of sensory hair cells in the cochlea is aberrant
(Liu et al. 2000; Kim et al. 2001). In addition, NeuroD is important for the
development of the eighth ganglion (see below).

5.1.1.2. Non-Notch Pathway

Examples of genes that are expressed in the presumptive cristae but are
not components of the Notch-signaling pathway include Bmp4 and Msx!
(Fig. 2.3). Bmp4 belongs to the TGF-3 gene family and plays an important
role in the development of multiple tissues (for a review, see Hogan 1996).
In the mouse inner ear, Bmp4 is expressed at the rim of the invaginating
otic cup (Morsli et al. 1998). After the otic cup closes to form the otic vesicle,
Bmp4 expression is restricted to two domains, an anterior streak and a pos-
terior focus (as, pf in Fig. 2.4A,B; Morsli et al. 1998). The posterior focus
corresponds to the position of the future posterior crista. The posterior
expression domain later splits to form the dorsal posterior crista and a
ventral streak that corresponds to Hensen’s and Claudius’ regions of the
cochlea in mice (pc and Ico in Fig. 2.5A). The anterior streak also splits to
form the anterior and lateral cristae at a later time of development (Figs.
2.4A,2.5A;Morsli et al. 1998). The early expression of Bmp4 in the otic cup
and otocyst stages is conserved in the chicken, frog, and zebrafish, but the
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Ficurke 2.4. A three-dimensional reconstruction of Bmp4 and L-fng expressions in
the mouse inner ear at 10.5dpc. The lateral (A) and medial (B) views of the right
inner ear are shown. The emerging endolymphatic duct on the medial side at this
stage is not drawn. Bmp4 positive regions are displayed in light gray and the L-fng
positive area in dark gray. Alternate 12 um serial sections were probed for Bmp4 or
L-fng mRNA and reconstructed using ROSS software (Biocomputation Center,
Ames Research Center, NASA). Data for the reconstruction were obtained from
Morsli et al. (1998). The anterior streak (as) of the Bmp4 hybridization signal later
splits to form the anterior and lateral cristae (see Fig. 2.5A). The posterior focus
(pf) encompasses the presumptive posterior crista. L-fng is broadly expressed at this
stage with an expression domain that spans from the anterolateral region to the
ventromedial region of the otocyst. L-fing and Bmp4 expression domains are largely
nonoverlapping. Orientation: D, dorsal; A, anterior; P, posterior. Scale bar = 30 um.

role of Bmp4 in formation of the crista or other parts of the inner ear is not
clear because Bmp4 null mice die before sufficient inner ear development
(Hemmati-Brivanlou and Thomsen 1995; Mowbray et al. 2001; Wu and Oh
1996). However, some Bmp4 heterozygotes have a malformed lateral canal,
indicating that BMP4 is essential for proper inner ear development (Teng
et al. 2000). Because the receptors for Bmp4 are ubiquitously expressed in
the otic epithelium and adjacent mesenchyme, Bmp4 could function both
autonomously within the presumptive cristae and through effects on the
adjacent nonsensory otic epithelium and periotic mesenchyme (Dewulf
et al. 1995).

In the chicken, the early expression of Brain-derived nerve growth factor
(Bdnf) has an expression pattern similar to that of Bmp4 (Hallbook et al.
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R L-fng
== Bmp4/L-fng

FIGURe 2.5. A three-dimensional reconstruction of Bmp4 and L-fng expression
domains in the mouse inner ear at 12 (A) and 13 (B) dpc. Bmp4-positive areas are
in light gray, and L-fng-positive areas are spotted. The arrow in A is pointing to
black stripes that represent a region of Bmp4 and L-fng coexpression in the distal
tip of the growing cochlea. The insert in A is a 12dpc paint-filled inner ear shown
in a view similar to the reconstructed image. By 13dpc (B), the cristae are positive
for both Bmp4 and L-fng, highlighted in light and dark gray stripes. Data analysis
and three-dimensional reconstructions were carried out as described in the legend
to Figure 2.4. Abbreviations: ac, anterior crista; asc, anterior semicircular canal; cc,
common crus; cst, cochlear sensory region; ed, endolymphatic duct; Ic, lateral crista;
Ico, lateral cochlear hybridization signal; Isc, lateral semicircular canal; mco, medial
cochlear hybridization signal; ms, macula sacculi; mu, macula utriculi; pc, posterior
crista; psc, posterior semicircular canal. Orientation: A, anterior; D, dorsal; L, lateral.
Scale bar = 100 um. (Adapted from Morsli et al. 1998.)

1993). In mice, the early Bdnf expression pattern is also thought to overlap
with that of Bmp4 (Fritzsch et al. 1999). BDNF is required for proper inner-
vation of the cristae by the vestibular ganglion (Fritzsch et al. 1999). Later
in development, Bdnf is also expressed in the maculae.

MsxI and Msx2 are orthologs of the Drosophila msh (muscle segment
homeobox) gene and are important for mediating epithelial-mesenchymal
interactions in several tissues during embryogenesis (Satokata and Maas
1994; Chen et al. 1996). The role of Msx! in crista formation is not clear,
but it is expressed in the presumptive cristae and not the maculae (Dewulf
et al. 1995; Wu and Oh 1996; Alavizadeh et al. 2001). Msx/ knockout mice
have no apparent phenotype in the inner ear (Satokata and Maas 1994).
However, MsxI may share redundant functions with Msx2. Inner ear analy-
ses of mice with double knockouts of Msx/ and Msx2 have not been
reported.

Fgf10 is expressed in the vestibulocochlear ganglion as well as each of
the prospective sensory organs (Pirvola et al. 2000). Knockout of Fgfl0
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results in absence of all three semicircular canals and the posterior crista.
The anterior crista is malformed and misaligned relative to the utricle
(Pauley et al. 2003).

5.1.1.3. Genes Expressed in Specific Cristae

The anterior and posterior cristae are anatomically indistinguishable from
each other except for their positions within the inner ear, whereas the
lateral crista is different in appearance and resembles half of an anterior or
posterior crista (Landolt et al. 1975). Furthermore, the lateral canal and
ampulla are the last among the three canals and ampullae to have arisen
during vertebrate evolution and are absent in Agnatha (jawless vertebrates;
for a review, see Wersill and Bagger-Sjoback 1974). So far, no genes have
been demonstrated to be exclusively expressed in either anterior or poste-
rior cristae even though some genetic mutations differentially affect the two
cristae (see below).

On the other hand, OtxI is expressed in the presumptive lateral crista
and canal but not in the anterior or posterior cristae or their canals (Morsli
et al. 1999). Otxl and Otx2 are both vertebrate orthologs of Drosophila
orthodenticle, which is important for sense organ and head development
(Acampora et al. 1995; Hirth et al. 1995; Royet and Finkelstein 1995;
Acampora et al. 1996; Ang et al. 1996). In OtxI knockout mice, the lateral
crista and canal fail to develop (Acampora et al. 1996; Morsli et al.
1999). However, Bmp4 expression in the Otx] mutant inner ears is normal
at the early otic vesicle stage, suggesting that the specification of the lateral
crista may be normal initially and that OtxI may be important for the sub-
sequent differentiation of the sensory organ (Morsli et al. 1999). More
recently, an ectopic sensory patch located on the medial side of the mutant
inner ear by the endolymphatic duct was reported in Otx] mutant inner
ears (Fritzsch et al. 2001). It is not clear whether this sensory patch is a
mispositioned lateral crista or the result of an aberrant segregation of
sensory patches. Nevertheless, the function of Otx/ in lateral canal and
ampulla formation is indispensable and not compensated by replacing a
human Otx2 cDNA in the disrupted OtxI locus despite the sequence
homology between the two genes and the ability of human O#x2 to rescue
the brain phenotype observed in Otx] mutant mice (Acampora et al. 1999a;
Morsli et al. 1999).

5.1.2. Development of the Maculae
5.1.2.1. Notch Signaling Pathway

The positions of the two presumptive maculae are marked by the expres-
sion of Lunatic fringe (L-fng). L-fng is an ortholog of the Drosophila fringe
gene that acts in the Notch signaling pathway to establish boundaries during
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the development of both flies and vertebrates (Laufer et al. 1997; Panin et
al. 1997; Evrard et al. 1998; Papayannopoulos et al. 1998; Zhang and Gridley
1998). Recent data show that Fringe mediates its effect by forming com-
plexes with Notch receptors and modulating their ligand preferences (Hicks
et al. 2000; Ju et al. 2000). In the inner ear, L-fng is expressed in an antero-
lateral domain of the otic cup that later expands medially (Morsli et al. 1998;
Fig. 2.4A.B). The L-fng positive domain encompasses three presumptive
sensory organs: the maculae of the utricle and saccule and the sensory tissue
of the cochlea. In addition, based on its location, the lateral region of the
L-fng positive area most likely encompasses the cells that are delaminating
at this stage to form the eighth cranial ganglion even though L-fng tran-
scripts were not detected in the migrating neuroblasts (Morsli et al. 1998).
Note that the L-fng expression domain is ventral to and largely nonover-
lapping with the Bmp4 positive region. By 12dpc, the L-fng expression
domain splits into a dorsal and a ventral region. The dorsal region is des-
tined to become the macula of the utricle (mu, Fig.2.5A). The ventral region
(mco in Fig. 2.5A) encompasses the future macula of the saccule and the
cochlear sensory region, which are distinguishable from each other by 13
dpc (ms and csr, Fig. 2.5B). By 13dpc, the three cristae also coexpress Bmp4
and L-fng (dark and light gray stripes, Fig. 2.5B). Given the role of L-fng
in the Notch signaling pathway and its role in boundary formation in other
tissues, it was suggested that this gene might play a role in hair cell and sup-
porting cell determination as well as in the positioning of sensory organs
within the inner ear (Morsli et al. 1998). So far, there is no obvious gross
anatomical defect in L-fng knockout mice, suggesting that L-fng is not
essential for positioning of sensory organs (Zhang et al. 2000; Johnson and
Wau, unpublished results). However, lack of L-fng suppresses the increase
in the number of inner hair cells in Jagged2 knockout mice but has no effect
on the increase in the number of outer hair cells (Zhang et al. 2000). These
results, although not straightforward to interpret, suggest that L-fng plays
a role in modulating the ligand preference for Notch similar to its role in
other systems.

Mathl and NeuroD are also expressed in the presumptive maculae, and
loss of Mathl results in the absence of macular sensory hair cells, similar to
the phenotype observed in the cristae (see above). In addition, ectopic
expression of Mathl in rat utricule cultures induces the conversion of sup-
porting cells into hair cells (Zheng and Gao 2000). Two downstream targets
of Notch are expressed in supporting cells of the macula of the utricle, Hes1
and Hes5 (Zheng et al. 2000). Knockout of Hesl leads to the formation
of supernumerary hair cells in the utricle. It is not clear whether Hes/ is
expressed in the cristae as well (Zheng et al. 2000). Neurogeninl (Ngn),
another bHLH transcription factor, when knocked out affects the devel-
opment of the utricle, saccule, cochlea, and formation of the eighth ganglion
(Ma et al. 2000, see below). However, the expression of this gene in prospec-
tive sensory organs has not been reported.
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5.1.2.2. Non-Notch Pathway

Comparing published results, the L-fng positive domain at the otocyst stage
appears to be also positive for Neurotrophin3 (NT-3), and later on N7-3 is
expressed in the presumptive maculae and cochlea (Fritzsch et al. 1999). In
addition to NT-3, Bdnf is also expressed in the presumptive maculae. Both
NT-3 and BDNF are required for the survival of sensory ganglia neurons
that innervate the two maculae. Given the anatomical differences between
the maculae and cristae, it is surprising that, besides N7-3, no other genes
have been reported to be differentially expressed in the maculae and not
the cristae. Even otoconin-95, a major component of the otoconia, is not
restricted to the utricle and saccule but rather broadly expressed in the non-
sensory regions of the inner ear (Verpy et al. 1999). However, several genes,
although not exclusively expressed in the utricle or saccule, such as Otx/,
Otx2, Hmx2 and Hmx3, and Ngnl, when knocked out resulted in an incom-
plete separation of the utricle and saccule that often affected the develop-
ment of the two maculae (Wang et al. 1998; Cantos et al. 2000; Ma et al.
2000). Furthermore, even though Otx2 null mutants die too early, before
sufficient inner ear development, analysis of mutant mice with OtxI cDNA
inserted into the disrupted Otx2 locus suggests that the role of Ox2 in the
development of the saccule and cochlea is not compensated by Otxl
(Cantos et al. 2000).

5.1.3. Summary

For simplification, the discussion in the section above was organized into
genes that do and do not act in the Notch signaling pathway. However, it is
important to note that there may be substantial interplay among the path-
ways. For example, genes in the Non-Notch category could interact with
proneural genes upstream of Notch as well as interact with genes within the
Notch signaling pathway. Although such interactions have not been demon-
strated during sensory organ formation in the inner ear, in the fruit fly
(Drosophila), a wingless signaling pathway component, Dishevelled, has
been shown to bind the carboxy-terminal of the Notch receptor and block
Notch signaling (Axelrod et al. 1996).

Multiple lines of research indicate that the Notch signaling pathway in
inner ear development is more complicated than the simple paradigm
presented at the beginning of this section. Although Notch appears to be
ubiquitously expressed in the developing inner ear, the ligands for Notch
are not. For example, in the chicken otic cup, Jaggedl expression is con-
centrated in the medial-posterior region, whereas Deltal is expressed in the
anterior, neurogenic region, suggesting that these ligands have different
functions (Myat et al. 1996; Adam et al. 1998). However, in later stages of
inner ear development, Notch ligands and their modulator, L-fng, tend to
be coexpressed in the prosensory domains. The temporal sequence of how
different Notch ligands interact to achieve cell type diversity is not clear.
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Experiments designed to block the Notch signaling pathway in the devel-
oping chicken inner ears show that Jaggedl expression was down-regulated
in the sensory regions rather than up-regulated as the conventional model
might have predicted (Haddon et al. 1998; Eddison et al. 2000). This result
suggests that not all Notch ligands respond in a similar manner to changes
in Notch signaling. The complex phenotypes observed in Headturner,
Slalom, and Jagged2 and L-fng double knockouts also lend support to the
complexity of the Notch signaling pathway in inner ear development. Fur-
thermore, there are other existing vertebrate, Notch ligands and receptors
whose expression patterns and possible functions in the inner ear have not
been explored.

Besides the sensory patches, both Jaggedl and Deltal have restricted
patterns of expression in a subpopulation of cells within the endolymphatic
sac (Morrison et al. 1999). Thus, most likely, the Notch signaling pathway
also plays a role in cell type determination in the endolymphatic sac.

5.2. Development of the Eighth Cranial Ganglion

No vestibular sensory organs can function properly without appropriate
innervations from the sensory ganglion. Based on analyses of knockout
mice, the development of the eighth ganglion (vestibulocochlear ganglion)
can also be divided into several phases (for a review, see Fritzsch et al. 1999).
First, cells in the anteroventral lateral region of the otic cup or otocyst
delaminate from the otic epithelium. Then, these neuroblasts migrate away
and undergo further proliferation before coalescing to form a ganglion that
later divides to form the vestibular and spiral ganglia (Carney and Couve
1989). The Notch signaling pathway is important for the neuroblast deter-
mination, as indicated by the expression of Deltal, Jaggedl, and L-fng in
the neurogenic domain of the otic cup and otocyst (Adam et al. 1998; Lewis
et al. 1998; Morsli et al. 1998). In addition, the number of vestibulocochlear
neurons is increased in the zebrafish (B.rerio) mind bomb mutant in which
the Notch signaling pathway is postulated to be affected (Haddon et al.
1998). Based on gene expression patterns, the neurogenic region appears to
overlap with some prospective sensory domains; however, whether neuro-
blasts share a common lineage with hair cells and supporting cells within
these domains remains to be determined (for a review, see Fekete and Wu
2002).

Two HLH transcription factors, Ngnl and NeuroD, have been shown to
be important for the early phases of ganglion development (Liu et al. 2000;
Ma et al. 2000; Kim et al. 2001). NeuroD knockout mice show defects in
neuroblast delamination from the otic epithelium and subsequent neuronal
differentiation (Liu et al. 2000). As a result, sensory organs are poorly inner-
vated in NeuroD mutants. In Ngnl knockout mice, inner ear sensory
neurons are completely absent (Ma et al. 2000). Presumably, Ngnl is acting
upstream of NeuroD and functions in a pathway similar to NeuroD in the
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development of sensory neurons (Ma et al. 1998). Gene expression analy-
ses of Shh knockout mice as well as a transgenic line that ectopically
expresses Shh in the otic vesicle (ShhP1) suggest that Shh may act upstream
of Ngnl (Riccomagno et al.2002). In SiAh knockout mice, Ngnl and NeuroD
are down-regulated and the cochleovestibular ganglia are greatly reduced
in size. In contrast, both Ngnl and NeuroD are up-regulated in ShAPI mice,
which have enlarged ganglia.

Brn3.a/Brn3.0, a POU-domain transcription factor, is expressed in the
neuroblasts shortly after they delaminate from the otic epithelium. Loss of
Brn3.a affects the differentiation of the sensory neurons, expression of
downstream genes such as 7rkB and 7rkC, normal projections, and target
innervations (Huang et al. 2001). The expressions of the neurotrophin
receptors TrkA, TrkB, and TrkC in the differentiating neurons mark a later
phase of ganglionic development. The survival of these neurons becomes
dependent on neurotrophins such as BDNF and NT-3 synthesized in the
differentiating sensory tissues (Fritzsch et al. 1999). Knockout of Bdnf or
its high-affinity receptor, TrkB, results in no innervation of the three cristae
and poor innervation of the two maculae (Fritzsch et al. 1995; Schimmang
et al. 1995; Bianchi et al. 1996). Despite the fact that N7-3 is expressed in
the maculae, knockout of N7-3 or its receptor, TrkC, results in only a limited
loss of saccular and utricular innervations (Fritzsch et al. 1995; Fritzsch et
al. 1997). In contrast to the ganglion cell dependency on sensory tissues for
neuronal survival, the development, differentiation, and survival of sensory
hair cells appear independent of afferent and efferent innervations
(Fritzsch et al. 1997; Silos-Santiago et al. 1997; Liu et al. 2000; Kim et al.
2001).

5.3. Development of the Semicircular Canals

Semicircular canal development can be divided into four phases: outgrowth
and patterning of the epithelial outpocket, fusion plate formation, resorp-
tion, and continued growth of the canal after its formation. The patterning
process is most evident by examining the formation of the prospective pos-
terior canal in a series of frontal views of paint-filled chicken inner ears
(Fig. 2.6). In chickens, as in mice, the anterior and posterior canals arise
from the same vertical outpouch initially, and between embryonic day 4.5
(E4.5) and 5.5, the presumptive posterior canal forms at approximately a
right angle to the presumptive anterior canal, possibly via differential
growth (Fig.2.6). By ES.5, the alignment of the anterior and posterior canals
is established, but the resorption process for the posterior canal is just
beginning and is quite evident by E6. In the chicken, programmed cell death
seems to be the main mechanism for the resorption process (Fekete et al.
1997). Ectopic expression of Bcl2 that inhibits normal programmed cell
death in the chicken resulted in the blockage of canal fusion (Fekete et al.
1997). However, in mice, retraction of cells to the inner margin of the future
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FIGURE 2.6. A series of frontal views of right membranous labyrinths of the chicken
from E4.5 to E6. Various steps in the process of posterior canal formation, includ-
ing outgrowth of the epithelial outpocket (E4.5 to ES5), fusion plate formation
(E5.5), and resorption (ES.5 to E6), are shown. Arrows point to the developing pos-
terior canal. Abbreviations: ed, endolymphatic duct; cd, cochlear duct. Orientations:
D, dorsal; M, medial. Scale bar = 30 um.

canal has been proposed to be the main mechanism for the elimination of
cells from the center of the canal pouch. Surrounding periotic mesenchyme
has also been proposed to be a driving force in the formation of the fusion
plate (Salminen et al. 2000; see below).

Thus far, previously identified genes expressed during semicircular canal
formation can be roughly divided into two groups: those expressed in the
early canal outpocket stage and those expressed slightly later in develop-
ment (Fig. 2.7). The first group of genes are transcription factors, such as
Hmx2, Hmx3, and DIx5, that are activated early at the otic placode stage
or shortly after placode formation. These genes are expressed in the epithe-
lium of the canal outpockets and later primarily in the semicircular canals
and ampullae. Knockouts of these genes affect the normal development of
ampullae and canals (Hadrys et al. 1998; Wang et al. 1998; Acampora et al.
1999b; Depew et al. 1999). Hmx2 and Hmx3 are members of a homeobox-
containing family of transcription factors that are distinct from Hox and
other homeobox-containing genes. Similar to Hox genes, Hmx are evolu-
tionarily conserved from fruit flies (Drosophila) to humans. There are three
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FiGure 2.7. A schematic diagram summarizing genes expressed during develop-
ment of the semicircular canals. The lower panel is a cross-sectional view of the
upper panel. An enlarged cross-sectional view of a canal is shown on the lower right.
Genes such as DIx5 and Hmx3 are expressed in the canal outpocket, whereas Netrin
1 and Nor-1 are expressed in the central region of the outpocket that is destined to
form the fusion plate. Once the canals are formed, Netrin 1 and Nor-1 are expressed
in the inner margin of the canals, and other genes such as Hmx3 are broadly
expressed in the canal epithelia. Asterisks represent gene expression patterns
reported in the chicken. Refer to the legend of Figure 2.2 for abbreviations and
orientations.

members in the mammalian genome: Hmx1, Hmx2,and Hmx3. Both Hmx2
and Hmx3 are expressed in the developing mouse inner ear, with Hmx3
having a slightly earlier onset of expression than Hmux2 starting at the
otic placode stage (Rinkwitz-Brandt et al. 1995, 1996; Wang et al. 2001).
Targeted deletions of Hmx3 have been reported by two independent
laboratories. Bober’s group reported a reduction in the size of the anterior
canal, missing posterior and lateral canals, and the absence of a lateral
crista in their Nkx5.1/Hmx3 knockout mice (Hadrys et al. 1998). Lufkin’s
group observed a much milder canal phenotype in their Hmx3 mutants:
only the lateral crista and ampulla were missing. In addition, the two
maculae were fused (Wang et al. 1998). However, they reported a much
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more severe inner ear phenotype for the Hmx2 knockout: loss of all three
canals and their associated cristae, as well as a fused utriculosaccular
chamber (Wang et al. 2001). In fact, the phenotypes of the Hmx2 knockout
closely resembled the phenotypes observed in the Hmx3 knockout mice
generated in the Bober laboratory. A negative effect of the inserted Hmx3-
Pkneo allele on the closely linked Hmx2 gene in Bober’s Hmx3 knockout
line was put forth as a plausible explanation for these paradoxical results
(Wang et al. 2001). Nevertheless, these combined results suggest that
Hmx2 and Hmx3 both have unique and overlapping functions in vestibu-
lar development.

DIx5 belongs to a family of homeobox-containing genes that is related to
the Distal-less (DIl) gene of the fruit fly (Drosophila). In Drosophila, DIl is
required for correct development of the distal portion of the legs, anten-
nae, and mouth parts (Cohen et al. 1989; O’Hara et al. 1993). In mice, there
are at least six Dlx genes, four of which are expressed in the developing
inner ear (Robinson and Mahon 1994; Simeone et al. 1994; Acampora et al.
1999b; Depew et al. 1999). So far, only a knockout of Dix5 has been reported
to result in malformations of the inner ear, including a smaller lateral canal
and missing anterior and posterior canals (Acampora et al. 1999b; Depew
et al. 1999). The three cristae are malformed, and the two maculae are also
reduced in size (Merlo et al. 2002).

In addition to transcription factors, Fidgetin, a chaperone protein that is
a member of the AAA (ATPase associated with different cellular activi-
ties) family of proteins, was also identified to be important for proper canal
formation. AAA proteins are a group of ATPases that share common
sequence features in addition to an ATP-binding motif. These proteins
participate in a variety of cellular functions such as cell-cycle regulation,
proteolysis, and membrane fusion (Patel and Latterich 1998). Using a
positional cloning approach, Fidgetin was identified as the gene causing the
inner ear and retinal phenotypes in the spontaneous mouse mutant fidget
(Cox et al. 2000). In the inner ear, Fidgetin is expressed in the canal out-
pocket and the cochlear duct (Cox et al. 2000). Fidget mice are missing the
lateral canal and crista and have malformed anterior and posterior canals
(Truslove 1956). The function of Fidgetin in mediating canal development
remains unclear. It has a unique N-terminal domain compared with other
members of its family and, unlike other members of the family, is not
predicted to have ATPase activity.

The expression of a second group of genes is initiated slightly later dur-
ing canal formation. These genes include Netrin I and Nor-1, which are
expressed in the central region of the canal outpocket that is destined to
form the fusion plate (Fig.2.7). Netrin 1 is a laminin-like, secreted molecule
that functions as an axonal guidance molecule in the brain (Livesey 1999).
In the inner ear, Netrin 1 knockout mice fail to form a fusion plate and, as
aresult, no resorption takes place in the prospective canals. It was proposed
that the lack of proliferation in the surrounding mesenchyme fails to drive
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the opposing otic epithelia of the outpocket to come together to form the
fusion plate (Salminen et al. 2000).

Nor-1 is a member of the nuclear receptor family of transcription factors.
Members of this subclass of nuclear receptors are thought to function as
constitutively active transcription factors (Maruyama et al. 1998). A ligand
for Nor-1, if one exists, has not been identified. Although the expression
patterns of Netrin I and Nor-1 in the inner ear are similar (highest in the
fusion plate region), loss of Nor-1 function does not affect canal resorption.
In Nor-1 knockout mice, the canals and ampullae are smaller than in wild-
type mice (Ponnio et al. 2002). Cell proliferation is initially widespread in
the prospective canal region, but after canal formation it becomes restricted
to two regions of the canal (Fig. 2.7; Chang et al. 1999; Ponnio et al. 2002).
The loss of Nor-1 affected the proliferation and continual growth of all
three canals and ampullae. Molecularly, it is not clear how Nor-1 regulates
cell proliferation in canals because Nor-1 does not appear to be expressed
in the proliferative zones.

Furthermore, in contrast to the expression of Netrin I and Nor-1 in the
inner margin of the canals, several genes are asymmetrically distributed in
the outer margins, such as SOHo-1 (sensory organ homeobox), MsxI, and
Bmp4 (Kiernan et al. 1997; Chang et al. 1999). Together, these results indi-
cate that the semicircular canals are molecularly more complex than their
simple tube-shaped structures imply.

In addition to the two groups of genes mentioned above, OtxI and
Shh are specifically important for the development of the lateral canal. In
addition, Gli3, a negative regulator of Shh functions, also plays a role in
canal development. In mouse mutant Extratoes, in which the Gli3 gene is
mutated, the lateral canal is missing and the anterior canal is truncated
(Johnson 1967). Detailed expression of G/i3 in the inner ear has not been
reported, but its expression in the periotic mesenchyme has been demon-
strated (Hui et al. 1994). Therefore, G/i3 is another candidate gene that
may influence canal development via a mesenchymal-epithelial signaling
mechanism.

The anterior and posterior semicircular canals are connected to the
common crus at one end. It is not clear whether the formation of the
common crus is governed by common crus-specific molecules or is the con-
sequence of resorption in the surrounding tissues. So far, there is no report
of any gene that is specifically expressed in the common crus and not in the
canals. However, two lines of evidence suggest that the common crus devel-
opment is regulated differently from that of the canals. First, there has been
a report of a patient with Goldenhar syndrome who has no common crus
but has intact anterior and posterior canals (Manfre et al. 1997). Second, by
implanting beads soaked with retinoic acid in the developing chicken
otocyst, it has been shown that formation of the semicircular canal is sen-
sitive to retinoic acid treatment in a dose-dependent manner (Choo et al.
1998). In the most severe cases, where none of the semicircular canals
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formed properly, the common crus was still intact, suggesting that genes reg-
ulating common crus development are insensitive to retinoic acid treatment
and thus might be different from those governing canal formation.

A given gene could function in multiple phases of canal formation. For
example, BMPs are important for multiple stages of canal development in
the chicken. Noggin, an antagonist of BMPs, in particular BMP2 and BMP4,
was delivered to the developing chicken otocyst using either Noggin-
producing cells, beads soaked with Noggin protein, or a replication-
competent avian retrovirus encoding the Noggin cDNA (Chang et al. 1999;
Gerlach et al. 2000). These treatments consistently result in truncations of
the canals and sometimes involve malformations of the ampullae. The
defect in the canal formation is evident at the canal outpocket phase. Inter-
estingly, even after the canals are formed at E7, implantation of beads
soaked with Noggin protein leads to canal truncation 2 days later, indicat-
ing that the continual presence of BMPs is important for canal develop-
ment. More recent data suggest that Noggin mediates its effect on canal
development by blocking the action of BMP2 (Chang et al. 2002).

5.4. Relationship of Sensory and
Nonsensory Tissue Development

Even though distinct molecular mechanisms govern the differentiation of
sensory versus nonsensory components of the inner ear, the two pathways
are most likely coordinated during early developmental stages to ensure a
functional end product. One way that this can be accomplished molecularly
is to activate genes that can initiate different developmental pathways in
different tissues simultaneously. For example, Otx/ is activated in both the
prospective lateral ampulla and canal at the same time of development and
may serve to synchronize their development. Another way to mediate the
coordinated development of sensory and nonsensory tissues is through
signaling molecules such as growth factors released by either tissue that
couple the two developmental programs. Under these models, one would
predict that most morphogenetic mutants would have both sensory and
nonsensory defects. Indeed, most mutants, both in mice and zebrafish
(B.rerio), that lack a sensory component such as a crista also show defects
in the corresponding canal (Malicki et al. 1996; Whitfield et al. 1996).
However, the reverse is not true. There are mutants that have defective
canals but intact cristae, such as eselsohr in zebrafish (B.rerio) and Rotating
and Extratoes in mice (Deol 1983; Whitfield et al. 1996). The existence of
such mutants suggests that sensory tissues may play a dominant role in coor-
dinating inner ear development by specifying nonsensory tissue formation.
Axial rotation experiments performed in the chicken are consistent with
this idea and suggest that the specification of sensory structures precedes
specification of nonsensory structures (Wu et al. 1998). By reversing the
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anteroposterior (A/P) axis of the otocyst relative to the body axis, these
studies indicate that the A/P axes of the sensory organs are fixed during a
development period when nonsensory components of the inner ear remain
unspecified.

Identification of signaling molecules that coordinate the two develop-
mental pathways is essential to understanding the development of this
complex organ. However, it is not always straightforward to extrapolate the
function of a given gene based on mutation analyses or expression patterns
alone. For example, Bmp4 is expressed in both sensory and nonsensory
components of the inner ear during development. Furthermore, the ubiq-
uitous expression of its receptors suggests that BMP4 could affect multiple
target tissues. A more revealing expression pattern might be that of Fgfl0
and EphB2. Fgfl0 is predominantly expressed in the sensory tissues,
whereas its receptor, Fgfr-2 (111Ib) is exclusively expressed in the surround-
ing nonsensory component of the inner ear (Pirvola et al. 2000). So far, a
majority of the phenotypes reported for Fgfl0 knockout mice are consis-
tent with Fgfl0’s postulated role in mediating nonsensory tissue devel-
opment. However, the associated sensory phenotypes observed in Fgfi0
knockout mice suggest that other FGF receptors besides FGFR-2 (I11D) are
responsible for mediating this development (Pauley et al. 2003).

Eph and its ligand ephrin participate in bidirectional signaling cascades
that operate in both receptor- and ligand-expressing cells. These molecules
are important for multiple cell-cell communication processes, including
axonal guidance, boundary formation in the brain, and vascular develop-
ment (Flanagan and Vanderhaeghen 1998; Frisen et al. 1999). In the inner
ear, EphB2, a tyrosine kinase receptor, is expressed in the nonsensory,
vestibular dark cells bordering the sensory tissues of the cristae and
maculae. In contrast, its putative ligand, ephrinB2, is expressed in the sup-
porting cells of the sensory organs. EphB2 knockout mice show a defect
in fluid homeostasis in the endolymph, and their vestibular dark cells are
disorganized (Cowan et al. 2000; see below). A possible role of ephrinB2-
expressing cells in the development or differentiation of EphB2-expressing
cells warrants further investigation.

Although it appears that sensory tissue induction precedes nonsensory
tissue induction, it is possible that once nonsensory tissues are specified,
genes expressed in these tissues feed back on sensory tissue and affect its
development. The best supporting evidence for this comes from the analy-
sis of the Orx/ knockout mice. OtxI is not expressed in the presumptive
maculae of the utricle and saccule; however, its expression domain abuts
the lateral region of both maculae. The absence of Otx/ results in incom-
plete separation of the maculae of the utricle and saccule, which could result
from abnormal morphogenesis of the surrounding nonsensory tissues.
Alternatively, Otx1 produced by nonsensory tissue may lead to the activa-
tion of factors that in turn affect sensory development (Morsli et al. 1999;
Fritzsch et al. 2001).
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5.5. Genes that Affect Fluid Homeostasis

Apart from genes that are important for patterning of the vestibular appa-
ratus, there are genes that regulate fluid homeostasis of the endolymph.
Absence of these gene products can also lead to changes in the shape of
the membranous labyrinth and deficits in vestibular system function (Table
2.2).

The endolymph that fills the membranous labyrinth has an unusually high
potassium ion concentration, which is important for proper signal trans-
duction in sensory hair cells. It has been proposed that, in the cochlea, potas-
sium ions enter the hair cells during the process of mechanotransduction
and are subsequently taken up by the supporting cells and recycled back
into the endolymph via the stria vascularis in the lateral wall of the cochlear
duct (Kikuchi et al. 1995; Spicer and Schulte 1998). Similar mechanisms may
be involved in the vestibular apparatus; light and dark cells with secretory
and resorption functions are located in close proximity to each of the
vestibular sensory organs (Dohlman 1961).

TaBLE 2.2. Genes affecting fluid homeostasis of the inner ear.

Functional deficits

Gene Type of protein Distribution in the inner ear Vestibular ~ Cochlear
KCNEI/  protein that stria vascularis + +
isk coassembles with K*

channel subunits

Ephb2 tyrosine kinase stria vascularis, dark cells of + -
receptor vestibule

Kvligtl/ K* channel stria vascularis + +

KCNQI

KCNQ4* K' channel outer hair cells of the ? +*

cochlea; hair cells of
vestibular organs

Pendrin anion transporter endolymphatic sac and duct; + +
between macula utriculi and
anterior and lateral cristae;
nonsensory region of the
saccule; external sulcus region
of the cochlea

Slcl2a2 Na*-K*-CI* marginal cells of stria + +
transporter vascularis; spiral ligament;
dark cells of vestibule

Slc12a7 K-CI" cotransporter  supporting cells for inner and - +
outer hair cells

* No animal model available yet; the functional deficits are based on data from humans.
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KCNQ4 encodes a potassium channel and is primarily expressed in the
outer hair cells of the cochlea and type I hair cells of the vestibular organs
(Kharkovets et al. 2000). Immunostaining studies localized this protein to
the basolateral membrane of the sensory hair cells, supporting its postu-
lated role in recycling potassium ions from hair cells back to the endolymph.
Mutations in KCNQ4 cause dominant, progressive deafness in humans.
However, no animal models for this gene are yet available (Kubisch et al.
1999). More recently, a K-ClI cotransporter, Kcc4, that is expressed in the
Deiters” and phalangeal cells has been postulated to participate in the re-
cycling of potassium ions that have exited hair cells into supporting cells
(Boettger et al.2002). Mice lacking Kcc4 function are deaf and display renal
tubular acidosis.

So far, three genes expressed in the stria vascularis region are believed
to be important for recycling potassium ions into the endolymph.
Kcnql(Kviqtl) or isk (KCNET) are both expressed in the marginal cells of
the stria (Sakagami et al. 1991; Wangemann et al. 1995; Neyroud et al. 1997).
Kcngl encodes a potassium channel subunit in the same family as Kcng4.
Isk encodes a transmembrane protein that assembles with potassium
channel subunits including Kcngl. Mutations in both KCNQI and KCNE]
cause Jervell and Lange—Nielsen syndrome in humans (Neyroud et al. 1997;
Schulze-Bahr et al. 1997), a syndrome associated with ventricular tach-
yarrhythmias of the heart and deafness. Knockout mouse models for both
genes show a collapsed membranous labyrinth indicative of endolymph
secretion failure and disruption of fluid homeostasis in the inner ear (Vetter
et al. 1996; Lee et al. 2000; Casimiro et al. 2001). A spontaneous mouse
mutant, Punk Rocker, with a nonsense mutation in Kcnel that results in a
truncated protein, also shows an inner ear phenotype similar to the knock-
out mice (Letts et al. 2000).

Slc12a2, which encodes a K-Na—Cl cotransporter, is also postulated to
participate in recycling potassium ions back into the endolymph. This
protein is expressed in the basolateral membrane of the marginal cells in
the stria vascularis, fibrocytes in the spiral ligament, and dark cells of the
vestibule (Crouch et al. 1997; Goto et al. 1997; Mizuta et al. 1997). Three
mouse models are available for Slc/2a2: a targeted deletion mutant; a
radiation-induced mutant (Shaker-with-syndactylism (sy)) with a deletion
that includes the Sic/2a2 locus; and an allele of sy, sy™ (Shaker with no syn-
dactylism), that has a frame-shift mutation in Slc/2a2 (Delpire et al. 1999;
Dixon et al. 1999). All three mutant lines are deaf, with waltzer/shaker
behavior indicative of vestibular deficits. In addition, their membranous
labyrinths are collapsed, indicating a problem with endolymph secretion
(Delpire et al. 1999; Dixon et al. 1999).

As indicated earlier, lack of EphB2 also causes reduction of endolymph
production. EphB2 is postulated to regulate fluid homeostasis by interact-
ing indirectly with anion exchangers and aquaporins (Cowan et al. 2000).
Interestingly, despite the expression of EphB2 in the nonsensory compo-
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nents of both the vestibule and cochlea, EphB2 knockout mice display
vestibular dysfunction but are not deaf. Furthermore, their cochlear ducts
appear normal, suggesting that fluid homeostasis in the cochlea is not
affected. Because the membranous labyrinth of the mouse is largely two
separate compartments by 16.5dpc, genes that affect fluid homoestasis may
not necessarily affect both auditory and vestibular functions, depending on
the expression domain and mode of action of a given gene (Cantos et al.
2000).

Another example of a gene that regulates fluid homeostasis is Pendrin
(Pds), which is responsible for causing Pendred syndrome as well as a non-
syndromic form of deafness in humans (Everett et al. 1997; Li et al. 1998).
Patients with Pendred syndrome have sensorineural deafness and goiter.
Widened vestibular aqueducts are commonly found in the inner ears of
these patients. In addition, cochleae of Mondini phenotype characterized
by incomplete coiling have also been described (Johnsen et al. 1986;
Cremers et al. 1998).

In the mouse, Pds mRNA is found in the inner ear, thyroid, and kidney
(Everett et al. 1997; Everett et al. 1999). Within the inner ear, Pds is highly
expressed in the endolymphatic sac and duct. It is also expressed in non-
sensory regions of the utricle and saccule and the external sulcus region
(adjacent to the stria vascularis) of the cochlea (Everett et al. 1999). The
expression of Pds is first activated in the endolymphatic sac and duct
around 13dpc. Pds knockout mice are deaf and show a variable spectrum
of vestibular problems such as circling, head tilting, and bobbing behaviors
(Everett et al. 2001). Unlike other knockout mice that have defects in fluid
homeostasis, Pds—/— mutants show swelling of the membranous labyrinth
instead of shrinkage. The endolymphatic duct and sac are the first structures
to swell, starting at 15dpc (Fig. 2.8A,B, arrows). The swelling later spreads
into the vestibular and cochlear regions. The deafness and balancing
problems in these mice are most likely due to sensory hair-cell degenera-
tion resulting from an ionic imbalance within the endolymph (Everett et al.
2001). Functional studies in frog (Xenopus) oocytes suggest that PENDRIN
is a chloride and iodide transporter (Scott et al. 1999). However, whether
chloride and/or possibly other anions are being transported by PENDRIN
within the inner ear remains to be directly determined.

In the mouse inner ear, as morphogenesis proceeds, the connection
between the utricle and saccule becomes restricted such that, by 16.5dpc,
the endolymphatic sac and duct, as well as the saccule and cochlea, are one
continuous chamber, and the utricle and three canals and their ampullae
are joined in another chamber (Cantos et al. 2000). Figure 2.8C illustrates
a paint-filled inner ear that has been injected in the endolymphatic sac
at P1. Only the saccule and cochlea, but not the utricle or the rest of the
labyrinth, were filled with paint from such an injection. Despite the prena-
tal malformations and swelling of the membranous labyrinth of the Pds
knockout mice, a similar paint-fill pattern was observed in Pds mutants,
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E15.5, Pds +/- E15.5, Pds -/-

C P1, Pds +/- P1, Pds -/-

ges

Ficure 2.8. Paint-filled mouse membranous labyrinths of the wild type (A, C)
and Pendrin —/— mutant (B, D). Swelling of the membranous labyrinth of Pnd
mutants is first apparent in the endolymphatic duct and sac at 15.5dpc (arrows
in B). Latex paint solution is injected only into the endolymphatic sac in wild-type
(C) and mutant (D) inner ears at P1. Injection into the endolymphatic sac only
fills the sac and its duct, the saccule, and cochlea (C). Despite the enlarged mem-
branous labyrinth in Pnd null mutants, injection of latex paint to the endolymphatic
sac shows a pattern similar to the wild type, indicating that the utricle and saccule
are in separate compartments (D). For abbreviations, see Figure 2.2. Scale bar =
100 pm.



HVS2

11/18/2003 3:02 PM Page 44 CE

44 W. Chang et al.

indicating that the utricle and saccule still separated into individual com-
partments (Fig. 2.8D). This is in contrast to the morphogenetic mutants such
as Hmx2, Hmx3, Ngnl, Otxl, and Otx2 knockouts, where the utricle and
saccule fail to separate from each other (Wang et al. 1998; Morsli et al. 1999;
Ma et al. 2000).

Furthermore, because of the unique ionic composition and high rest-
ing potential of the endolymph, the epithelial cells of the membranous
labyrinth might require specialized intercellular communication networks
and proper “sealing” from their surrounding tissues. Consistent with this
hypothesis, mutations in genes encoding for gap junction proteins such as
connexin 26 and 31 and tight junction proteins such as claudin 14 have been
implicated in causing human deafness (Wilcox et al. 2001; for a review, see
Steel et al. 2002). The etiologies of these human syndromes will be appar-
ent as more animal models become available.

6. Conclusion

Two areas of inner ear development have not been discussed thus far: otic
induction and differentiation of sensory hair cells. Fgf/9 and Wnt-8c are
implicated in otic induction in the chicken (Ladher et al. 2000; Vendrell
et al. 2000); Fgf3 and Fgf8 are implicated in otic induction in zebrafish
(B. rerio) (Phillips et al. 2001; Leger and Brand 2002; Maroon et al. 2002,
whereas Fgf3 and Fgf10 are important for otic induction in mice (Wright
and Mansour 2003). Recent reviews on otic induction and related topics
can be found in a special issue of Journal of Neurobiology (Kil and Collazo
2002; Noramly and Grainger 2002; Whitfield 2002). Furthermore, many
genes have been identified to be essential for hair cell development/differ-
entiation, such as Pou4f3 (Brn3.1), myosinVlIla, Espin, and Cadherins.
Mutations of these genes lead to vestibular and auditory deficits in both
humans and mice. Readers are referred to recent reviews on these topics
(Steel and Kros 2001; Caldwell and Eberl 2002; Steel et al. 2002). For
additional readings on genes associated with morphogenesis of the inner
ear, readers are referred to two excellent reviews by Anagnostopoulos
(Anagnostopoulos 2002) and Kiernan et al. (Kiernan et al. 2002).

Correlating a specific gene’s knockout phenotype with its expression
pattern is essential to understanding its role in inner ear development.
However, multiple examples given here show that a gene’s expression
pattern does not necessarily predict the phenotype that results from loss
of the gene product. DIx5 and Netrinl, for example, are both equivalently
expressed in each of the three presumptive canals; however, knockouts of
these genes show different degrees of phenotypic severity among the three
canals. Also, although loss of Mathl affected hair cell formation in all inner
ear sensory organs, Jaggedl and Jagged? seem to have differential effects
on hair cell formation in different sensory organs.
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Such disparities may be explained by differential control and functional
redundancy. Despite the apparent morphological similarities in the forma-
tion of the canals and the arrangement of hair cells and supporting cells
in different sensory organs, the molecular mechanisms underlying each of
these processes are most likely regulated differently. Furthermore, the
developmental pathways for inner ear structures are likely to be influenced
by a variety of genes whose expression patterns and actions within the indi-
vidual inner ear structures have thus far not been assessed. Finally, the dif-
ferential expression and/or efficacy of functionally redundant genes in the
different inner ear structures may determine the extent to which the knock-
out of any given gene affects a particular structure. For example, four out
of the six DIx genes are expressed in the inner ear; one or more of these
genes could share a redundant function with DIx5 in the formation of the
lateral canal.

The creation of multiple and conditional knockouts in mice will continue
to be a powerful tool for molecularly unraveling the organogenesis of this
complex organ. With the aid of the mouse genome project, the identifica-
tion of genes responsible for existing and upcoming mutants will be expe-
dited. Contributions from other genetic models such as zebrafish (B. rerio)
and models that are ideal for misexpression studies and embryonic manip-
ulations, such as the chicken and frog (Xenopus) will also be indispensable.
An in-depth molecular understanding of this complex organ during devel-
opment will pave the way for better strategies to alleviate vestibular and
auditory deficits associated with this sense organ.

Acknowledgments. The authors wish to thank Quianna Burton, Jenny Bai,
and Michael Mulheisen for figure preparation and three-dimensional
reconstructions and Dr. Susan Sullivan for critical reading of the manuscript
and discussions. The three-dimensional reconstruction software was pro-
vided by the Biocomputation Center at Ames Research Center, NASA.The
authors also wish to thank Drs. Bernd Fritzsch, MengQing Xiang, Amy
Kiernan, and Suzanne Mansour for preprints prior to publication. Data pro-
vided in Figure 2.8 are done in collaboration with Lorraine Everett and Eric
Green in NHGRI, NIH.

References

Abdelhak S, Kalatzis V, Heilig R, Compain S, et al. (1997) A human homologue of
the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome
and identifies a novel gene family. Nat Genet 15:157-164.

Acampora D, Mazan S, Lallemand Y, Avantaggiato V, et al. (1995) Forebrain and
midbrain regions are deleted in Otx2—/— mutants due to a defective anterior
neuroectoderm specification during gastrulation. Development 121:3279-3290.

Acampora D, Mazan S, Avantaggiato V, Barone P, et al. (1996) Epilepsy and brain
abnormalities in mice lacking the Otx1 gene. Nat Genet 14:218-222.

e



HVS2

11/18/2003 3:02 PM Page 46 CE

46 W. Chang et al.

Acampora D, Avantaggiato V, Tuorto F, Barone P, et al. (1999a) Differential
transcriptional control as the major molecular event in generating Otx1—/— and
Otx2—-/- divergent phenotypes. Development 126:1417-1426.

Acampora D, Merlo GR, Paleari L, Zerega B, et al. (1999b) Craniofacial, vestibu-
lar, and bone defects in mice lacking the Distal-less-related gene DIxS. Develop-
ment 126:3795-3809.

Adam J, Myat A, Le Roux I, Eddison M, et al. (1998) Cell fate choices and the
expression of Notch, Delta and Serrate homologues in the chick inner ear: par-
allels with Drosophila sense-organ development. Development 125:4645-4654.

Alavizadeh A, Kiernan AE, Nolan P, Lo C, et al. (2001) The Wheels mutation in the
mouse causes vascular, hindbrain, and inner ear defects. Dev Biol 234:244-260.

Anagnostopoulos A (2002) A compendium of mouse knockouts with inner ear
defects. Trends Genet 18:5S21-S38.

Anderson DJ, Jan YN (1997) The determination of the neuronal phenotype. In:
Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and Cellular Approaches
to Neural Development. New York: Oxford University Press, pp. 26-63.

Ang SL, Jin O, Rhinn M, Daigle N, et al. (1996) A targeted mouse Otx2 mutation
leads to severe defects in gastrulation and formation of axial mesoderm and to
deletion of rostral brain. Development 122:243-252.

Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch
locus. Trends Genet 7:403-408.

Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control
and signal integration in development. Science 284:770-776.

Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N (1996) Interaction
between Wingless and Notch signaling pathways mediated by dishevelled. Science
271:1826-1832.

Bermingham NA, Hassan BA, Price SD, Vollrath MA, et al. (1999) Math1: an essen-
tial gene for the generation of inner ear hair cells. Science 284:1837-1841.

Bianchi LM, Conover JC, Fritzsch B, DeChiara T, et al. (1996) Degeneration of
vestibular neurons in late embryogenesis of both heterozygous and homozygous
BDNF null mutant mice. Development 122:1965-1973.

Bissonnette JP, Fekete DM (1996) Standard atlas of the gross anatomy of the devel-
oping inner ear of the chicken. J Comp Neurol 368:620-630.

Boettger T, Hubner CA, Maier H, Rust MB, et al. (2002) Deafness and renal tubular
acidosis in mice lacking the K—ClI co-transporter Kcc4. Nature 416:874-878.

Brigande JV, Iten LE, Fekete DM (2000a) A fate map of chick otic cup closure
reveals lineage boundaries in the dorsal otocyst. Dev Biol 227:256-270.

Brigande JV, Kiernan AE, Gao X, Iten LE, et al. (2000b) Molecular genetics of
pattern formation in the inner ear: do compartment boundaries play a role? Proc
Natl Acad Sci USA 97:11700-11706.

Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila
hearing. J Neurobiol 53:172-189.

Cantos R, Cole LK, Acampora D, Simeone A, et al. (2000) Patterning of the mam-
malian cochlea. Proc Natl Acad Sci USA 97:11707-11713.

Carney PR, Couve E (1989) Cell polarity changes and migration during early devel-
opment of the avian peripheral auditory system. Anat Rec 225:156-164.

Carpenter EM, Goddard JM, Chisaka O, Manley NR, et al. (1993) Loss of Hox-A1
(Hox-1.6) function results in the reorganization of the murine hindbrain. Devel-
opment 118:1063-1075.

e



HVS2

11/18/2003 3:02 PM Page 47 CE

2. Molecular Genetics of Vestibular Organ Development 47

Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, et al. (2001) Targeted disrup-
tion of the Kenqgl gene produces a mouse model of Jervell and Lange—Nielsen
syndrome. Proc Natl Acad Sci USA 98:2526-2531.

Chang W, Nunes FD, De Jesus-Escobar JM, Harland R, et al. (1999) Ectopic noggin
blocks sensory and nonsensory organ morphogenesis in the chicken inner ear.
Dev Biol 216:369-381.

Chang W, ten Dijke P, Wu DK (2002) BMP pathways are involved in otic capsule
formation and epithelial-mesenchymal signaling in the developing chicken inner
ear. Dev Biol 251:380-394.

Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear devel-
opment: uncoupling the establishment of the sensory primordium from hair cell
fate determination. Development 129:2495-2505.

Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent pro-
teins form a complex and function synergistically to induce ectopic eye develop-
ment in Drosophila. Cell 91:893-903.

Chen Y, Bei M, Woo I, Satokata I, et al. (1996) Msx1 controls inductive signaling in
mammalian tooth morphogenesis. Development 122:3035-3044.

Choo D, Sanne JL, Wu DK (1998) The differential sensitivities of inner ear struc-
tures to retinoic acid during development. Dev Biol 204:136-150.

Cohen SM, Bronner G, Kuttner F, Jurgens G, et al. (1989) Distal-less encodes a
homoeodomain protein required for limb development in Drosophila. Nature
338:432-434.

Cole LK, Le Roux I, Nunes F, Laufer E, et al. (2000) Sensory organ generation in
the chicken inner ear: contributions of bone morphogenetic protein 4, serrate 1,
and lunatic fringe. ] Comp Neurol 424:509-520.

Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic
domain-leucine zipper transcription factor. Cell 79:1025-1034.

Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, et al. (2000) EphB2 guides
axons at the midline and is necessary for normal vestibular function. Neuron
26:417-430.

Cox GA, Mahaffey CL, Nystuen A, Letts VA, et al. (2000) The mouse fidgetin gene
defines a new role for AAA family proteins in mammalian development. Nat
Genet 26:198-202.

Cremers CW, Admiraal RJ, Huygen PL, Bolder C, et al. (1998) Progressive hearing
loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common
features in Pendred’s syndrome. Int J Pediatr Otorhinolaryngol 45:113-123.

Crouch JJ, Sakaguchi N, Lytle C, Schulte BA (1997) Immunohistochemical
localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear.
J Histochem Cytochem 45:773-778.

de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, et al. (1995) Associa-
tion between X-linked mixed deafness and mutations in the POU domain gene
POU3F4. Science 267:685-688.

Delpire E, Lu J, England R, Dull C, et al. (1999) Deafness and imbalance asso-
ciated with inactivation of the secretory Na—K-2Cl co-transporter. Nat Genet
22:192-195.

Deol MS (1964) The abnormalities of the inner ear in kreisler mice. J Embryol Exp
Morphol 12:475-490.

Deol M (1966) Influence of the neural tube on the differentiation of the inner ear
in the mammalian embryo. Nature 209:219-220.

e



HVS2

11/18/2003 3:02 PM Page 48 CE

48 W. Chang et al.

Deol MS (1983) Development of auditory and vestibular systems in mutant mice.
In: Romand R (ed) Development of Auditory and Vestibular Systems. New York:
Academic Press, pp. 309-333.

Depew MJ, Liu JK, Long JE, Presley R, et al. (1999) DIx5 regulates regional devel-
opment of the branchial arches and sensory capsules. Development 126:
3831-3846.

Dewulf N, Verschueren K, Lonnoy O, Moren A, et al. (1995) Distinct spatial and
temporal expression patterns of two type I receptors for bone morphogenetic pro-
teins during mouse embryogenesis. Endocrinology 136:2652-2663.

Dixon MJ, Gazzard J, Chaudhry SS, Sampson N, et al. (1999) Mutation of the
Na—-K-Cl co-transporter gene Slcl12a2 results in deafness in mice. Hum Mol Genet
8:1579-1584.

Dohlman G (1961) Excretion and absorption of endolymph in the vestibular appa-
ratus. In: de Reuck AVS, Knight H (eds) Ciba Foundation Symposium in Motatic,
Kinesthetic and Vestibular Mechanisms. London: Churchill, pp. 138-143.

Eddison M, Le Roux I, Lewis J (2000) Notch signaling in the development of the
inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 97:11692-11699.

Epstein DJ, Vekemans M, Gros P (1991) Splotch (Sp2H), a mutation affecting devel-
opment of the mouse neural tube, shows a deletion within the paired home-
odomain of Pax-3. Cell 67:767-774.

Everett LA, Glaser B, Beck JC, Idol JR, et al. (1997) Pendred syndrome is caused
by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17: 411—
422.

Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse
ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin
in the inner ear. Proc Natl Acad Sci USA 96:9727-9732.

Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, et al. (2001) Targeted dis-
ruption of mouse Pds provides key insight about the inner-ear defects encoun-
tered in Pendred syndrome. Hum Mol Genet 10:153-161.

Evrard YA, Lun Y, Aulehla A, Gan L, et al. (1998) Lunatic fringe is an essential
mediator of somite segmentation and patterning. Nature 394:377-381.

Failli V, Bachy I, Retaux S (2002) Expression of the LIM-homeodomain gene Lmx1la
(dreher) during development of the mouse nervous system. Mech Dev 118:
225-228.

Fekete DM (1999) Development of the vertebrate ear: insights from knockouts and
mutants. Trends Neurosci 22:263-269.

Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr
Opin Neurobiol 12:35-42.

Fekete DM, Homburger SA, Waring MT, Riedl AE, et al. (1997) Involvement of
programmed cell death in morphogenesis of the vertebrate inner ear. Develop-
ment 124:2451-2461.

Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural
development. Annu Rev Neurosci 21:309-345.

Frenz DA, Galinovic-Schwartz V, Liu W, Flanders KC, et al. (1992) Transforming
growth factor beta 1 is an epithelial-derived signal peptide that influences otic
capsule formation. Dev Biol 153:324-336.

Frenz DA, Liu W, Williams JD, Hatcher V, et al. (1994) Induction of chondrogene-
sis: requirement for synergistic interaction of basic fibroblast growth factor and
transforming growth factor-beta. Development 120:415-424.

e



HVS2

11/18/2003 3:02 PM Page 49 CE

2. Molecular Genetics of Vestibular Organ Development 49

Frenz DA, Liu W, Capparelli M (1996) Role of BMP-2a in otic capsule chondroge-
nesis. Ann NY Acad Sci 785:256-258.

Frisen J, Holmberg J, Barbacid M (1999) Ephrins and their Eph receptors: multi-
talented directors of embryonic development. EMBO J 18:5159-5165.

Fritzsch B, Silos-Santiago I, Smeyne R, Fagan M, et al. (1995) Reduction and loss of
inner ear innervation in trkB and trkC receptor knockout mice: a whole mount
Dil and scanning electron microscopic analysis. Aud Neurosci 1:401-417.

Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I (1997) Effects of neurotrophin
and neurotrophin receptor disruption on the afferent inner ear innervation.
Semin Cell Dev Biol 8:277-284.

Fritzsch B, Barald KF, Lomax MI (1998) Early embryology of the vertebrate ear.
In: Rubel EW, Popper AN, Fay RR (eds) Development of the Auditory System.
Springer Handbook of Auditory Research, Volume 9. New York: Springer, pp.
80-145.

Fritzsch B, Pirvola U, Ylikoski J (1999) Making and breaking the innervation of the
ear: neurotrophic support during ear development and its clinical implications.
Cell Tissue Res 295:369-382.

Fritzsch B, Beisel KW, Bermingham NA (2000) Developmental evolutionary
biology of the vertebrate ear: conserving mechanoelectric transduction and devel-
opmental pathways in diverging morphologies. Neuroreport 11:R35-44.

Fritzsch B, Signore M, Simeone A (2001) Otx1 null mutants show partial segrega-
tion of sensory epithelial comparable to lamprey ears. Dev Genes Evol 211:
388-396.

Gavalas A, Studer M, Lumsden A, Rijli FM, et al. (1998) Hoxal and Hoxbl syner-
gize in patterning the hindbrain, cranial nerves and second pharyngeal arch.
Development 125:1123-1136.

Gerlach LM, Hutson MR, Germiller JA, Nguyen-Luu D, et al. (2000) Addition of
the BMP4 antagonist, noggin, disrupts avian inner ear development. Develop-
ment 127:45-54.

Giraldez F (1998) Regionalized organizing activity of the neural tube revealed by
the regulation of Imx1 in the otic vesicle. Dev Biol 203:189-200.

Goto S, Oshima T, Ikeda K, Ueda N, et al. (1997) Expression and localization of the
Na-K-2Cl cotransporter in the rat cochlea. Brain Res 765:324-326.

Goulding M, Sterrer S, Fleming J, Balling R, et al. (1993) Analysis of the Pax-3 gene
in the mouse mutant splotch. Genomics 17:355-363.

Goulding MD, Chalepakis G, Deutsch U, Erselius JR, et al. (1991) Pax-3, a novel
murine DNA binding protein expressed during early neurogenesis. EMBO J
10:1135-1147.

Haddon C, Jiang YJ, Smithers L, Lewis J (1998) Delta-Notch signalling and the
patterning of sensory cell differentiation in the zebrafish ear: evidence from the
mind bomb mutant. Development 125:4637-4644.

Hadrys T, Braun T, Rinkwitz-Brandt S, Arnold HH, et al. (1998) Nkx5-1 controls
semicircular canal formation in the mouse inner ear. Development 125:33-39.
Hallbook F, Ibanez CF, Ebendal T, Persson H (1993) Cellular localization of brain-
derived neurotrophic factor and neurotrophin-3 mRNA expression in the early

chicken embryo. Eur J Neurosci 5:1-14.

Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in
Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev
Genet 17:78-89.

e



HVS2

11/18/2003 3:02 PM Page 50 CE

50 W. Chang et al.

Hicks C, Johnston SH, diSibio G, Collazo A, et al. (2000) Fringe differentially mod-
ulates Jaggedl and Deltal signalling through Notchl and Notch2. Nat Cell Biol
2:515-520.

Hirth F, Therianos S, Loop T, Gehring WJ, et al. (1995) Developmental defects in
brain segmentation caused by mutations of the homeobox genes orthodenticle
and empty spiracles in Drosophila. Neuron 15:769-778.

Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of
vertebrate development. Genes Dev 10:1580-1594.

Huang EJ, Liu W, Fritzsch B, Bianchi LM, et al. (2001) Brn-3a is a transcriptional
regulator of soma size, target field innervation, and axon pathfinding of Inner ear
sensory neurons. Development 126:2869-2882.

Hui CC, Slusarski D, Platt KA, Holmgren R, et al. (1994) Expression of three mouse
homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-
2 and GIli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles
during postimplantation development. Dev Biol 162:402-413.

Johnsen T, Jorgensen MB, Johnsen S (1986) Mondini cochlea in Pendred’s syn-
drome. A histological study. Acta Otolaryngol 102:239-247.

Johnson DR (1967) Extra-toes: a new mutant gene causing multiple abnormalities
in the mouse. J Embryol Exp Morphol 17:543-581.

Johnson KR, Cook SA, Erway LC, Matthews AN, et al. (1999) Inner ear and kidney
anomalies caused by IAP insertion in an intron of the Eyal gene in a mouse
model of BOR syndrome. Hum Mol Genet 8:645-653.

Ju BG, Jeong S, Bae E, Hyun S, et al. (2000) Fringe forms a complex with Notch.
Nature 405:191-195.

Kalatzis V, Sahly I, El-Amraoui A, Petit C (1998) Eyal expression in the develop-
ing ear and kidney: towards the understanding of the pathogenesis of Branchio-
Oto-Renal (BOR) syndrome. Dev Dyn 213:486-499.

Karis A, Pata I, van Doorninck JH, Grosveld F, et al. (2001) Transcription factor
GATA-3 alters pathway selection of olivocochlear neurons and affects morpho-
genesis of the ear. J] Comp Neurol 429:615-630.

Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, et al. (2000) KCNQ4, a K*
channel mutated in a form of dominant deafness, is expressed in the inner ear
and the central auditory pathway. Proc Natl Acad Sci USA 97:4333-4338.

Kiernan AE, Nunes F, Wu DK, Fekete DM (1997) The expression domain of two
related homeobox genes defines a compartment in the chicken inner ear that may
be involved in semicircular canal formation. Dev Biol 191:215-229.

Kiernan AE, Ahituv N, Fuchs H, Balling R, et al. (2001) The Notch ligand Jagged1
is required for inner ear sensory development. Proc Natl Acad Sci USA
98:3873-3878.

Kiernan AE, Steel KP, Fekete DM (2002) Development of the mouse inner ear. In:
Rossant JT, Tam PPL (eds) Mouse Development: Patterning, Morphogenesis, and
Organogenesis. Orlando, FL: Academic Press, pp. 539-566.

Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea:
immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:
101-118.

Kil SH, Collazo A (2002) A review of inner ear fate maps and cell lineage studies.
J Neurobiol 53:129-142.

Kim WY, Fritzsch B, Serls A, Bakel LA, et al. (2001) NeuroD-null mice are deaf due
to a severe loss of the inner ear sensory neurons during development. Develop-
ment 128:417-426.

e



HVS2

11/18/2003 3:02 PM Page 51 CE

2. Molecular Genetics of Vestibular Organ Development 51

Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, et al. (1999) KCNQ4, a novel
potassium channel expressed in sensory outer hair cells, is mutated in dominant
deafness. Cell 96:437-446.

Ladher RK, Anakwe KU, Gurney AL, Schoenwolf GC, et al. (2000) Identification
of synergistic signals initiating inner ear development. Science 290:1965-1967.
Landolt JP, Correia MJ, Young ER, Cardin RP, et al. (1975) A scanning electron
microscopic study of the morphology and geometry of neural surfaces and struc-
tures associated with the vestibular apparatus of the pigeon. J Comp Neurol

159:257-287.

Lanford PJ, Lan Y, Jiang R, Lindsell C, et al. (1999) Notch signalling pathway medi-
ates hair cell development in mammalian cochlea. Nat Genet 21:289-292.

Laufer E, Dahn R, Orozco OE, Yeo CY, et al. (1997) Expression of Radical fringe
in limb-bud ectoderm regulates apical ectodermal ridge formation [see com-
ments]| Nature 386:366-373. [published erratum appears in Nature 388:400
(1997)].

Lee JE, Hollenberg SM, Snider L, Turner DL, et al. (1995) Conversion of Xenopus
ectoderm into neurons by NeuroD, a basic helix- loop-helix protein. Science
268:836-844.

Lee MP, Ravenel JD, Hu RJ, Lustig LR, et al. (2000) Targeted disruption of the
Kvlqtl gene causes deafness and gastric hyperplasia in mice. J Clin Invest
106:1447-1455.

Leger S, Brand M (2002) Fgf8 and Fgf3 are required for zebrafish ear placode induc-
tion, maintenance and inner ear patterning. Mech Dev 119:91.

Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel sub-
family of hairy- and Enhancer of split related genes specifically expressed during
mouse embryogenesis. Mech Dev 85:173-177.

Letts VA, Valenzuela A, Dunbar C, Zheng QY, et al. (2000) A new spontaneous
mouse mutation in the Kcnel gene. Mamm Genome 11:831-835.

Lewis AK, Frantz GD, Carpenter DA, de Sauvage FJ, et al. (1998) Distinct expres-
sion patterns of notch family receptors and ligands during development of the
mammalian inner ear. Mech Dev 78:159-163.

Li XC, Everett LA, Lalwani AK, Desmukh D, et al. (1998) A mutation in PDS causes
non-syndromic recessive deafness. Nat Genet 18:215-217.

Liu M, Pereira FA, Price SD, Chu M, et al. (2000) Essential role of BETA2/NeuroD1
in development of the vestibular and auditory systems. Genes Dev 14:2839-
2854.

Liu W, Li G, Chien JS, Raft S, et al. (2002) Sonic hedgehog regulates otic capsule
chondrogenesis and inner ear development in the mouse embryo. Dev Biol
248:240-250.

Livesey FJ (1999) Netrins and netrin receptors. Cell Mol Life Sci 56:62-68.

Ma Q, Chen Z, Barrantes I, de la Pompa JL, et al. (1998) Neurogenin 1 is essential
for the determination of neuronal precursors for proximal cranial sensory ganglia.
Neuron 20:469-482.

Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer,
morphologically normal hair cells in smaller sensory epithelia devoid of innerva-
tion. J Assoc Res Otolaryngol 1:129-143.

Maconochie M, Nonchev S, Morrison A, Krumlauf R (1996) Paralogous Hox genes:
function and regulation. Annu Rev Genet 30:529-556.

Malicki J, Schier AF, Solnica-Krezel L, Stemple DL, et al. (1996) Mutations affect-
ing development of the zebrafish ear. Development 123:275-283.

e



HVS2

11/18/2003 3:02 PM Page 52 CE

52 W. Chang et al.

Manfre L, Genuardi P, Tortorici M, Lagalla R (1997) Absence of the common crus
in Goldenhar syndrome. Am J Neuroradiol 18:773-775.

Mansour SL (1994) Targeted disruption of int-2 (fgf-3) causes developmental
defects in the tail and inner ear. Mol Reprod Dev 39:62-68.

Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted
disruption of the proto-oncogene int-2 have developmental defects in the tail and
inner ear. Development 117:13-28.

Manzanares M, Trainor PA, Ariza-McNaughton L, Nonchev S, et al. (2000) Dorsal
patterning defects in the hindbrain, roof plate and skeleton in the dreher (dr(J))
mouse mutant. Mech Dev 94:147-156.

Mark M, Lufkin T, Vonesch JL, Ruberte E, et al. (1993) Two rhombomeres are
altered in Hoxa-1 mutant mice. Development 119:319-338.

Maroon H, Walshe J, Mahmood R, Kiefer P, et al. (2002) Fgf3 and Fgf8 are required
together for formation of the otic placode and vesicle. Development 129:
2099-2108.

Maruyama K, Tsukada T, Ohkura N, Bandoh S, et al. (1998) The NGFI-B sub-
family of the nuclear receptor superfamily (review). Int J Oncol 12:1237-1243.
McKay 1J, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear devel-
opment: an analysis in normal and kreisler mutant mice. Dev Biol 174:370-378.
Merlo GR, Paleari L, Mantero S, Zerega B, et al. (2002) The DIx5 homeobox gene
is essential for vestibular morphogenesis in the mouse embryo through a BMP4-

mediated pathway. Dev Biol 248:157-169.

Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls
formation of the roof plate in the vertebrate CNS. Nature 403:764-769.

Minowa O, Ikeda K, Sugitani Y, Oshima T, et al. (1999) Altered cochlear fibrocytes
in a mouse model of DFN3 nonsyndromic deafness [see comments]. Science
285:1408-1411.

Mizuta K, Adachi M, Iwasa KH (1997) Ultrastructural localization of the Na-K—Cl
cotransporter in the lateral wall of the rabbit cochlear duct. Hear Res 106:
154-162.

Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, et al. (1999) Expression
of Deltal and Serratel (Jaggedl) in the mouse inner ear. Mech Dev 84:169-172.

Morsli H, Choo D, Ryan A, Johnson R, et al. (1998) Development of the mouse
inner ear and origin of its sensory organs. J Neurosci 18:3327-3335.

Morsli H, Tuorto F, Choo D, Postiglione MP, et al. (1999) Otx1 and Otx2 activities
are required for the normal development of the mouse inner ear. Development
126:2335-2343.

Mowbray C, Hammerschmidt M, Whitfield TT (2001) Expression of BMP signaling
pathway member in the developing zebrafish inner ear and lateral line. MOD
108:179-184.

Myat A, Henrique D, Ish-Horowicz D, Lewis J (1996) A chick homologue of Serrate
and its relationship with Notch and Delta homologues during central neuro-
genesis. Dev Biol 174:233-247.

Nardelli J, Thiesson D, Fujiwara Y, Tsai FY, et al. (1999) Expression and genetic
interaction of transcription factors GATA-2 and GATA-3 during development of
the mouse central nervous system. Dev Biol 210:305-321.

Neyroud N, Tesson F, Denjoy I, Leibovici M, et al. (1997) A novel mutation in the
potassium channel gene KVLQT1 causes the Jervell and Lange—Nielsen cardio-
auditory syndrome. Nat Genet 15:186-189.

e



HVS2

11/18/2003 3:02 PM Page 53 CE

2. Molecular Genetics of Vestibular Organ Development 53

Noramly S, Grainger RM (2002) Determination of the embryonic inner ear. J
Neurobiol 53:100-128.

O’Hara E, Cohen B, Cohen SM, McGinnis W (1993) Distal-less is a downstream
gene of Deformed required for ventral maxillary identity. Development 117:
847-856.

Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates
Notch-ligand interactions. Nature 387:908-912.

Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, et al. (1998)
Dorsal-ventral signaling in the Drosophila eye. Science 281:2031-2034.

Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions.
Trends Cell Biol 8:65-71.

Pauley S, Wright T, Pirvola U, Ornitz DM, Beisel KW, et al. (2003) Expression and
function of FGF-10 in mammalian inner ear development. Dev Dynamics
227:203-215.

Phillips BT, Bolding K, Riley BB (2001) Zebrafish Fgf3 and Fgf8 encode redundant
functions required for otic placode induction. Dev Biol 235:351-365.

Phippard D, Heydemann A, Lechner M, Lu L, et al. (1998) Changes in the sub-
cellular localization of the Brn4 gene product precede mesenchymal remodeling
of the otic capsule. Hear Res 120:77-85.

Phippard D, Lu L, Lee D, Saunders JC, et al. (1999) Targeted mutagenesis of the
POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear.
J Neurosci 19:5980-5989.

Phippard D, Boyd Y, Reed V, Fisher G, et al. (2000) The sex-linked fidget mutation
abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear. Hum Mol
Genet 9:79-85.

Pignoni F, Hu B, Zavitz KH, Xiao J, et al. (1997) The eye-specification proteins So
and Eya form a complex and regulate multiple steps in Drosophila eye develop-
ment. Cell 91:881-891.

Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, et al. (2000) Fgf/Fgfr-2 (I11Ib)
signaling is essential for inner ear morphogenesis. J Neurosci 20:6125-6134.

Pissarra L, Henrique D, Duarte A (2000) Expression of hes6, a new member of the
Hairy/Enhancer-of-split family, in mouse development. Mech Dev 95:275-278.

Ponnio T, Burton Q, Pereira FA, Wu DK, et al. (2002) The nuclear receptor Nor-1
is essential for proliferation of the semicircular canals of the mouse inner ear. Mol
Cell Biol 22:935-945.

Riccomagno MM, Martinu L, Mulheisen M, Wu DK, et al. (2002) Specification
of the mammalian cochlea is dependent to Sonic hedgehog. Genes Dev
16:2365-2378.

Rijli FM, Mark M, Lakkaraju S, Dierich A, et al. (1993) A homeotic transformation
is generated in the rostral branchial region of the head by disruption of Hoxa-2,
which acts as a selector gene. Cell 75:1333-1349.

Rinkwitz S, Bober E, Baker R (2001) Development of the vertebrate inner ear. Ann
NY Acad Sci 942:1-14.

Rinkwitz-Brandt S, Justus M, Oldenettel I, Arnold HH, et al. (1995) Distinct tem-
poral expression of mouse Nkx-5.1 and Nkx-5.2 homeobox genes during brain
and ear development. Mech Dev 52:371-381.

Rinkwitz-Brandt S, Arnold HH, Bober E (1996) Regionalized expression of Nkx5-
1, Nkx5-2, Pax2 and sek genes during mouse inner ear development. Hear Res
99:129-138.

e



HVS2

11/18/2003 3:02 PM Page 54 CE

54 W. Chang et al.

Rivolta MN, Holley MC (1998) GATA3 is downregulated during hair cell differen-
tiation in the mouse cochlea. J Neurocytol 27:637-647.

Robinson GW, Mahon KA (1994) Differential and overlapping expression domains
of DIx-2 and DIx-3 suggest distinct roles for Distal-less homeobox genes in cranio-
facial development. Mech Dev 48:199-215.

Royet J, Finkelstein R (1995) Pattern formation in Drosophila head development:
the role of the orthodenticle homeobox gene. Development 121:3561-3572.

Sakagami M, Fukazawa K, Matsunaga T, Fujita H, et al. (1991) Cellular localization
of rat Isk protein in the stria vascularis by immunohistochemical observation.
Hear Res 56:168-172.

Salminen M, Meyer BI, Bober E, Gruss P (2000) Netrin 1 is required for semi-
circular canal formation in the mouse inner ear. Development 127:13-22.

Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormali-
ties of craniofacial and tooth development. Nat Genet 6:348-356.

Schimmang T, Lemaistre M, Vortkamp A, Ruther U (1992) Expression of the zinc
finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt).
Development 116:799-804.

Schimmang T, Minichiello L, Vazquez E, San Jose I, et al. (1995) Developing inner
ear sensory neurons require TrkB and TrkC receptors for innervation of their
peripheral targets. Development 121:3381-3391.

Schulze-Bahr E, Wang Q, Wedeking H, Haverkamp W, et al. (1997) KCNE1 muta-
tions cause Jervell and Lange—Nielsen syndrome. Nat Genet 17:267-268.

Scott DA, Wang R, Kreman TM, Sheffield VC, et al. (1999) The Pendred syndrome
gene encodes a chloride-iodide transport protein. Nat Genet 21:440-443.

Shailam R, Lanford PJ, Dolinsky CM, Norton CR, et al. (1999) Expression of
proneural and neurogenic genes in the embryonic mammalian vestibular system.
J Neurocytol 28:809-819.

Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, et al. (1997) Severe sensory
deficits but normal CNS development in newborn mice lacking TrkB and TrkC
tyrosine protein kinase receptors. Eur J Neurosci 9:2045-2056.

Simeone A, Acampora D, Pannese M, D’Esposito M, et al. (1994) Cloning and char-
acterization of two members of the vertebrate DIx gene family. Proc Natl Acad
Sci USA 91:2250-2254.

Simon MC (1995) Gotta have GATA. Nat Genet 11:9-11.

Spicer SS, Schulte BA (1998) Evidence for a medial K* recycling pathway from inner
hair cells. Hear Res 118:1-12.

Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function.
Nat Genet 27:143-149.

Steel KP, Erven A, Kiernan AE (2002) Mice as models for human hereditary deaf-
ness. In: Keats BJB, Popper AN, Fay Rr (eds) Genetics and Auditory Disorders.
Springer Handbook of Auditory Research, Volume 14. New York: Springer-
Verlag, pp. 247-296.

ten Berge D, Brouwer A, Korving J, Martin JF, et al. (1998) Prx1 and Prx2 in skele-
togenesis: roles in the craniofacial region, inner ear and limbs. Development
125:3831-3842.

Teng X, Ahn K, Bove M, Frenz D, et al. (2000) Malformations of the lateral semi-
circular canal occur in heterozygous Bmp4 mice. Assoc Res Otolaryngol Abstr
181:51.



HVS2

11/18/2003 3:02 PM Page 55 CE

2. Molecular Genetics of Vestibular Organ Development 55

Torres M, Giraldez F (1998) The development of the vertebrate inner ear. Mech
Dev 71:5-21.

Truslove GM (1956) The anatomy and development of the Fidget mouse. J Genet
54:64-86.

Tsai H, Hardisty RE, Rhodes C, Kiernan AE, et al. (2001) The mouse slalom mutant
demonstrates a role for Jaggedl in neuroepithelial patterning in the organ of
Corti. Hum Mol Genet 10:507-512.

Van de Water TR, Li CW, Ruben RJ, Shea CA (1980) Ontogenic aspects of mam-
malian inner ear development. Birth Defects 16:5-45.

Vendrell V, Carnicero E, Giraldez F, Alonso MT, et al. (2000) Induction of inner ear
fate by FGF3. Development 127:2011-20109.

Verpy E, Leibovici M, Petit ¢ (1999) Characterization of Otoconin-95, the major
protein of murine otoconia, provides insights into the formation of these inner
ear biominerals. Proc Natl Acad Sci USA 96:529-534.

Vetter DE, Mann JR, Wangemann P, Liu J, et al. (1996) Inner ear defects induced
by null mutation of the isk gene. Neuron 17:1251-1264.

Wang W, Van de Water T, Lufkin T (1998) Inner ear and maternal reproductive
defects in mice lacking the Hmx3 homeobox gene. Development 125:621-
634.

Wang W, Chan EK, Baron S, Van de Water T, et al. (2001) Hmx2 homeobox gene
control of murine vestibular morphogenesis. Development 128:5017-5029.

Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for
K" secretion and the transepithelial voltage across marginal cells of stria vascu-
laris in vitro. Hear Res 84:19-29.

Wersill J, Bagger-Sjobick D (1974) Morphology of the vestibular sense organ. In:
Autrum H, Jung R, Loenstein WR, Mackay DM (eds) Handbook of Sensory Phys-
iology: Vestibular System, Part I. New York: Springer-Verlag, pp. 124-170.

Whitfield TT (2002) Zebrafish as a model for hearing and deafness. J Neurobiol
53:157-171.

Whitfield TT, Granato M, van Eeden FJ, Schach U, et al. (1996) Mutations affect-
ing development of the zebrafish inner ear and lateral line. Development
123:241-254.

Wilcox ER, Burton QL, Naz S, Riazuddin S, et al. (2001) Mutations in the gene
encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29.
Cell 104:165-172.

Wilkinson DG, Bhatt S,McMahon AP (1989) Expression pattern of the FGF-related
proto-oncogene int-2 suggests multiple roles in fetal development. Development
105:131-136.

Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic
protein-4 is required for mesoderm formation and patterning in the mouse. Genes
Dev 9:2105-2116.

Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode
induction. Development, 130:3379-3390.

Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci
16:6454-6462.

Wu DK, Choo DI (2003) Development of the ear. In: Snow JB Jr (eds) Ballengers,
Manual of Otorhinolaryngology Head and Neck Surgery. Hamilton, Ontario,
Canada: BC Decker, Inc., pp. 25-37.

e



HVS2

11/18/2003 3:02 PM Page 56 CE

56 W. Chang et al.

Wu DK, Nunes FD, Choo D (1998) Axial specification for sensory organs versus
non-sensory structures of the chicken inner ear. Development 125:11-20.

Xu PX, Woo I, Her H, Beier DR, et al. (1997) Mouse Eya homologues of the
Drosophila eyes absent gene require Pax6 for expression in lens and nasal
placode. Development 124:219-231.

Xu PX, Adams J, Peters H, Brown MC, et al. (1999) Eyal-deficient mice lack ears
and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:
113-117.

Zhang N, Gridley T (1998) Defects in somite formation in Lunatic fringe-deficient
mice. Nature 394:374-377.

Zhang N, Martin GV, Kelley MW, Gridley T (2000) A mutation in the Lunatic fringe
gene suppresses the effects of a Jagged2 mutation on inner hair cell development
in the cochlea. Curr Biol 10:659-662.

Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of
extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580-586.

Zheng JL, Shou J, Guillemot F, Kageyama R, et al. (2000) Hesl is a negative regu-
lator of inner ear hair cell differentiation. Development 127:4551-4560.

Zine A, Van de Water TR, de Ribaupierre F (2000) Notch signaling regulates the
pattern of auditory hair cell differentiation in mammals. Development 127:
3373-3383.



