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Abstract In the present work, we perform a comparative
study of different interacting dark energy (DE) models using
the Statefinder diagnostics. In particular, 17 different forms
of the energy transfer rate Q between DE and dark mat-
ter (DM) were focused on, belonging to the following cate-
gories: (i) linear models in energy densities of DE and DM,
(ii) non-linear models, (iii) models with a change of direction
of energy transfer between DE and DM, (iv) models involv-
ing derivatives of the energy densities, (v) parametrized inter-
actions through a function of the coincidence parameter r̃ ,
and finally we also consider (vi) two kinds of models with
a self-interaction between DM, without DE. These models
have been already studied in the literature and constrained
with observational data available at that time. In order to
discriminate between them at background level, we use the
Statefinder diagnostic, based on the computation and study
of the so-called Statefinder parameters r , s in addition to the
deceleration parameter q. We plot the evolution trajectories
for the several interacting models on the r − q, r − s planes,
and we find some distinctive features and departures from
�CDM and other DE models, as Quintessence, Chaplygin
Gas, running vacuum models (RVM) and Galileon.

1 Introduction

Since the advent of modern cosmology and the discoveries of
the late twentieth century, our view of the Universe has been
firmly shifted. In this regard, current observational evidence
coming from precise measurements of Supernovae Ia (SnIa)
[1,2], the large scale structure (LSS) from the Sloan Digi-
tal Sky Survey [3] and the cosmic microwave background
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(CMB) anisotropies [4] indicates that our Universe is flat or
almost flat, expanding with an accelerated rate of expansion,
and dominated by dark energy (DE) and cold dark matter
(DM). The accelerating expansion of the present Universe
is attributed to the DE, which is an exotic component with
negative pressure, such as the cosmological constant (CC) �

[5–7], which can be modeled as a perfect fluid with energy
densityρ� = �/8πG and negative pressure p� = −ρ�.The
Lambda-cold-dark-matter (�CDM) model has proven to be
successful at explaining most observations of our universe
[8]. Despite this success, the �CDM model is plagued of the-
oretical issues. The first, and perhaps most significant prob-
lem, called the cosmological constant problem [9,10], is the
catastrophic disagreement between the value of the energy
density of �, ρ�, calculated from observation, and the vac-
uum energy density, ρvac, predicted by quantum field theory
(QFT), which is about 10120 larger than the observed value.
Since the theoretically expected value of the cosmological
constant is much larger than the observed one, one may hope
that �vanishes in some way. In this case, an alternative expla-
nation for the current accelerated expansion of the universe
is required. Such explanations can be classified in modified
matter models and modified gravity models. For a review of
DE models, see Refs. [11–13]. The second significant prob-
lem with � is the so-called coincidence problem [14,15].
The coincidence parameter r̃ is defined as the ratio between
DM and DE densities, r̃ ≡ ρc

ρde
, which at the present time has

a value of r̃0 ∼ O(1). In most models of the universe, this
situation is indeed highly coincidental, as a very specific set
of initial conditions is required to yield the correct relative
energy densities in the present epoch.

In addition to the already mentioned theoretical/conceptual
issues, some anomalies and tensions have been found
between cosmological and astrophysical data. In particular,
the tension in estimation of the Hubble constant H0 from dif-
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ferent astronomical/cosmological observations assuming the
standard �CDM model of the Universe has remained a big
issue in the current cosmology [16]. A discrepancy between
4σ and 6σ [17] in the measures of H0 has been observed by
comparing early measurements from Planck Collaboration
[18] and late observations with supernovae Type Ia [19]. In
addition to the H0 tension, a second tension has emerged dur-
ing the recent years: the S8 tension [20]. In �CDM model,
the S8 parameter quantifies the amplitude of matter fluctua-
tions in the late universe, and is defined as (�matter/0.3)0.5σ8,
where σ8 is the standard deviation of the density fluctuation in
an 8 h−1 Mpc radius sphere. The measurement derived from
low-redshift probes [21–23] is systematically 2−3 σ lower
than that indirectly measured by the Planck-2018 CMB data
[18]. Theoretically, tensions between measurements in the
early and the late universe could represent the signature of
new physics beyond the �CDM model [24]. On this subject,
interacting DE models have been reexaminated in the light
of latest cosmological observations, since a non-vanishing
coupling between the dark sector of the universe can eventu-
ally alleviate the emerging cosmological tensions of �CDM
model [25–32]. Remarkably, the assumption that DE and DM
do not evolve separately but interact with each other non-
gravitationally, which allows for an energy transfer between
DE and DM, was considered previously in order to solve the
cosmic coincidence problem [33–62]. For extensive reviews
on interacting DE models, see Refs. [63,64]. The coupling
between DE and DM is modeled through a rate of energy
exchange between both components.

Thus, a profound understanding of how the energy flux
between DM and DE is generated is still lacking, which
is the reason why conventionally we should assume some
“educated ansatz” for the energy exchange Q(t) and, based
on that, study the consequences of the cosmological model.
Thus, although the interaction functions are mostly phe-
nomenological, several attempts have been made to derive
the interaction functions from some field-theoretic angles.
We would like to highlight that there have been attempts
to derive a theoretical expression for the interaction rate Q
from a from the perspective of modified gravity, particularly
in papers such as [65], see also Ref. [63].

In the absence of a fundamental theory, this rate of energy
exchange can not be obtained from first principles. There-
fore, a phenomenological approach for the coupling is used
[66]. For a given model, it is possible to choose the param-
eters in order the model be consistent with data (e.g., SnIa,
CMB, BAO and H(z)) that constraint the expansion history at
background level [67–72]. As several DE models predict very
similar expansion histories, mostly of them are still in agree-
ment with the available observational data. What is more, dif-
ferent mathematical model based on the same observational
data could produce equivalent results [73]. Thus, we need a
criterion to discriminate between DE models. They should

agree with current observations and predict, at least, very
similar expansion histories. The above-mentioned problem
was one of the main reasons to introduce alternative mech-
anisms to identify models which could be quite similar than
other. On this subject, the Statefinder diagnostic was intro-
duced in 2003 by [74,75]. Such approach is a tool that makes
possible to differentiate between the very distinct and com-
peting cosmological scenarios involving DE at background
level. The Statefinder diagnostics is performed taking advan-
tage of higher order of derivatives on the scale factor a(t), in
such a way that it introduces the so-called Statefinder param-
eters, r, s, which are corrections to the Hubble rate H(z) and
deceleration parameter q(z) of higher order in a(t). Thus,
by computing the correction behind H(z) and q(z) we could
distinguish between models apparently equivalent. This diag-
nostic proposal introduces new geometrical dimensionless
parameters that characterize the properties of DE regardless
of the model, because they depend on the observable Hub-
ble parameter and its derivatives [76]. Statefinder diagnos-
tic have been applied to several models, e.g., some authors
have applied the Statefinder diagnostic to discriminate holo-
graphic DE (HED) models from the �CDM model [77], to
analyze Barrow holographic DE [78], interacting DE models
[79–82], among others [83–87].

Considering that an interaction between DE and DM offers
an interesting framework to study phenomenology beyond to
�CDM model, the main goal of the present work is to analyse
several interacting DE, recently proposed in the literature, via
Statefinder diagnostic. In doing so, for each interacting DE
model we compute the Statefinder parameters as functions of
the redshift, studying their high and low-redshift limits. We
also plot the evolution trajectory on the s−r and q−r planes
in order to determine its deviation from �CDM. In addition,
according to their behaviour on the s − r and q − r planes,
we discriminate between the several interacting DE studied,
breaking the degeneracies of the models at background level.
Basically, we perform the Statefinder diagnostic for 17 sev-
eral forms of the energy transfer rate Q between DE and
DM, belonging to the following categories: (i) linear models
in energy densities of DE and DM, (ii) non-linear models, (iii)
models with a change of direction of energy transfer between
DE and DM, (iv) models involving derivatives of the energy
densities, (v) parametrized interactions through a function
of the coincidence parameter r̃ , and finally we also consider
two kinds of models with a self-interaction between DM,
without DE. These models have been already studied in the
literature and constrained with observational data available
at that time, see e.g. [25,26,30,54–56,60,63,64,88–94].

Our work is organized as follows: after this introduction,
we present a brief review of the �CDM model as well as
the basic equations which describe an interaction between
DE and DM in Sect. 2. In the third Section, we present the
Statefinder parameters which will be applied for the sev-
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eral models, while in section 4 the background dynamics
of each particular model is studied. In particular, analytical
solutions for the corresponding Hubble rate as functions of
the redshift H(z) are presented. In the fifth section we dis-
cuss the Statefinder analysis for the several models, and in
Sect. 6 we make the comparison between models in light of
the Statefinder analysis. Finally we summarize our findings
and present our conclusions in Sect. 7. We adopt the mostly
positive metric signature, (−,+,+,+), and we work in nat-
ural units where c = h̄ = 1.

Disclaimer: In the following, we will consider a variety
of dark energy models, where the concrete meaning of the
symbols used may be different for each model. We have used
the same notation as in the original paper because we think
it is more convenient for the reader, i.e. once a model has
been selected, a comparison with the original paper should
be more natural. Thus, the reader should be careful and check
the nomenclature of the variables for each model instead of
assuming that the meaning of the parameters/variables is the
same. We have added a comparison table where, as we have
said before, we have kept the nomenclature of the original
papers, so the reader should use the table with caution. Sim-
ilarly, since we have used models from different papers, it is
of course expected that the data sets used to fit some param-
eters will be different. However, the primary motivation of
this paper is to perform a statefinder diagnostic of various
dark energy models, in which we have compared our results
with �CDM. Thus, given a particular dataset, we have used
the date for each concrete model and �CDM. As a secondary
goal, the idea is to compare the models between themselves,
but such a comparison will be slightly affected by using
different datasets. Nevertheless, a reasonable approximation
will be correct and sufficient for a first study. In summary, we
recognize the importance of considering different parameter
fits proposed by different authors for each model. We point
out that this diversity reflects differences in estimates and the-
oretical approaches and contributes to a more comprehensive
evaluation of the range of models for the interaction between
dark matter and dark energy.

Be aware and note that it is well-known that low-redshift
measurements, particularly those involving BAO, can be
model-dependent. Consequently, when parameters derived
from BAO data are employed, it is expected that the model
would align with the �CDM paradigm. In that sense, it
is expected that when low-redshift measurements are con-
sidered, the results do not changes significantly respect to
�CDM.

2 Theoretical Framework

2.1 �CDM model

We consider a FLRW Universe

ds2 = −dt2 + a(t)2
[

dr2

1 − Kr2 + r2dθ2 + r2 sin2 θdφ2
]

,

(1)

where a(t) is the scale factor at cosmic time t and K is the
Gaussian curvature of the space-time. Setting κ2 = 8πG,
with G being the Newton’s constant, the scale factor satisfies
the Friedmann equations [95]

H2 + K

a2 = κ2

3

∑
A

ρA + �

3
, (2)

ä

a
= −κ2

6

∑
A

(ρA + 3pA) + �

3
, (3)

where H = ȧ/a is the Hubble rate and ρA and pA denote
the energy density and pressure of each individual fluid com-
ponent, respectively, and they are related by an en equation-
of-state (EoS) parameter wA = pA/ρA. The curvature term
can be brought to the right-hand side of Eq. (2) by defin-
ing ρK = −3K/(8πGa2). On the other hand, the energy
density associated to � can be written as ρ� = �/8πG,
while its EoS becomes w� = −1. In addition to the curva-
ture and cosmological constant terms, the �CDM model also
includes other energy density components: baryons (b), cold
DM (c), and radiation (r), characterized by the EoS parame-
ters wb = wc = 0 and wr = 1/3, respectively.

In �CDM it is assumed that the different matter compo-
nents do not have any other interaction, therefore the energy
conservation equation for each component holds

ρ̇A + 3H(1 + wA)ρA = 0. (4)

Then, by integrating Eq. (4) for baryons, cold DM, and radi-
ation, the Friedmann equation for �CDM (2) can be written
as

H2 = H2
0

[
�r0

a4 + �m0

a3 + �K0

a2 + ��

]
, (5)

where we have used the fact that each energy density is usu-
ally expressed in terms the dimensionless density param-
eter, defined as �A = ρA/ρcr with ρcr = 3H2/(8πG)

being the critical density, and the sub-index “0” denotes
the current value of any given quantity. The Hubble con-
stant is usually expressed as H0 = 100h km s−1 Mpc−1,
where the parameter h denotes the observational uncertainty.
In Eq. (5), �m0 denotes the current contribution of non-
relativistic matter (baryons+cold DM). By convention, the
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dimensionless density parameter associated with the curva-
ture term is �K = −K/(aH)2 [96,97].

The cosmological parameters of the �CDM model,
derived from the CMB temperature fluctuations measured
by Planck Collaboration with the addition of external data
sets are given by [98]

h = 0.674 ± 0.005, �m0 = 0.315 ± 0.007,

�c0h
2 = 0.1200 ± 0.0012,

�b0h
2 = 0.02237 ± 0.00015, ��0 = 0.685 ± 0.007,

�m0 = 0.315 ± ±0.007,

where the spatial flatness (K = 0) has been assumed, while
the contribution of radiation becomes �r0 ∼ 10−5.

By using the relation between the scalar factor and the red-
shift a = (1 + z)−1, the Friedmann equation (5) for �CDM
with zero curvature may be written as

E2(z) = �r0(1 + z)4 + �b0(1 + z)3 + �c0(1 + z)3 + ��0, (6)

where E(z) ≡ H(z)/H0 is defined as the dimensionless
Hubble rate. At z = 0 (today), the following constraint is
satisfied

�r0 + �b0 + �c0 + ��0 = 1. (7)

If we set � = 0 and consider a more general DE (de)
component as the responsible of the accelerated expansion,
having energy density ρde and EoS wde, a combination of
CMB, SN, and BAO measurements, assuming a flat Uni-
verse, found wde = −1.03 ± 0.03 [18], consistent with the
cosmological constant case w� = −1.

2.2 Interaction between DE and DM

Now, we are going to consider the case where an interaction
between a dynamical DE component (with and EoS param-
eter wde) and DM is allowed. Despite the additional postu-
lated interaction, the total energy density of the dark sector
is conserved, and the energy momentum tensor of the dark
sector,Tμ

ν = Tμ

(de)ν
+ Tμ

(c)ν
, satisfies

�μT
μ
ν = �μ(Tμ

(de)ν
+ Tμ

(c)ν
) = 0, (8)

therefore, if an interchange of energy between DE and DM
is introduced, according to [63,68].

�μT
μ

(de)ν
= −�μT

μ

(c)ν
= Fν, (9)

where the Fν is the four-vector of interaction between dark
components. We can project the Eq. (9) parallel to the four-

velocity uμ, and we obtain

uμ�νT(c)μν
= −uμFμ, uμ�νT(de)μν

= uμFμ, (10)

and respect part orthogonal to the velocity, we must use the
projector hβμ = gβμ − uβuμ

hμβ�νT(c)μν
= −hμβFμ, hμβ�νT(de)μν

= hμβFμ, (11)

In addition, the general expression for the energy-momentum
tensor tensor describing perfect fluid is [97,99]

Tμν = (ρ + p)uμuν − pgμν. (12)

Now, we use Eqs. (12), (10) and (11) to obtain the following
Euler equations

hμβ�μ pc + (ρc + pc)u
μ�μu

β = −hμβFμ, (13)

hμβ�μ pde + (ρde + pde)u
μ�μu

β = hμβFμ. (14)

In the context of a flat FLRW universe, uμ = (1, 0, 0, 0) in
the comoving coordinates, thus

�μu
μ = 3H, (15)

uμ�μu
ν = 0. (16)

We use the notation uμFμ = Q. Now, we write the Eqs. (13)
and (14) in the form

ρ̇c + 3Hρc = Q, (17)

ρ̇de + 3H(ρde + pde) = −Q, (18)

Where Q is the rate of energy exchange between DE and DM.
Here, Q > 0 reflects that the energy flows from DE to DM,
while Q < 0 the opposite. In a spatially flat FLRW universe
filled with DE, DM, baryons, and radiation, we can split the
Eq. (4) for baryons and radiation, yielding the following set
of equations

ρ̇de + 3H(1 + wde)ρde = −Q, (19)

ρ̇c + 3Hρc = Q, (20)

ρ̇b + 3Hρb = 0, (21)

ρ̇r + 4Hρr = 0, (22)

In phenomenological construction of interacting DE models,
it is assumed that Q can be modeled as a certain function of
energy densities and the Hubble rate [63,64]. Several expres-
sions for the rate of energy exchange Q have been studied in
the literature: models where Q is a linear function (widely
studied) of densities of DM or DE [26,30,54,88,91–93], non-
linear interactions [54,60,63,93], proportional to decelera-
tion parameter [89], and others combinations, where Q is
constructed from derivatives of the densities of DM or DE,
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or varying couplings with dependence on cosmic time or
redshift [88], among others.

The conservation equations for baryons and radiation,
Eqs. (21) and (22), respectively, are solved by separation
of variables, yielding

ρb(z) = ρb0(1 + z)3, (23)

ρr (z) = ρr0(1 + z)4. (24)

However, the solutions of the Eqs. (19) and (20) depend on the
mathematical structure of Q, therefore, it is not always pos-
sible to obtain an analytical solution for E(z) = H(z)/H0.
Then, we focus on interacting DE models that allow ana-
lytical solutions for E(z) in order to apply the Statefinder
analysis.

3 Statefinder diagnostic

In Ref. [75], the authors introduced the Statefinder parame-
ters by expanding in Taylor series the scale factor a(t). We
are interested in small values of |t − t0|. The scale factor a(t)
is expanded as follows

a(t) = a(t0)+ȧ|0(t−t0)+ ä|0
2

(t−t0)
2+ ä|0

6
(t−t0)

3+· · · ,

(25)

or in the form [100]

(1 + z)−1 := a(t)

a(t0)
= 1 +

∑
n

An(t0)

n! [H0(t − t0)]n, (26)

where An = a(n)

aHn , n ∈ N, a(n) is nth derivative of the scale
factor with respect to cosmic time. An is used to define the
Statefinder parameters q, r and s. Recalling that q is defined
above as the deceleration parameter, it can be written in terms
of A2 as

q ≡ −A2 = − ä

aH2 = −1 − Ḣ

H2 . (27)

We rewrite Eq. (3) in terms of the deceleration parameter as
follows

q = − ä

aH2 =
∑
i

4πGρi

3H2 (1 + 3wi ) = (1 + 3wde�de)

2
,

(28)

where wi = pi/ρi , �i = 8πGρi/3H2
0 and we have assumed

that �b+�c+�de = 1. The parameter r is the next (after the
Hubble rate H and the deceleration parameter q) member of

the set of kinematic parameters that describe the expansion
of the Universe [101], which is defined as

r ≡ A3 = ä

aH3 , (29)

or in terms of DE density

r = 1 + 9

2
�dewde(1 + wde) − 3

2
�de

ẇde

H
, (30)

where the parameter r was first introduced in [102], and in
[103] as well as the jerk ‘ j’.

On the other hand, the parameter s is defined as a combi-
nation of r and deceleration parameter, and it should not to
be confused with the snap (the fourth time derivative) [104]

s ≡ r − 1

3(q − 1/2)
, (31)

substituting q and r ,

s = r − 1

3(q − 1/2)
= 1 + wde − 1

3

ẇde

wdeH
. (32)

It is observed that s does not explicitly depend on the DE
density. The reason of why s is chosen in such a way is
due to the fact that the features chosen for the description
of DE may be geometrical, if they come directly from the
metric of space-time, but also physical, if they depend on
the characteristics of the fields that represent DE. Physical
qualities vary on models, while geometrical characteristics
are universal [101].

For our analysis, it will be useful to express these param-
eters in terms of the dimensionless Hubble rate and the red-
shift z. The cosmic times derivatives are written as redshift
derivatives according to

d

dt
= d

dz

dz

da

da

dt
= −(1 + z)H(z)

d

dz
,

where E2(z) = H2(z)/H2
0 as been used. In this way, the set

Statefinder parameters becomes

q = −1 − 1 + z

2E2

dE2

dz
, (33)

r = 1 + 1

2E2

[
(1 + z)2 d

2E2

dz2 − 2(1 + z)
dE2

dz

]
, (34)

s = 1

3

(1 + z)2 d2E2

dz2 − 2(1 + z) dE
2

dz

(1 + z) dE
2

dz − 3E2
. (35)

Therefore, if the role of DE is played by a cosmological
constant, i.e wde = −1, then the value of r remains at r =
1 throughout the matter-dominated epoch and at all future
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Fig. 1 Statefinder parameters plots q(z), r(z), s(z), q − r and s − r for �CDM

times (for z � 104). In the s−r plane, the fixed point {s, r} =
{0, 1} in a Universe containing a cosmological constant and
non-relativistic matter corresponds to �CDM.

According to [75,105], a first limit case (�m = �c+�b =
1, �de = 0), without radiation, corresponds to the standard
cold dark matter (SCDM), in which the Universe presents a

decelerated power-law expansion, according to a(t) ∝ t2/3.
In this case, the fixed point is found to be {s, r} = {1, 1}.
The other limit case (�m = 0, �de = 1) corresponds to a dS

Universe, which expands at constant rate, a(t) ∝ exp
√

�
3 t .

The following plots correspond to the case for �CDM model.
In Fig. 1a–c we show the plots of Statefinder parameters
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against redshift q(z), r(z) and s(z), and in Fig. 1d, e are
shown the parametric plots in s − r and q − r planes. In
addition, the fixed point {q, r} = {−1, 1} in the q − r plane
corresponds to the asymptotic dS solution [76].

By comparing the evolution trajectories on the r − q and
r − s planes between the corresponding to several DE and
�CDM models, it is possible to find some similarities and
analyze the deviation and compatibility with �CDM model.

4 Interacting DE models: analytic solutions for H(z)

In this Section, we present several mathematical expressions
for the coupling Q between DE and DM as well as the
corresponding solutions for the dimensionless Hubble rate
E = H(z)/H0, which will be used in order to analyze each
model by means the Statefinder diagnostic. First, we present
models 1, 2, where Q is linear with respect to the energy
densities of DM and DE, respectively. Model 3 is a linear
combination of DE and DM energy densities. Models 4, 5,
and 6 are non-linear. Models 7, 8, and 9 involve a coupling
proportional to decelerating parameter q. Model 10 consid-
ers a linear combination of the derivatives (respect to ln(a3))
of the energy densities DM and DE. Furthermore, models 11,
12, 13, 14, and 15 are interactions that can be parameterized
as a function of the ratio r̃ between density DM and DE.
Finally, as an “extra bonus”, models 16 and 17 are two kinds
of special models without DE, where exists a self-interaction
between DM. It should be noted that all the investigated mod-
els are dimensionally consistent with respect to the expres-
sion for Q. In this paper, all the expressions for Q we focused
on may written in general terms as Q = 3 Hγ R(ρc, ρde),
where γ is a dimensionless constant and R is a real function
having units of energy density. Moreover, each Q is linear
in the Hubble rate H , since this facilitates the consistency of
units and the solving of differential equations by replacing
Q in Eqs. (19) and (20). On the other hand, we will assume
w = const. where it corresponds.

4.1 Linear interactions

Going further the simplest interacting DE models where Q is
constant, linear models have brought a lot of interest in their
study. Accordingly, we are going to study three linear models,
Q proportional to the DM density, the second proportional
to the DE, and a general case being a linear combination of
DE and DM energy densities. The models with the rate of
energy transfer Q ∝ ρc and Q ∝ ρde have been widely
studied in the literature. We use the expressions presented
in Refs. [59,92], where Qis proportional to the constant 3γ ,
since this simplifies the expression for E2(z).

4.1.1 MODEL 1. Q1 = 3γ Hρc

For the first case to be presented, the rate Q is proportional
to the DM energy density

Q = 3γ Hρc, (36)

where γ is a dimensionless constant and gives us the strength
of the coupling. If we set K = 0, the Friedmann equation (2)
becomes

H2 = 8πG

3
[ρr + ρb + ρc + ρde]. (37)

Assuming that wde is a constant, the authors in Refs. [57,92],
provide the analytical solutions for the densities ρc and ρde
by inserting Eq. (36) into Eqs. (19) and (20), thus

ρc = ρc0(1 + z)3(1−γ ), (38)

ρde =
[
ρde,0 + ρc0

γ

wde + γ

]
(1 + z)3(1+wde). (39)

If we substitute Eqs. (23), (24), the expression for ρc, ρde
and a = (1 + z)−1 into (37), and dividing by the critical
density, the expression for the dimensionless Hubble rate
E(z) = H(z)/H0 is expressed as

E2(z) = �de(1 + z)3(1+wde) + �r (1 + z)4 + �b(1 + z)3

+�c

(
γ

wde + γ
(1 + z)3(1+wde)

+ wde

wde + γ
(1 + z)3(1−γ )

)
. (40)

Besides, the function E(z) for wde = −γ is a special case
to consider. We calculate the limit for that purpose. When
w → −γ the expression for the dimensionless Hubble rate
becomes

E2(z) → (1 + z)3
[
�b + �r + z�r − (1 + z)−3γ

(�b + �r − 3γ�c log(1 + z) − 1))
]
. (41)

4.1.2 MODEL 2. Q2 = 3γ Hρde

The second interaction within this category depends linearly
on the DE energy density

Q = 3γ Hρde. (42)

In the same way as the first interaction, according to Refs.
[57,59,92], if Eq. (36) is replaced into Eq. (19), the solution
for ρde is found to be

ρde = ρde,0(1 + z)3(1+wde+γ ). (43)
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Accordingly, the expression for the dimensionless Hubble
rate yields

E2(z) = �m(1 + z)3 + �r (1 + z)4 + �de

×
(

γ

wde + γ
(1 + z)3

+ wde

wde + γ
(1 + z)3(1+wde+γ )

)
, (44)

where �m = �c + �b, �r = 2.469 × 10−5h−2(1 +
0.2271Nef f ) and Nef f = 3.046.

If γ < 0, this implies that the energy transfer is from DM
to DE, and for MODELS 1 and 2 if we set γ = 0, there
is no interaction and both models reduced to wCDM, while
for wde = −1, wCDM reduces to Eq. (6) corresponding to
�CDM.

Analogously to the first case, if wde → −γ , the expres-
sion for the dimensionless Hubble (44) takes the form

E2(z) → (z + 1)3[1 + z�r − 3γ�de log(z + 1)]. (45)

4.1.3 MODEL 3. Q3 = 3H(λcρc + λdeρde)

Our third model is a linear combination of DE and DM energy
densities

Q = 3H(λcρc + λdeρde), (46)

which has been studied in Refs. [54,57,88,90,91,106]. The
coupling parameters λc and λde denote the strengths of the
interaction between the components of the dark sector and
their signs imply the direction of energy transfer. It is relevant
to mention that in [90], the analytic solution found for this
interaction assumed that the coupling parameters are very
small (i.e. |λc| � 1 and |λde| � 1 ), and the authors neglect
the product λcλde in the solution, however, we will consider
this product to be not null when using the expressions in the
subsequent analysis. In Ref. [91], the conservation equations
(19, 20) were unified and the authors derived the following
master equation when the coupling (46) is considered

ρ′′
T +

(
2 + wde + λde − λc − w′

de

wde

)
ρ′
T

+
[
(1 + wde)(1 − λc) + λde − w′

de

wde

]
ρT = 0, (47)

which is a second order differential equation, where ρT =
ρc+ρde and primes denote derivatives respect to the variable
x = ln(a3). In order to solve the above equation, for wde =
const., the solution of Eq. (47) according to Refs. [54,91] is
found to be

ρT = ρ1a
3m+ + ρ2a

3m− , (48)

where ρ1, ρ2 are integration constants, and m± are

m± = λc − wde − λde − 2 ±√
(λc + wde + λde)2 − 4λcλde

2
,

(49)

considering (λc + wde + λde)
2 − 4λcλde > 0 to obtain m+

and m− real and distinct. From Eq. (2) and neglecting the
contribution of radiation, the Hubble rate takes the following
form

H2 = 8πG

3

[
ρb0a

−3 + ρ1a
3m+ + ρ2a

3m−
]

− K

a2 . (50)

The explicit analytic solutions for DM and DE energy den-
sities are

ρc = ρ1
wde + 1 + m+

wde
a3m+ + ρ2

wde + 1 + m−
wde

a3m− ,

(51)

ρde = −ρ1(1 + m+)a3m+ + ρ2(1 + m−)a3m−

wde
, (52)

respectively. Furthermore, in terms of the density parameters
for the equivalent two fluids �1 and �2, the density param-
eters for DM (�c0) and DE (�de,0) are respectively written
as

�c0 = �1
(wde + 1 + m+)

wde
+ �2

(wde + 1 + m−)

wde
, (53)

�de,0 = −�1(1 + m+) + �2(1 + m−)

wde
, (54)

where �i = 8πGρi/3H2
0 . Using the aforementioned equa-

tions (53) and (54), the parameters �1 and �2 may be
expressed. Taking into account �c0 + �de,0 = �1 + �2,
and

�c0 +�de,0 +�b0 +�K = �1 +�2 +�b0 +�K = 1, (55)

from Friedmann equation (2) at the present time t = t0. Then,
it is obtained

�1 = wde�c0 − (1 + wde + m−)(1 − �b0 − �k)

m+ − m−
.

For a flat Universe, i.e. �K = 0, we have that

�c = �1
(wde + 1 + m+)

wde
a3m+ + (1 − �1 − �b0)

× (wde + 1 + m−)

wde
a3m− , (56)

�de = −�1(1 + m+)a3m+ + (1 − �1 − �b0)(1 + m−)a3m−

wde
.

(57)
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If we write Eq. (50) in terms of the normalized densities
and replace �c, �de and a = (1 + z)−1, the dimensionless
Hubble rate is expressed as follows

E2(z) = �b0(1 + z)3 + �c + �de, (58)

and expanding it, we get

E2(z) = �b0(1 + z)3 + �1(1 + z)−3m+

+(1 − �1 − �b0)(1 + z)−3m− . (59)

It is straightforward to check that if we set λc = λde = 0 and
wde = −1, there is no interaction and the model reduces to
�CDM.

4.2 Non-linear interactions

The next three non-linear interactions we have already been
studied in [56,57,63]. First, we recall that the coincidence
parameter r̃ is defined as the ratio between DM and DE
energy densities

r̃ = ρc

ρde
. (60)

If ρ = ρc + ρde, the individual energy densities are written
as

ρc = r̃

1 + r̃
ρ, ρde = 1

1 + r̃
ρ. (61)

This allows us to obtain a differential equation for r , which
makes it easier to find its solution, as we will show later in
the parameterized interactions.

4.2.1 MODEL 4. Q4 = 3Hγ
ρcρde

ρ

For the first non-linear interaction

Q4 = 3Hγ
ρcρde

ρ
, (62)

whereρ = ρc+ρde. According to [56], the following analytic
solutions were found

r̃ = r̃0a
3(wde+γ ), (63)

ρ = ρ0a
−3(1+wde)

[
1 + r̃0a3(wde+γ )

1 + r̃0

] wde
wdeγ

, (64)

ρc = ρc0a
−3(1−γ )

[
1 + r̃0a3(wde+γ )

1 + r̃0

]− γ
wde+γ

, (65)

ρde = ρde0a
−3(1+wde)

[
1 + r̃0a3(wde+γ )

1 + r̃0

]− γ
wde+γ

. (66)

Now, we construct the expression for the dimensionless Hub-
ble rate from the Friedmann equation

E2(z) = �de,0

(
1

1 + z

)−3(wde+1)

×
⎛
⎜⎝�de,0 + �c0

(
1

1+z

)3(wde+γ )

�c0 + �de,0

⎞
⎟⎠

− γ
γ+wde

+�c0

(
1

1 + z

)−3+3γ

×
⎛
⎜⎝�de,0 + �c0

(
1

1+z

)3(wde+γ )

�c0 + �de,0

⎞
⎟⎠

− γ
γ+wde

+�b0(1 + z)3 + �r0(1 + z)4.

(67)

�CDM is recovered for γ = 0 and wde = −1. For z 	 1
(matter-dominated epoch), we obtain the expected evolution
of density ρ ∝ a−3.
In the asymptotic case, if wde → −γ , the above expression
(67) becomes

E2(z) → (1 + z)3
[
�b0 + �r0 + z�r0 − (�b0 + �r0 − 1)

(1 + z)
−3γ

[
�c0

�b0+�r0−1 +1

] ]
, (68)

and when γ = 1, we have

E2(z) → (1 + z)3
[
�b0 + �r0 + z�r0 − (�b0 + �r0 − 1)

(1 + z)
−3
[

�c0
�b0+�r0−1 +1

]]
. (69)

4.2.2 MODEL 5. Q5 = 3Hγ
ρ2
c
ρ

The second non-linear term to be studied has the following
dependence on the energy densities

Q = 3Hγ
ρ2
c

ρ
, (70)

where ρ = ρc +ρde. In this case, the analytical solutions for
the ratio r̃ and total energy density ρ are

r̃ = r̃0
wde

(wde + γ r̃0)a−3wde − γ r̃0
, (71)

ρ=ρ0a
−3
(

1− γwde
wde−γ

) [
(wde+γ r̃0)a−3wde+r̃0(wde−γ )

wde(1+r̃0)

]
,

(72)

then, the expression for the dimensionless Hubble rate is
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E2(z)

=

(
1

1+z

)−3+wde

(
−3+ 3γ

wde−γ

) (
wde�de,0 − γ�c0

((
1

1+z

)3wde − 1

))

wde

+�c0

(
1

1 + z

) 3γwde
wde−γ

−3

+ �b0(1 + z)3

+�r0(1 + z)4. (73)

For a � 1 (the high-redshift limit), the ratio r̃ becomes
a constant, r̃ → |wde| /γ . In the opposite limit (a 	 1),
ρ ∝ a−3, as in the �CDM case. Similarly for MODEL 4
when γ = 0 and wde = −1, �CDM is recovered.
A special case corresponds for wde → −1 and γ → 1. The
expression for the dimensionless Hubble rate (73) exhibits a
convergent behavior to

E2(z) → (1 + z)3 ×
[
�b0 +

(
1

1 + z

) 3
2

�c0 + �r0(1 + z)

−
(

1

1 + z

) 9
2 ([2 − (1 + z)3]�c0 + �b0 + �r0 − 1

)]
.

4.2.3 MODEL 6. Q6 = 3Hγ
ρ2
de
ρ

The third interaction term belonging to this category is

Q = 3Hγ
ρ2
de

ρ
, (74)

where ρ = ρc + ρde. For wde < 0, i.e. wde = − |wde| the
solutions are

r̃ =
(
r̃0 − γ

|wde|
)
a−3|wde| + γ

|wde| , (75)

ρ = ρ0a
−3

(
1− w2

de|wde|+γ

)

×
[ |wde| + γ + (|wde| r̃0 − γ )a−3|wde|

|wde| (1 + r̃0)

] |wde||wde|+γ

, (76)

while the dimensionless Hubble rate yields

E2(z) = (z + 1)3 ×

⎡
⎢⎢⎢⎣�b0 + �r0 + z�r0 + (�c0 + �de,0) |wde|−

|wde||wde|+γ

×
(

1

1 + z

) 3w2
de|wde|+γ

⎛
⎜⎝�de,0(|wde| + γ ) +

(
1

1+z

)−3|wde|
(�c0 |wde| − γ�de, 0)

�c0 + �de,0

⎞
⎟⎠

|wde||wde|+γ

⎤
⎥⎥⎥⎦ . (77)

In this case, the expression (77) is always defined for
any values of γ and wde. Additionally, the ratio r̃ scales
as a−3|wde| for a � 1. For wde = −1, this coincides with
the scaling of its �CDM counterpart. In the far-future limit,
however, we obtain r̃ ⇒ γ / |wde|, (a 	 1), i.e., the energy-
density ratio remains finite, while it tends to zero in the
�CDM model. The energy density scales as a−3 for a � 1,
i.e., we recover an early matter-dominated period. In the limit
a 	 1 one has

ρ ∝ a
−3

(
1− w2

de|wde|+γ

)
. (78)

From this last equation, we can see that this generally does
not correspond to a dS phase.

4.3 Models with a change of direction of energy transfer

In Ref. [107], the authors investigated the interaction regard-
less the explicit form of Q, by using the most current obser-
vational data available at that time. The authors divided the
whole redshift range z into a few and concluded that the inter-
action term δ(z) = Q/(3H) was a constant in each redshift
interval. They realized that δ(z) is likely to cross the line
where the interaction does not occur (δ = 0), therefore, the
sign of the interaction Q must change in the approximate
redshift range of 0.45 � z � 0.9.

This result poses a problem since most of the interactions
studied in the literature are of linear type as in MODELS 1
and 2, which are always positive or negative and, therefore,
cannot give the possibility of changing their signs. Taking
into account the work [107], the author proposed a new type
of interaction in [55] and [89], where the deceleration param-
eter q was included in the coupling Q, thus allowing that the
interaction Q changes sign when the Universe goes from
deceleration (q > 0) to acceleration (q < 0).

In this Section, we will investigate MODELS 7, 8, and
9, previously studied in [89], and later by [63,94]. In these
cases, Q is proportional to the deceleration parameter, which
produces a change of direction of energy transfer. For sim-
plicity, in these works, the authors set wde = −1.
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4.3.1 MODEL 7. Q7 = q(αρ̇c + 3βHρc)

The first interaction within this category is a linear combina-
tion of energy density of DM and its time derivative

Q = q(αρ̇c + 3βHρc). (79)

For this kind of coupling and using Eqs. (20) and (3), a tran-
scendental differential equation for H(a) is obtained

a
d2H

da2 + a

H

(
dH

da

)2

+ dH

da
= βq − 1

1 − αq
· 3

dH

da
. (80)

which cannot be solved analytically for α �= 0. Nevertheless,
in the particular case of α = 0, the analytic solution for the
dimensionless Hubble rate is found to be

E2(z) =
[

1 − 2 + 3β

2(1 + β)
�c0

[
1 − (1 + z)3(1+β)

]] 2
2+3β

.

(81)

When β = 0, it yields

E2(z) = �c0(1 + z)3 + (1 − �c0), (82)

corresponding to �CDM, where the contribution coming
from baryons and radiation components is neglected.

We note that if β → −1 or β → − 2
3 , the expression (81)

becomes undefined.

4.3.2 MODEL 8. Q8 = q(αρ̇tot + 3βHρtot )

In this second case, the coupling involves the sum of DM and
DE densities, i.e ρ = ρc + ρde and its time derivative

Q = q(αρ̇ + 3βHρ). (83)

Similarly to the previous case, we arrive at a transcendental
differential equation for H(a)

a
d2H

da2 + a

H

(
dH

da

)2

+ (4 + 3αq)
dH

da
+ 9βqH

2a
= 0, (84)

for α = 0, the interaction reduces to Q = 3βqHρtot , and
the corresponding solution for the dimensionless Hubble rate
yields

E(z) = (1 + z)3(2−3β+r1)/8 ·
√
C21 + (1 + z)−3r1/2

C21 + 1
, (85)

where r1 ≡ √
4 + β(4 + 9β) and

C12 = −1 + 2r1

2 − 3β − 4�c0 + r1
. (86)

If β = 0, E(z) reduces to

E2(z) = �c0(1 + z)3 + (1 − �c0), (87)

which corresponds to �CDM.

4.3.3 MODEL 9. Q9 = q(αρ̇de + 3βHρde)

Now, we are going to present a model where Q is a linear
combination of DE energy density and its time derivative

Q = q(αρ̇de + 3βHρde). (88)

In the same way as two previous cases, we arrive at a tran-
scendental differential equation for H(a)

a
d2H

da2 + a

H

(
dH

da

)2

+
(

4 + 3βq

1 + αq

)
dH

da
+ 9βqH

2a(1 + αq)
= 0.

(89)

We solve the equation for α = 0 and obtain the following
dimensionless Hubble rate

E(z)=(1 + z)3(2−5β+r2)/[4(2−3β)] ·
[

(1+z)−3r2/2+C31

1+C31

]1/(2−3β)

,

(90)

where r2 ≡ |2 − β| and

C31 = −1 + 2r2

2 − 5β + r2 + 2�c0(3β − 2)
. (91)

If we set β = 0

E2(z) = �c0(1 + z)3 + (1 − �c0), (92)

�CDM model is recovered.
If β → 2

3 , the expression (90) becomes

E2(z) → (1 + z)3 exp

[
3z(z + 2)(�c0 − 1)

2(1 + z)2

]
. (93)

4.4 Interaction involving derivatives of the energy densities

4.4.1 MODEL 10. Q10 = 3αH(ρ′
de + ρ′

c)

In Ref. [59], the authors studied an interaction where Q is
constructed to be a lineal combination of DE and DM energy
densities but involving derivatives (derivatives with respect
to ln(a3), where a is the scale factor) as

Q = 3αH(ρ′
de + ρ′

c), (94)

123



  459 Page 12 of 33 Eur. Phys. J. C           (2024) 84:459 

where ′ ≡ d
dln(a/a0)3 = d

3Hdt . This model was previously
studied in [54] and later in [108]. Assuming that wde is con-
stant, in Ref. [59] the authors provide an analytical solution
for the total energy density ρ = ρde + ρc and hence the
analytical expression for E2(z). Firstly, the solution for ρ is
given by

ρ(a) = C1a
3β+ + C2a

3β−
, (95)

where

β± =
−2 − (1 − α)wde ±

√
(1 − α)2w2

de − 4αwde

2
, (96)

and

F± = �de(1 + wde + β±) + �c(1 + β±)

β− − β+ . (97)

We assume that (1 − α)2w2
de − 4αwde > 0 for β± to be

real and distinct. If wde = −1 and α = −1 implies β+ =
β−, because (1 − α)2w2

de − 4αwde = 0. In that case, F±
is undefined. Thus, the dimensionless Hubble rate can be
written as

E2(z) = �b(1 + z)3 + �r (1 + z)4

+(1 + z)−3β+
F− − (1 + z)−3β−

F+. (98)

It is easy to verify that if α = 0 there is no interaction. We
obtain from Eq. (96), β+ = −1, and β− = −(1 + wde),
therefore F+ = −�x and F− = �c, therefore, the model
reduces to wCDM.

4.5 Parameterized interactions

In the following Subsection, we present some interactions
which are derived from a real function f (r̃) of the coinci-
dence parameter r̃ is introduced, which is the ratio between
the energy densities of DM and DE, and it is given by Eq. (60).
The main motivation for studying the interactions parametri-
cally is to solve the cosmic coincidence problem. By solving
the differential equations one has an analytical solution for
the ratio, allowing us to see the evolution of the ratio as a
function of the scale factor or redshift. Some of the interac-
tions examined in the preceding models can be obtained by
appropriately selecting the parametric function f (r̃).

In Ref. [60], five models were investigated by the authors.
In this reference is set wde = −1 and the sign of Q is
changed, hence, the Eqs. (19) and (20) have the following
form

ρ̇c + 3Hρc = −Q, (99)

ρ̇de = Q, (100)

where Q is written as Q = 3Hγ R(ρc, ρde), whit γ being
a dimensionless constant and R is a real function which has
units of energy density.

By taking the time derivative of the ratio r̃ between the
energy density of DM and DE as Eq. (60), we obtain the
expression

˙̃r = r̃

(
ρ̇c

ρc
− ρ̇de

ρde

)
. (101)

Using the Eqs. (99), (100) and (101) together, we get

˙̃r + 3Hr̃ [γ f (r̃) + 1] = 0, (102)

where

f (r̃) = R
ρc + ρde

ρcρde
. (103)

We are interested in the analytical solution for (102), and
we can obtain the expression for ρc = ρc(a), ρde = ρde(a)

when r̃ = r̃(a).
The following models correspond to different choices of

f (r̃).

4.5.1 MODEL 11. f (r̃) = 1

The first parametric form is chosen to be

f (r̃) = 1, (104)

which is equivalent to the interaction of MODEL 4, given by
Eq. (62)

Q = 3Hγ
ρcρde

ρc + ρde
. (105)

Besides, the coincidence parameter has the following solu-
tion

r̃(a) = r̃0a
−3(γ+1), (106)

while the energy density of DM yields

ρc = ρc0a
−3

(
�c0 + �de,0a3(γ+1)

�c0 + �de,0

)− γ
γ+1

. (107)

By using the relation a = (1 + z)−1, we have the expression
for the dimensionless rate Hubble as follows

E2(z) = (�c0 + �de,0)

(
�c0 + �de,0(1 + z)−3(γ+1)

�c0 + �de,0

) 1
1+γ

×(1 + z)3 + �b0(1 + z)3 + �r0(1 + z)4. (108)
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It is important to mention that when we analyze the models
numerically in next section, the sign of γ is the opposite of
that in the models with equivalent interactions since the sign
for Q has been chosen with the opposite sign.

In the same way as we did in MODEL 4, we investigate
the case where w = γ = −1. If γ → −1. In such a case,
the dimensionless Hubble rate (108) takes the form

E2(z) → (1 + z)3
[
�b0 + �r0 + z�r0 − (�b0 + �r0 − 1)

(1 + z)
−3
[

�c0
�b0+�r0−1 +1

]]
, (109)

which is equivalent to the Eq. (69).

4.5.2 MODEL 12. f (r̃) = 1
r̃

By choosing the following explicit form for f (r̃)

f (r̃) = 1

r̃
, (110)

results in a coupling Q which is equivalent to the interaction
of MODEL 6 given by Eq. (74)

Q = 3Hγ
ρ2
de

ρc + ρde
, (111)

and the solution for r̃(a) is

r̃(a) = r̃0a
−3 − γ (1 − a−3). (112)

Besides, the analytical solution for the DE density is given
as

ρde = ρde,0a
− 3γ

γ−1

(
(1 − γ )�de,0 + (�c0 + γ�de,0)a−3

�c0 + �de,0

)− γ
γ−1

,

(113)

while the dimensionless Hubble rate is expressed as

E2(z) = �de,0

(
1

z + 1

)− 3γ
γ−1

×
(

(1 − γ )�de,0 + (z + 1)3(γ�de,0 + �c0)

1 − �b0 − �r0

)− γ
γ−1

× +
(

1

z + 1

)− 3γ
γ−1 (

γ�de,0z(z(z + 3) + 3) + �c0(z + 1)3
)

×
(

− (γ − 1)�de,0 + (z + 1)3(�c0 − γ�de,0)

�b0 + �r0 − 1

)− γ
γ−1

+ �b0(z + 1)3 + �r0(z + 1)4.

(114)

4.5.3 MODEL 13. f (r̃) = r̃

An equivalent interaction as MODEL 5, given by Eq. (70)

Q = 3Hγ
ρ2
c

ρc + ρde
(115)

can be obtained if f (r̃) depends linearly on the coincidence
parameter, i.e.

f (r̃) = r̃ . (116)

For this parametrization, the coincidence parameter has the
solution

r̃(a) = r̃0
a−3

1 + r̃0γ − r̃0γ a−3 , (117)

and the DM energy density results in

ρc = ρc0a
−3
[
γ�c0 + (1 − γ )�c0a−3 + �de,0

�c0 + �de,0

]− γ
γ−1

.

(118)

In this way, the dimensionless Hubble rate is written as

E2(z) = �c0(z + 1)3
(

γ�c0 + �de,0 + (1 − γ )�c0(z + 1)3

1 − �b0 − �r0

)− γ
γ−1

+
(
γ�c0 + �de,0 − γ�c0(z + 1)3

)

×
(

γ�de,0 + (1 − γ )�c0(z + 1)3

1 − �b0 − �r0

)− γ
γ−1

+�b0(z + 1)3 + �r0(z + 1)4. (119)

4.5.4 MODEL 14. f (r̃) = 1 + 1
r̃

For a parameterization of the type

f (r̃) = 1 + 1

r̃
, (120)

the corresponding rate Q becomes equivalent to MODEL 2,
which is given by Eq. (42)

Q = 3Hγρde, (121)

and the coincidence parameter may be written as follows

r̃(a) = a−3γ

(
r̃0a−3 + γ a−3 − γ a3γ + r̃0γ a−3

)
1 + γ

. (122)

Therefore, the dimensionless Hubble rate becomes
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E2(z) =
γ�de,0

(
−
(

1
z+1

)3γ
)

+ γ�c0(z + 1)3 + �c0(z + 1)3 + �de,0γ (z + 1)3

γ + 1

+ �de,0

(
1

z + 1

)3γ

+ �b0(z + 1)3 + �r0(z + 1)4.

(123)

4.5.5 MODEL 15. f (r̃) = 1 + r̃

The interaction of the MODEL 1

Q = 3Hγρc, (124)

can be reproduced if f (r̃) has the following explicit depen-
dence on r̃

f (r̃) = 1 + r̃ . (125)

For this last parametrization, the solution for the ratio r̃ is
found to be

r̃(a) = − 1 + γ

γ − a3(1+γ )
(

1+γ+r̃0γ
r̃0

) , (126)

and accordingly

ρc = ρc0a
−3(1+γ ). (127)

In this model, the dimensionless Hubble rate yields

E2(z) =
�de,0 + γ

(
�c0 + �de,0 − �c0

(
1

z+1

)−3(γ+1)
)

γ + 1

+�c0

(
1

z + 1

)−3(γ+1)

+ �b0(z + 1)3

+�r0(z + 1)4. (128)

We observe that E2(z) reduces to �CDM when γ = 0.

4.6 Self-interaction between DM

In Ref. [109], the authors instead of considering a DE com-
ponent, they argue that a self-interacting DM produces the
accelerated expansion. They investigate background cosmic
evolution by assuming a direct interaction between two DM
particle types. One species is denoted by am subscript, while
the other one is denoted by a x subscript. It is important to
point out that baryons and radiation are not considered in
this work as self-interacting models for small redshift will
be studied.

By defining a Langrangian density, conservation equations
for each type of DM particles are derived, which are similar
to the Eqs. (19) and (20), thus

ρ̇m + 3H(ρm + pm) = Qm, (129)

ρ̇x + 3H(ρx + px ) = Qx . (130)

In that work, two specific models are studied: a symmetric
model and an asymmetric model with respect to the Qm and
Qx interaction rates.

4.6.1 MODEL 16. Symmetric model.
Qm = −3Hαρm, Qx = −3Hβρx

In the first model, a simple linear interaction between the
both DM components is proposed, and it is similar to those
investigated between DE and DM interacting models, with
the benefit of knowing the mathematical behavior through
the analytical solution of the density equations. As a result,
the interaction rates are defined as follows

Qm = −3Hαρm, Qx = −3Hβρx , (131)

thus, solving Eqs. (129) and (130), and assuming pm = px =
0, it was obtained the following dimensionless Hubble rate

E2(z) = 1 + �m

α + 1

(
(z + 1)3(α+1) − 1

)

+ �x

β + 1

(
(z + 1)3(β+1) − 1

)
, (132)

where �i = ρ0
i /3H2

0 . As it can be seen, the equation for
E2(z) is symmetrical for both types of DM components. It
is crucial to note that when α, β � 1 (but non null) implies
that E2(z) reduces to

E2(z)  1 − �m − �x + (�m + �x )(z + 1)3. (133)

This indicates that having a small (but non-zero) interaction
between two dust-like components, the model we obtain is
very similar to a model with no interaction containing dust
and a cosmological constant.
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4.6.2 MODEL 17. Asymmetric model.
Qm = −3Hαρm, Qx = −3Hβ(ρm + ρx )

Linear interaction functions may be defined in an asymmetric
way, such that

Qm = −3Hαρm, Qx = −3Hβ(ρm + ρx ), (134)

which implies that the solution for the corresponding Hubble
rate yields

E2(z) = 1 + �m[[(α + β) − 1] (1 − (z + 1)3)− 3β(1 + z)3

log(1 + z)] + �x [(α + β) − 1]
(
1 − (z + 1)3) .

(135)

In the limit z → −1 for the expression E2(z), we get

E2(z) → 1 − (�m + �x ) − 3β�m

[
(z + 1)3 log(1 + z)

]
,

(136)

clearly the term between the square brackets vanishes when
z → −1. It is concluded that, regardless of the value of β, in
the limit when z → −1, �CDM is recovered.

5 Statefinder analysis of interacting DE models

Previously, we have shown how to obtain the dimensionless
Hubble rate E(z) for the several interacting models. Now, in
the present Section we will compute the Statefinder param-
eters q(z), r(z), and s(z) for all the interacting DE models
presented in previous section. We present the equations for
q(z), r(z), and s(z) for each model and will not be shown due
to that, generally, they are quite large. We will also obtain the
present and asymptotic values of them as it is shown in the
Table 1.

We will analyze the models for three important epochs,
namely, early epoch (z 	 1), present epoch (z = 0), and
future epoch (z → −1). As we focus on the evolution for
late times, particularly in the transition from the matter-
dominated era to the present epoch, we neglect the radia-
tion component in the numerical calculation of E(z) and the
Statefinder {q, r, s}. In the subsequent figures, we plot the
behavior of the evolutionary trajectories in the q − r and
s − r planes, in order to compare the performance of the
q − r , s − r parametric graphs for each model with �CDM.
The plots corresponding to Fig. 1d, e will overlay with the
curves evaluated with the fitted values of the normalized den-
sities and constants for the respective model. With the values
of the Statefinder parameters that we have calculated, we will
be able to establish the deviations of this model from �CDM
[105]. On this subject, we will say that an interacting model

is compatible with �CDM when for the matter-dominated
era, the present time, and in the future, the Statefinder param-
eters are exactly or very close to those predicted by �CDM.
When this is only satisfied for one o two epochs, we will say
that it is partially compatible and if the Statefinder parame-
ters deviate significantly from those predicted by �CDM at
all epochs or if there exists a large deviation in the matter-
dominated era, we will say that the model is incompatible.
In order to draw the plots of H(z) with error bars, we use the
values from Ref. [110] with 0 ≤ z ≤ 2.36.

5.1 Linear models

5.1.1 MODEL 1. Q1 = 3γ Hρc

We extract the values of the normalized densities from
Ref. [59] in order to evaluate this model numerically. We
have employed the values h = 0.669, �c = 0.301,
�b = 0.049, γ = 0.071, wde = −1.03, corresponding to
SNIa+H(z)+BAO+ fgas+CMB, Table II, column C.

As we can see in the graph of Fig. 2a, the number of
measurements for high redshift is decreasing, also we can
see that for redshift higher than 0.5 the uncertainty of the
measurements increases. In general the H(z) curves obtained
for each model fit accurately to the points with error bars. Of
these, we will only show a few for each model category since
they are quite similar.

In Fig. 2b it is shown the parametric curve of MODEL
1 in the (q, r) plane. For early times the trajectory starts in
the lower right corner of the figure, in the region bounded
by 0 < q < 1 and 0 < r . When z 	 1, the parameters
{q, r, s} → {0.42, 0.79, 0.93}, hence, the values for q, r , and
s deviate significantly in the standard matter-dominated era
from �CDM, since for �CDM, the values for q, r and s are
given by q = 0.5, r = 1 and s = 0, respectively. However,
the value obtained for s is close to 1, which corresponds to
SCDM [75,105].

We have evaluated the model in the past at z = 0.8 as a
benchmark. For the subsequent parametric plots of all mod-
els, we will follow the same procedure; we will use different
redshift values associated to the past. We plot that point, in
order to better observe the temporal evolution of the model.

At the present time, z = 0, we obtain {q, r, s} =
{−0.50, 0.99, 0.003}. It is evident that the curve has a lin-
ear behavior and evolves in the negative direction of q and
positive of r . We note that close to the present time, the
curve crosses the red straight line r = 1 corresponding to
�CDM. The value of q deviates significantly from the value
of q0  −0.55, associated to �CDM. The values of r and s
are very close from the values of r0 = 1 and s0 = 0, obtained
for �CDM.

At late times, the curve evolves and moves away from
the dS fixed point in the future (q = −1; r = 1), as we
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Table 1 Summary of present and asymptotic values of Statefinder parameters for all the interacting models studied in the present research

Q q(z 	 1) r(z 	 1) s(z 	 1) q(0) r(0) s(0) q(−1) r(−1) s(−1)

Q1 = 3γ Hρc 0.42 0.79 0.93 − 0.50 0.99 0.003 − 1.0 1.1 − 0.03

Q2 = 3γ Hρde 0.5 1 0.02 − 0.53 0.94 0.02 − 0.97 0.91 0.02

Q3 = 3λcHρc + 3λdeHρde 0.44 0.84 0.96 − 0.56 0.99 0.005 − 1.0 1.1 − 0.012

Q4 = 3Hγ
ρcρde

ρ
0.50 1. 0.06 − 0.52 0.94 0.019 − 1 1 0

Q5 = 3Hγ
ρ2
c
ρ

0.44 0.84 0.96 − 0.56 1 − 0.019 − 1 1.2 − 0.037

Q6 = 3Hγ
ρ2
de
ρ

0.5 1 0 − 0.51 0.84 0.05 − 0.89 0.69 0.074

Q7 = q(αρ̇c + 3βHρc) 0.51 1 1.0 − 0.59 0.99 0.002 − 1 1 0

Q8 = q(αρ̇tot + 3βHρtot ) 0.52 1.1 1.0 − 0.59 0.93 0.02 − 0.96 0.89 0.024

Q9 = q(αρ̇de + 3βHρde) 0.5 1.03 0.007 − 0.59 1.02 − 0.008 − 1.02 1.06 − 0.014

Q10 = 3αH(ρ′
de + ρ′

c) 0.38 0.68 0.86 − 0.73 2.35 − 0.37 − 1.7 4.1 − 0.47

f (r̃) = 1, Q = 3Hγ
ρcρde

ρc+ρde
0.5 1 0.06 − 0.52 0.94 0.019 − 1 1 0

f (r̃) = 1
r̃ , Q = 3Hγ

ρ2
de

ρc+ρde
0.5 1 0 − 0.51 0.84 0.05 − 0.89 0.69 0.074

f (r̃) = r̃ , Q = 3Hγ
ρ2
c

ρc+ρde
0.44 0.84 0.96 − 0.52 0.98 0.006 − 1 1 0

f (r̃) = 1 + 1
r̃ , Q = 3Hγρde 0.5 1 0.037 − 0.52 0.89 0.037 − 0.94 0.84 0.037

f (r̃) = 1 + r̃ , Q = 3Hγρc 0.5 0.991 1 − 0.54 0.99 0.001 − 1 1 0

SELF-INTERACTION
Symmetric model
Qm = −3Hαρm ,

Qx = −3Hβρx

0.88 2.4 1.2 − 0.67 1.25 − 0.071 − 1 1 0

SELF-INTERACTION
Asymmetric model
Qm = −3Hαρm ,

Qx = −3Hβ(ρm + ρx )

0.51 1.02 1 − 0.6 1.006 − 0.002 − 1 1 0

have calculated in the limit z → −1, we have {q, r, s} →
{−1.0, 1.1,−0.03}. Thus, we conclude that the model does
not converge to �CDM in the future.

In Fig. 2c we see the (s, r) plane and we note that the plot
starts in the region bounded by 0 < s < 1 and r > 0. The
trajectory is non-linear and proceeds in the negative direc-
tion of s and positive of r . We corroborate that around the
present time, it crosses the fixed point (0, 1) corresponding
to �CDM. According to our analysis, we will say that this
model is partially compatible with �CDM.

5.1.2 MODEL 2. Q2 = 3γ Hρde

In order to evaluate this model numerically, we used the
values of the normalized densities from Ref. [59]. We will
use SNIa+H(z)+BAO+ fgas+CMB, Table I, column C. h =
0.671, �c = 0.300, �b = 0.048, γ = 0.07, wde = −1.05.

When z 	 1, the parameters {q, r, s} → {0.5, 1, 0.02},
and we see that the value of q and r correspond to the standard
matter-dominated era, and s is very close to the value s =
0 for �CDM. We observe in the Fig. 3a, b the asymptotic
behaviour of r(z) and q(z) for high redshift.

For MODEL 2 in the (q, r) plane, we show in Fig. 3c that
the trajectory is linear and starts in the upper right corner,
in the region bounded by 0 < q < 1 and 0 < r < 1.
Moreover, the curve evolves in the negative direction of q
and negative of r . At the present time, z = 0, we obtain
{q, r, s} = {−0.53, 0.94, 0.02}, which are very close values
for the Statefinder parameters for �CDM. When z → −1
the parameters {q, r, s} → {−0.97, 0.91, 0.02}. Thus, it is
observed a significant deviation from the dS fixed point in
the future.

In the (s, r) plane, Fig. 3d shows that the curve starts to the
right side of the point corresponding to �CDM, in the region
bounded by 0.01 < s < 0.03 and 0 < r < 1. The trajectory
is linear in behaviour and proceeds in the negative direction
of r , while holding fixed s = 0.02. It is clearly observed that
the behaviour of the curve in the s − r plane is very similar
to those of Quintessence models [74,111]. It is observed that
s remains constant, while r decreases asymptotically up to
r = 0.91. We corroborate the information provided by the
(q, r) plane; the trajectory of model deviates from �CDM.
It is concluded that this model is partially compatible with
�CDM.
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Fig. 2 In figure a it is shown the Hubble rate H(z) against z, for the
model with the coupling function Q1 = 3γ Hρc, representing the inter-
action between DE and DM (dashed line), as well as, the Hubble rate
for �CDM model (solid line), along with the data from Ref. [110]. We

have used H0 = 66.9 km s−1 Mpc−1, from [59]. For this model, figures
b and c show the q − r and s − r , planes, respectively. The arrows on
the curves show the direction of evolution

5.1.3 MODEL 3. Q3 = 3λcHρc + 3λdeHρde

For this model we extract the values of the normalized den-
sities and constants from Ref. [91], Table III. �k = 0,
�m0 = 0.285, λc = 0.039, λde = −0.024, wde = −0.987.
When we plot the curves on r − s and r − q planes, the
baryons are considerate by separate (we choose for the model
�b0 ≈ 0.04) and the model has the same behaviour. In [91]
the baryons are not considered separately in the tables. Also,
radiation is not considered in their work but we consider it in
the equations, however, we set it to zero when numerically
evaluating the model.

For z 	 1, the parameters q, r and s behaves as
{q, r, s} → {0.44, 0.84, 0.96}. In this case q, and r devi-
ate significantly in the standard matter-dominated era for
�CDM, but the value s is close to 1, which corresponds
to SCDM.

Figure 4a shows the trajectory of MODEL 3 on the (q, r)
plane. This curve starts in the lower right corner of the figure,

in the region bounded by 0 < q < 1 and r > 0. The trajectory
has linear behaviour and proceeds in the negative direction
of q and positive of r . At the present time z = 0, we obtain
{q, r, s} = {−0.56, 0.99, 0.005}, which are very close values
to, those expected for �CDM.

After the present time, the trajectory crosses the red
straight line r = 1 corresponding to �CDM, then it evolves
very close to the dS fixed point in the future, which is consis-
tent with the computation in the limit z → −1. In this case the
parameters {q, r, s} → {−1, 1.1,−0.012}. Figure 4b shows
the (s, r) plane, where the curve starts in the region bounded
by 0 < s < 1 and r > 0. The trajectory is non-linear and
evolves in the negative direction of s and positive of r . We
observe that after the current time, it crosses the fixed point
(0, 1) corresponding to �CDM.

This model is partially compatible with �CDM, and it
behaves similar to MODEL 1, which can be seen in the two
parametric plots. This suggests that in the linear combination,
the DM contribution is larger than the coming from DE.

123



  459 Page 18 of 33 Eur. Phys. J. C           (2024) 84:459 

Fig. 3 In this figure we show the plots of the Statefinder parameters
for the coupling function Q2 = 3γ Hρde. Figures a and b show the
evolution of r(z) and q(z), respectively. We represent the interacting

model DE-DM (black dashed line), which overlaps with �CDM (blue
solid line). For this model, the figures c and d show the q − r and s − r
planes, respectively

Fig. 4 Left panel: Parametric curve for coupling Q3 = 3λcHρc + 3λdeHρde in q − r plane. Right panel: Parametric curve in s − r plane
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Fig. 5 Figure a shows the Hubble rate H(z) as a function of redshift z for the model Q4 = 3 Hγ
ρcρde

ρ
. We have used H0 = 69.44 km s−1 Mpc−1,

from Ref. [60]. In figures b and c we show the parametric curves in the q − r and s − r planes, respectively

5.2 Non-linear interaction

5.2.1 MODEL 4. Q4 = 3Hγ
ρcρde

ρ

We observe in the H(z) plot that for this model the curve
moves away from the H(z) values with the error bars for
redshift greater than 2.

The values we will use to evaluate this model are obtained
from the Ref. [60], which we will cite below to investi-
gate models where interactions are parameterized. For this
model, we have used the values �m0 = 0.321, γ = −0.06,
wde = −1, using SNe Ia + H0 + CC + BAO, from Table 3 of
[60]. However, in order to evaluate the non-linear MODELS
4, 5, and 6 numerically, we will use the value of γ with the
positive sign, since in [60], the sign of Q is changed when
defining the conservation equations. Furthermore, the con-
tribution coming from baryons is not considered separately
in Table 3 of values in same work. When we evaluate our
model numerically, we neglect baryons and assign all matter

to DM, but to evaluate the model for �CDM we will separate
baryons. When we consider baryons separately and evaluate
our model numerically, the behaviour of the curves does not
change significantly.

As it can be seen from Fig. 5b, that for MODEL 4 in
the (q, r) plane, the curve starts in the region bounded by
0 < q < 1 and 0 < r < 1, in the upper right cor-
ner. For z 	 1, the parameters q, r , and s behaves as
{q, r, s} → {0.5, 1, 0.06}, where q and r are exactly as
�CDM predicts, and s is very close to zero, in this case
we recover the standard matter-dominated era. The trajec-
tory is non-linear in behaviour (like a concave-up parabola)
and evolves in the negative direction of q and at r drops to the
midpoint of the graph and then rises. Moreover, at the present
time, z = 0, we obtain {q, r, s} = {−0.52, 0.94, 0.019}.
The value of q = −0.52 is close to the value for �CDM,
q0  −0.55, and the values of r and s are also close to 1
and 0, respectively. After, in the limit z → −1, the model
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Fig. 6 Left panel: In this figure, we have plotted the parametric curve in the q − r plane. It shows the evolution for the model with the coupling

function Q5 = 3 Hγ
ρ2
c
ρ

. Right panel: The curve in the s − r plane it is shown

gives {q, r, s} → {−1, 1, 0}, and the curve converges to the
dS fixed point in the future.

In the (s, r) plane, the plot starts in the region bounded
by approximately 0.05 < s < 0.07 and 0.9 < r ≤ 1. The
trajectory is very similar to those of the (q, r) plane, with
a non-linear performance. We check the information given
by the (q, r) plane, and it is observed that the model curve
converges to �CDM in the limit z → −1.

We conclude that this model is compatible with �CDM,
since in all three epochs the model is very similar to �CDM.
It is possible that with more updated data the values for the
Statefinder parameters {q, r, s} at present may be closer to
{−0.55, 1, 0}.

5.2.2 MODEL 5. Q5 = 3Hγ
ρ2
c
ρ

In order to evaluate this model numerically, we will use the
following values: �m0 = 0.320, γ = −0.038 (recall that,
we will use this value with positive sign), wde = −1, using
SNe Ia + H0 + CC + BAO, from Table 3, Ref. [60].

In Fig. 6a, we show the curve for MODEL 5 in the (q, r)
plane. For early epochs, the curve starts in the lower right
corner of the figure, in the region bounded by 0 < q < 1
and r > 0. For z 	 1, the parameters q, r and s yield
{q, r, s} → {0.44, 0.84, 0.96}, and all three parameters val-
ues deviate significantly from the values expected for the
standard matter-dominated era. Only the value for s is close
to that of SCDM (s = 1).

We observe that the trajectory is linear and evolves in the
negative direction of q and positive of r . Before the present
time, it crosses the red straight line r = 1 corresponding to
�CDM. At z = 0, we obtain {q, r, s} = {−0.56, 1,−0.019}.
The parameter q is very close to the expected value for

the current time, and r is exactly the value predicted by
�CDM, while s is very close to zero. In the future, when
we take the limit z → −1, the model gives {q, r, s} →
{−1, 1.2,−0.037}. Then, the parameter r deviates signifi-
cantly from �CDM. The parameterq is exactly the value pre-
dicted by �CDM and s is very close to zero. Figure 6b shows
the (s, r) plane, and the curve starts in the region bounded
by 0 < s < 1 and r > 0. The trajectory is non-linear and
evolves in the negative direction of s and positive of r . We
observe that before the current time, it crosses the fixed point
(0, 1) corresponding to �CDM. The curve passes through
�CDM but then evolves and away from it. We see that this
model performs better near the present time since the values
at that time are closer to �CDM than for other times. Then,
we conclude this model is partially compatible with �CDM.

5.2.3 MODEL 6. Q6 = 3Hγ
ρ2
de
ρ

In order to evaluate this model numerically, we will use the
following values �m0 = 0.326, γ = −0.08, wde = −1,
using SNe Ia + H0 + CC + BAO, from Table 3, Ref. [60].

Figure 7a shows the evolution for MODEL 6 in the (q, r)
plane. For early epochs, the trajectory starts in the upper right
corner of the figure, in the region bounded by 0 < q < 1 and
0 < r ≤ 1. In this epoch, when z 	 1 the parameters q, r
and s yield {q, r, s} → {0.5, 1, 0}, and the values of q, r and s
agree with the matter-dominated standard era. The trajectory
behaves much like MODEL 2, where the interaction also
depends on the DE energy density. We see that in this case,
the trajectory is curved and evolves in the negative q and
negative r direction.

At the past the curve moves away from the red straight line
r = 1 corresponding to �CDM, and then moves forward.
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Fig. 7 Left panel: This figure shows the evolution in the q − r plane for the model with the coupling function Q6 = 3Hγ
ρ2
de
ρ

. Right panel: The
graph shows the curve for this model in the s − r plane

At z = 0, we obtain {q, r, s} = {−0.51, 0.84, 0.05}. The
parameter q is very close to the expected value for the present
time, while r is far away to the value predicted by �CDM,
and s is very close to zero. After, the trajectory moves away
significantly from the dS fixed point, because in the limit
z → −1, the model gives {q, r, s} → {−0.89, 0.69, 0.074}.
Figure 7b shows the (s, r) plane, where the trajectory starts
in the region bounded by 0 < s < 1 and 0 < r ≤ 1 and has
non-linear behaviour, evolves in the positive direction of s
and negative of r . We observe that it starts at the fixed point
(0, 1) corresponding to �CDM, and then evolves to current
time and diverges away. It is concluded that this model is
partially compatible with �CDM.

5.3 Models with a change of direction of energy transfer

5.3.1 MODEL 7. Q7 = q(αρ̇c + 3βHρc)

For α = 0, it yields Q7 = 3βqHρc.
We will evaluate this model numerically using the follow-

ing values �c0 = 0.2738, �b0 = 0, β = −0.01, wde = −1,
of Table I from Ref. [89].

For MODEL 7 in the (q, r) plane, we observe from Fig. 8b
that the trajectory is non-linear and starts in the upper right
corner, in the region bounded by 0 < q < 1 and 0 < r < 1.
The curve evolves to the negative direction of q and nega-
tive of r . For z 	 1, the parameters q, r and s behaves as
{q, r, s} → {0.51, 1, 1}, and q and r correspond to the stan-
dard matter-dominated era, and s has the value corresponding
to SCDM. Before the present time, the trajectory crosses the
red straight line r = 1 corresponding to �CDM and evolves.
At z = 0, we obtain {q, r, s} = {−0.59, 0.99, 0.002}, which
are close to the values expected for �CDM. In the limit
z → −1, the model gives {q, r, s} → {−1, 1, 0}, which

correspond exactly with to the dS fixed point in the future.
Thus, the model converges to �CDM.

In the (s, r) plane, Fig. 8c shows that the curve starts in the
upper left corner, in the region bounded by 0 < s and r > 1.
The trajectory is non-linear, passing through the point (0, 1)

corresponding to �CDM before the present time. After the
present time, the curve generates a twist and closes itself,
converging to the point (0, 1). We corroborate the informa-
tion provided by the (q, r) plane; the trajectory of the model
converges to �CDM. As a consequence, we conclude that
this model is compatible with �CDM, because the values of
Statefinder parameters are very close to the values predicts
for �CDM, in general, and in the future, the model evolves
towards �CDM.

5.3.2 MODEL 8. Q8 = q(αρ̇tot + 3βHρtot )

In order to evaluate this model numerically, we use the fol-
lowing values: �c0 = 0.2764, �b0 = 0, β = −0.0247,
wde = −1, Table I from Ref. [89].

Figure 9a shows the evolution for MODEL 8 in the (q, r)
plane. For early epochs, the trajectory starts in the upper right
corner of the figure, in the region bounded by 0 < q < 1
and 0 < r � 1.1. In this epoch, when z 	 1 the Statefinder
parameters q, r and s behave as {q, r, s} → {0.52, 1.1, 1},
and the values of q and r agree with the matter-dominated
standard era, while s deviates significantly from the value
s = 0 for �CDM. The value s = 1 corresponds to SCDM,
being very similar to MODEL 7 in this epoch. We see that in
this case, the trajectory is linear and evolves in the negative q
and negative r direction. At the past, the curve moves away
from the red straight line r = 1 corresponding to �CDM, and
evolves. At z = 0, we obtain {q, r, s} = {−0.59, 0.93, 0.02},
which are close to the values expected for �CDM. After,
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Fig. 8 Figure a shows the dimensionless Hubble rate H(z)/H0 as
a function of redshift z for the model with the coupling function
Q7 = 3βqHρc. We represent the interaction with a dashed line, and

also the Hubble rate of the �CDM model with the solid line. For this
model, figures b and c show the curves in the q − r and s − r planes,
respectively

the trajectory moves away significantly from the dS fixed
point, because in the limit z → −1, we obtain {q, r, s} →
{−0.96, 0.89, 0.024}.

Figure 9b shows the (s, r)plane, where the trajectory starts
in the region bounded by 0 < s < 1 and 0 < r � 1.1 and
has non-linear behaviour, evolves in the positive direction
of s and negative of r . We observe that it starts at the fixed
point (0, 1) corresponding to �CDM, and then evolves to
the current time and diverges away. It is concluded that this
model is partially compatible with �CDM.

5.3.3 MODEL 9. Q9 = q(αρ̇de + 3βHρde)

The values used for to evaluate this model numerically are:
�c0 = 0.2717, �b0 = 0, β = 0.0136, w = −1, from Table I
from Ref. [89]. As in this Ref., the author used wde = −1,
the “�” subscript that we use in the graphs is replacing in
the equations by the subscript “de”.

We see in Fig. 10a the curve for MODEL 9 in the (q, r)
plane. The trajectory starts in the lower right corner of

the figure, in the region bounded by 0 < q < 1 and
r > 0. For z 	 1, the parameters q, r and s behaves as
{q, r, s} → {0.5, 1.03, 0.007}, and all three parameter val-
ues are very close from the values expected for the stan-
dard matter-dominated era. We observe that the trajectory
is non-linear and evolves in the negative direction of q and
positive of r . Before the present time (z = 0), it crosses
the red straight line r = 1 corresponding to �CDM. At
the present, we obtain {q, r, s} = {−0.59, 1.02,−0.008}.
The parameters are close to the expected value predicted by
�CDM for the present time. In the future, z → −1, the
model gives {q, r, s} → {−1.02, 1.06,−0.014}. Then, the
trajectory moves away significantly from the dS fixed point.
Figure 10b shows the (s, r) plane, and the curve starts in the
region bounded by 0 < s < 1 and r > 0. The trajectory
is non-linear and evolves in the negative direction of s and
positive of r . We observe that before present time, it crosses
the fixed point (0, 1). The curve passes through �CDM, but
evolves and away from it. We say that this model is partially
compatible with �CDM.
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Fig. 9 Figures a and b show the evolution for the model with the coupling function Q8 = 3βqHρtot . Left panel: figure shows the q −r parametric
curve. Right panel: figure shows the s − r parametric curve

Fig. 10 Figures a and b show the evolution for the model with the coupling function Q9 = 3βqHρde. Left panel: figure shows the q−r parametric
curve. Right panel: figure shows the s − r parametric curve

5.4 Interaction involving derivatives

5.4.1 MODEL 10. Q10 = 3αH(ρ′
de + ρ′

c)

In order to evaluate this model numerically, we will use
the values: h = 0.70, �c = 0.37, �b = 0.045, γ =
0.071, wde = −1.4, α = −0.15, extracted from Ref. [59],
SNIa+H(z)+BAO+ fgas , Table IV, Column B. We have pre-
ferred to use the values in column B, because in column
C, although the CMB measurements are included, we have
α = 0.0 ± 0.1, so there is almost no interaction.

In Fig. 11b we see the curve for MODEL 10 in the (q, r)
plane. For early times, the trajectory starts in the lower right
corner of the figure, in the region bounded by 0 < q < 1
and r > 0. For z 	 1, the parameters q, r and s behave
as {q, r, s} → {0.38, 0.68, 0.86}. All the three parameter
values deviate significantly from the values expected for the
standard matter-dominated era. The value of s = 0.86 is

close to SCDM (r = 1, s = 1), but lower than the other
models that evolve in this way. We observe that the trajec-
tory is linear and evolves in the negative direction of q and
positive of r . Before the present time (z = 0) it crosses the
red straight line r = 1 which corresponds to �CDM. At
z = 0, we obtain {q, r, s} = {−0.73, 2.35,−0.37}, and then
all the three parameters values deviate significantly from the
values expected for �CDM. In the future, for z → −1, it
yields {q, r, s} → {−1.7, 4.1,−0.47}. Then, all the param-
eters deviate significantly from �CDM.

Figure 11c shows the s − r plane, and the curve starts in
the region bounded by 0 < s < 1 and r > 0. The trajectory
is non-linear and evolves in the negative direction of s and
positive of r . The plot in the s − r plane shows that in the
first place, the curve passes through �CDM. After, it passes
through the point associated with the present time, and then
it deviates significantly in the future. We say that this model
is incompatible with �CDM, since the Statefinder values
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Fig. 11 In figure a it is shown of the Hubble rate H(z) for the model with the coupling function Q10 = 3αH(ρ′
de + ρ′

c). We have used
H0 = 70 km s−1 Mpc−1, from Ref. [59]. Figures b and c show the parametric curves in the q − r and s − r planes, respectively

deviate significantly from the expected values in all three
epochs.

5.5 Parameterized interactions

5.5.1 MODEL 11. f (r̃) = 1

We have used the values �m0 = 0.321, γ = −0.06,
wde = −1, using SNe Ia + H0 + CC + BAO, from Table
3 [60]. This values are the same that for MODEL 4 to which
this parameterization corresponds. Figure 12c, d show that
we have obtained exactly the same parametric plots that in
the MODEL 4, given by Fig. 5b, c. Furthermore, present
and asymptotic values of Statefinder parameters become the
same, so the Statefinder analysis is the same, see Table 1.
On the other hand, we have included the plot of the ratio
between the DM and DE densities against z. We have cor-
roborated what the authors of the reference [60] claim, that
for γ < 0, the cosmic coincidence problem may be consid-
erably alleviated. At early times, DM dominates over DE, if
z 	 1 then r̃(z) → ∞. If z → −1 then r̃(z) → 0, thus, DE

dominates over DM in the far future. For negative value of
the coupling, the ratio r̃(z) yields the order of 1 earlier than
in the �CDM model (γ = 0).

5.5.2 MODEL 12. f (r̃) = 1
r̃

Here we use the values �m0 = 0.326, γ = −0.08, wde =
−1, considering SNe Ia + H0 + CC + BAO, from Table 3,
Ref. [60]. As in the previous case, this model is equivalent to
MODEL 6, thus, we have obtained exactly the same paramet-
ric plots and present and asymptotic values for the Statefinder
parameters. See Fig. 13a, b compared with Fig. 7a, b. From
Table 1, we conclude that the Statefinder analysis becomes
the same.

5.5.3 MODEL 13. f (r̃) = r̃

This model is equivalent to MODEL 5, so we will use the
following values: �m0 = 0.320, γ = −0.038, wde = −1,
using SNe Ia + H0 + CC + BAO, from Table 3, Ref. [60].
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Fig. 12 In figure a it is shown the Hubble rate H(z) as a function
of redshift z for the model with function f (r̃) = 1. We have used
H0 = 69.44 km s−1 Mpc−1, from [60]. For the same model, figure b
shows the evolution of the ratio r̃ , where we have represented the inter-

acting model (black dashed line), which overlaps with �CDM (blue
solid line). Figures c and d show the parametric curves in the q − r and
s − r planes, respectively

Fig. 13 In the figures we show the evolution for the model with function f (r̃) = 1
r̃ . Left panel: figure shows the q − r parametric curve. Right

panel: figure shows the s − r parametric curve
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Fig. 14 For the model with function f (r̃) = r̃ , the parametric curves in the q − r and s − r planes are shown

Fig. 15 For the model with function f (r̃) = 1 + 1
r̃ , the parametric curves in the q − r and s − r planes are shown

In Fig. 14a, we see the curve for MODEL 13 in the (q, r)
plane. The trajectory starts in the lower right corner of the
figure, in the region bounded by 0 < q < 1 and 0 < r <

1. We calculate the parameters q, r and s at z 	 1, then
{q, r, s} → {0.44, 0.84, 0.96}, and then all three parameter
values deviate significantly from the values expected for the
standard matter-dominated era. The value of s = 0.96 is very
close to SCDM.

We observe that the trajectory is non-linear and evolves in
the negative direction of q and positive of r . At the present
z = 0, we obtain {q, r, s} = {−0.52, 0.98, 0.006}. The
parameters are close to the values predicted by �CDM for
the present time. After the present time it approaches to the
red straight line r = 1 corresponding to �CDM. We verify
this, since in the future, in the limit z → −1, the model gives
{q, r, s} → {−1, 1, 0}. Then, the trajectory converges to the
fixed dS point.

Figure 14b shows the (s, r) plane, the curve starts in the
region bounded by 0 < s < 1 and r > 0. The trajectory

is non-linear and evolves in the negative direction of s and
positive of r . We notice that at late times, it converges to the
fixed point (0, 1) associated to �CDM. Hence, this model
becomes partially compatible with �CDM.

5.5.4 MODEL 14. f (r̃) = 1 + 1
r̃

In this case, we have used the values: �m0 = 0.320, γ =
−0.037, wde = −1, considering SNe Ia + H0 + CC + BAO,
from Table 3, Ref. [60].

In the high redshift limit, z 	 1, the asymptotic val-
ues of q, r and s behave as {q, r, s} → {0.5, 1, 0.037}.
For the present epoch z = 0, we obtain {q, r, s} =
{−0.52, 0.89, 0.037}. In the limit z → −1, the model gives
{q, r, s} → {−0.94, 0.84, 0.037}. This model is equivalent
to MODEL 2, and its behaviour in the (q, r) and (s, r) plane
becomes the same, but as for the parameterized model we
have used updated data. We can compare Fig. 3c, d with
Fig. 15a, b, respectively. We notice that the trajectory in the
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Fig. 16 We show the parametric curves in the q − r and s − r planes for the model with parametric function f (r̃) = 1 + r̃

(s, r) plane evolves in the negative direction of r while hold-
ing fixed s = 0.037, but in MODEL 2 the trajectory gets
lower by s = 0.02.

5.5.5 MODEL 15. f (r̃) = 1 + r̃

This model is equivalent to MODEL 1, but, in this case, we
have used the values �m0 = 0.309, γ = −0.0019, wde =
−1, considering SNe Ia + H0 + CC + BAO, from Table 3,
Ref. [60]. For early times, i.e. z 	 1, the parameters q, r
and s behave as{q, r, s} → {0.5, 0.99, 1}. The value of s =
1 corresponds to SCDM. We recover the standard matter-
dominated era due the values obtained for r and q.

At the present time, we get {q, r, s} = {−0.54, 0.991,

0.001}. In the limit z → −1, the model gives {q, r, s} →
{−1, 1, 0}.
We compare Fig. 2b, c with Fig. 16a, b, respectively. It is
important to point out that for MODEL 1, the trajectories
in the q − r and s − r planes do not converge to the point
(−1, 1) and (0, 1), respectively. However, the trajectories for
MODEL 15 in both planes do converge to these points. This
model has similar behavior to MODEL 1, but for the param-
eterized model we have used updated data and w = −1. This
may explain the convergence in the future to �CDM, since
in MODEL 1 we have used w �= −1. In this way, we say that
this model is compatible with �CDM.

5.6 Self-interaction between DM

5.6.1 MODEL 16. Symmetric model.
Qm = −3Hαρm, Qx = −3Hβρx

Given the symmetry of MODEL 16, it is evaluated using the
values extracted from Ref. [109], �m = �x = 0.11 ± 0.03,
and α = β = 0.25 ± 0.15. Furthermore, if we evaluate
numerically the Symmetric and Asymmetric models using

�m = 0.27, and setting α = β ≈ 0.001 (we cannot use α

and β null), we get that the model is similar to �CDM.
In Fig. 17a, we show the dimensionless Hubble rate against z,
and we represent the self-interaction (dashed line) overlap to
the Hubble rate for the �CDM model (solid line). We have
calculated using the above values that for z < 0.56 both
functions are almost identical, but they start to differ from
z > 0.56. In the same reference, the authors show that this
happens for z = 0.5.

We find that for z 	 1, the parameters {q, r, s} →
{0.88, 2.4, 1.2}, observing that all three values deviate sig-
nificantly from the values expected for the standard matter-
dominated era. Recalling that in the limiting case (�c+�b =
1, �de = 0), neglecting radiation, the value s predicted by
the SCDM model is non-zero (r = 1, s = 1). In this case,
s = 1.2 is far way from the value s = 1. From Fig. 17b,
we observe that the trajectory In the (q, r) plane is linear
and starts in the upper right corner, in the region bounded by
0 < q < 1 and r > 1. The curve evolves in the negative
direction of q and negative of r . At the present, z = 0, one
finds {q, r, s} = {−0.67, 1.25,−0.071}, and also thatq and r
are not close values for the Statefinder parameters expected
for �CDM, {q0, r0, s0} = {−0.55, 1, 0}. When z → −1,
the parameters {q, r, s} → {−1, 1, 0}. Thus, the parameters
present an asymptotic behaviour toward the dS fixed point in
the future.

In the (s, r) plane, Fig. 17c shows that the curve starts in
the upper right corner of the figure, in the region bounded
by s < 0 and r > 1. The trajectory is non-linear in behavior
and proceeds in the negative direction of r , but in the posi-
tive direction of s. We corroborate the information provided
by the (q, r) plane; the trajectory of the model converges to
�CDM. We conclude that this model is incompatible with
�CDM, since, although it converges to �CDM, the present
values and in the epoch that matter dominates, deviate sig-
nificantly from �CDM.
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Fig. 17 In figure a, it is shown the dimensionless Hubble rate
H(z)/H0 as a function of redshift z for the Symmetric model, Qm =
−3Hαρm , Qx = −3Hβρx . It is represented the self-interaction

(dashed line), as also, the Hubble rate of �CDM model (solid line).
For this model, figures b and c show the parametric curves in the q − r
and s − r planes, respectively

5.6.2 MODEL 17. Asymmetric model.
Qm = −3Hαρm, Qx = −3Hβ(ρm + ρx )

MODEL 17 is evaluated numerically using the values: �m =
0.14 ± 0.09, �x = 0.146 ± 0.085, α = 0.09 ± 0.17 and
β = −0.01 ± 0.17.

In Fig. 18a, we show the dimensionless Hubble rate, like
the previous model, we plot the self-interaction (dashed line),
which overlaps with the plot of Hubble rate for the �CDM
model (solid line). Unlike the previous model, the H(z)
curves of the asymmetric model and the reduced �CDM
curve fit better for a larger redshift interval.

We find that for z 	 1, the parameters {q, r, s} →
{0.51, 1.02, 1}. It is observed that the values of q and r are
very close to the expected values for the standard matter-
dominated era. Additionally, the value of s = 1 corresponds
to SCDM (r = 1, s = 1).

In the (q, r) plane from Fig. 18b, we note that the tra-
jectory is linear and starts in the upper right corner, in the

region bounded by 0 < q < 1 and r < 1. The curve
evolves in the negative direction of q and negative of r .
At the current time, z = 0, it is found that {q, r, s} =
{−0.6, 1.01,−0.002}, and according, r and s are close val-
ues for the expected Statefinder parameters for �CDM, but
the value of q(0) deviates significantly. When z → −1
the parameters {q, r, s} → {−1, 1, 0}. Thus, the parameters
exhibit asymptotic behaviour towards the dS fixed point in the
future, as also does the symmetric model. In the (s, r) plane,
Fig. 18c shows that the curve starts in the upper left corner
of the figure, in the region bounded by s < 0 and r > 1. The
trajectory has a non-linear behavior and advances in the neg-
ative direction of r , and in the positive direction of s. We can
compare with the information provided by the (q, r) plane,
the trajectory of the model converges to �CDM. We con-
clude that this model is compatible with �CDM. Although
the value of q(0) deviates from �CDM, the values q, r , and s
(as a whole) are close to �CDM in the all epochs. In contrast
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Fig. 18 In figure a, it is shown the dimensionless Hubble rate H(z)/H0
as a function of redshift z for the Asymmetric model, Qm =
−3Hαρm , Qx = −3Hβ(ρm+ρx ), and we represent the self-interaction

(dashed line), as also, the Hubble rate of �CDM model (solid line). For
this model, figures b and c show the parametric curves in the q − r and
s − r planes, respectively

with the Symmetric model, we note that this model is able to
reproduce a standard matter-dominated era.

6 Comparison between models

Now, we are able to compare between the models by looking
at the trajectories from where they start. We consider Fig. 19a,
b for comparison. In accordance to [105] and [112], in the
case of models 7, 16, and 17, it is observed that the pair
(s, r) starts on the left-hand side of the fixed point (0, 1) cor-
responding to �CDM, which is characteristic of the hybrid
expansion law (HEL), Chaplygin gas and Galileon models,
such that s < 0 and r > 1 [112,113]. We point out that
this behaviour is different from the case of the Quintessence
model, for which the trajectory in the (s, r) plane is observed
to start in the region 0 < s < 1 and r < 1.

On the other hand, we can see that the trajectory of
MODEL 7 in Fig. 8b, is very similar to the HEL model,

which the trajectory in the (q, r) plane starts in the region
bounded by 0 < q < 1 and r > 1.

The plot for model 10 in the (s, r) plane is very similar to
that of models 5 and 9. For the latter model, the deviations
are larger than in the similar models 5 and 9.

As we established above, for the limiting case (�m =
1, �de = 0, and neglecting radiation), the values of the
Statefinder parameters are r = 1, s = 1, corresponding to
SCDM. It is observed in the Table 1 that when z 	 1, s
becomes equal to 1 or very close to 1 obtained for models
1, 3, 5, 7, 8, 13, 15 and 17. We can conjecture and give an
explanation for these values by assuming that it may be since
in these models the Q function depends mainly on DM and
because the impact of DE is smaller on the interaction, since
the analysis takes place in the matter-dominated era.

In addition, we can compare the MODEL 7 with a
Statefinder analysis performed for running vacuum models
(RVM). If we take the plots in r −s plane, we see that Fig. 8c
is similar to Fig. 1 of [82]. As noted above, after the present
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Fig. 19 The parametric curves in the q − j plane are shown in figure
a. The dS state q = −1 is shown by the vertical purple line. The plots
in the s − j plane are displayed in figure b. The HEL model is shown
by the green curve in both panels. The �CDM, DGP, Chaplygin gas,
and Galileon models are represented by the Red, Cyan, Magenta, and

Blue curves, respectively. The �CDM point (0, 1) is where horizontal
and vertical dashed lines connect. The dots on the curves represent the
current values of the (s, j) or (q, j) pair, while the dark dots on the
curves reflect the matter-dominated phases of the models. Figure taken
from [112]

time, the curve r − s generates a twist and closes on itself,
converging to the point (0, 1). The similarity is that in our
MODEL 7 and model I of [82], since they have a Q rate lin-
early depending on dark matter density. In contrast, for the
DE energy density dependence (model II in [82]), we can see
that the curve does not converge to the point (0, 1). In model
II the asymptotic fixed point is a scaling solution, where the
scaling solution is when the energy density of DE depends
on an inverse power of the scale factor a(t).

7 Conclusions

The nature of the components of the dark sector of our Uni-
verse is still unknown. Several models have been proposed in
order to explain the accelerating expansion of the Universe.
In this context, interacting DE models have been proposed
to solve or alleviate the emerging cosmological tensions of
�CDM model as well as the cosmic coincidence problem.

In this paper, we have used the Statefinder diagnostic with
the purpose to discriminate between several interacting DE
models. In particular. we have investigated 17 interacting
models between DE and DM, which have been already stud-
ied in the recent literature and constrained with astronomical
and cosmological data. Specifically, the investigated mod-
els belong to the following categories: following categories:
(i) linear models in energy densities of DE and DM, (ii)
non-linear models, (iii) models with a change of direction of

energy transfer between DE and DM, (iv) models involving
derivatives of the energy densities, (v) parametrized inter-
actions through a function of the coincidence parameter r̃ ,
and finally we also consider two kinds of models with a self-
interaction between DM, without DE.

The models we have chosen allow us to solve the conser-
vation differential equations and to find an analytical expres-
sion for the dimensionless Hubble rate E(z) = H(z)/H0.
Thus, by using E(z) we have computed the expressions
for the Statefinder parameters q(z), r(z), and s(z). Then,
these parameters were evaluated for the matter-dominated
era (z 	 1), at the present epoch (z = 0), and in the future
(z → −1). These values are shown in Table 1, as a summary.
It was necessary to plot in theq−r and s−r planes the respec-
tive parametric curves for each case. The trajectory of each
model was compared with the points associated to �CDM,
i.e., (0, 1) in the s−r plane and the dS fixed point (−1, 1) in
the q−r plane. Additionally, we found that the “anomalous”
behavior of the parameter s for z 	 1, corresponds to the
point (1, 1), associated to the SCDM model.

Differences and similarities were found between models
of the same category (linear, non-linear, etc.), depending on
the deviations obtained with respect to �CDM. Comparing
all of these models, some of them converge to �CDM at late
times, such as models 4, 7, 11, 13, 15 and the self-interacting
models 16 and 17. In that sense, the worst performing model
in the future is MODEL 10, since its deviations are very large
with respect to the others.
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In the current epoch, the models 5, 3 and 15 show which
are values very close to those predicted by �CDM, i.e.,
{q0, r0, s0} = {−0.55, 1, 0}. But, to a lesser extent, mod-
els 13, 7, 9 and 17 are close to �CDM. On the other hand,
the worst behavior corresponds to MODEL 10, and the sym-
metric model, since these deviate significantly for the current
epoch, especially the parameter q.

In models 2, 4, 6, 9, 11, 12 and 14 the values found for the
three Statefinder parameters behave very similar to �CDM in
the matter-dominated era, i.e., {q(z 	 1), r(z 	 1), s(z 	
1)} = {0.5, 1, 0}. At this same epoch, models 1, 3, 5, 7, 8, 13,
15, and the asymmetric model predict values of s close to 1,
which we established is related to SCDM. We inferred that
this was due to the larger impact of DM in the interactions,
given the form of the Q rate and the small contribution of the
DE energy density. Furthermore, at this epoch, we see that
models 16, 10, 1, 3, 5, and 13 deviate significantly from the
q and r values predicted by �CDM.

The models parameterized and their equivalents have sim-
ilar behaviours, except 5–13 and 1–15. Actually, we found
that models 5 and 1 do not converge to �CDM in the future,
but 13 and 15 do instead. As we said, this may be due to the
fact that the parameterized models use more updated data and
w = −1. This leads us to conclude that the models analyzed
by Statefinder analysis cannot be definitively discarded, as
more updated data can lead to better model performance.

As we have shown, we can compare our models with other
different DE models extensively studied in the literature, such
as HEL, Chaplygin gas, Galileon models, Quintessence, and
DGP from [112]. This can be done by considering the devi-
ations from �CDM and the shape of the trajectories in the
(s, r) plane, as we look at the origins of the curves.

For future research, we would like to complement this
work and to corroborate the convergence of the models by
analyzing dynamical systems and observing the stability of
the fixed points, as has been done for other DE models [82,
114].

This work opens up the possibility to further investigation
on others interacting DE models that have a more complex
expression for Q, for example, where the EoS parameter w

or strengths of the couplings depend on redshift or time. We
hope to be able to address this point in a future work.
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