
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024 1
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Abstract—Feature-based geo-localization relies on associating
features extracted from aerial imagery with those detected by
the vehicle’s sensors. This requires that the type of landmarks
must be observable from both sources. This lack of variety
of feature types generates poor representations that lead to
outliers and deviations produced by ambiguities and lack of
detections, respectively. To mitigate these drawbacks, in this
paper, we present a dynamically weighted factor graph model
for the vehicle’s trajectory estimation. The weight adjustment
in this implementation depends on information quantification
in the detections performed using a LiDAR sensor. Also, a
prior (GNSS-based) error estimation is included in the model.
Then, when the representation becomes ambiguous or sparse,
the weights are dynamically adjusted to rely on the corrected
prior trajectory, mitigating outliers and deviations in this way.
We compare our method against state-of-the-art geo-localization
ones in a challenging and ambiguous environment, where we
also cause detection losses. We demonstrate mitigation of the
mentioned drawbacks where the other methods fail.

Index Terms—Geo-localization, localization, cross-view, factor-
graph, autonomous vehicle navigation

I. INTRODUCTION

AUTONOMOUS navigation is a significant research topic
because it can automate complex tasks using mobile

robots, Unmanned Ground Vehicles (UGV), or self-driving
cars. Navigating through an environment autonomously re-
lies strongly on the localization module. The more extended
approach for this purpose is Simultaneous Localization And
Mapping (SLAM) [1], where the vehicle navigates building
a model of the environment (the map) while simultaneously
using it for self-localization. Alternatively, to simplify the
localization, the mapping process could be avoided using an
environment representation previously created by dedicated
mapping vehicles [2]. However, creating a map is usually
expensive, especially for oversized areas. Moreover, it requires
several loop closures for consistency, but despite this, a
mapping process often accumulates minor errors that lead to
global inconsistencies.
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Over the last few years, the so-called geo-localization or
geo-referencing has increased in importance in the litera-
ture. For the localization, this approach uses an environment
representation obtained from aerial imagery. This avoids the
expensive mapping process and the need for loop closures
and provides implicit global consistency. We can distinguish
two different strategies to perform geo-localization: end-to-end
learned [3] and handcrafted-feature-based [4].

The end-to-end learned strategy uses the raw aerial image as
an environmental representation while perceiving it with local
sensors such as LiDAR [5], RADAR [3], or cameras [6]. Then,
it uses end-to-end learned models to extract dense features
from both data sources to infer the vehicle’s pose in the geo-
referenced aerial image. In [7], [8], [9], the authors use a
wide aerial image as a representation and infer the pose by
crossing the sensor’s information directly extracting the dense
features from the whole image. In contrast, in [5], [10], [11],
the authors presented a pipeline that gets a crop around the
prior pose to perform the end-to-end strategy.

The handcrafted-feature-based geo-localization uses aerial
imagery to extract handcrafted sparse features, while the same
type of features should be detected from the sensors’ data.
Then, after data association, the vehicle’s pose is estimated.
This strategy implies a requirement: the type of feature used
must be observable from both aerial and onboard vehicle
sensors. In [12], [13], [14], [15], [16], building walls are used
as features, while in [4], [17], [18], the authors choose lane
marking as landmarks that satisfy the observability require-
ment. In other works [19], [20], [21], the authors match the
vehicle’s trajectory with the lanes map, which is commonly
named in the literature as map matching [22]. However, we
prefer to categorize it as a handcrafted where the feature is the
trajectory. The handcrafted-feature-based strategy allows the
measure of information in the detections before the pose infer-
ence. For example, in [4], the authors estimate prior confidence
in the data and use it to self-tune the data association method
depending on that confidence. For this work, we introduce the
ground boundaries as a new feature type observable from both
sources.

The mentioned observability requirement carries fewer fea-
tures, leading to a sparse representation. This issue and the
geo-referenced nature of the problem generate some draw-
backs in the handcrafted-feature-based strategy: (i) A sparse
map implies that some areas are ambiguous for the data
association in the front direction of navigation, which can pro-
duce a considerable number of outliers. (ii) The poor variety
of features introduces the risk of lack of detection in some
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Fig. 1. Proposed factor graph: Each factor represents the difference between the observations and the model predictions. Section II explains the formalization
of the (weighted) factors to obtain the residuals. The empty circles represent the variables that should be estimated by factor residual minimization. Finally,
we denote by squares the elements that produce exteroceptive observations, i.e., GPS satellites and landmarks read from the map.

navigation areas. (iii) Geo-localization needs a geo-referenced
prior, such as GNSS (Global Navigation Satellite Systems).
Those systems are usually precise but inaccurate, introducing
offsets that vary smoothly through time and space, especially
when there is a multipath problem [23]. In a previous work [4],
we addressed the drawback (i). But with this approach, if we
find a situation of type (ii), the localization converges to a prior
trajectory that usually has an undesired offset, as we mentioned
in (iii). Notably, the cited handcrafted-feature-based geo-
localization works usually don’t pay special attention to avoid
these drawbacks, so we consider it interesting to focus our
research here.

This paper presents a handcrafted-feature-based geo-
localization that mitigates the exposed drawbacks through
a dynamically weighted factor graph implementation in the
vehicle’s trajectory estimation. The weight adjustment in this
model depends on information quantification in the detections
performed using a LiDAR sensor. Furthermore, a prior (GNSS-
based) error estimation is included in the model to avoid the
drawback (iii). In this way, if, for example, we drive through
an area ambiguous for data association, the weight is adjusted
to trust more on the corrected prior trajectory, mitigating the
drawback (i). In the case of the lack of detections (ii), again,
the system will rely more on corrected prior.

In summary, our contributions are the following:
• A weighted factor graph that dynamically adjusts its

weights depending on the information quantified from the
detections. That produces a mitigation of the drawbacks
(i), (ii), and (iii) previously mentioned.

• An information quantification strategy developed upon
a previous one [4], [24] that quantifies the information
based on the associated map points instead of the raw
detections. This quantification is the primary measure to
adjust factor weights.

• A prior (GNSS-based) error estimation included in the
model. With this corrected prior, we can hold the local-
ization for low informative detections.

II. WEIGHTED FACTOR-GRAPH

In this section, we formalize the proposed factor-graph
model (Fig. 1), where each factor is dynamically weighted

depending on the information in the data (Section III-A). In
this way, the more confident residuals will contribute mainly
to the loss function in the optimization process, giving less
importance to those who can generate unwanted minimums,
for example, when outliers occur or when there is a lack of
landmarks.

The factors explained in Sections II-A, II-B, and II-C are
the most commonly implemented and the ones that generate
the residuals to estimate the trajectory state variable X =
(x1, ...,xN ), where each pose is xi

.
= (Ri, ti), ti ∈ R2 is

the translation, and Ri ∈ SO(2) is the rotation matrix.
In contrast, in this work, we propose an additional factor

explained in Section II-D that generates the residuals to esti-
mate the error e = (ex, ey) in the prior signal. The estimation
of this variable allows corrections to the GPS observations,
thus contributing to maintaining localization in outlier and
lack regimes and avoiding undesired GPS errors in the loss
function.

It is worth noting that this section explains the high-level
formalization of the model (the back-end). In contrast, in the
next section (Section III-A), we present the low-level (the
front-end) with more details, e.g., data association implemen-
tation, type of landmark, detections, etc.

A. Odometry factor

We assume we have an odometry system estimated from
the LiDAR, cameras, IMU, and/or encoders. Then, given the
relative transformations from consecutive frames i and i′ =
i− 1 from the odometry trajectory X̂ = (x̂1, ..., x̂N ), and the
poses in the estimated X, we can define the odometry factors
as follows:

fo
i = ωo

i

∥∥RT
i (ti′ − ti)− t̂i,i′

∥∥2
2
+ ωo

i

∥∥∥RT
i Ri′ − R̂i,i′

∥∥∥2
F
.

(1)
As we can see in (1), each norm is weighed by ωo

i . The
value of that weight is dynamically obtained in each itera-
tion depending on the quantification of the data information
explained in Section III. When the data is considered poorly
informative, this weight will acquire strength. The subscript
F in the second term indicates the Frobenius norm.
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MUÑOZ-BAÑÓN et al.: GEO-LOCALIZATION BASED ON DYNAMICALLY WEIGHTED FACTOR-GRAPH 3

B. Prior factor

For geo-localization, it is essential to have a geo-referenced
prior localization based on GNSS, which, in our case, is
GPS. Such systems usually provide position information
tgj = (xg

j , y
g
j ) as j-th observation. Given the time stamp

availability, it is easy to obtain the association between GPS j-
th observation and i-th odometry estimation. Then, we define
the prior residuals as:

fp
j = ωp

j

∥∥ti − (
tgj − ē

)∥∥2
2
, (2)

where ē is the estimated error that corrects the GPS ob-
servation, and the weight ωp

j is calculated similarly to ωo
i

(Section III). Note that the bar in ē indicates that, in this
case, e is considered an observation, not a variable. With
odometry and prior residuals, obtaining a so-called prior tra-
jectory is possible. This trajectory provides satisfactory results
in differential terms. But, due to the inaccuracy problems
of GPS systems, the path usually has an offset that varies
smoothly over time and space. We aim to correct this with the
e estimation. However, to estimate e, it is necessary to use
a geo-referenced map to associate its information with local
detections, obtaining a trusted localization, as explained in the
following subsection. After fine e estimation, it is reasonable
that when the data is considered poorly informative, ωp

j and
ωo
i will acquire strength, and the final estimation will maintain

their localization trusting on that corrected prior trajectory.

C. Data associations factor

As mentioned above, we have a geo-referenced world’s
representation, defined as a set of landmark L. Then, for each
i-th frame in X̂, we observe the landmarks of the environment
using the vehicle’s sensors. From now on, we name these
observations as detections Di. Using L and Di, we must
perform a data association process, where its result is a set
of pairs ((di1 , li1), ..., (diK , liK )). Given these associations,
we can define the residuals between landmarks and detections
as follows:

fa
i = ωa

i

K∑
k=1

∥(Ridik + ti)− lik∥
2
2 . (3)

As shown in (3), the residual depends on the pose that
transforms the detection from the local sensor to the map
coordinates frame. In this case, in contrast to the odometry
and prior residuals, the weight ωa

i is strongest when the data
is more informative.

D. Prior error factor

In Section II-B, we mentioned that the prior trajectory
presents variable offset produced by GPS inaccuracies. Then,
when we measure less informative data, and consequently, the
prior path strengthens the optimization, the final localization
could carry the mentioned inaccuracies. To avoid this effect,
we estimate the prior error e to correct the GPS observation
in (2). The factor for the error estimation is the following:

fe
j =

j′=j∑
j′=j−w

ωe
j′

∥∥∥e− (
tgj′ − t̄i′

)∥∥∥2
2
. (4)

GPS error varies smoothly over time, so we estimate that
variable using factors from limited past poses, e.g., from j′ =
j − w to j′ = j, being i′ the i-th position associated with
j′. The notation of t̄i′ means that is the position of the state
estimated, but in this case, it is used as observation instead of
as a variable.

E. Optimization

The sum of all exposed factors is the cost function. Thus,
the optimal state X∗, e∗ is such that it minimizes the said cost:

X∗, e∗ = arg min
X,e

 N∑
i

(fo
i + fa

i ) +

M∑
j

(
fp
j + fe

j

) , (5)

where M is the number of GPS observations, and N is the
number of odometry observations (that coincide with estima-
tions). The weights explained in this section directly affect the
cost function form, allowing us to avoid the problems exposed
in Section I: (i) when the data information is insufficient with
ambiguities risk, the system can prevent outliers by holding
the trajectory taking strength on the corrected prior trajectory.
(ii) the same occurs when we have a lack of detections. (iii) we
avoid little deviations in the final estimation when correcting
GPS inaccuracies.

The dynamic adjustment of these weights depends directly
on the information in the data. The following section describes
the information calculation and the consequent weight adjust-
ment.

III. DYNAMIC WEIGHT ADJUSTMENT

While in the previous section, we focused our explanation
on the factor graph model, this section aims to expose the data
information quantification and the adjustment of the weights
for that model. In Section III-A, we describe how to obtain
the data information quantification. For that, we need to talk
previously about landmarks, detection obtention, and the data
association process. In section III-B, we specify how to adjust
the weights as a function of the data information.

A. Data information quantification

In geo-localization, the type of landmark chosen for lo-
calization must be observable from aerial imagery and local
sensors. The literature usually includes lane markings, vertical
structures such as building walls, and even the vehicle’s trajec-
tory. In this work, we introduce another feature that satisfies
the mentioned requirement: ground boundaries. This type of
landmark is suitable for roads, city streets, and pedestrian areas
such as university campuses.

In the following points, we describe how to obtain those
detections Di from a LiDAR sensor, get the map as a set
of landmarks L, and quantify the information after the data
association.
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a) Front-view from LiDAR

b) Front-view mask for training

c) Top-view from aerial image

Fig. 2. Example of Di and Li: a) Front-view from LiDAR information
where the red line marks the ground boundaries (Di). b) Front-view mask
extracted from (a). c) Top-view from the aerial image where the red line
represents the exact boundaries shown in (a) and (b) (Li).

1) Detections: A LiDAR sensor usually provides a point
cloud with 3D environment information and the reflectivity
for each point. With this information, we mount a front-
view representation in RGB image format. In this image, the
GB channels contain reflectivity information, while in the R
channel, we include the range image. In Fig. 2 a), we show
an example of a LiDAR scan as a front-view representation.

Then, we use the Convolutional Neural Network (CNN)
Unet++ [25] with backbone resnet18 [26] for ground boundary
detections. To train the model, we generated our own dataset
of 825 images and labeled them by hand, obtaining the
ground truth masks (Fig. 2 b)). We divided our dataset into
80% for training and 20% for testing with non-overlapping.
Regarding generalization, the mentioned dataset was recorded
in the Scientific Park of the University of Alicante, and we
observed satisfactory results on the university campus, which
is a different environment with more vegetation and a different
pavement. In contrast, we needed to label new images in
our experiments in KITTI, where the environment is totally
different1. After training, during the detection, each u-th pixel
with value 1 has its correspondence as a 3D point projected
in 2D, being a detection diu ∈ Di, where diu = (xd

iu
, ydiu).

In a previous work [4], we used the polylines that de-
scribe detections to quantify the information using the angle
between adjacent segments in the polyline. In this case, we
observe that the boundaries in detections Di are not arranged
sequentially. We could process the data to obtain the polylines,
which implies an undesired complex process in computational
time terms. Thus, we opted to quantify the data using the
structuration of the landmarks L associated with detections
instead of directly using detections.

2) Landmarks: The landmarks L that form the map could
also be detected with neural networks. Still, we use a

1The generalization of the complete localization method depends on that
detection module but is independent of the contribution of this work. Roughly
speaking, the detection module is like a black box in our approach. If we
require more generalization, we would need to research a more sophisticated
black box, which is out of the scope of this paper.

handcrafted map generated by applications such as Open-
StreetMaps [27] to avoid post-processing. This implies that
the map comprises a polyline set arranged in a friendly way
to quantify the data using differential angles between adjacent
segments in the polylines [24]. In Fig. 2 c), we show labeled
ground boundaries in an aerial image. These boundaries are
the same labeled in front-view representations (Fig. 2 a),b)).

Before i-th data association, we have detections set Di; then
we must crop L around xi, obtaining Li. The v-th landmark
liv ∈ Li is defined as liv = (xl

iv
, yliv , αiv ), where αiv is the

differential angle between adjacent polyline segments.
Quantifying the information using Li is unsuitable because

it could contain landmarks not observed by the sensors, adding
undesired information to quantification. In the next point, we
describe quantifying the information after the data association
process.

3) Raw quantification from data association: Given Di and
Li, we perform the data association process. In this work,
we use an ICP (Iterative Closest Point) due to its efficient
implementation in PCL (Point Cloud Library). First, we co-
register Di with Li, obtaining a new transformed set D′

i.
Finally, we find the closest point in Li below a certain distance
threshold for each d′

iu
∈ D′

i. This process generates a set of
associated pairs ((di1 , li1), ..., (diK , liK )) used in (3). Then, to
quantify the information of the data rawly, we sum the values
of the delta angle in the associated landmarks as:

si =

K∑
k=1

αik . (6)

This raw quantification is used to adjust the weights, as
explained in the next section.

It is worth noting that this quantification based on polyline
map representation is suitable for the rest of the feature types
used in the literature, i.e., lane markings, building walls, or
trajectories.

B. Weights as a function of data information

As shown in (6), the raw information quantification is an
accumulative value, where the minimum is smin

i = 0, and its
maximum depends on the environment, where our experiments
observe a maximum smax

i ≈ 60. To obtain the smax
i value

in a different area, we must drive only the part with more
landmark density and calculate the maximum s value. This
result is intractable to weight the factor graph as we proposed
in Section II. For this reason, to adjust the data association
weight, we use a sigmoid function to restrict the quantification
in a range [0; 1]:

ωa
i (si) = ωe

j (si) =
1

1 + e−Φi(si)
. (7)

As we can see in (7), given j and i synchronization, we
can adjust the prior error weight ωe

j (si) as that ωa
i (si). The

form of the sigmoid depends on the function Φi(si), and we
propose two different definitions compared in the evaluation
section.

First, as an option (a), if we consider the range of infor-
mation quantification as si = [0; smax

i ] and if we take into
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Fig. 3. Example of Φ(a)
i (si) and Φ

(b)
i (si) application in a sigmoid function.

The dotted lines indicate the values for λ(a) and λ(b).

account that a sigmoid function changes around zero in the
range of [−6; 6], we can displace the zero in si so that Φi(si)
remains as:

Φ
(a)
i (si) =

K∑
k=1

αik − λ(a), (8)

where λ(a) is a configurable parameter. In Fig. 3, we show an
example of this sigmoid configuration, where the pink dotted
line marks the value of λ(a). This configuration provides a
function that we can see as a smoothed step function where
the parameter λ(a) tunes how restrictive the system is against
information in the data.

Second, as an option (b), we propose a smoothest function.
In this case, we transform the sigmoid range [−6; 6], where
its size is h, to an information quantification range

[
0;λ(b)

]
,

where λ(b) is close to smax
i :

Φ
(b)
i (si) =

h

λ(b)

K∑
k=1

αik − h

2
. (9)

In Fig. 3, we show an example of this second option, where
the red dotted line marks the value of λ(b).

Finally, we define the expressions to adjust the prior trajec-
tory weights. First, for the odometry weight as:

ωo
i (si) = (Ki + 1) (2− ωa

i (si)) . (10)

And second, its variant for the prior as:

ωp
j (si) =

(Ki + 1) (2− ωa
i (si))(

σx,y
j + 1

) , (11)

where Ki is the number of associations, this first term scales
the prior trajectory weights to provide the same strength as the
associations’ residuals. We can see in (10) that the second term
provides strength when the data information is poor. In (11),
σx,y
j is the variance in x, y plane for the GPS observations.

Thus, noisily observations reduce the strength of the weight.
The +1 regularizations in the three terms are to avoid zeros.

IV. EVALUATION

This article argues that our contributions mitigate some
undesired effects in geo-localization approaches. To demon-
strate it, we focus our evaluation on that way. Before that,
we evaluate whole trajectories in a general way, comparing
different configurations of our method and three state-of-the-
art handcrafted-feature-based methods (Section IV-B). Due to

Fig. 4. Aerial image of the University of Alicante Scientific Park, where the
evaluation was performed through circuits in Fig. 5.

-250 -200 -150 -100 -50 0 50 100
y (m)

-50

0

50

100

150

200

250

300
x
 (

m
)

Landmarks
Circuit C4
Circuit C3
Circuit C2
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Fig. 5. The ground truth of the four circuits drove around the UA Scientific
Park. The landmarks were obtained from the aerial image in Fig. 4.

our approach being in this category, we consider it as the best
baseline for comparison. From there, we discuss the mitigation
of the mentioned problems: (i) Section IV-C shows how our
approach mitigates the outliers produced by ambiguities. (ii)
Section IV-D evaluates the mitigation of lack of detections.
(iii) Section IV-E discusses how our GPS error estimation can
improve the results in a whole trajectory. Finally, we provide
a comparison in KITTI for two methods end-to-end learned.

A. Setup

The evaluation was performed in the University of Alicante
(UA) Scientific Park (Fig. 4). This pedestrian area is where
we drove through the four circuits shown in Fig. 5: C1, C2,
C3, and C4. These circuits present some areas where the data
is ambiguous for the data association being areas with outliers
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x1 x2 x3 x4 xi xi+1

xi
Odometry
factor fo

Prior
factor fp

Pose
variable

Ground truth
Key frames

Fig. 6. Factor graph for ground truth generation: We use low-bias odometry as in Fig. 1, while we use handcrafted positions as trusted keyframes
generating residuals by prior factors. We obtain a whole ground truth trajectory by optimizing this model in offline mode.

TABLE I
STATE-OF-THE-ARTS METHODS COMPARED FOR THE EVALUATION.

Methods Data source Map source Feature type Model used Evaluated in GPS
Frosi et al. [12] LiDAR OpenStreetMap Buildings Factor graph KITTI No

Own implementation [12] LiDAR OpenStreetMap Ground boundaries Factor graph Own Yes
Cho et al. [13] LiDAR OpenStreetMap Buildings None KITTI No

Own implementation [13] LiDAR OpenStreetMap Ground boundaries Pose graph Own Yes
Muñoz-Bañón et al. [4] LiDAR and Cameras OpenStreetMap Lane markings Factor graph Their Own Yes
Own implementation [4] LiDAR OpenStreetMap Ground boundaries Factor graph Own Yes

Ours LiDAR OpenStreetMap Ground boundaries Factor graph KITTI/Own Yes

TABLE II
WHOLE TRAJECTORIES EVALUATION BY ABSOLUTE TRAJECTORY ERROR (ATE) IN TRANSLATION AND ROTATION.

Ours Ours Ours Ours Muñoz-Bañón Frosi Cho
Session ATE Φ(a) + e Φ(a) - e Φ(b) + e Φ(b) - e Prior et al. [4] et al. [12] et al. [13]

C1 trans. (m) 0.147 0.493 0.165 0.552 2.032 0.098 0.280 0.416
rot. (deg) 1.138 1.415 1.144 1.372 1.592 1.002 1.358 1.453

C2 trans. (m) 0.225 1.102 0.272 1.167 1.790 0.312 8.967 -
rot. (deg) 0.876 1.053 0.858 1.140 0.916 0.989 4.896 -

C3 trans. (m) 0.113 0.904 0.184 0.933 1.211 0.152 0.949 1.244
rot. (deg) 0.789 0.935 0.829 0.894 0.734 0.887 1.107 1.766

C4 trans. (m) 0.096 0.604 0.107 0.689 1.304 0.113 0.748 0.690
rot. (deg) 0.644 0.725 0.653 0.744 0.764 0.892 0.885 0.856

C1’ trans. (m) 0.230 0.726 0.255 0.806 - 0.671 0.798 0.757
rot. (deg) 1.033 1.772 1.202 1.679 - 1.283 1.750 1.913

C4’ trans. (m) 0.113 0.994 0.288 0.774 - 0.774 1.257 1.115
rot. (deg) 0.895 1.140 0.937 1.137 - 1.104 0.996 1.093

risk, especially C2, and C3. These parts are then adequate to
evaluate (i). Moreover, to assess the effect (ii), we repeat two
trajectories but eliminate the detections in some navigation
parts. We name these repetitions C1’ and C4’. Then, we
consider that we have six paths for evaluation.

Regarding the mentioned ambiguity risk, we observe dif-
ferent challenge levels in these circuits. C1 has less risk due
to passing areas with more corners, as we can see in Fig. 5.
C4 presents some straight regions, but others are informative.
Finally, we consider C2 and C3 the more challenging because
passes through large straight areas, especially C2.

We drove these circuits using our own developed UGV
platform BLUE (roBot for Localization in Unstructured En-
vironments) [23], [28], [29], which mounts a LiDAR Ouster
OS1-128 for environment perception.

To obtain ground truth, we manually align the detections for
some trajectory frames with the map, producing, in this way,
some ground truth poses. We name these corrected poses as
ground truth keyframes. Then, as we have low-bias LiDAR
odometry [30], we use it to interpolate the ground truth
poses to whole trajectories. We perform this interpolation by
optimizing the entire circuit using the odometry factors defined
in (1) and the prior factors described in (2), but in the last case,

using the ground truth positions. In Fig. 6, we show the graph
model for the ground truth generation.

In Table I, we show the specifications of the state-of-the-
art methods used for comparison. It is worth noting that, for a
fair comparison, we implemented in C++ the methods cited as
described in their papers but adapted to our implementation.
e.g., by using GPS and ground boundary features. For [12],
we included the GPS factor in their own factor graph model.
In the case of [13], we generated a pose graph including
the poses calculated using the descriptor presented in [13],
the odometry, and the GPS factors. This GPS augmentation
doesn’t contradict the contributions of the papers because in
[12], the authors comment that GPS is an ”optional” signal in
their method, while in [13], the authors don’t aim to replace
GPS; they seek to replace LiDAR maps. Table I specifies
the differences indicating our implementation. We use the
Absolute Trajectory Error (ATE) metric for these comparisons.

B. Whole trajectories evaluation

Table II shows the results for the whole trajectory evalua-
tion. The first four columns are the combinations of different
configurations of our approach by combining the two proposed
Φ functions with including or not the prior error estimation e.
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MUÑOZ-BAÑÓN et al.: GEO-LOCALIZATION BASED ON DYNAMICALLY WEIGHTED FACTOR-GRAPH 7

0 100 200 300 400 500 600 700 800 900
frames

0

2

4

6
e
rr

o
r 

(m
)

Association weight
Frosi et al. [13]
Cho et al. [14]
Munoz-Banon et al. [4]
Ours

0 50 100 150 200 250 300 350 400 450 500
frames

0

1

2

3

e
rr

o
r 

(m
)

Prior tra.
Frosi et al. [13]
Cho et al. [14]
Munoz-Banon et al. [4]
Ours

Fig. 7. A comparison of ATE evolution per frame for each compared
method, where we evaluate the behavior for top: outlier mitigation and for
bottom: mitigation of detection losses.

We also show the prior trajectory and the three state-of-the-art
methods compared results. The blue-marked values mean the
best outcome for each circuit.

With the combination of our approach, we observe that the
Φ(a) + e implementation produces slightly better results than
Φ(b) + e. In those cases, we mitigate the effect (i) even in the
more challenging circuits C2 and C3. In both cases, we see
that the error in C1’ and C4’ is held, mitigating the effect (ii).
When we eliminate e estimation, the errors increase due to an
ambiguous part of the circuit converging to a non-corrected
prior trajectory.

Regarding the method Muñoz-Bañón et al. [4], we can
see that the effect (i) is mitigated for the circuits C1 to
C4. However, when detections are lost, the method converges
to non-corrected prior, increasing the error by the effect of
drawback (ii).

Methods Frosi et al. [12] and Cho et al. [13] cannot mitigate
either (i) and (ii), and the errors become too large in the
most challenging circuits C2 and C3. Cho et al. [13] did not
finalize the most challenging circuit, C2, because it became
lost. Method Frosi et al. [12] can complete that circuit but gets
lost in some parts. Even when GPS augments [13], [12], they
can be lost because, without weight adjustment, the LiDAR
has more observations and produces more residuals in the
optimization process. For the same reason, the ambiguity effect
can produce results that overcome the prior error.

Looking into the results shown in Table II, we can infer how
problems (i) and (ii) affect each method, but in the following
section, we depict some concrete examples.

The Unet++ is a high-speed network, and we process images
with low resolution (OS1-128 LiDAR resolution, 128x2048).
Then, the experiments were performed in real-time, where our
loop spent 57ms for the whole process, less than the 100ms
required for real-time, which is the period of the LiDAR
sensor. Muñoz-Bañon et al. and Frosi et al. spent around
90ms, while Cho et al. occupied 170ms, which involves
processing 1 of each two scans for real-time implementation.
The experiments have been performed on an i7-7700HQ CPU
with 16 GB of RAM in C++. The network was implemented

in PyTorch using a GPU GTX 1050 Ti.

C. Outlier mitigation

To evaluate outlier mitigation in more detail, we crop a
trajectory through an area with outlier risk, i.e., a place where
the ωa

i has values close to zero. Then we evaluate the error
against the ground truth per each frame for the compared
methods.

In Fig. 7 (top), we can see the results of that process, where
we show the value of ωa

i in blue. When this value is near
zero, the data is non-informative, and there is an outlier risk.
The methods Frosi et al. [12], and Cho et al. [13] increase
their errors, while Muñoz-Bañón et al. [4] and our proposed
approach both mitigate the drawback (i).

D. Mitigation of detection losses

As mentioned in the setup section, we caused a lack of
detections in parts of circuits C1 and C4, being then these
circuits as C1’ and C4’. Then, to look into the trajectories in
detail to evaluate the effect (ii) mitigation, as in the previous
section, we crop a path through an area where we stopped the
detection process. Finally, we evaluate the error against the
ground truth per each frame for the compared methods.

In Fig. 7 (bottom), we can see the results of that process,
stopping the detections between the frames 150 and 350
approx. The prior trajectory error is shown in blue. We can
see how when the detections are blocked, the errors in all
compared methods become the same value as the prior error. In
contrast, our approach can maintain stable error by mitigating
the drawback (ii).

E. Effects of GPS error estimation influences

As a drawback (iii), we argue that inaccuracies in the GNSS-
based prior trajectory introduce errors in the final estimation
through the prior factor (2). Evaluating how e estimation can
improve the final pose inference in areas where there is no lack
and no ambiguities is complicated because in our approach
when there is no e estimation, the ATE increases because
of ambiguities areas. Plot areas with no risk do not provide
enough information. As a possible way to get some clue, we
propose looking into circuit C1 results because it is the one
where less ambiguities risk. In this case, we can see that our
method is worst when e is not estimated.

F. Comparison with end-to-end learned methods

In the previous sections, we evaluate the mitigation of the
typical drawbacks led by handcrafted-feature-based methods.
However, evaluating our approach compared with end-to-end
learned techniques is interesting. In this way, apart from
demonstrating the mitigation of the discussed weaknesses, we
show that our method is state-of-the-art for all geo-localization
strategies. It is worth noting that the [10], [5] approaches don’t
use GPS, and we don’t augment it because in their methods, as
in most end-to-end learned, the authors present their strategies
as GPS replacements.
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We implemented our approach in the KITTI Odometry
Benchmark using the provided odometry and LiDAR informa-
tion (range and reflectivity). We labelled the road boundaries
for 938 images from the different Odometry Benchmark
scenes. Then, we divided our dataset into 80% for training and
20% for testing with non-overlapping, obtaining 72% of the
IoU metric as individual frame performance. Table III shows
the result for sequences 00, 07, 09, and 10. We chose the
sequences to have diverse environments and roads. The empty
values indicate that the author’s paper doesn’t provide results
for such a sequence.

TABLE III
WHOLE TRAJECTORIES EVALUATION (ATE) IN KITTI.

Method Sec. 00 Sec. 07 Sec. 09 Sec. 10
Fervers et al. [10] (m) - 0.85 - 0.96

Li et al. [5] (m) - 0.44 1.16 0.93
Ours Φ(a) + e (m) 0.35 0.47 0.22 0.31

V. CONCLUSIONS

This paper presented a geo-localization approach based
on a weighted factor graph that dynamically adjusts its
values depending on the information measured in the data.
Moreover, the GNSS-based prior error estimation is included
in the model. This strategy mitigates typical drawbacks in
the handcrafted-feature-based geo-localization approaches: (i)
The outlier raised from ambiguous representation. (ii) The
deviations produced for sparse representations. (iii) The errors
introduced by the GNSS-based prior. We demonstrate those
mitigations experimentally by improving recent state-of-the-
art methods in this way.
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[4] M. Á. Muñoz-Bañón, J.-H. Pauls, H. Hu, C. Stiller, F. A. Candelas, and
F. Torres, “Robust self-tuning data association for geo-referencing using
lane markings,” IEEE Robotics and Automation Letters, vol. 7, no. 4,
pp. 12 339–12 346, 2022.

[5] L. Li, Y. Ma, K. Tang, X. Zhao, C. Chen, J. Huang, J. Mei, and Y. Liu,
“Geo-localization with transformer-based 2d-3d match network,” IEEE
Robotics and Automation Letters, 2023.

[6] F. Fervers, S. Bullinger, C. Bodensteiner, M. Arens, and R. Stiefelhagen,
“Uncertainty-aware vision-based metric cross-view geolocalization,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 21 621–21 631.

[7] S. Zhu, M. Shah, and C. Chen, “Transgeo: Transformer is all you need
for cross-view image geo-localization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
1162–1171.

[8] S. Hu and G. H. Lee, “Image-based geo-localization using satellite
imagery,” International Journal of Computer Vision, vol. 128, no. 5,
pp. 1205–1219, 2020.

[9] L. M. Downes, D.-K. Kim, T. J. Steiner, and J. P. How, “City-wide street-
to-satellite image geolocalization of a mobile ground agent,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 11 102–11 108.

[10] F. Fervers, S. Bullinger, C. Bodensteiner, M. Arens, and R. Stiefelhagen,
“Continuous self-localization on aerial images using visual and lidar
sensors,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 7028–7035.

[11] T. Y. Tang, D. De Martini, and P. Newman, “Point-based metric
and topological localisation between lidar and overhead imagery,” Au-
tonomous Robots, pp. 1–21, 2023.

[12] M. Frosi, V. Gobbi, and M. Matteucci, “Osm-slam: Aiding slam
with openstreetmaps priors,” Frontiers in Robotics and AI, vol. 10, p.
1064934, 2023.

[13] Y. Cho, G. Kim, S. Lee, and J.-H. Ryu, “Openstreetmap-based lidar
global localization in urban environment without a prior lidar map,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4999–5006,
2022.

[14] J. Kim and J. Kim, “Fusing lidar data and aerial imagery with perspective
correction for precise localization in urban canyons,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 5298–5303.

[15] H. Roh, J. Jeong, and A. Kim, “Aerial image based heading correction
for large scale slam in an urban canyon,” IEEE Robotics and Automation
Letters, vol. 2, no. 4, pp. 2232–2239, 2017.

[16] F. Yan, O. Vysotska, and C. Stachniss, “Global localization on open-
streetmap using 4-bit semantic descriptors,” in 2019 European confer-
ence on mobile robots (ECMR). IEEE, 2019, pp. 1–7.

[17] H. Hu, M. Sons, and C. Stiller, “Accurate global trajectory alignment
using poles and road markings,” in 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2019, pp. 1186–1191.

[18] M. Javanmardi, E. Javanmardi, Y. Gu, and S. Kamijo, “Towards high-
definition 3d urban mapping: Road feature-based registration of mobile
mapping systems and aerial imagery,” Remote Sensing, vol. 9, no. 10,
p. 975, 2017.

[19] M. M. Atia and S. L. Waslander, “Map-aided adaptive gnss/imu sensor
fusion scheme for robust urban navigation,” Measurement, vol. 131, pp.
615–627, 2019.

[20] B. Suger and W. Burgard, “Global outer-urban navigation with open-
streetmap,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 1417–1422.

[21] S. Singh, J. Singh, and S. S. Sehra, “Genetic-inspired map matching
algorithm for real-time gps trajectories,” Arabian Journal for Science
and Engineering, vol. 45, no. 4, pp. 2587–2603, 2020.

[22] Z. Huang, S. Qiao, N. Han, C.-a. Yuan, X. Song, and Y. Xiao, “Survey
on vehicle map matching techniques,” CAAI Transactions on Intelligence
Technology, vol. 6, no. 1, pp. 55–71, 2021.

[23] I. del Pino, M. A. Munoz-Banon, S. Cova-Rocamora, M. A. Contreras,
F. A. Candelas, and F. Torres, “Deeper in blue: Development of a robot
for localization in unstructured environments,” Journal of Intelligent &
Robotic Systems, vol. 98, pp. 207–225, 2020.
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