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Scenarios for the Altamira cave CO2 
concentration from 1950 to 2100
Marina Sáez 1,2,6, David Benavente 2, Soledad Cuezva 3*, Mireille Huc 1, 
Ángel Fernández‑Cortés 4, Arnaud Mialon 1, Yann Kerr 1, Sergio Sánchez‑Moral 5 & 
Sylvain Mangiarotti 1,6*

A data-driven approach insensitive to the initial conditions was developed to extract governing 
equations for the concentration of CO2 in the Altamira cave (Spain) and its two main drivers: the 
outside temperature and the soil moisture. This model was then reformulated in order to use satellite 
observations and meteorological predictions, as a forcing. The concentration of CO2 inside the cave 
was then investigated from 1950 to 2100 under various scenarios. It is found that extreme levels of CO2 
were reached during the period 1950–1972 due to the massive affluence of visitors. It is demonstrated 
that it is possible to monitor the CO2 in the cave in real time using satellite information as an external 
forcing. For the future, it is shown that the maximum values of CO2 will exceed the levels reached 
during the 1980s and the 1990s when the CO2 introduced by the touristic visits, although intentionally 
reduced, still enhanced considerably the micro corrosion of walls and pigments.

Underground atmospheres interchange greenhouse gases—such as CO2, CH4 and water vapour—with the 
outside atmosphere, following irregular seasonal patterns. The understanding of these exchanges is key to the 
preservation of valuable elements often found in caves. These include archaeological remains such as the parietal 
art of Altamira (Spain) or Lascaux (France), and unique biological and geological features such as speleothems, 
which can be used as paleoclimate records. Unfortunately, many caves are subject to considerable anthropogenic 
pressure because their stable environments can be easily disturbed by tourism or even by scholar activities, 
as a consequence of temperature changes, CO2 and water vapour exhalation, air currents, exogenous micro-
organisms, etc. The study of cave micro-climates is also important since these exchanges may contribute to 
explain some imbalances found in the carbon cycle when only climatic and biotic contributions are considered1–3. 
Indeed, the reservoir of gaseous CO2 in caves could represent (if the effects of changes in land uses are excluded) 
up to 56% of the missing sink on an annual scale4–6. The knowledge of these exchanges is necessary to understand 
how the climate change will influence the accumulation or evacuation of greenhouse gases from caves to the 
atmosphere, and vice versa.

The main objective of this study is to reconstruct the time evolution of the micro-atmosphere of the Altamira 
cave, located in Cantabria, North of Spain (see Fig. 1 and Supplementary Note 1 for details), and, more specifically, 
its variations of CO2 concentration in the long term. Previous studies have focused mainly on the statistical 
relationships between the factors at play in the cave, leading to a good overview of all the processes at work. In 
particular, the functional relationships between in-cave and external micro-climatic parameters and the variations 
of trace gases have been investigated based on the concept of entropy7,8. However, the dynamical links between 
the variables remain poorly known: the governing equations are not available. It is therefore difficult to perform 
simulations and to generate scenarios of both the past and the future. Although challenging, such projections 
are necessary to anticipate its coming evolutions. In order to make progress in this area, this study presents two 
dynamical models for the CO2 concentration in the atmosphere of the Altamira cave, reconstructed by a data-
driven approach. In a previous research, it was found that the cave micro-climate exhibits low-dimensional 
chaotic behaviour. This result was supported by three dynamical models based on the radon concentration9. In 
this work, we focus on the CO2 concentration in the Altamira cave and on the two main drivers for the cave’s 
micro-climate: the outside temperature and the soil water content10.

The study of the Altamira underground micro-climate is key to the preservation of its Palaeolithic paintings, 
threatened by decades of intense touristic exploitation and anthropogenic modifications in the cave. It has 
proven to be particularly sensitive to the increase of CO2 concentration and temperature, which imbalances the 
air exchange pattern with the exterior and, eventually, fosters the entry and dispersion of outdoor nutrients and 
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micro-organisms linked to bio-deterioration processes of rock-paintings11,12. Caves follow seasonal ventilation 
patterns, which are triggered by the density difference between the inner and the outside air. For caves located in 
non-tropical latitudes, the most important factor controlling these differences is the temperature13,14. In Altamira, 
between the end of October and mid-November, the CO2 coming from the upper soil accumulates in the cave 
due to lack of ventilation (see Supplementary Fig. 1). By mid-May or mid-June, the air of the atmosphere 
becomes hotter than that of the cave, allowing ventilation and, consequently, the concentration of CO2 in the cave 
decreases15. Although this behaviour contrasts with the classical models for cave ventilation through openings16,17, 
it has been well established for the Altamira cave in previous studies10,18. The annual cycle of charge and discharge 
is apparent, although partly blurred by episodes of short time scale10,19. The volume of water contained in the 
soil layer, on the surface above the cave, has been proposed as another important factor controlling these 
exchanges20,21, since the Altamira cave is located in a humid area with moderate evapotranspiration. In the 
first place, the soil above the cave is the main source of CO2, which is transported by diffusion to the cave 
atmosphere10. In addition, the volume of water in the soil can enable or disable the passage of gases22. A dynamical 
coupling between the volume of water in the soil and the gas concentration in the cave atmosphere (222Rn) 
has been be evidenced9. This coupling suggests that a lower content of water promotes out-gassing and allows 
faster gas interchange and vice versa. Nevertheless, no model able to account for the CO2 and its main climatic 
drivers could be proposed and the past and future evolution of the cave micro-atmosphere remains an important 
problem to investigate.

When choosing an approach to tackle this problem, four main criteria should be considered:

•	 (1) A data-driven approach should be preferred as no model is currently available, and because the data 
presently available would not suffice to constrain any process-based model satisfyingly;

•	 (2) The chosen approach should be, in its principle, independent of the initial conditions because the problem 
presents a sensitivity to these initial conditions caused by the climatic forcing;

•	 (3) It should not lead to an inaccessible black box: instead, ideally, it should offer a reusable formalism, 
enabling to deepen the problem further and to investigate new hypotheses;

•	 (4) It should be applicable to relatively small data sets, since in practice, only few cycles of observations are 
generally available in cave research; this rules out methods such as artificial networks or deep learning;

Figure 1.   Area of study, data location and data footprint. Altamira is located North of Spain (43°22′40″N; 
4°7′6″W) in the Cantabria province (A). It is a sloping down cave (C) with a single entrance located in the upper 
part of a 158 m high hill. The Polychromes hall is located close to this entrance in a connected hall located on 
the left after entering the cave (B). The concentrations of CO2 used in the study were all measured in this hall. 
The location of the in situ measurements performed outside the cave are also reported on (C) and represented 
by an orange square. The footprints (or grid pixels) of the other data sets used in the study are presented in (D): 
SMOS (in green), CCI (in pink) and ESM soil moisture (in red) for soil moisture, MODIS (in yellow) for land 
surface temperature, and ERA5 (in blue) for both soil moisture and temperature. The grid pixel of the IPCC 
model, too large to be plotted with the other footprints, is presented in (A). The maps were created with QGIS 
version 3.10 https://​www.​qgis.​org.

https://www.qgis.org
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•	 (5) It should be sufficiently robust to be applied to environmental datasets from the real world.

Initiated at the beginning of the 1990s, the global modelling technique used in the present study can be an 
efficient alternative to more common approaches. It is based on chaos theory and is, therefore, well adapted to 
deal with unstable dynamics, which must be considered as a very plausible hypothesis as far as atmospheres are 
concerned, as illustrated by the theoretical system introduced by Edward N. Lorenz in the early 1960s23.

Chaotic dynamics pose difficult problems for scientists24,25, basically because slight differences in the initial 
conditions can give rise to very different time evolutions. A modelling approach well adapted to these types of 
dynamical regimes must be able to retrieve the original dynamics whatever the original conditions and their 
time evolutions are (that is, from any time evolutions resulting from the same governing equations, whether they 
start from very similar or very different initial conditions).

The global modelling technique26 was especially designed for this purpose. It assumes that the governing 
equations of the studied systems are of deterministic form and can thus be written as

with X a state vector of the effective variables of the studied system and ℳ its governing equations. Its aim is to 
unveil these equations based on a set of observed variables. Initiated in the early 1990s, the approach was explored 
both from univariate27–30 and multivariate time series28,31–33.

In this latter case, the global modelling technique may become a very interesting tool to extract information 
in an algebraic form, directly from observational time series, making the black box transparent, as far as possible. 
Indeed, the approach was proven very powerful to retrieve the exact structure of the original equations when 
these are of compact form (i.e. equations that cannot be simplified further or the original dynamics will be 
lost), or to obtain a proper approximation of them if not, even under degraded measurement conditions33. The 
approach can also be used to detect weak directional couplings from small subsystems involved in a higher 
dimensional network. As a general technique, of course, it can also be applied to the particular case of non 
chaotic behaviours.

The global modelling technique could be applied to experimental problems since the mid 1990s26,34. It is 
more recently that it was applied to environmental data from the real world35, for instance in hydrology or soil 
eco-hydrology. In a case of eco-epidemiological application, for the outbreak of bubonic plague in Bombay 
(1896–1911), the approach even proved to be able to get interpretable equations directly from observational time 
series36. Closer to the problem that interests us here, it was applied to the atmosphere of the Altamira cave. Two 
bivariate chaotic models were obtained for the dynamics of CO2 and 222Rn, suggesting a regime close to chaos9.

This technique requires very few assumptions. It implicitly assumes that the phenomenon is deterministic. 
In the present study, it is also assumed that the dynamics is either polynomial or approachable by means of 
polynomial equations. Other than this, the global modelling technique does not require any assumptions about 
the physical processes involved, neither the calibration of empirical or semi-empirical coefficients.

In addition, this technique allows modelling even when some variables involved in the dynamics were not 
observed, which is a very common situation in real conditions, especially when dealing with the underground. 
In other words, the original dynamics (with all the active variables) may be reformulated based on some of the 
observed ones. In order to account for the missing variables, the models include derivatives of the observed ones, 
which is grounded in the embedding theorems37–39. In practice, it is not always possible to replace the active 
variables in a reformulation of the dynamics involving derivatives of the observed variables. This is a question of 
observability40, which cannot be anticipated. However having found a global model for a phenomenon implies 
that it was indeed observable.

All these strong properties (insensitivity to the initial conditions, robustness to measurement and dynamical 
noises, as well as to subsampling and gaps, ability to work from a restricted number of variables, possibility to get 
algebraic formulations and potentially interpretable ones, and capacity to tackle with observations from the real 
world) have made the global modelling a well designed tool to work on the micro-atmosphere of the Altamira 
cave. Moreover, all these advantages make it possible to work on problems whose dynamical equations are 
unknown or poorly known, and poorly constrained as well, due to the limited accessibility of the underground. It 
also makes possible to work on problems that involve multidisciplinary realms such as physics, biology, geology, 
hydrology for which no coupling models generally exist.

Chaotic models for Altamira dynamics and its drivers
In this research, univariate analyses were first applied to the variable C the concentration of CO2 inside the cave, 
and to two external variables identified as drivers of the dynamics of the micro-atmosphere: (i) T the temperature 
of the outside atmosphere, which is at the source of the density gradient with the micro-atmosphere air41; and (ii) 
W the Volume Water Content (VWC) at the vertical of the cave, assumed to play an important role by fostering/
hampering the exchanges through the soil9,20,22. The Altamira cave is located in the upper vadose zone of a senile 
karstic system and it is hydrologically unconnected, therefore no significant aspects of the groundwater in the 
unsaturated zone need to be considered in the model.

Details about the data, their preprocessing and their intercalibration are provided in Supplementary Note 2 
(see also Supplementary Table 1, 2, 3). A general description of the used algorithm is shown in Supplementary 
Fig. 2 with all details, including the validation procedure, provided in the Methods section.

The univariate models UC, UT and Uw were obtained for each variable considered in this study (Fig. 2A–C, 
see Supplementary Note 3 for details). These models converge to chaotic attractors and they enable to gather 
in a single and consistent framework all the properties of chaos (summarized in Supplementary Table 4): 
determinism42, fractal dimension43, high sensitivity to the initial conditions44, folded structure45 of the attractor, 

(1)dX/dt = M(X),
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Figure 2.   Univariate modelling. Three observed variables were considered in the study, which time series are 
shown in (A): the outside temperature T(t) measured in situ (shown before (grey line) and after (black line) 
smoothing) or estimated from MODIS satellite product (also shown before (orange dashed line) and after (red 
dashed line) smoothing), the volume water content W(t) measured in situ (shown before (grey line) and after 
(black line) filtering) or estimated from SMOS satellite (also shown before (cyan dashed line) and after (blue 
dashed line) filtering), and the concentration of CO2 C(t) measured in situ only and shown before (grey line) 
and after (black line) smoothing. (B) Differential phase portraits reconstructed from these smoothed time series 
with both the in situ (plain lines) and the satellite based (dashed lines) reconstructions. (C) The phase portraits 
and first return maps by applying the global modelling technique to these time series considered separately, 
these maps all exhibit multiple branches characteristic of chaotic dynamics.
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and robustness to long term numerical integration46. The dynamics of the open atmosphere is highly sensitive to 
the initial conditions as expected theoretically since the pioneering works on chaos23,24,47,48, which is confirmed 
here—directly from observational time series—by obtaining chaotic attractors for the variables T and W.

Since the cave is not isolated from the open atmosphere, the chaotic regime of the CO2 concentration may not 
result from internal mechanisms but rather from the coupling to external factors. To investigate this question, 
the global modelling technique was applied again, considering the three time series as input, with the purpose 
of unveiling underlying couplings between C the concentration of CO2 in the cave and the two expected external 
drivers T and W. Among the models not rejected by the procedure, a single model MCTW​ was able to reproduce 
the dynamics of the three variables, and their coupling, as observed in Fig. 3. Details about the procedure 
used to obtain this model are provided in Supplementary Note 3. This model enables a rough but consistent 
reconstruction of the phase space and gives good forecasting performances in the short term. As a result of the 
removal of retroactions within the model structure, this multivariate model MCTW​ highlights the independent 
dynamics of the outside variables T and W, which together play as unidirectional forcing on the concentration 
of CO2 in the cave. Moreover, it generates chaotic dynamics for the three variables C, T and W as expected, and 
the oscillations of the three variables all have pseudo-periods close to annual because C and W are synchronized 
on the annual pseudo-period generated by the sub-model UT (Eqs. 16–18 in MCTW​). It can be considered as a 
proper reconstruction of the original dynamics in terms of types of trajectories. The chaotic dynamics of the 
micro-atmosphere can be explained, therefore, by the chaotic dynamics of the two drivers.

In Supplementary Fig. 1, it is shown that in 2011 the in situ soil moisture cycle was greatly disturbed by a 
very rainy summer, however, the CO2 continued its annual dynamics following the temperature cycles. This fact 
is accurately reproduced by the model, where, as explained, the CO2 concentration always synchronizes with 
the temperature, which is, therefore, the main factor triggering the basic cycle of ventilation and accumulation. 
The basic shape of an annual CO2 cycle consists of: (i) a rapid recharge; (ii) a slight out-gassing taking place 
when the air is still trapped in the cave (the CO2 probably moves by diffusion to lower, CO2-depleted parts of 
the karst system); (iii) a stabilization around 3000 ppm; (iv) a rapid discharge, when ventilation is triggered by 
the temperature; and (v) a stabilization close to the CO2 concentration of the outside atmosphere. This basic 
shape results from typical temperature and the CO2 cycles. However, the soil moisture time series tends to 
show irregular cycles and acts often as a perturbing factor. The soil moisture content, therefore, enhances the 
complexity of the CO2 behaviour, resulting mainly in higher or lower maxima and in orbits with various shapes. 
This confirms the results from a previous dynamical model for 222Rn and soil moisture content in the Altamira 
cave by Sáez et al.9.

The Altamira cave exhibits a particular behaviour (the CO2 accumulates when the outside temperature is 
lower than the inside one), and a particular geomorphology. Moreover, it is located in a specific climatic area 
(where the soil moisture content plays an important role in the dynamics). Therefore, these models cannot 
be directly applied to other caves, although the technique can be transferred. Indeed, as the global modelling 
technique is a data-driven approach that requires no assumptions about the physical processes taking place in 
the system, the technique would be applied exactly in the same way, although the resulting models and their 
interpretations may be different and they might require to include other variables. For example, in locations 
with an active hydrological system connected to the karstic environment, significant aspects of the groundwater 
in the unsaturated zone should be considered such as the buffering effect of carbonate aquifers, or CO2 inputs 

Figure 3.   Multivariate modelling. Projections of the multivariate phase space reconstructed from the 
observational time series are shown in (A), based in situ data (all the projections) and satellite data (when 
available). The multivariate phase portraits of the model MCTW​ obtained by applying the global modelling 
technique to the time series considered together is shown in (B), and its first return map in (C) characterized by 
two branches characteristic of chaos.
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from the groundwater aquifer to the unsaturated zone.The latter may be particularly relevant in geologically 
and geothermally active zones49.

Reconstruction of CO2 concentration using in situ data as forcing
The original dynamics of the cave micro-atmosphere—not only the model—being itself highly sensitive to the 
initial conditions, any forecasts will diverge exponentially from the corresponding observed trajectories starting 
from any observed initial conditions. In practice, in order to get realistic simulations of the seasonal cycles of 
CO2 concentration, the information provided by the observed drivers should be used as forcing.

This can be done by reformulating the original autonomous system in a non autonomous one MC
* by replacing 

the variables T and W in model MCTW​ by a forcing explicitly function of time, that is, by using the observed time 
series of surface temperature and soil water content to drive the model (see Supplementary Note 3 for details). 
In practice, this was done by rewriting model MCTW​ (Eqs. 15–20) as

in which T, Ṫ , and W have been replaced by the observational time series Tobs(t), Ṫobs(t) , and Wobs(t) now used 
as external forcing, explicitly function of time t.

The temperature T and soil moisture W forcings, taken from observed conditions in situ, enable to maintain 
the seasonal synchronization between the micro-atmosphere dynamics and the outside atmosphere, which is 
a common problem when autonomous equations are used. The synchronization being now maintained by the 
genuine forcing, all the conditions are gathered for validating the simulations: the modelled concentration of CO2 
can be directly compared to the time evolution observed in the cave. The model concentration C shows a high 
degree of correlation (0.964, confidence level 95%) with the CO2 time series observed in situ (see Fig. 4A,B top 
line). The dynamics of the CO2 is thus reproduced correctly, and quite realistic simulations can be generated based 
on valid drivers. Moreover, the dynamics of CO2 is properly reproduced as illustrated by the various projections 
of the phase space (Fig. 4C top line), which mimics correctly the shape and size of the original orbits and also 
occupies a wide region of the original phase space.

The present model provides strong evidence of the combined roles of temperature and soil water content as 
main drivers of the dynamics of the cave micro-atmosphere.

Recent decades of CO2 concentration reconstructed using satellite data
Although the in situ monitoring is 5 year long, it cannot be used to reconstruct the evolution of CO2 in the cave 
in the long term. Other in situ measurements are rare, not available in the long term, and even quite punctual 
when available. Thanks to model MC

* (Eq. 2), as just shown, valuable simulations of the concentration of CO2 
can now be performed based on external observations. Satellite data might thus also serve for this objective. 
Different remote sensed products were then tested to run the model on longer periods of time. The measurements 
performed from space being, for the most, based on electromagnetic signals, they can only provide indirect 
information about the physical variables measured at the surface of the Earth. Moreover, satellite measurements 
are performed with specific space and time sampling. For these reasons, a dedicated pre-processing (recalibration, 
re-sampling and filtering) was required to make them compatible with the model input, the characteristics of 
which rely on the in situ measurements from which the model was derived (see Supplementary. Note 2 and 

(2)Ċ = a0 + PC
(

Tobs(t), Ṫobs(t),Wobs(t)
)

− a9CobsW
2
obs(t),

Figure 4.   Non-autonomous modelling of CO2 concentration in the cave. Predictions are based on the non 
autonomous model MC

*,  considering either in situ forcing (top row), satellite forcing (middle row) or hybrid 
product forcing (bottom row). Original (plain line) and simulated (dashed lines with its associated error in light 
grey envelope) time series are provided in (A), modelled versus observed scatter plots in (B), and original (plain 
line) and model (dashed line) phase space reconstructions in (C).
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Supplementary. Table 1, 2, 3). A similar type of pre-processing was applied to all the products used as a forcing 
in order to keep the consistency with the original variables.

The first mission dedicated to the measurement of soil moisture from space is SMOS, a European (ESA/CNES/
CDTI) mission, initiated at the Centre d’Etudes Spatiales de la Biosphère50 and launched in 2009. It has produced 
measurements of soil moisture since the early 2010s and up to now. Data are considered here on the period 
2010–2020. Based on ancient satellite measurements originally dedicated to other objectives, algorithms have 
also been developed to estimate soil moisture a posteriori. Two other products, both built from an ensemble of 
satellite missions, were considered in the present study: the Earth System Model (ESM) Soil Moisture product51 
for which time series were considered on the period 1970–2016, and the ESA-CCI Soil Moisture data record52 
from which the recent period 2003–2020 of the data was used here.

Temperature, also required to run model MC
*, can be derived from remote sensing as well. Land Surface 

Temperature can be deduced from the thermal infra-red brightness temperature, commonly measured from 
satellite in the optic bands. For the present purpose, the MODIS satellite product available since the early 2000s53 
was used. To go back further in the past, the ERA5 temperature at 2 m reanalyses product of the European Centre 
for Medium-range Weather Forecasts (ECMWF) was also used when necessary (down to 1950)54. The overlapping 
time of these various products with the in situ measurements are synthesized in Supplementary Table 2, 3.

The satellite forcings allow a notable reconstruction of the phase space. The phase space projections for 
CO2 concentration and temperature are shown in Fig. 4 (middle and bottom lines). The petal shape of the 
original orbits is retrieved correctly, as well as the general range of the variables. The combinations of forcings 
including systematically satellite data (SMOS + MODIS, ESM + MODIS, CCI + MODIS) or partially based on it 
(SMOS + ERA5, CCI + ERA5), enabled to produce very realistic simulations of CO2 concentration in the cave 
during the last two decades.

In conclusion, the multivariate model was initially based on in situ measurements, however these are available 
only on limited periods of time and often include gaps because caves are humid environments quite aggressive 
for the measuring devices. The use of satellite data for the temperature and the water content leads to some 
advances. They made it possible to approximate the dynamics of the CO2 over time periods for which no in situ 
measurements were available. In the next sections, we will use the model to investigate the impact that climate 
change may have in the future, and to explore the overwhelming effects of the massive touristic visits in the past.

Future evolution of the CO2 concentration in the cave under climate change scenarios
Another concern is the future concentration of CO2 in the years and decades to come. What will be the effect 
of climate changes on the CO2 concentration in the cave and on its capacity to act as a source or sink of CO2?

To investigate these questions, simulations were performed based on scenarios of the global circulation 
model ECHAM4 produced by the Intergovernmental Panel on Climate Change (IPCC), run with observed 
conditions taken from the ECMWF on the period 1860–199055. Six scenarios were produced by the IPCC 
based on four different story lines, one of them including several sub-scenarios. Four of the six scenarios were 
considered in the present analysis, that is, one for each main storyline. Scenarios A1 and B1 both assume an 
increase of the world population that will peak by mid-century, followed by a decline. The scenario A1 was 
built on the hypothesis of quick economic growth with rapid introduction of more efficient new technologies, 
high capacity building and increasing interactions leading to a reduction in regional inequities. Among the 
sub-scenarios of A1 produced by the IPCC, the present study focuses on the scenario A1B assuming balance 
across all sources of energy with similar improvement rates in supply and end use on the possible sources. 
Scenario B1 assumes a reduction of material intensity in the economic structure with the introduction of clean 
and efficient technologies, global solutions to sustainability and improved equity. The scenario A2 was built 
with the assumption of a very heterogeneous world preserving the local identities, with continuous increase 
of the populations and slow economic growth and technology change. The last scenario, B2, was built on the 
assumption of a world emphasizing local solutions to economic, social and environmental sustainability, also 
with a continuous population growth but with a lower increasing rate than that of A2. Although the products 
corresponding to the various scenarios were all issued from the same website, these were characterized by 
different spatial resolution (See Supplementary Note 2).

At the study site, the temperature increase by the end of the century is of + 3.5 °C for A2, + 3 °C for A1B, + 2.5 °C 
for B2 and + 2 °C for B1. The scenarios A2 and B2 also exhibit a progressive increase of the variables ranges, that 
is, higher maxima and lower minima. A slight soil moisture decrease is expected for all scenarios although it 
is more pronounced for A2 (− 0.05m3/m3) and B2 (− 0.03m3/m3) than it is for A1B and B1 (− 0.01m3/m3). The 
soil moisture for scenarios B2 and A2 was found quite coherent with the in situ data (available 2007–2012). It 
was not the case for the scenarios A1B and B1 (see Supplementary Table 2) whose soil moisture exhibits a non 
stationary dynamics (see Supplementary Table 1). Therefore the latter scenarios might produce less reliable CO2 
simulations for Altamira.

The model MCTW, and thus its autonomous version MC
*, was extracted from a short observational time series 

(2007–2012, including the modelling and the validation windows). Consequently, it reflects implicitly a stationary 
dynamics of the CO2 concentration in the outside atmosphere (assuming that the slow evolution of the climate is 
undetectable on a 5 year window). However, for long term predictions, the change predicted by the IPCC in the 
outside CO2 concentration should be considered. In particular, the level of CO2 in the cave should never become 
lower than in the outside atmosphere. For this purpose, the model was reformulated into MC

** as

(3)Ċ = a0 +�Atm

(

Cext(t)− Cext
2007

)

+ PC
(

Tobs(t), Ṫobs(t),Wobs(t)
)

− a9CobsW
2
obs(t),
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with Cext(t) the CO2 concentration observed or expected in the outside atmosphere, Cext
2007 the value of Cext(t) 

in the year 2007, and �Atm a constant parameter which was calibrated to the value + 0.20 to satisfy this condition 
(see Supplementary Note 5 for details).

The Earth atmosphere being chaotic, each scenario must be considered as one particular realization of the 
given scenarios. Nevertheless, these can be used to study the general trends, and the possible evolutions of the 
distribution of the CO2 concentration inside the cave. Figure 5 shows that, while the minima remain essentially 
unchanged, the mean CO2 concentration in the cave raises approximately 1000 ppm for scenarios A1B and A2 
by the end of the century, from 3000 to 4000 ppm; for the scenarios B1 and B2 the increase is somewhat lower 
(800 ppm), as expected from their lower increase of mean temperature. In addition to the increase of mean CO2 
concentration, the scenario A1B shows a few occurrences of very extreme annual maxima. These outliers, which 
start mid-century, probably result from the poor representativeness of the IPCC soil moisture content time 
series, which therefore cannot reflect accurately the climate of Altamira. The average annual maximum of outside 
temperature and CO2 concentration rise slightly for the B2 scenario and quite notably for the A2 scenario, as well 
as the frequency of occurrence of larger than usual CO2 maxima (annual maxima up to 7000–9000 ppm are often 
forecasted from 2070 onwards). An increased range of the outside temperature will lead to sharper temperature 

Figure 5.   Future scenarios of CO2 in the Altamira cave (from 1990 to 2100). Reconstruction of the 
concentration of CO2 in the cave micro-atmosphere considering four IPCC scenarios used as forcing. Scenario 
A2 (first row) corresponds to a local increase of temperature of + 3.5 °C by the end of the century; Scenario A1B 
(second row) to a local increase of + 3 °C; Scenario B2 (third row) to a local increase of + 2.5 °C and Scenario 
B1 (fourth row) to a local increase of + 2 °C only. In all the cases, concentrations measured in situ are reported 
in black lines in (A) and used for the scatter plots in (B). Observations from 1990 to 2022 (blue plain line) and 
linear extrapolation from 2023 to 2100 (blue dashed line) of the CO2 outside the cave are also provided. Levels 
corresponding to 5,000 ppm, 10,000 ppm, 15,000 ppm and 20,000 ppm (when visible) are reported on the 
graphs in order to make the scenario comparison easier.
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gradients between the outside and the inside. These temperature gradients have important consequences when 
daily and short-term temperature oscillations are considered. In the present day, Altamira is located in an area 
where the annual temperature range is moderate, thus daily and short-term temperature oscillations can quite 
easily cause short periods of ventilation in winter and stagnation in summer. Therefore, the cave is neither 
completely closed in winter, nor completely open in summer. An increased outside temperature range might 
lead to a complete or more complete stagnation in winter and ventilation in summer, and thus, to increased CO2 
accumulation in winter and ventilation in summer, as the simulations predict and as observed in caves located in 
other climatic areas56,57. Climate changes are also expected to affect the production of CO2 in the soil. In principle, 
high soil moisture and high temperatures foster the production of CO2, soil moisture being the most decisive 
factor58. In this case, an increase of temperature and a slight decrease of soil moisture are expected in the future. 
This is consistent with an increase of the CO2 production in the soil, especially in winter, and thus with the larger 
concentration of CO2 predicted in the cave during the charged state, when ventilation is inhibited. Finally, the 
higher concentration of CO2 expected by the IPCC in the outside atmosphere, might affect also the level of CO2 
in the cave, especially in summer. The biological CO2 coming from the soil will be ventilated by air richer in 
atmospheric CO2, therefore the minimum possible CO2 value in the cave will be slightly higher. These estimates 
are very likely local since they are based on an ad hoc model built for the Altamira cave. At this stage, they can 
neither be generalized to soil around the cave, nor to other caves in general because the dynamics of caves can 
be very diverse depending on their detailed morphology and climatic location. To investigate the genericity of 
this result on the atmosphere, the present approach should be applied to other regions and other karstic and 
underground systems. However, in the inside of the Altamira cave, the enhanced accumulation of CO2 in its 
atmosphere and in the infiltrated water will increase the risk of micro-corrosion15. This is clearly a threat to the 
paintings because micro-corrosion partially removes the pigments and the rock surface where they lie. Indeed, 
the IPCC scenario that leads to larger impact for the cave CO2 concentration is scenario A2, which is also the 
most probable scenario considering the present evolution of technology, economy and population.

Past evolution of the CO2 concentration under touristic regime
Land surface temperature and soil moisture measurements from satellite were not available before 2000. Despite 
this, it is possible to attempt a simulation of past scenarios based on climate data coming from reanalyses. The 
CO2 concentration in the cave was thus reconstructed back to 1970 by using the ESM and ERA5 products. 
Another reconstruction, exclusively based on the ERA5 product could be generated back to 1950. In addition to 
its natural dynamics, the Altamira cave has undergone different affluence regimes59, therefore different situations 
must be distinguished. Following a long period of increasing tourism activities from 1952 to the early 1970s, with 
a peak of 174,613 visits recorded in 1972, the Altamira cave closed its doors from 1978 to 1982 after noticing a 
rapid degradation of the Palaeolithic paintings. A museum with reproductions was opened to satisfy the touristic 
demand. The access to the site was restored but limited to a smaller number of visitors during the 1982–2002 
period (11,320 visitors per year). In 2002, Altamira was closed for the second time to the public because of 
the presence of phototrophic micro-organisms on the paintings8, resulting from the presence of visitors and 
the exhalation of CO2, amongst other factors. However, touristic exploitation was resumed in 2014 although 
restricted to a very low number of visitors (5 per week) to ensure longer preservation. Reconstructions based on 
two scenario types were then performed to analyse this situation. In the first type, the influence of the visitors 
was excluded. For this purpose, model MC

** presented in Eq. (3) was taken as it was obtained (since built on a 
period free of visitors). In the second type, the model was reformulated into MC

*** as

to take the influence of the visitors into account, with V(t) the number of visitors per day at time t and �Vis a 
constant parameter (see Supplementary Note 5 for details). The in situ time series of CO2 concentration from 
1997–199815 was used to calibrate �Vis , the additional contribution to CO2 concentration per visitor and per day.

Without visitors pressure, the simulations of CO2 concentration reconstructed from 1950 to 2000 are very 
consistent in range with what was observed during the last two decades (Fig. 6). Two simulations with visitors 
were performed. For the first simulation (visits homogeneously distributed through the year), the CO2 predictions 
reach maximum values of almost 20,000 ppm during the 1970s. Taking the variations of the visits at daily, weekly 
and yearly scales into account for the second simulation reveals maxima values even higher (up to 30,000 ppm). 
In both cases the mean CO2 concentration reaches approximately 15,000 ppm in the 1970s. It is to be noted 
that peaks of high to very high concentrations of CO2 have been already observed in other caves: at Lascaux 
(15,000 ppm on average)7, at Comblain-au-Pont cave (up to 27,500 ppm)60 or at the Natural Bridge Cavers (up 
to 38,200 ppm)61. In summer the affluence of visitors to Altamira must have been particularly high during the 
whole day, strongly increasing the CO2 concentration; in addition, ventilation during the summer nights is 
limited because the soil membrane is blocked due to the adsorption and condensation of water on the surface20. 
Indeed, in the past, the entrance of visitors in Altamira produced local phenomena of air stagnation. Another 
probable factor contributing secondarily to the accumulation of CO2 in the cave was the low temperatures 
recorded during that period. The years from 1950 to 1985 displayed significant negative temperature anomalies, 
particularly pronounced during the summer months62. This decline in summer temperatures resulted in a notable 
reduction in ventilation rates, especially noticeable in the peaks of July and August, impeding air renewal and 
facilitating the gradual CO2 build-up in the underground environment.

Nevertheless, very punctually, the model seems to exaggerate the CO2 minima, although it is not possible to 
know to which extent. After drastic limitation of the entrances, the number of visitors reached zero in 1979. Its 
effect is clearly characterized by a drastic decrease of the CO2 concentration. The reopening with a limited number 
of visitors per year during the period 1982 to 2002 exhibits a clear shift of around + 730 ppm on average with 

(4)Ċ = a0 +�Atm

(

Cext(t)− Cext
2007

)

+�VisV(t)+ PC
(

Tobs(t), Ṫobs(t),Wobs(t)
)
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annual maxima in the range 4400–5500 ppm, that is, significantly higher than the simulations without visitors 
(3800–4600 ppm). In spring 1998, a deviation of the predictions from the in situ measurements is observed 
(Fig. 6A). This is due to the affluence of workers in order to get detailed topographic data and photographic 
records for the construction of a replica of the cave (the Neocueva), which caused a cumulative effect on the CO2 
concentration63,64. The observed deviation corresponds to these impacts, which were not included in the models, 
as the access regime to the cave during these works is unknown. Regarding the minimum values, they might 
seem overestimated, but our results are quite coherent with the difference in mean observed in the measured time 
series: 459 ppm larger in 1997–1998 (~ 11,320 Visitors/year) than it was in 2007–2012 (~ 0 Visitor/year). This 
effect occurs as a consequence of the entry of consecutive groups into the Polychrome Room, which generates 
cumulative disturbances in the internal microenvironment. Specifically, in the study carried out in 1997–98 it 
was found that from mid-July to the end of August the cumulative effects occurred continuously and the full 
recovery of the temperature and CO2 concentration was never achieved before the entry of the next cycle of daily 
visits (Supplementary Fig. 5 from Suppl. Online Mat. of12). An estimation of the micro-corrosion suffered by the 
cave in 1997 showed values 78 times greater than the theoretical value derived only from natural phenomena 
of water condensation on the walls15. In addition to the strong increase in the CO2 concentration, the entry of 
visitors into the cave entails a significant thermal rise and the emission of large amounts of water vapour that 
must have caused condensation and corrosion phenomena of great magnitude. Therefore, even if the number 
of visitors in this period (1982–2002) was quite restricted when compared to the past, the cave environment 
was still quite perturbed. Yet, the CO2 levels in that period (Fig. 6A) are lower than the levels predicted for the 
future, both in the A2 and B2 scenarios (Fig. 5), therefore climate changes to come in the next decades pose a 
clear threat to the Palaeolithic paintings.

Figure 6.   Past scenarios of CO2 in the Altamira cave (from 1950 to 2022). Reconstruction of the concentration 
of CO2 in the cave micro-atmosphere considering different scenarios. For the period 1970–2016 (A), the 
concentration is reconstructed (orange line) without visitors, using the ESA hybrid product for soil moisture 
and the ERA5 model for temperature. For the period 1950–2022 (B), the CO2 concentration is reconstructed 
using both the temperature and soil moisture data from ERA5: without visitors (orange dashed line), with yearly 
equally distributed affluence of visitors (magenta line) and with affluence of visitors depending on the festivity of 
the day (green line). The observed in situ data are reported in black, the CO2 outside the cave, in blue. The time 
series of the number of visit every 12 h is presented in (C) under the two hypotheses: equal-distribution of the 
yearly visits (pink line), realistic distribution of the yearly visits (green line). The original record of yearly visits 
is provided in Supplementary Table 11. In (D) a zoom of three weeks of (C) is presented as an example of the 
hypothesized daily visitors in 1956. The points in the zero level represent the nighttime (recovery time with no 
visitors) and the points over zero, the daytime. The magenta points indicate 200 visitors from Tuesday to Sunday 
and no visits on Monday. The green points indicate few visitors from Tuesday to Friday, approximately 200 
visitors on Saturdays and more than 400 visitors on Sundays. Levels corresponding to 5,000 ppm, 10,000 ppm, 
15,000 ppm and 20,000 ppm are reported on the graphs to facilitate the comparison with Fig. 5.
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Conclusion
Extracting dynamic equations from time series is a growing field, but rarely applied to environmental problems. 
In this work, the global modelling technique was used to obtain sets of equations for the dynamics of air CO2 
in the Altamira cave. The algebraic formulation of the obtained models confirmed the two main drivers of the 
micro-atmosphere dynamic: the surface temperature and the soil water content. Based on them, it was then 
proven possible to apply the obtained equations to quite new applications.

Thanks to these dynamical models, it was first shown possible to use satellite data to monitor the dynamics 
of CO2 in the cave, which was quite unexpected. In particular, estimates of soil moisture derived from the SMOS 
satellite and of land surface temperature from the MODIS mission were used to reconstruct the cycles of CO2 
in the cave from 2010 to the present. In the past, in situ measurements were performed in the cave but during 
limited periods of time and often with gaps in the records since caves are humid environments that tend to 
damage the measuring devices. As a consequence, such measurements cannot be performed continuously on 
the long term. The use of satellite data may enable a useful advance for this monitoring purpose. Moreover, it 
opens the possibility of applying the approach to other caves and also to other molecules (Rn, water vapour, 
any tracers). It may also be used to study other topics related to the underground since the methodology is well 
suited to tackle with problems stemming from the difficulty of measuring the variables involved in the dynamics.

Another unexpected application that arose from the reconstructed equations was the possibility to generate 
scenarios of the cave CO2 concentration in the past, which was not possible before. Since the multivariate 
model was obtained for a period without visitors, only simulations free of visits may have been performed with 
the model as it was obtained. But as the model is of algebraic formulation, it was possible to analyse it and to 
reformulate the equations to account for the visitors’ exhalation of CO2, considering it as a direct anthropogenic 
forcing. Clearly, the obtained equations offer more than a black box and can thus be used to generate scenarios. 
The yearly number of visitors was used as a forcing for this purpose and multiple simulations were generated 
based on three scenarios: one free of visitors and two based on the historical dataset, assuming different regimes 
of visit distributions. The latter scenario enabled us to estimate the concentration of CO2 in the cave from the early 
1950s and up to present, indicating the extremely high levels that were likely reached during the massive period 
of visits (until 1972) that fostered the development of micro-organisms endangering the prehistoric paintings. 
It revealed also the more moderate – but still too high for a sustainable situation—levels reached in the 1980s 
after the cave was reopened to the public. The scenario free of visitors is also very promising since it suggests 
the possibility of reconstructing the atmosphere conditions of the cave much earlier in historic and prehistoric 
times, which could be another great challenge for future investigations.

This having been done for the past, the will to investigate the future came naturally. But with the future of the 
cave comes the question of the future climate, which remains largely uncertain. This question was investigated 
considering the products of the IPCC as forcing. Although the products we used in the study were all considered 
equally probable in the early 2000s, only the ones with a quicker temperature increase remain possible today. 
The simulations of CO2 concentration in the cave corresponding to these scenarios suggest new risks for the 
future of the cave.

Equation reconstruction and chaos-based modelling techniques appear as a promising approach for 
investigating complex, open problems for which no equations are available. Such an approach is particularly 
promising since it may be used, even under limited variability of in situ observation, to monitor the present using 
satellite information, to reconstruct the past, and to help anticipating the future.

Methods
GPoM Algorithm and modelling framework
The Global Polynomial Modelling (GPoM, version 1.3) package65, developed in R language, was the main 
tool used for modelling. The GPoM algorithm aims to obtain ordinary differential equations (ODEs) from 
observational time series. To run the GPoM algorithm, a general structure is required. In practice, we strictly 
focused on polynomial structures in the present analysis.

When starting from a single time series X1
obs(t), the numerical description of the ODEs canonical formulation 

is defined by

with X1 the observed variable, and X2 to XnX its successive derivatives, nX the model dimension and UX a function 
to be fully retrieved, both in its structure and parametrization27. This formulation requires fixing the following 
parameters: (i) the model dimension n (that is, the number of derivatives to be used, including the original time 
series without derivation) and (ii) the maximum polynomial degree qmax. The algorithm will be run eight times: 
one for each combination of n = 3–4 with qmax = 2–5.

When starting from a set of N observational time series (X1
obs, Y1

obs … Z1
obs), the following mathematical 

formulation is used:
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with (X1, Y1 …Z1) the observed variables and (Xj, Yk … Zl) their successive derivatives, nX, nY … nZ, the number 
of variables effectively used for each observational time series, and FX, FY … FZ the functions of which both 
structure and parameters have to be identified. This structure can be described numerically by fixing the number 
of derivations to be used for each time series, and, again, the maximum polynomial degree qmax. More specific 
formulations may also be used (typically, to make the computation assessable by avoiding some unrealistic 
coupling between the variables). Each of these formulations requires a dedicated run of the algorithm.

For a given general structure, the ensemble of possible models can be absolutely tremendous in some cases 
(see Supplementary Note 4). The GPoM algorithm has been proven to be very powerful in reducing drastically 
the number of possible models to be explored, in order to retrieve the original formulation when it exists, or to 
get a good approximation of it when it does not33,36,66. The modelling protocol applied to each general structure 
can be summarized as follows. The GPoM algorithm works in two stages: the first stage aims to reduce drastically 
the number of candidate models; the second stage aims to test the robustness of the preselected candidates. 
The following inputs are required: Single or multiple time series with t the same discrete values of time with 
regular sampling; The number of variables (nx, ny, …) derived from each time series; The window length used 
to compute the derivatives (by default 9 points are used); And the maximum polynomial degree qmax allowed in 
the general numerical formulation. Optionally, a more specific general structure can be designed by hindering 
some couplings, limiting the total number of terms NP, or limiting the number of terms for a given equation, etc.

The structure selection algorithm aims to reduce drastically the number of candidate models without strong a 
priori hypotheses about the size of the model. At this stage, the equations are considered one by one, separately. 
For a given equation, all the p terms of the general equation structure are considered at the very beginning, 
subsequently some of them will be discarded as follows. (1) A Gram-Schmit procedure is used to calculate the 
equation parameter values. (2) A leave-one-out technique is applied to estimate the influence of each term and 
to find the term of minimal influence on the residual signal. The distance

is used for this purpose, with N the time series length. (3) The term of minimal influence is removed and a 
substructure of (p−1) terms is obtained. Operations (1) to (3) are repeated until all the terms are removed. 
The general formulation, which enabled initially 2p particular formulations, is now reduced to (p + 1) ones. By 
applying the same algorithm to each equation, the algorithm enables to reduce drastically the number of original 
formulations from 2(px+py+ …+pz ) to (px + 1) × (py + 1) × … (pz + 1), where px, py … pz are the number of terms to be 
investigated for each equation in the original general formulation. The algorithm is described with further details 
in33 where its robustness is also tested and discussed.

The selection algorithm yields a number of preselected models. Then, the preselected models are tested by 
numerical integration on duration sufficiently long to get out from the transient. More practically, this duration 
should be as long as possible, that is, until the attractor is reached, in order to have a proper description of the 
underlying dynamics46. Divergent models are rejected and the other ones are classified depending on their level 
of dynamical complexity, considering the attractor reached at the convergence as: fixed point (simplest dynamic), 
period-1 cycle, period-2 cycle, etc., and quasi-periodic attractor. Models presenting more complex dynamics 
(phase-coherent chaos, phase non-coherent chaos and hyper-chaos) are kept as unclassified since automatic 
detection is more difficult in these cases. Although presenting variations around an annual cycle, the dynamics 
of caves micro-atmosphere are obviously neither periodic nor quasi-periodic, and even less probably convergent 
to a fixed point. For this reason, these types of models are rejected and only the ones presenting a higher level 
of complexity are kept, for a more in-depth analysis. After these successive selection criteria are applied, only a 
very small set of models generally remains (as it was the case here) and the models obtained from all the general 
structures can be considered one by one, and compared. Note that just fitting the particular trajectory of the 
observations in the time space is not an appropriate choice since it can lead, almost surely, to an ad hoc model 
due to over parametrization. Therefore, several characteristics are used to choose the best models among the 
remaining ones, in terms of range of the variables, and density distribution. This selection enables to get global 
models, that is, models able to reproduce the global behaviour of the observed system. Final model validation 
and selection is then based on the forecasting performances. For models presenting equivalent performances, 
the model of simpler formulation will be preferred, following the principle of parsimony. Indeed, applied at the 
end of the selection process, this principle (Occam’s razor) has proven to be very powerful to retrieve original 
equations of compact form33.
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The structural parameters of the global models considered in the present study (nC, nT, nW, qmax) together with 
the other pre- and post- processing parameters are synthesized in Supplementary Table 4. The general structures 
are provided in this section (Eqs. 8–14).

Univariate models
No specific templates were used or tested for modelling the dynamics from univariate time series (to get 
the models UC, UT or UW) because the number of possible models was manageable considering the general 
formulation (see Supplementary Note 4). These were obtained by using the very general structure (Eq. 5), 
tested under dimension three to four and under polynomial degree two to five (n = 3–4, qmax = 2–5). For CO2 
concentration C, the in situ time series was used on the period 2007–2012 (see Supplementary Note 2). For 
temperature T, a daily time series of land surface temperature issued from MODIS (MOD11C3) satellite product 
was used (The footprint of these datasets is shown on Fig. 1D); this product is available on the period February 
2000 to June 2021. For soil moisture W, a specific reprocessing of the data issued from the Soil Moisture Ocean 
Salinity (SMOS) satellite was used from April 2010 to December 2020 (footprint shown on Fig. 1D); pre-
processing details are provided in Supplementary Note 2. The modelling was applied following the procedure 
described in present section, as illustrated in Supplementary Fig. 2 (see33 for a discussion). Details about the 
obtained models are provided in Supplementary Note 3.

Multivariate models
For the multivariate models, the total number of terms had to be limited in order to get affordable computation 
and processing times. Three and four dimensional models were tested, with maximum polynomial degree up to 
3. A feedback from the cave micro-atmosphere (variable C) onto the outside atmosphere (variable T), and on the 
water content in the soil (variable W) cannot be excluded locally, but it can be assumed to be of secondary order. 
In the same way, a retroaction of the water content of the soil onto the outside atmosphere can be disregarded. 
The removal of these retroactions reduced the total amount of possible models based on each general structure. 
Therefore, the following general structures were tested:

with qmax = 2 (Nmod = 219) to 3 (Nmod = 230),

with qmax = 2 (Nmod = 224) to 3 (Nmod = 249),

with qmax = 2 (Nmod = 222) to 3 (Nmod = 240),

with qmax = 2 (Nmod = 223) to 3 (Nmod = 244), which remains more manageable, and in which it is also assumed that 
the second derivatives can have an action, only on the variable from which it is derived. Note that univariate 
models obtained from C, T and W were all three-dimensional, which is a required condition to get a minimum 
level of complexity (Poincaré-Bendixson theorem). Extending these latter four templates (Eqs. 12–15) by 
considering that at least one variable should be explicitly described by three dimensions, we get:

with qmax = 2 (Nmod = 230) to 3 (Nmod = 270),

(8)






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with qmax = 2 (Nmod = 226) to 3 (Nmod = 250),

with qmax = 2 (Nmod = 228) to 3 (Nmod = 259). These two latter templates could also be tested considering that the 
univariate parts were known (models of higher polynomial degree UC and UT), and thus limiting the research 
to two polynomials only. The analysis was performed on the period 20th June 2007 to 26th September 2012, 
for which continuous in situ measurements of CO2, temperature and soil moisture inside and above the cave, 
respectively were available. Almost all the multivariate models selected from these templates (Eqs. 6–14) were 
rejected either directly, or at the validation stage. Only two multivariate models could pass the selection procedure 
before validation and only one could reach the end of the validation process: model MCTW0. This model follows the 
template given by Eqs. (10). It was able to reproduce the dynamics of temperature, volume water content and CO2 
concentration but only in the short-term because the forcing was not stable enough for long-term integration. 
Therefore, the temperature and water content forcing was improved using the satellite data to get a model MTW 
(see Supplementary Table 4), following an analogous process of search and validation. MTW is a bivariate five-
dimensional model for temperature and water content, following the structure showed in Eqs. (16–20), where 
Eqs. (16–18) correspond, in turn, to the univariate model UT. In summary, the model MCTW​, which is able to 
reproduce the dynamics of the variables in the long term, was obtained by joining the first equation of model 
MCTW0 and model MTW, therefore it has the following structure

with PC, UT and PW three polynomials whose detailed definition is provided in Supplementary Note 3.

Model error
Various sources can contribute to the error of the simulations: (i) the measurement errors for each in situ and 
satellite variable; (ii) the scaling error for the satellite data; (iii) the modelling error attached to the calibration 
of each coefficient of the polynomials; and (iv) the modelling error due to the fact that any model is inevitably 
a simplified version of reality. These errors are not independent. The following method was used to estimate 
their combined contribution. For the simulations with in situ forcings, the error was estimated as the rmse 
between the observations and the predictions on the calibration period because this error integrates most of 
the error sources. For the other simulations, the forcings were perturbed by adding ± 0.5 ºC to the temperature 
forcing and ± 0.025 m3/m3 to the VWC forcing, obtaining four CO2 simulations. From the four simulations, 
we extracted a time series with the minimum CO2 prediction at each time, in order to get a lower bar for the 
error. Similarly, the upper bar consists of the time series of maximum predictions. These estimates correspond 
to an intermediate level of error. Another source of error (v) should be mentioned: the error stemming from 
chaotic behaviour, which implies that small inaccuracies in the initial conditions lead to exponential divergence 
between the observed and predicted trajectories. This error source may result from the outside atmosphere used 
as external forcing, which is highly sensitive to the initial conditions as already mentioned upper in the text. This 
error was not estimated because a single product was made available for each scenario by the IPCC. This is not 
really a problem as far as scenarios are concerned. Indeed, scenarios are not forecasting, their role is to provide 
simulations of possible futures, not of the future itself. Each scenario is thus a particular simulation that will 
never occur as so, but that may reflect salient features of the future based on the chosen hypothesis. They can 
be used to investigate possible futures in terms of trends and statistics. The cave micro-atmosphere dynamics 
may also have shown a certain sensitivity to the initial conditions. In the present case, it was found that the cave 

(13)
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Ṫ = T2
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micro-atmosphere was not chaotic in itself, and that it was not required to account for this error separately from 
the other contributions (i) to (iv).

Models validation
To validate a global model is a difficult problem as far as chaotic dynamics are concerned. Indeed, even if the 
model is perfect, any error should give rise to a divergence between the model and the observation since the 
original dynamics is highly sensitive to the initial conditions. Nonlinear invariants are an option—in principle—
but these are difficult to extract from observational—and thus noisy—short-length time series. For this reason, 
it is preferred to consider the forecasting capacities to validate the models. The model error growth

was thus used for this purpose, with X̂t(τ ) the forecasted prediction performed at time t for a horizon time 
τ, and Xobs

t+τ the observed value at the corresponding time t + τ. To characterize the error growth, ensemble of 
simulations were generated. These were estimated first on the modelling window, then on the validation window 
in order to estimate the degradation of the model on an independent data set. These ensembles were used to 
estimate the error growth with a confidence level of 90%, from which a horizon of predictability was also deduced 
considering a threshold of 5% relative error. The error growth obtained for models UC, UT, UW and MCTW​ is 
shown in Supplementary Fig. 3 and synthesized in Supplementary Tables 8 and 10. The error growth is similar 
on both the modelling and validation periods which is an important argument of validation. Model MC

* is non 
autonomous, consequently its synchronization on the observed dynamics is ensured by the external forcing 
Tobs(t) and Wobs(t). Therefore, it is possible to apply a direct comparison between the observed time series and 
the modelled CO2 concentration (Fig. 4, first row). No data set was found available to validate the model MC

*** 
on an independent period, in particular the high values observed during the 1970s, when the number of visitors 
was particularly high.

Models characterization
Various approaches can be used to detect and characterize chaotic dynamics. Chaos requires two main 
conditions: determinism and unpredictability. If determinism can be considered as a reasonable hypothesis 
in many situations, it should be proved robustly when trying to detect chaos from observational time series, 
since determinism is an essential condition of chaos42. Few approaches have been developed for this purpose, 
for example, the Direct Test for Determinism67 and the global modelling technique27 used in the present study. 
Unpredictability results from the existence of chaotic attractors in the phase space, that is, a bounded trajectory 
that will—strictly speaking—neither loop back to itself (since it should be non periodic), nor present any 
crossing (to guarantee determinism). As a consequence, to detect chaos, the integrability of any system should 
be checked on a sufficiently long period to claim for chaos46. A chaotic attractor will also be characterized by 
specific properties: (1) a fractal geometry68, (2) the exponential divergence of the flow69, and (3) topological 
structure characterized by folding45. Specific methodologies have been developed to capture each of these 
different properties from observational time series. These methodologies are specific and cannot check for 
determinism at the same time. As a consequence, their ability to detect chaos can mainly be used when starting 
from deterministic equations. It is one important advantage of the global modelling technique: by extracting 
equations directly from observational time series, it enables, not only to detect determinism, but also to apply 
other characterization techniques to the obtained equations. In this way, finally, all the properties of chaos (if 
so) can be gathered in a consistent framework: deterministic equations, chaotic attractor reconstructed from 
these equations and characterized by a fractal dimension, a diverging flow, and a folded topological structure. In 
the present study, the GPoM algorithm65, was used to extract the equations, which can then be used to estimate 
locally reliable Lyapunov exponents44 and to characterize the divergence of the flow. The Kaplan-Yorke dimension 
DKY

43 was used to estimate the dimension of the obtained attractors, and first return maps were used to detect 
foldings70.

Data availability
All the time series used to generate the scenarios are provided in Data S1. The use of the time series gathered 
in the cave is restricted, but the chaotic attractors obtained from them can be reproduced based on the models 
description provided in Supplementary Materials. The algorithms of the GPoM package were used to obtain 
these models; these are Open Source and directly downloadable on the Comprehensive R Archive Network at the 
following link: https://​CRAN.R-​proje​ct.​org/​packa​ge=​GPoM.
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