
IEEE INTERNET OF THINGS JOURNAL 1

Optimising Convolutions for Deep Learning
Inference on ARM Cortex-M Processors

Antonio Maciá-Lillo, Sergio Barrachina, Germán Fabregat, Manuel F. Dolz

Abstract—We perform a series of optimisations on the convo-
lution operator within the ARM CMSIS-NN library to improve
the performance of deep learning tasks on Arduino development
boards equipped with ARM Cortex-M4 and M7 microcontrollers.
To this end, we develop custom microkernels that efficiently
handle the internal computations required by the convolution
operator via the lowering approach and the direct method,
and we design two techniques to avoid register spilling. We
also take advantage of all the RAM on the Arduino boards
by reusing it as a scratchpad for the convolution filters. The
integration of these techniques into CMSIS-NN, when invoked
by TensorFlow Lite for microcontrollers for quantised versions
of VGG, SqueezeNet, ResNet, and MobileNet-like convolutional
neural networks enhances the overall inference speed by a factor
ranging from 1.13× to 1.50×.

Index Terms—Deep learning, Convolution operator, Edge com-
puting, Microcontrollers, High performance, ARM Cortex-M,
CMSIS-NN.

I. INTRODUCTION

DEEP neural networks (DNNs) have demonstrated impres-
sive achievements in a variety of machine learning tasks

such as image classification, speech recognition, and object
detection [1]–[3]. However, even the mild computational re-
quirements of DNN inference pose severe constraints on the
deployment of these technologies on the embedded devices
that are common in Internet-of-Things (IoT) scenarios, due to
their limited autonomy (battery life), computational power and
memory capacity, as well as security and latency issues [4]. To
address these constraints, multiple efforts have emerged to en-
able inference on the edge, including the design of light-weight
DNN models, such as MobileNet [5] or SqueezeNet [6];
the application of advanced quantisation techniques; and the
development of specialised inference frameworks for embed-
ded devices, including TensorFlow Lite for Microcontrollers
(Google), Embedded Learning Library (Microsoft), PyTorch
Mobile (Facebook), microTVM (Apache), and Cube AI19
(STM).

For microcontroller units (MCUs) that integrate ARM
Cortex-M processors [7], the aforementioned inference frame-
works heavily rely on ARM’s Common MCUs Software
Interface Standard for Neural Networks (CMSIS-NN) library

S. Barrachina, G. Fabregat, and M. F. Dolz are with the Department
Computer Science and Engineering, Universitat Jaume I, Spain.
E-mail: {barrachi,fabregat,dolzm}@uji.es

Antonio Maciá-Lillo is with the Department of Technology Information
and Computation, Universitat d’Alacant, Spain.
E-mail: a.macia@ua.es

to deliver high performance at a low energy cost [8]. CMSIS-
NN comprises a set of optimised functions for distinct types of
neural network operator layers, such as fully-connected, con-
volution, pooling, or non-linear functions. In general, these op-
erators are implemented using optimised algorithms and data
structures, specifically tailored to run efficiently on Cortex-M
processors. For the case of the convolution operator, CMSIS-
NN v2.0.2 implements two algorithms: 1) the lowering variant,
in which the input image is reordered and expanded column-
wise using the IM2COL transform [9] to cast the convolution
into a general matrix-matrix multiplication (GEMM) [10]; and
2) the direct algorithm, which consists of 7 nested loops
that iterate over the dimensions of the output activations and
filters [11]. The latter algorithm is only leveraged for the ARM
Cortex-M0/-M3 processor series while the former is utilised
in devices supporting the M-Profile Vector Extension (MVE)
or Digital Signal Processing (DSP) instructions, as is the case
of the ARM Cortex-M4 and M7 processors [12], [13].

In this work we tackle the acceleration of the convolution
operators for DNN inference on ARM Cortex-M4 and M7
processors, introducing a number of optimisations that further
improve the performance of both the lowering and direct
convolution algorithms already available in CMSIS-NN v2.0.2.

In more detail, we make the following specific contributions:

• We reformulate the microkernel for the lowering convolu-
tion algorithm in CMSIS-NN into a new 2×3 vectorised
variant that improves performance and data reuse.

• We design and incorporate a new vectorised micro-kernel
for the direct convolution algorithm in CMSIS-NN which
operates with blocks of 2×2 elements. This microkernel
carefully uses well-known computer architecture tech-
niques, such as loop unrolling and vector instructions to
improve data reuse and performance.

• We propose two novel techniques that mitigate register
spilling in the aforementioned microkernels by handling
matrix operands leading (static) dimensions using: 1) sev-
eral microkernels for different leading dimensions that
use constant literals; and 2) run-in-RAM microkernels
that can be modified at run time to tailor the current
leading dimensions.

• We present an effective strategy that migrates the convo-
lution filters from flash memory to RAM. Since accesses
to data in flash are typically delayed between two and
three cycles in these types of low-memory ARM Cortex-
M-based MCUs, placing the filters in RAM generally
reduces access delays and improves overall performance.

0000–0000/00$00.00 © 2023 IEEE

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 2

• We perform a complete experimental evaluation of the
gains obtained by both convolution variant optimisations,
along with the use of constant literals/self-modifying code
techniques and the use of RAM as scratch memory. For
this purpose, we target VGG-, SqueezeNet-, ResNet-,
and MobileNet-like CNNs, on the ARM Cortex-M4 and
M7 processors embedded in the Arduino Nano 33 BLE
Sense and Portenta M7 Lite MCUs. The overall results of
the optimised implementation reveal inference speedups
ranging from 1.13× to 1.50×.

The rest of the paper is structured as follows. Section II
reviews some related work in the area and describes some of
the relevant techniques to optimise convolutions on MCUs.
In Section III, we briefly review the ARM Cortex-M4 and
Cortex-M7 microarchitectures, their memory organisation, and
the proposed strategy to utilise the RAM as a scratchpad
memory. Section IV presents our techniques to accelerate both
the lowering and direct convolution algorithms along with the
optimisation strategies proposed in this work. In Section V, we
evaluate the global inference time performance improvements
of different DNNs and convolution layer levels achieved by the
new microkernels, employing techniques to mitigate register
spilling. Finally, Section VI concludes the paper with a few
remarks and a brief discussion on potential future work.

II. BACKGROUND AND RELATED WORK

This section provides the necessary background to under-
stand the main techniques used in this work for the optimisa-
tion of convolutional operators and their integration into IoT
applications for deep learning on ARM Cortex-M processors.
It also provides an overview of the existing literature on
framework development, the use of optimised DL models,
and the optimisation of convolutional operators for MCUs,
highlighting their contributions to the field and delineating how
this work differs from existing approaches.

A. Background

Improving the performance of DNN operators for MCUs
requires the application of key strategies within strong resource
constraints. Specifically, in the context of convolution, optimi-
sation is framed as a GEMM operation when using the IM2COL
transform [10] or the direct algorithm [11]. Different from
other approaches in the literature, our work is characterised
by building on the CMSIS-NN framework [8] to refine the
convolution operation through microkernel optimisation. This
focus on the innermost computational component of GEMM
proves crucial in achieving higher performance levels.

A key consideration in optimising the GEMM microkernel
is to improve the ratio of floating-point or integer operations
to the number of bytes (or operands) loaded from RAM
into registers. On regular CPUs, matching GEMM microker-
nel operand sizes (C = A · B) to cache levels (e.g. L1,
L2 and L3) improves overall performance [14]. However,
MCU-oriented processors such as the ARM Cortex-M series
typically lack caches, so the optimisation strategy shifts to
maximising processor register utilisation by increasing micro-
kernel operand sizes. This approach effectively maximises the

ratio of operations per transferred byte but is only feasible
up to a certain threshold before requiring more registers than
the ones available in the processor architecture. Beyond this
critical point, the occurrence of register spilling forces the
eviction of microkernel variables from registers into RAM and
the subsequent reloading into registers during execution, as
discussed in [15]. This process heavily degrades performance
due to compiler-inserted store/load instructions to/from RAM.

To mitigate this effect, certain low-level and compilation
strategies can effectively reduce the number of registers used
by the microkernel to fit the processor register set. One
approach is to convert certain static microkernel parameters,
initially defined as variables in the code, to literals and then
replicate the microkernel code for different literal values. In
extreme cases, however, this method may be impractical due
to limited flash space. Alternatively, special instructions and
pragmas can be used at compile time to place the code in
RAM, allowing it to execute from RAM after dynamically
altering the literals encoded in the instructions to the desired
values [16]. Although implementing this technique requires
identifying the instructions (and addresses) where the liter-
als are located, it allows the microkernel to accommodate
slightly larger operand sizes by repurposing the registers
previously allocated to constant values, thereby improving
performance without incurring the penalties associated with
register spilling.

Another consideration is that convolution filters are stored
in flash by default, as they are static during the inference
stage. However, accessing them from flash is much slower than
accessing them from RAM. Given this, another optimisation
that we have taken into account in this work is to copy the
filters from flash to RAM, provided that there is enough space,
in order to improve the overall convolution performance.

B. Related work

a) Deployment and optimisation frameworks for MCUs:
Nguyen et al. [17] assemble a state-of-the-art family using the
open-source NNoM deployment framework. They perform an
experimental characterisation of convolution operator imple-
mentations and observe a linear relationship between theoret-
ical multiply-accumulate operations (MACs) and energy con-
sumption, highlighting the benefits of using computationally
efficient primitives such as shift convolution. In the study, they
highlight the impact of SIMD instructions and data reuse in
reducing latency and power consumption.

Similarly, Deutel et al. [18] present a framework for ex-
ploring different DNN pruning, quantisation and deployment
strategies specifically designed for low-power ARM Cortex-
M-based systems. Through this exploration, trade-offs between
accuracy, memory consumption, execution time and power
consumption are analysed. Experimental results using the
CMSIS-NN library show that DNN compression can reduce
the number of parameters without significant loss of precision.

In contrast to existing approaches focused on analysing and
optimising different operators through pruning and quantisa-
tion, our work is targeted at reducing the inference time of the
convolution operator within the ARM Cortex-M processors.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 3

We achieve this by implementing a number of innovative
techniques to improve the performance of the convolution
algorithm available in the CMSIS-NN library.

b) Optimising DL inference on MCUs: Related to this
category, Grzymkowski et al. [19] performed a performance
analysis of CNNs deployed on an NXP i.MX RT1050 de-
velopment board equipped with an ARM Cortex-M7 core.
They investigated the impact of various factors, including core
frequency, memory access and DSP instruction usage, using
TensorFlow Lite and CMSIS-NN as the inference engines.
They also highlight the importance of using DSP instructions,
considering memory access latency, and optimising core fre-
quency and cache configurations to achieve an optimal system.

In a similar work, Cerutti et al. [20] developed an
IoT outdoor sound event detection DL application on an
STM32L476RG platform equipped with an ARM Cortex-
M4 processor. They trained a VGG-like CNN via knowledge
distillation for extreme compression using the UrbanSound8K
dataset. The evaluation, taking into account performance,
power consumption and accuracy, reveals the importance of
using an efficient SIMD convolution implementation for 8-bit
quantisation, which is enabled by CMSIS-NN.

Faraone et al. [21] adapted a convolutional recurrent NN
designed for cardiac arrhythmia detection to be deployed on
the nRF52 system-on-chip (SoC) equipped with an ARM
Cortex-M4 processor. The work focused on the inference
process and the trade-offs between model complexity and
performance degradation, using the CMSIS-NN library.

Also, Sadiq et al. [22] propose a novel approach to TinyML
that challenges conventional methods, demonstrating that the
use of efficient models with low inference latency, unbound
by internal memory constraints, can outperform traditional
approaches. By leveraging external memory and using the
TinyOps inference framework, their method achieves up to
6.7% higher accuracy and 1.4× faster latency for TinyML
ImageNet classification compared to state-of-the-art internal
memory approaches.

In addition, Liberis and Lane [23] address the challenge of
deploying CNNs on MCUs by modifying the execution order
of layer operators, independent of other compression methods.
For that, they propose a novel approach to reduce memory
usage through a tool for reordering operators in TensorFlow
Lite models and demonstrate its effectiveness by significantly
decreasing the memory footprint of a CNN, enabling deploy-
ment on an NUCLEO-F767ZI prototyping board with 512KB
SRAM.

Although previous works focused on performance-energy-
accuracy trade-off analyses, SIMD factorisation of convolution
operators, compression methods for traditional models, or even
the use of efficient models with reduced memory footprint,
our approach is significantly different in that we propose
a number of innovative techniques to improve performance,
maximise data reuse and reduce latency for the operands of
the convolution operator.

c) Optimised convolutional operators: Lai et al. [24]
present CMSIS-NN, one of the first libraries for Cortex-M
processors, which provides optimised kernels that maximise
DNN performance while minimising memory requirements.

The authors of this paper also present techniques to evaluate
a NN architecture search within the memory/compute con-
straints of typical MCUs on a keyword spotting application.

Similarly, Cho and Brand [25] proposed Memory-Efficient
Convolution (MEC) to optimise IM2ROW operations by
reusing data from the input feature map in the height direction.
This technique reduces the IM2ROW buffer size and minimises
the data copied during IM2ROW, showing improvements over
traditional IM2ROW-based algorithms. Despite this, MEC has a
significant memory overhead and involves some data copying
during IM2ROW, although less than the size of the input tensor.

Following this trend, Wang et al. [26] presented an inno-
vative IM2ROW-based convolution method that exploits data
reuse from adjacent convolution windows to reduce memory
consumption and data copying. They use a data type extension
technique from q7_t to q15_t in the algorithm, eliminating
data reordering instructions. Experimental evaluations show a
speedup of 1.42× over CMSIS-NN across several convolu-
tional layers.

While these approaches follow the trend discussed in this
work, they differ in that they focus on introducing new
versions of the IM2ROW algorithm coupled with vectorised
kernels to achieve significant speedup. In contrast, our tech-
niques are specifically designed to mitigate the negative impact
of register spilling as the convolution microkernel operand
sizes increase.

III. ARM CORTEX-M-BASED MICROCONTROLLERS

In this section, we review in detail the target ARM Cortex-
M processors architectures, with the memory organisation
of the Arduino Nano 33 BLE Sense, (NANO) and the Ar-
duino Portenta H7 Lite (PORT) MCUs targeted in this work
(see Figure 1). We also present some basic performance
microbenchmarks focused on timing memory accesses.

(a) Arduino Nano 33 BLE Sense.

(b) Arduino Portenta H7 Lite.

Fig. 1: Arduino MCUs used in this work (Source: Arduino
store website).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 4

A. Arduino Nano 33 BLE Sense

The NANO is a compact MCU board based on the Nordic
Semiconductor nRF52840 chip with the CPU and memory
organisation described next [27].

1) CPU: The NANO comprises an ARM Cortex-M4 pro-
cessor equipped with a 32-bit ARMv7E-M core running at
64 MHz that implements the Thumb-2 ARM Instruction Set
Architecture (ISA) and embeds 16 general-purpose registers,
and a new set of Digital Signal Processor (DSP) and Sin-
gle Instruction, Multiple Data (SIMD) instructions [12]. The
core can compute one 32-bit or two 16-bit multiply-and-
accumulate operations in a single cycle with saturated results.
Additionally, the processor has a single-precision floating-
point unit (FPU) and a comprehensive suite of data transfer
instructions, enabling efficient packing and unpacking of val-
ues for the vector units.

The 3-stage pipeline CPU effectively manages data hazards
associated with memory accesses that involve registers used
for effective address calculation and data loading. By carefully
scheduling consecutive memory access instructions, the delays
caused by the dependency hazards can be minimised.

2) Memory organisation: The memory of the NANO
utilises flash memory for code and constant data, and SRAM
for variables, with flash in general being slower than the
SRAM. The nRF52840 MCU in NANO features 1 MiB of
flash and 256 KiB of SRAM [28]. The NMVC flash controller
incorporates an instruction-only cache. Therefore, instruction
accesses in flash can be cached by the memory controller.
The same does not hold for data flash accesses, leading to
a delay of two or three cycles for those, depending on the
access pattern. Although the code is typically retrieved directly
from the flash memory, it is also possible to instruct the
boot loader to allocate a code portion in the SRAM. This
enables the designated code segment to be modified at run
time, providing flexibility for introducing changes in the code
while the program is running.

B. Arduino Portenta H7 Lite

The PORT is a powerful microcontroller board based on the
STMicroelectronics STM32H747XI chip [29]. It is designed
for demanding industrial applications that require high compu-
tational power and low latency communication [30]. The CPU
and memory organisation of this device are described next.

1) CPU: The PORT features a dual-core ARM processor
with Cortex-M7 and Cortex-M4 cores. The Cortex-M7 shares
the same ISA as in the Cortex-M4, including the DSP and
SIMD extensions, but delivers higher performance due to its
higher operating frequency (480 MHz) and the 2-way super-
scalar pipeline with 6 stages and branch prediction [13]. In
addition, the CPU implements a 4-way associative data cache
and a 2-way associative instruction cache with 16 KiB each.
The Cortex-M4 core shares the same characteristics as in the
NANO, except for a higher operating frequency: 240 MHz.

2) Memory organisation: Given the complexity of the sys-
tem, with two cores and their respective buses, the memory or-
ganisation of PORT is also quite complex. The STM32H747XI

chip incorporates high-speed embedded memories with a dual-
bank 2-MiB SRAM and 1-MiB flash memory, distributed
across two TCM (Tightly Coupled Memory) buses: the AXI
(Advanced eXtensible Bus) for the Cortex-M7, and the AHB
(Advanced High-performance Bus) for the Cortex-M4 core.
Access to flash is highly penalised in the latter as the whole
flash memory is connected to AXI, and access from the
Cortex-M4 is performed through bridges across the AHB
bus. In general, the AXI bus design demonstrates superior
throughput [31], [32]. Despite both AXI and AHB being
clocked at 200 MHz, the AXI bus boasts a 64-bit width,
whereas the AHB is limited to 32 bits.

C. Benchmarking memory accesses

To gain some initial insight into the memory access latency
of both MCUs, we developed and executed a series of synthetic
microbenchmarks on the Cortex-M4 core in NANO and the
Cortex-M7/M4 cores in PORT. The first test performs contigu-
ous and non-contiguous memory accesses to RAM/flash, while
the second realises a matrix-matrix multiplication with the
operands placed in flash/RAM. To prevent unexpected com-
piler optimisations, the microbenchmarks were implemented
using assembly code inlined with the __asm__ instruc-
tion within the Sketch Arduino program. To read data from
RAM/flash, we used the ARM instruction ldr rx, [ry,
#disp] to load 32-bit words from RAM/flash addresses
([ry, #disp]) to a given register (rx).

TABLE I: Comparison of access times (in ns) for the NANO
Cortex-M4, and PORT Cortex-M7/M4 cores.

NANO-M4 PORT-M4 PORT-M7

Contiguous RAM 16.2 5.1 1.3
accesses Flash 49 22 1.3

Non-contiguous RAM 16.2 5.1 1.3
accesses Flash 65 21 1.3

Table I details the access times (in ns) measured with our
benchmark for reading contiguous and non-contiguous mem-
ory RAM and flash addresses on the three target processors.
From the results, the first observation is that the memory
access latency for the Cortex-M4 cores is much higher when
the data is on flash compared with the data on RAM, while
for the Cortex-M7 there is no difference between reading
data in RAM or flash. This is due to the effect of the data
cache of the Cortex-M7 and its buffers to handle memory
accesses. The second observation for the Cortex-M4 cores is
that accessing contiguous flash addresses is slightly slower
than when these are non-contiguous. We relate this slowdown
to the organisation in banks of the flash memory and the
contention in the memory access buses.

TABLE II: Comparison of access times (in ms) for the NANO
Cortex-M4, and PORT Cortex-M4 and M7 cores.

NANO-M4 PORT-M4 PORT-M7

Basic 418 204 50
Copy column to RAM 355 122 39

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 5

Table II shows the execution time (in ms) of the matrix-
matrix multiplication C = A · B, using matrices of size
160 × 160, with the operands A and B stored in flash in
row- and column-major order, respectively. In order to increase
performance, here we unrolled the innermost loop of the
multiplication by a factor of four, as four 8-bit integer values
are loaded (via ldr) in each memory read. In this case, the
first row of the table (Basic) reports the execution time of the
operations when both operands are read from flash, while the
second row (Copy column to RAM) refers to a version of
the algorithm that copies each column of B to RAM before
multiplying it by a row of A. From the results, it can be
observed that the relative gain is higher for the PORT M4
core while accessing data in flash is highly penalised.

With these figures in mind, we can conclude that an opti-
misation for speeding up DNN inference is to copy, whenever
possible, the static operands (i.e., weights and biases) from
flash to RAM before performing the corresponding layer
operations, and maintain them there during the computations.

IV. THE CONVOLUTION ALGORITHM

The convolution operator

O = Conv(F, I), (1)

receives a 4D filter tensor F , and a 4D input tensor I , to
produce a 4D output tensor O, where:

• F comprises co filters of dimension hf × wf × ci each,
where hf ×wf correspond to the filters height × width.

• I consists of b input images of size hi × wi × ci each,
with hi×wi denoting the images height × width, and ci
stands for the number of input channels.

• O is composed of b outputs of size ho × wo × co each,
where ho×wo represent the outputs height × width, and
co is the number of output channels.

With these operands, the basic algorithm convolves a subtensor
of the inputs, of the same dimension as the filter, to render a
single scalar value (entry) for each one of the co outputs. The
filter is then repeatedly applied to the whole input, in a sliding
window manner, to produce the complete entries of this single
output [33]. For simplicity, hereafter we will consider that the
filter is applied with unit vertical/horizontal strides; and the
output is not padded so that ho = hi−hf+1, wo = wi−wf+1.

In the following subsections, we briefly review the lowering
approach and the direct algorithm to compute the convolution
operator as well as the adaptations carried out in the CMSIS-
NN implementation for 8-bit integer quantisation in order to
accelerate the execution of these algorithms.

A. The lowering approach

A high-performance implementation of the convolution al-
gorithm can be obtained by lowering the operation into a large
matrix-matrix multiplication (GEMM) of the form C = A ·B.
For this purpose, the approach proceeds as follows:

• Assuming that the input/output tensors are stored using
the NHWC (Batch size, Height, Width, Channels) layout
and the filters in the KRSC (Output Channels, Filter

height, Filter width, Input Channels) layout, the IM2COL
transforms the 4D input tensor I yielding an augmented
2D matrix B of size k×n = (hfwfci)×(bhowo); see Fig-
ure 2 [9]. Depending on the convolution parameters, the
size of this augmented matrix is considerable, especially
concerning the memory capacity of microcontrollers.

• Compute the output of the convolution directly from the
GEMM C = A · B, where C ≡ O is the output tensor,
viewed as an m× n = co × (bhowo) matrix; and A ≡ F
is the filter tensor, viewed as a m × k = co × (hfwfci)
matrix. This lowering approach performs the same arith-
metic operations as the direct convolution and, therefore,
has the same numerical properties.

c o

(h
f·

w
f·

c i
)

(b · ho · wo)

(hf · wf · ci) A

B

C = A ·B

n

ci
wi

hi

wf

hf

co

ci
co

n

wo

ho

O

F

I
IM2COL(I)

…

…

Fig. 2: Convolution operator via the IM2COL transform.

1) Lowering in CMSIS-NN: Due to the limited SRAM
capacity of microcontrollers –in the order of KiB– the im-
plementation of the lowering approach present in CMSIS-
NN computes the IM2COL transform blockwise using loop
unrolling techniques and allocating a small buffer B̂, of size
(hfwfci) × 2, to accommodate two columns of the matrix
B resulting from the IM2COL. The algorithm then performs
a matrix multiplication between the filter tensor A and the
two-column buffer B̂. This proceeds by pairs of rows of A,
using a tuned 2× 2 microkernel (see Figure 3b), so that each
iteration updates a 2×2 block of C. The algorithm in Figure 3a
represents the lowering approach with blocks of γ columns,
with this parameter set to 2 for CMSIS-NN.

This 2 × 2 microkernel uses _SMLAD 16-bit MAC vector
instructions to multiply two pairs of signed 16-bit integers
packed into two 32-bit registers and accumulate the result
into a 32-bit register. Since the _SMLAD instruction operates
with 16-bit integers, A and B̂ are previously converted from
the 8-bit q7_t CMSIS data type to the 16-bit q15_t using
the arm_q7_to_q15 utility function. In its final stage, the
CMSIS-NN microkernel includes some operations to dequan-
tise the result matrix C.

2) Microkernel optimal size: In an ideal scenario, the
execution of a matrix multiplication involving two matrices,
Am×k and Bk×n, would require reading each element of A
and B only once, totalling mk+ kn memory reads. However,
practical constraints arise due to the sequential execution of
instructions in the default matrix multiplication algorithm. In
the worst-case scenario, with large matrices and limited or
no cache availability, obtaining each element of the resulting

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 6

L1: for h = 0, . . . , b − 1
L2: for i = 0, . . . , ho − 1
L3: for j = 0, . . . , wo − 1

c = j + iwo + hhowo

L4: for l = 0, . . . , hf − 1
L5: for m = 0, . . . , wf − 1
L6: for n = 0, . . . , ci − 1

r = n + mci + lwf ci
B̂[r][c mod γ] = I[h][i + l][j + m][n]

// GEMM is realised every γ columns
if c mod γ = γ − 1

for k = 0, . . . , co − 1, step γ
// γ × γ GEMM micro-kernel
C[j : j + γ][c − γ : c] += A[j : j + γ] · B̂

(a) Algorithm for the lowering convolution by blocks of γ columns.

A11 A12 A13 A14

A21 A22 A23 A24

B11 B12

B21 B22

B31 B32

B41 B42

C11 C12

C21 C22

A11 A12 A13 A14

A21 A22 A23 A24

B11 B12 B13

B21 B22 B23

B31 B32 B33

B41 B42 B43

C11 C12 C13

C21 C22 C23

16-bit 32-bit

16-bit

pA2

pA1

pB1 pB2

pA+k

pA

pB pB+k pB+2k

16-bit

16-bit 32-bit

(b) 2× 2 microkernel used by CMSIS-NN.

A11 A12 A13 A14

A21 A22 A23 A24

B11 B12

B21 B22

B31 B32

B41 B42

C11 C12

C21 C22

A11 A12 A13 A14

A21 A22 A23 A24

B11 B12 B13

B21 B22 B23

B31 B32 B33

B41 B42 B43

C11 C12 C13

C21 C22 C23

16-bit 32-bit

16-bit

pA2

pA1

pB1 pB2

pA+k

pA

pB pB+k pB+2k

16-bit

16-bit 32-bit

(c) 2× 3 microkernel proposed in our optimisation.

Fig. 3: The inner loop of the microkernels for matrix multi-
plication.

Cm×n matrix requires 2k memory reads (one row of A and
one column of B), resulting in a total of 2mnk reads.

In contrast, a blocked matrix multiplication algorithm par-
titions matrices into blocks and computes each block of the
resulting matrix C as the sum of the products of corresponding
blocks from A and B, i.e., Cij

mc×nc
=

∑
h A

ih
mc×kc

×Bhj
kc×nc

.
This approach allows the selection of block sizes such that the
block matrices being multiplied fit into the cache, ensuring that
each element is read only once from memory. This result in
mckc+kcnc memory reads per blocked matrix multiplication.
Consequently, each block of C requires k

kc
(mckc + kcnc) =

k(mc + nc) reads, leading to a total of mnkmc+nc

mcnc
reads. If

0 100 200 300 400 500
k

1.2

1.4

1.6

1.8

Sp
ee

du
p

Platform
Nano Cortex-M4
Port Cortex-M7

Fig. 4: Speedup of the 2×3 microkernel over the original 2×
2 microkernel when multiplying matrices Am×k with Bk×n,
where m = 64, n = 96, and k ranges from 4 to 512 on both
NANO Cortex-M4 and the PORT Cortex-M7 processors.

mc and nc are greater than one, this is fewer than the 2mnk
reads required for the worst-case scenario.

Even without a cache, a blocked matrix multiplication
algorithm can still be advantageous by selecting sufficiently
small mc and nc values to fit all the required data for a block
matrix multiplication into registers. CMSIS-NN provides a
2×2 microkernel blocked matrix algorithm, resulting in a total
of mnk reads —half of the reads in the worst-case scenario.
To improve the data reuse, we have implemented a 2 × 3
microkernel, which leads to a total of 5

6mnk memory reads
per matrix multiplication, representing a speedup of 1.2 over
the 2× 2 version.

It is important to recognise that using a larger microkernel
can also lead to the following benefits: firstly, it diminishes the
number of blocked matrices that need to be combined, thereby
lowering the frequency of microkernel function calls; secondly,
it enhances the locality of the output data; and thirdly, for
MCUs, it conserves execution cycles as it allows for more
sequential reads. These factors are likely to contribute to a
modest enhancement in the previously mentioned acceleration.

To evaluate this, we performed a small-scale experiment
involving matrix multiplication, specifically multiplying matri-
ces Am×k with Bk×n, where m = 64, n = 96, and k ranges
from 4 to 512. We compared the performance of the 2 × 3
microkernel against the original 2×2 microkernel on both the
NANO Cortex-M4 and the PORT Cortex-M7 processors. This
result, as depicted in Figure 4, shows that for sufficiently large
values of k, the speedup achieved by the 2 × 3 microkernel
stabilises at around 1.27 times that of the original microkernel.

3) Optimising the microkernel: While a slightly larger
microkernel, of size 2×3, could improve data reuse, our initial
attempts to implement it, mirroring the strategy used for the
2× 2 variant, encountered an issue: register spilling. To solve
this issue, we adopted the following approach:

• We designed a 2 × 3 microkernel that uses only two
32-bit registers to contain the initial addresses of A and
B̂, instead of five registers to individually reference the
2 rows of A and the 3 columns of B̂. The individual
elements of A and B are then accessed using simple
arithmetic and the corresponding leading dimensions (see
Figure 3c).

• To save an additional register, we propose two different
approaches to handle the leading (static) dimension k of

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 7

the input matrices (columns of A or rows of B̂):
1) Use of a constant literal of k in the code. For this,

we moved the microkernel code into a macro that is
expanded at compile time by the C preprocessor to
generate a set of microkernels for particular values
of k. For example, in a convolution layer with filters of
size 3× 3, the values of k are integers multiples of 9,
where the multiplier is the number of input channels.

2) Use of a modifiable run-in-RAM version of the mi-
crokernel, where the value k can be adjusted at run
time before calling it. For this approach, we annotated
the microkernel function using __attribute__((
long_call, section(".data"), noinline
)), to force the compiler to place the function in RAM,
i.e., in the .data section of the ELF binary. Next,
we developed an auxiliary function to walk over the
microkernel in order to encounter and annotate those
instructions that depend on the value of k. With that
information, a second auxiliary function modifies the
microkernel code to adjust the corresponding k value
each time the microkernel has to be called with a
different k value.

All in all, as a trade-off for higher performance, the new
2× 3 microkernel increases the buffer for storing B̂ to a size
of (hfwfci)×3. Also, handling the static k dimension requires
re-declaring the microkernel for different values of k, which
also involves creating a function pointer hash table to call
the appropriate microkernel depending on the values of the
parameters hf , wf and ci of the convolution layer. The second
approach to handling a static k value requires only a single
copy of the microkernel function, which reduces the size of the
executable, but results in higher instruction fetch costs because
there is no instruction cache for in-RAM code.

4) Improving memory accesses: To further optimise the
convolution operation, we made the corresponding modifi-
cations to the Arduino TensorFlow Lite for Microcontrollers
(tflite-micro) suite to incorporate the techniques insights
presented in Section III, which reported a superior efficiency
of RAM accesses compared to flash. Specifically, we imple-
mented a mechanism to copy the filter weights and biases from
flash to RAM whenever enough space is available. As a result,
the convolution operation can access a copy of the filters stored
in RAM more efficiently. This copy operation is performed
only once, before any inference, effectively compensating for
any overhead incurred by the copying process during inference
with subsequent samples.

B. The direct convolution algorithm

The direct convolution algorithm is organised as
7 nested loops that iterate over the operator dimensions
(b, co, wo, ho, hf , wf , ci) performing the corresponding MAC
operations between the input and the filter in order to compute
the output tensor. This results in a certain memory access
pattern, depending on the ordering of the loops and the layout
of the tensors in memory. It is worth noting as well that the
7 loops in the algorithm are independent of each other. As a

consequence, the algorithm loops can be reorganised in any
order while still producing the correct result.

1) The direct convolution in CMSIS-NN: The direct convo-
lution algorithm in CMSIS-NN v2.0.2 was only used for the
ARM Cortex-M0/-M3 processor series, as these do not support
DSP nor Cortex-M vector instructions. In such cases, the
naive convolution algorithm iterates through the dimensions
b → co → wo → ho → hf → wf → ci from the outermost
to the innermost loop to multiply the corresponding elements
of I and F and accumulate the result into O (see Figure 5a).
On the one hand, this implementation on the ARM Cortex-
M4 core is much less efficient than the original CMSIS-NN
lowering convolution algorithm, as it is not vectorised and does
not make use of an optimised microkernel. On the other hand,
in contrast with the lowering approach, the direct algorithm
does not require any additional memory workspace.

2) Optimising the direct convolution algorithm: Taking
into account the insights gained with the implementation of
the lowering algorithm, the optimised version of the direct
algorithm presents the following characteristics:

• We reorder the loops traversing O and F from outermost
to innermost as: b → ho → wo → co → hf → wf →
ci, with the dimension co traversed in the fourth loop,
favouring, therefore, the NHWC data layout.

• The previous reordering permits the implementation of a
microkernel that calculates a subtensor of O of size γ×δ
in two innermost dimensions, i.e., wo and co. For that,
both wo and co loops are unrolled with factors γ and
δ, respectively. Figure 5b depicts the 2× 2 microkernel.
These unrollings also enable some degree of data reuse.
Specifically, the unrolling of wo reuses the filter data,
while the unrolling of co reuses the input panel where the
filter is applied in the image. This reduces the number of
memory access operations, as explained in Section IV-A2.
Although large unrolling ratios γ and δ in principle
provide higher efficiency, there exists an upper bound that
depends on the number of hardware registers. Consid-
ering the 16 registers in the Cortex-M4 and Cortex-M7
cores, we determined that a microkernel of size 2 × 2
does not generate register spilling provided we employ
the same techniques as in the lowering microkernel, i.e.,
using k1 and k2 as constant literals in the code. This
can be achieved either by multiple declarations of the
microkernel for different values of k1 and k2 via C
macros, or by implementing a run-in-RAM microkernel,
where these values are adjusted at run time, before its
execution.

• Similar to the microkernel for the lowering algorithm,
the microkernel for the direct convolution uses _SMLAD
instructions to multiply two pairs of signed 16-bit integers
belonging to F and I , packed into two 32-bit registers,
and accumulate the result into a 32-bit register that will
be part of the 2× 2 panel computed by the microkernel.

3) Improving memory access latency: As in the lower-
ing convolution, the filters accessed by the new microker-
nel for direct convolution can be copied to RAM to speed
up their access. This technique is implemented within the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 8

L1: for h = 0, . . . , b − 1
L2: for i = 0, . . . , ho − 1
L3: for j = 0, . . . , wo − 1
L4: for k = 0, . . . , co − 1
L5: for l = 0, . . . , hf − 1
L6: for m = 0, . . . , wf − 1
L7: for n = 0, . . . , ci − 1

O[h][i][j][k] =
I[h][i + l][j + m][n] · F [k][l][m][n]

(a) Algorithm for the direct convolution.

F13F12F11

F23F22F21

F33F32F31

I14I13I12I11

I24I23I22I21

I34I33I32I31

I44I43I42I41

O12O11

O22O21

16-bit F13F12F11

F23F22F21

F33F32F31

O12O11

O22O21

Filter #0 Filter #1

Output channel #0 Output channel #1

16-bit

32-bit

Unrolling of co dimension
γ = 2

Unrolling of wo dimension
δ = 2

Input channel #0

(b) 2× 2 microkernel applied for the direct convolution. The micro-
kernel produces four output values, two on different columns (wo

dimension) and two on different output channels (co dimension).

Fig. 5: Algorithm and microkernel used for the direct convo-
lution.

tflite-micro framework, on top of the CMSIS-NN li-
brary.

In general, the optimisation of the direct convolution algo-
rithm builds on the insights gained from the lowering algo-
rithm. With the reordered loops and the implementation of a
microkernel, it is possible to achieve significant improvements,
with the additional advantage that no significant workspace is
required. The 2 × 2 microkernel combined with any of the
aforementioned techniques to treat k1 and k2 as constants
and avoid register spilling, as well as the mechanism for
copying filters to RAM, improve the overall performance of
this operation, which by default is not available in CMSIS-NN
with DSP-enabled Cortex-M processors.

V. EXPERIMENTAL RESULTS

In this section, we carry out an experimental evaluation
of the optimisations proposed in this work for the lowering
and direct convolution algorithms using two different CNNs
in the NANO and PORT MCUs. Specifically, we evaluate

the performance benefits of the new algorithm microkernels
combined with the techniques to avoid register spilling and to
accelerate memory accesses by preloading the filters to RAM.

A. Hardware setup

As detailed in Section III, the evaluation of the algorithms
is conducted on the ARM Cortex-M4 processor, operating at
64 MHz, specifically on the Nordic Semiconductor nRF52840
chip used in the NANO MCU. The NANO board features
256 KiB of SRAM and 1 MiB of flash memory. Furthermore,
we utilised both the ARM Cortex-M4 and Cortex-M7 proces-
sors, operating at 240 MHz and 480 MHz respectively, on the
STMicroelectronics STM32H747XI board chip, as part of the
PORT MCU. The microcontroller provides 1 MiB of SRAM
and 2 MiB of flash memory.

B. DL framework and libraries

We utilised the EloquentTinyML v2.4.0, an Arduino library
that facilitates the deployment of TensorFlow Lite (TFLite)
models on Arduino boards using the Arduino integrated de-
velopment environment (IDE). This package incorporates the
Arduino TensorFlow Lite for Microcontrollers library v2.4.0-
alpha internally linked with the CMSIS-NN library v2.0.2.
The latter offers optimised functions specifically designed for
microcontrollers, enabling efficient execution of DNNs on
ARM Cortex-M platforms.

To automate the compilation and uploading of the binaries
to the MCUs, we utilised the arduino-cli tool v0.33.0.
For the compilation, we set the optimisation flag -O3 for
high performance. Additionally, for the Cortex-M4 processor
from NANO, we also tested with the flag -Os for binary size
reduction.

C. Testbed

To evaluate our optimisations, we trained four custom
DNNs trimmed to fit the flash requirements of the MCUs:
1) VGG-like [34] (see Table A1); 2) SqueezeNet-like [6]
(see Table A2); 3) ResNet-v1-like [35] (see Table A3)); and
4) MobileNet-v1-like [5] (see Table A4). In our experiments
DNNs 1)–3) were trained on the CIFAR-10 dataset, while
4) was trained on the Visual Wake Words dataset [36].
The parameter reduction technique applied to these models
consisted of removing blocks of layers (e.g. Conv–ReLU–
BN for VGG or Conv–BN–ReLU for MobileNet) from the
DNN models, preserving the layer patterns of the original
DNN architecture until they fit into the flash memory of the
target MCUs. It is important to note that convolutional layers
using filters of size 1 × 1 in the SqueezeNet-like model are
natively supported by CMSIS-NN, which provides a highly
efficient fallback implementation for this case. We leave the
optimisation of this convolution variant as part of future work.

The training of the aforementioned models was conducted
on a separate server platform equipped with an NVIDIA A100
GPU using the TensorFlow library v2.4.0. After training, these
models were converted to TFLite format using the DEFAULT
optimisation flag and the TFLITE_BUILTINS_INT8 flag

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 9

for full int8 quantisation. As an example, Table A5 shows the
transformations of the trimmed VGG-like model after export-
ing to TFLite using full 8-bit integer quantisation. Note that
the BN layers have been transformed into pairs of pointwise
multiplication (Mul) followed by addition (Add) layers.

It is important to note that for full 8-bit integer quantisation,
the ranges (min, max) of all floating-point tensors within the
DNNs, such as the model input, intermediate layer activation
outputs, and model output, should be calibrated. To achieve
this calibration, we used a representative dataset obtained from
a subset of CIFAR-10 consisting of 500 randomly selected
images, ensuring an equitable distribution of image classes (or
labels) across this dataset. Additionally, to reduce potential
measurement variations, all experiments reported next show
the average results obtained from running the DNNs for 50
inferences. This approach ensures an accurate performance
assessment of the optimised convolution algorithms on the
target MCUs.

D. Cumulative results on the evaluated CNNs
In this subsection, we present the cumulative execution time

of the different convolution variants for the inference of the
evaluated CNNs on the ARM Cortex-M processors of both
NANO and PORT. The experiments were conducted using the
-O3 compilation flag.

Figure 6 shows the cumulative execution time of the VGG-
like (left column) and the SqueezeNet-like (right column)
CNN layers during a sample inference using the different
variants of the direct and lowering convolution algorithms
running on the NANO Cortex-M4 and the PORT Cortex-M4
and Cortex-M7 processors. Figure 7 shows the same informa-
tion as Figure 6 but for the ResNet-v1-like (left column) and
MobileNet-v1-like (right column) CNN layers.

The results clearly demonstrate that the optimised 2 × 3
microkernel with k-constant via different functions and filters
preloaded in RAM achieves the shortest execution time in
all scenarios. They also show that on the PORT Cortex-M7
processor, the effect of preloading the filters in RAM is hardly
noticeable, given that in this case the accesses to flash and
RAM exhibit nearly the same latency (as previously reported
in Table I).

Additionally, it can be observed that the optimised direct
convolution variants achieve a similar or better performance
than the original CMSIS-NN lowering method on the VGG,
ResNet-v1 and MobileNet-v1-like CNNs. However, on the
SqueezeNet-like model, the proposed direct convolution meth-
ods, although being far more efficient than the CMSIS-NN di-
rect convolution method, result in a slightly worse performance
than the original CMSIS-NN lowering method (especially for
those cases which do not benefit from preloading the filters
into RAM).

It should be noted that the ratio of execution times between
the CMSIS-NN lowering convolution and direct algorithms
varies widely depending on the target processor, so it is not
fair to assess the performance benefits based solely on the
separation of the lines in the plots of Figures 6 and 7. For
example, the speedup for the different configurations and algo-
rithms in the case of VGG and ResNet on the PORT Cortex-M4

processor appears to be less significant compared to the results
using other CNNs and processors. Nevertheless, this is due to
the default CMSIS-NN direct convolution algorithm producing
suboptimal results in these scenarios, which are almost of a
different order of magnitude concerning the other methods,
causing the lines for the rest of the algorithms to appear much
more concentrated.

For a more comprehensive comparison of speedups across
the different CNNs, Table III shows the inference speedup
achieved by the best configuration over the default CMSIS-
NN lowering algorithm for each combination of CNN and
processor. It is important to note that, while some of the
reported speedups may appear modest, these methods are
exclusively targeted at reducing the execution time of the CNN
convolutional layers in the already highly optimised codes
present in CMSIS-NN v2.0.2.

TABLE III: Inference speedup of the best algorithm with
respect to the default CMSIS-NN lowering algorithm with 2×2
microkernel for each combination of CNN and processor.

NANO-M4 PORT-M4 PORT-M7

VGG 1.28 1.13 1.33
SqueezeNet 1.50 1.26 1.36
ResNet-v1 1.13 1.19 1.13
MobileNet-v1 1.27 1.15 1.18

E. Convolutional layers results

In this subsection, we present the effect of our improve-
ments on the convolutional layers of the aforementioned VGG-
like CNN on both NANO and PORT MCUs. We only provide
results for this CNN as similar results were observed for the
other CNNs.

Figures 8 to 11 show the speedups of the lowering (top
row) and direct (bottom row) convolution algorithms for the
convolutional layers of the VGG-like model for the different
MCUs and compilation options. The plots in the left column
show the speedups achieved when the convolutional filters are
read from flash, while the plots in the right column show the
results when they are preloaded into RAM. It is important to
note that the original CMSIS-NN lowering convolution was
used as the baseline for calculating all the speedups.

In these figures, the speedups achieved solely from the
optimised algorithms are visible in the left column plots of
Figures 8 through 11. Likewise, the speedup attributed solely
to preloading filters into RAM is depicted in the first bar of
each layer within the plots on the right column. Lastly, the
remaining bars in the right column plots display the combined
speedup achieved through the combination of the proposed
algorithms and the technique that preloads the filters into
RAM.

1) Results on the NANO MCU: Figure 8 shows the
speedups achieved on the ARM Cortex-M4 processor in
NANO, compiled with the optimisations delivered by the
optimise for size flag (-Os). It should be noted that this is
the default optimisation used by the Arduino IDE and CLI.

For the lowering algorithms while reading filters from
flash memory (top-left plot), the improved 2× 3 microkernel

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 10

0 5 10 15 20 25
layer

0

500

1000

1500

2000
Ag

gr
eg

at
ed

 ti
m

e
(m

s)
VGG on Arduino Nano 33 BLE Cortex-M4 processor

0 5 10 15 20 25
layer

0

100

200

300

400

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

SqueezeNet on Arduino Nano 33 BLE Cortex-M4 processor

0 5 10 15 20 25
layer

0

200

400

600

800

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

VGG on Portenta H7 Cortex-M4 processor

0 5 10 15 20 25
layer

0

50

100

150

200

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

SqueezeNet on Portenta H7 Cortex-M4 processor

0 5 10 15 20 25
layer

0

50

100

150

200

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

VGG on Portenta H7 Cortex-M7 processor

0 5 10 15 20 25
layer

0

10

20

30

40

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

SqueezeNet on Portenta H7 Cortex-M7 processor

CMSIS-NN Direct Convolution
Direct conv. 2x2
Direct conv. 2x2 with filters in RAM

CMSIS-NN Lowering 2M2N
Lowering 2M3N K constant (different functions)
Lowering 2M3N K constant with filters in RAM (different functions)

Fig. 6: Cumulative execution time for the VGG-like and SqueezeNet-like CNN layers with batch size 1 using the direct and
lowering convolution algorithms on the NANO Cortex-M4, and PORT Cortex-M4/-M7 processors.

using a k-variable shows an average performance improvement
of around 1.25×. Employing the k-constant with different
function versions leads to a higher speedup of nearly 1.45×,
primarily by reducing the number of registers utilised by
the microkernel. However, if the k-constant is implemented
via a run-in-RAM function, the speedup diminishes as this
MCU lacks an instruction cache for RAM reads, impacting
its performance. Despite its slightly lower performance, this
technique offers benefits in terms of reduced binary sizes
and improved portability by eliminating the need to replicate
hardcoded functions with different k values.

Regarding the lowering algorithms with filters preloaded
to RAM (top-right plot), we observe that all the variants
improve their performance. The approach employing the k-
variable achieves a speedup of 1.45×, while the versions
using k-constant with different functions and k-constant via
a run-in-RAM function generally achieve speedups of around

1.60× and 1.49×, respectively. Overall, the act of copying
the filters to RAM leads to an approximately 10% increase in
performance.

As for the direct convolution algorithms with filters read
from flash memory (bottom-left plot), it can be observed that
there is an initial notable performance gap between the de-
fault CMSIS-NN direct and lowering convolution algorithms.
However, except for the first layer, the version using our
2 × 2 microkernel shows significant progress, catching up
and even outperforming the standard CMSIS-NN lowering
convolution algorithm by 1.3×. In this case, the speedups
achieved by both k-variable and k-constant variants show
comparable performance improvements.

Finally, in the case of the direct convolution algorithms with
filters preloaded to RAM (bottom-right plot), both versions
of our direct convolution algorithm exhibit speedups ranging
from 1.25× to 1.50×. This results in an approximate 12%

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 11

2 4 6 8 10 12 14 16
layer

0

500

1000

1500

2000

2500
Ag

gr
eg

at
ed

 ti
m

e
(m

s)
ResNet on Arduino Nano 33 BLE Cortex-M4 processor

2 4 6 8 10 12 14
layer

0

500

1000

1500

2000

2500

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

MobileNet on Arduino Nano 33 BLE Cortex-M4 processor

2 4 6 8 10 12 14 16
layer

0

200

400

600

800

1000

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

ResNet on Portenta H7 Cortex-M4 processor

2 4 6 8 10 12 14
layer

0

200

400

600

800

1000

1200

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

MobileNet on Portenta H7 Cortex-M4 processor

2 4 6 8 10 12 14 16
layer

0

50

100

150

200

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

ResNet on Portenta H7 Cortex-M7 processor

2 4 6 8 10 12 14
layer

0

50

100

150

200

250

Ag
gr

eg
at

ed
 ti

m
e

(m
s)

MobileNet on Portenta H7 Cortex-M7 processor

CMSIS-NN Direct Convolution
Direct conv. 2x2
Direct conv. 2x2 with filters in RAM

CMSIS-NN Lowering 2M2N
Lowering 2M3N K constant (different functions)
Lowering 2M3N K constant with filters in RAM (different functions)

Fig. 7: Cumulative execution time for the ResNet-v1-like and MobileNet-v1-like CNN layers with batch size 1 using the direct
and lowering convolution algorithms on the NANO Cortex-M4, and PORT Cortex-M4/-M7 processors.

improvement in processing time for this particular CNN con-
figuration.

Figure 9 illustrates the results for the same experiments as in
Figure 8, except that the code has been compiled turning on all
the optimisations delivered by the -O3 flag (which prioritises
execution time over code size). Recall that in this case, the
baseline CMSIS-NN lowering convolution algorithm compiled
with -O3 is used for computing all the speedups in the plots.

In the results obtained for our lowering convolution al-
gorithm using the 2 × 3 microkernel (top-left plot), we no-
tice that employing the k-variable has a negative impact on
performance. We attribute this decline to the fact that the
optimisation flag applied to the baseline slightly improves
performance in general, making the effects of register spilling
more pronounced in this particular configuration. On the other
hand, the other two variants, which involve using k-constant

(either by declaring different functions or by using the run-
in-RAM function), achieve speedups ranging from 1.08× to
1.16×, with a slight performance loss for the run-in-RAM
variant.

When filters are preloaded into RAM (top-right plot), there
is a general improvement in performance for all variants of
the algorithm, around 10%. This allows the version using
k-constant with different functions to achieve a speedup of
above 1.24× for all CNN layers. It is worth noting that the
performance obtained through our improvements increases as
the CNN layers progress.

Regarding the direct convolution algorithm (bottom-left
plot), except for the first layer, we observe that the speedups
reach 1.14×, with both algorithm versions delivering very
similar results.

Finally, The direct convolution experiments with the filters

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 12

1 2 3 4 5 6

Conv2D Layer
0.0

0.5

1.0

1.5

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6

Conv2D Layer
0.0

0.5

1.0

1.5

Sp
ee

du
p

Filters preloaded to RAM

1 2 3 4 5 6

Conv2D Layer
0.0

0.5

1.0

1.5

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6

Conv2D Layer
0.0

0.5

1.0

1.5

Sp
ee

du
p

Filters preloaded to RAM

CMSIS-NN Lowering 2M2N 2M3N K variable 2M3N K constant (different functions) 2M3N K constant (via RAM function)
CMSIS-NN Direct convolution 2x2 K variable 2x2 K constant (different functions)

Fig. 8: Speedup of the lowering (top) and direct (bottom) convolution algorithms for the convolutional layers of the VGG-
like CNN with respect to the baseline CMSIS-NN lowering convolution (with 2 × 2 microkernel) on the ARM Cortex-M4
processor from NANO and compiled with -Os. The plots in the left and right columns show the speedups achieved when the
convolutional filters are read from flash or preloaded into RAM, respectively.

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6
Conv2D Layer

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters preloaded to RAM

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters preloaded to RAM

CMSIS-NN Lowering 2M2N 2M3N K variable 2M3N K constant (different functions) 2M3N K constant (via RAM function)
CMSIS-NN Direct convolution 2x2 K variable 2x2 K constant (different functions)

Fig. 9: Speedup of the lowering (top) and direct (bottom) convolution algorithms for the convolutional layers of the VGG-
like CNN with respect to the baseline CMSIS-NN lowering convolution (with 2 × 2 microkernel) on the ARM Cortex-M4
processor from NANO and compiled with -O3. The plots in the left and right columns show the speedups achieved when the
convolutional filters are read from flash or preloaded into RAM, respectively.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 13

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters preloaded to RAM

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters preloaded to RAM

CMSIS-NN Lowering 2M2N 2M3N K variable 2M3N K constant (different functions)
CMSIS-NN Direct convolution 2x2 K variable 2x2 K constant (different functions)

Fig. 10: Speedup of the lowering (top) and direct (bottom) convolution algorithms for the convolutional layers of the VGG-like
CNN with respect to the baseline CMSIS-NN lowering convolution (with 2×2 microkernel) on the ARM Cortex-M4 processor
from PORT and compiled with -O3. The plots in the left and right columns show the speedups achieved when the convolutional
filters are read from flash or preloaded into RAM, respectively.

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6
Conv2D Layer

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters preloaded to RAM

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters in flash

1 2 3 4 5 6

Conv2D Layer
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

Filters preloaded to RAM

CMSIS-NN Lowering 2M2N 2M3N K variable 2M3N K constant (different functions)
CMSIS-NN Direct convolution 2x2 K variable 2x2 K constant (different functions)

Fig. 11: Speedup of the lowering (top) and direct (bottom) convolution algorithms for the convolutional layers of the VGG-like
CNN with respect to the baseline CMSIS-NN lowering convolution (with 2×2 microkernel) on the ARM Cortex-M7 processor
from PORT and compiled with -O3. The plots in the left and right columns show the speedups achieved when the convolutional
filters are read from flash or preloaded into RAM, respectively.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 14

preloaded to RAM (bottom-right plot) follow a very similar
trend as in the previous case, except that they are boosted
by approximately 10%. In general, these versions achieve
speedups ranging between 1.15× and 1.37× compared to the
original CMSIS-NN algorithm.

2) Results on the PORT MCU: Figures 10 and 11 show
the speedups achieved on the ARM Cortex-M4 and Cortex-
M7 processors in PORT, respectively, compiled with the -O3
optimisation flag. It is important to note that the convolution
algorithms utilising run-in-RAM functions were not available
due to the PORT MCU not being able to use RAM for code
storage.

Results on the ARM Cortex-M4 processor: When em-
ploying the lowering algorithms with filters read from flash
memory (top-left plot in Figure 10), utilising k-variable results
in an average performance loss of 0.94×. As mentioned
previously, this is due to the use of compiler optimisations,
which amplify the losses due to register spilling. On the other
hand, using k-constant via different functions, this drawback is
avoided, resulting in speedups ranging from 1.12× to 1.16×.

Regarding the lowering algorithms with filters preloaded
into RAM (top-right plot), we observe speedups up to 1.22×
for the k-constant via different functions case, while the k-
variable algorithm does not show any improvement, except
for the first layer.

As for the direct convolution algorithms with filters read
from flash memory (bottom-left plot), both versions of the
2×2 microkernel behave very similarly, regardless of whether
k is variable or constant via different functions. Unlike the k-
variable lowering algorithm, the k-variable direct algorithm
does not incur register spilling. These algorithms achieve
speedups of up to 1.16× compared to the baseline CMSIS-
NN lowering convolution.

Finally, for the direct convolution algorithms with the filters
preloaded into RAM, the speedups range from 1.05× to 1.29×
for all the convolution layers except the first one.

Results on the ARM Cortex-M7 processor: Figure 11
repeats the experiments in Figure 10, except that in this case,
they are conducted on the ARM Cortex-M7 processor in
PORT.

Regarding the lowering convolution algorithm with the
filters read from flash (top-left plot), we observe that the
variant using k-variable with the 2×3 microkernel reports the
same performance as the baseline CMSIS-NN with the 2× 2
microkernel. Although a larger microkernel should provide a
better performance, its improvement is cancelled by the effects
of register spilling. On the other hand, the k-constant via
different functions variant reports speedups ranging between
1.11× and 1.24×. If, in turn, the filters are preloaded into
RAM (top-right plot), we obtain a slight performance boost
compared to the previous scenario for the k-constant variant.
In this case, the speedup reaches 1.28× for the best scenario.

The results for the direct convolution algorithms with filters
read from flash (bottom-left plot) are notable for all the
convolutional layers, except for the first one. The speedups for
all layers except the first range from 1.04× to 1.38×, leading
to better results than the equivalent lowering algorithms.

Finally, for the direct convolution algorithms with the filters
preloaded into RAM (bottom-right plot), we again obtain
visible performance boosts for almost all layers with speedups
ranging from 1.04× to 1.49× (for all the convolutional layers
except the first one). Again, it can be observed that, for this
processor, on some of the convolutional layers, the direct
convolution variants outperform the lowering equivalents.

From these results, we can draw the general conclusion that,
depending on the convolution layer parameters, a different
lowering or direct convolution algorithm could be selected to
obtain the best overall performance.

VI. CONCLUDING REMARKS

In this paper, we have presented several optimisations for
the convolution operator on the ARM Cortex-M4 and Cortex-
M7 processors found in the Arduino Nano 33 BLE Sense and
Arduino Portenta H7 Lite MCUs. These optimisations involve
the design of new highly-tuned and vectorised microkernels
and the use of RAM as a scratchpad for storing the convolution
filters.

The experimental results using our optimised convolution
algorithms show substantial improvements in the inference
time of the four evaluated CNN models on the three different
Cortex-M processors available in the selected MCUs. Specifi-
cally, for VGG, we attained speedups in the range of 1.13× to
1.33×; for SqueezeNet, 1.26× to 1.50×; for ResNet, 1.13× to
1.19×; and for MobileNet, 1.15× to 1.27×. After a detailed
analysis of the convolution algorithms at the layer level,
we found that the lowering algorithm using k-constant via
different functions and filters preloaded into RAM achieves the
shortest execution times, resulting in speedups when compiled
optimised for speed and the VGG-like CNN of up to 1.28×
on the NANO Cortex-M4 processor, up to 1.13× on the PORT
Cortex-M4 processor, and up to 1.33× on the PORT Cortex-
M7 processor. Similarly, the direct convolution algorithm with
k-constant via different functions and filters preloaded into
RAM achieves speedups of up to 1.35× on the NANO Cortex-
M4, up to 1.29× on the PORT Cortex-M4 processors, and up
to 1.49× on the PORT Cortex-M7 processors, but only for
those convolutional layers of the VGG-like model that exhibit
a large number of filters on small input tensors.

Also, we observed that for the PORT Cortex-M7 processor,
the convolution variants reading filters from flash or preloading
filters into RAM show almost identical results due to the
similar latencies for accessing flash and RAM on this MCU.

As part of future work, we plan to investigate different
operating frequencies and Cortex-M8 processors with vector
instructions (MVE). Additionally, we aim to dynamically
select the best-performing algorithm based on the convolution
layer parameters. Finally, we aim to explore the use of mi-
croTVM to automatically generate alternative microkernels for
convolutions and GEMM operations involved in DNN layers.

ACKNOWLEDGMENTS

This research was funded by project TED2021-129334B-
I00 supported by MCIN/AEI/10.13039/501100011033 and
by the “European Union NextGenerationEU/PRTR”. Manuel

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL 15

F. Dolz was also supported by the Plan Gen–T grant
CIDEXG/2022/13 of the Generalitat Valenciana. Antonio
Maciá-Lillo is a PRE2021-099284 fellow supported by
MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Comm. ACM, vol. 60, no. 6,
pp. 84–90, 2012.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2016, pp. 779–788.

[3] L. Trinh Van, T. Dao Thi Le, T. Le Xuan, and E. Castelli, “Emotional
speech recognition using deep neural networks,” Sensors, vol. 22, no. 4,
p. 1414, 2022.

[4] S. Branco, A. G. Ferreira, and J. Cabral, “Machine learning in resource-
scarce embedded systems, FPGAs, and end-devices: A survey,” Elec-
tronics, vol. 8, no. 11, p. 1289, 2019.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and less than 0.5 MB model size,” arXiv:1602.07360, 2016.

[7] Arm Limited, “ARM Cortex-M processor series,” 2021, https://
developer.arm.com/ip-products/processors/cortex-m.

[8] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural
network kernels for Arm Cortex-M CPUs,” 2018. [Online]. Available:
https://arxiv.org/abs/1801.06601

[9] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in International Workshop
on Frontiers in Handwriting Recognition, 2006.

[10] S. Barrachina, M. F. Dolz, P. San Juan, and E. S. Quintana-Ortı́,
“Efficient and portable GEMM-based convolution operators for deep
neural network training on multicore processors,” J. Parallel Distrib.
Comput., vol. 167, no. C, p. 240–254, sep 2022.

[11] S. Barrachina, A. Castelló, M. F. Dolz, T. M. Low, H. Martı́nez, E. S.
Quintana-Ortı́, U. Sridhar, and A. E. Tomás, “Reformulating the direct
convolution for high-performance deep learning inference on ARM
processors,” Journal of Systems Architecture, vol. 135, p. 102806, 2023.

[12] ARM, “ARM Cortex-M4 Processor Technical Reference Manual
Revision r0p1,” ARM Holdings, plc., accessed on May
21, 2023. [Online]. Available: https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m4

[13] ARM,‘ ‘ARM Cortex-M7 Processor Technical Reference Manual
Revision r1p2,” ARM Holdings, plc., accessed on May
21, 2023. [Online]. Available: https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m7

[14] A. Castelló, E. S. Quintana-Ortı́, and F. D. Igual, “Anatomy of the BLIS
family of algorithms for matrix multiplication,” in 2022 30th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing (PDP). IEEE, 2022, pp. 92–99.

[15] G. Alaejos, A. Castelló, H. Martı́nez, P. Alonso-Jordá, F. D. Igual, and
E. S. Quintana-Ortı́, “Micro-kernels for portable and efficient matrix
multiplication in deep learning,” The Journal of Supercomputing, vol. 79,
no. 7, pp. 8124–8147, 2023.

[16] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges in design-
ing exploit mitigations for deeply embedded systems,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), 2019, pp.
31–46.

[17] B. Nguyen, P.-A. Moellic, and S. Blayac, “Evaluation of convolution
primitives for embedded neural networks on 32-bit microcontrollers,”
2023.

[18] M. Deutel, P. Woller, C. Mutschler, and J. Teich, “Deployment of energy-
efficient deep learning models on Cortex-M based microcontrollers using
deep compression,” 2022.

[19] L. Grzymkowski and T. P. Stefański, “Performance analysis of convo-
lutional neural networks on embedded systems,” in 2020 27th Interna-
tional Conference on Mixed Design of Integrated Circuits and Systems
(MIXDES), 2020, pp. 266–271.

[20] G. Cerutti, R. Prasad, A. Brutti, and E. Farella, “Compact recurrent neu-
ral networks for acoustic event detection on low-energy low-complexity
platforms,” IEEE Journal of Selected Topics in Signal Processing,
vol. 14, no. 4, pp. 654–664, 2020.

[21] A. Faraone and R. Delgado-Gonzalo, “Convolutional-recurrent neural
networks on low-power wearable platforms for cardiac arrhythmia
detection,” in 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, aug 2020. [Online].
Available: https://doi.org/10.1109%2Faicas48895.2020.9073950

[22] S. Sadiq, J. Hare, S. Craske, P. Maji, and G. Merrett, “Enabling
ImageNet-scale deep learning on MCUs for accurate and efficient
inference,” IEEE Internet of Things Journal, pp. 1–1, 2023.

[23] E. Liberis and N. D. Lane, “Neural networks on microcontrollers:
saving memory at inference via operator reordering,” arXiv preprint
arXiv:1910.05110, 2019.

[24] L. Lai and N. Suda, “Enabling deep learning at the lot edge,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2018, pp. 1–6.

[25] M. Cho and D. Brand, “MEC: memory-efficient convolution for deep
neural network,” in International Conference on Machine Learning.
PMLR, 2017, pp. 815–824.

[26] P. Wang, X. Wang, R. Luo, D. Wang, M. Luo, S. Qiao, and Y. Zhou, “An
efficient im2row-based fast convolution algorithm for ARM Cortex-M
MCUs,” IEEE Access, vol. 9, pp. 124 384–124 395, 2021.

[27] “Arduino Nano 33 BLE Sense,” https://store.arduino.cc/
arduino-nano-33-ble-sense, accessed on May 21, 2023.

[28] Nordic Semiconductor, “nRF52840 product specification,” Datasheet,
accessed on May 21, 2023. [Online]. Available: https://www.nordicsemi.
com/Products/nRF52840

[29] STMicroelectronics, “STM32H747XI datasheet,” Datasheet, accessed
on May 21, 2023. [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32h747xi.html

[30] “Arduino Portenta H7 Lite,” https://www.arduino.cc/pro/hardware/
product/portenta-h7-lite, accessed on May 21, 2023.

[31] M. Chhillar, G. Yadav, and N. K. Shukla, “Comparing the
two different generations of amba based protocols: AHB vs
AXI,” International Journal of Science and Research (IJSR),
vol. 3, no. 5, pp. 488–490, May 2014. [Online]. Available:
https://www.ijsr.net/archive/v3i5/MDIwMTMxODA2.pdf

[32] D. Shankar and M. Design, “Comparing AMBA AHB to AXI bus
using system modeling,” Design & Reuse, 2023. [Online]. Available:
https://www.design-reuse.com/articles/article24123.html

[33] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, Dec 2017.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual
wake words dataset,” arXiv preprint arXiv:1906.05721, 2019.

APPENDIX A
MODELS’ SPECIFICATIONS

In this appendix, we provide detailed layer specifications of
the DNNs used in this work: 1) VGG-like [34] (see Table A1);
2) SqueezeNet-like [6] (see Table A2); 3) ResNet-v1-like [35]
(see Table A3)); and 4) MobileNet-v1-like [5] (see Table A4).
The layer specifications provided in the tables encapsulate
critical information, such as the layer ID, type of layer and
activation functions, number of neurons and filter size, strides,
and the output dimensions of each layer. In Table A5 we
also display the transformations of the SqueezeNet-like DNN
after being exported to TensorFlow Lite using full 8-bit integer
quantisation.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://developer.arm.com/ip-products/processors/cortex-m
https://developer.arm.com/ip-products/processors/cortex-m
https://arxiv.org/abs/1801.06601
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m7
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m7
https://doi.org/10.1109%2Faicas48895.2020.9073950
https://store.arduino.cc/arduino-nano-33-ble-sense
https://store.arduino.cc/arduino-nano-33-ble-sense
https://www.nordicsemi.com/Products/nRF52840
https://www.nordicsemi.com/Products/nRF52840
https://www.st.com/en/microcontrollers-microprocessors/stm32h747xi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h747xi.html
https://www.arduino.cc/pro/hardware/product/portenta-h7-lite
https://www.arduino.cc/pro/hardware/product/portenta-h7-lite
https://www.ijsr.net/archive/v3i5/MDIwMTMxODA2.pdf
https://www.design-reuse.com/articles/article24123.html

IEEE INTERNET OF THINGS JOURNAL 16

TABLE A1: Specification of the custom VGG-like model used
for the experimentation.

Id. Layer type Output shape

0 Input 32× 32× 3

1–6 Conv (3× 3× 16)− ReLU − BN } × 2 32× 32× 16

7 MaxPool (2× 2) (stride 2× 2) 16× 16× 16

8–13 Conv (3× 3× 32)− ReLU − BN } × 2 16× 16× 32

14 MaxPool (2× 2) (stride 2× 2) 8× 8× 32

15–20 Conv (3× 3× 64)− ReLU − BN } × 2 8× 8× 64

21 MaxPool (2× 2) (stride 2× 2) 4× 4× 64

22–23 FC − ReLU 64

24–25 FC − SoftMax 10

TABLE A2: Specification of the custom SqueezeNet-like
model used for the experimentation.

Id. Layer type Output shape

0 Input 32× 32× 3

1–2 Conv (3× 3× 16) (stride 2× 2) −ReLU 15× 15× 64

3 MaxPool (3× 3) (stride 2× 2) 7× 7× 64

4–17

Conv 11 (1× 1× 16) − ReLU
Conv 12 (1× 1× 64) − ReLU
Conv 13 (3× 3× 64) − ReLU
Concat(Conv 12,Conv 13)

× 2

7× 7× 16
7× 7× 64
7× 7× 64
7× 7× 128

18 MaxPool (3× 3) (stride 2× 2) 3× 3× 64

19–32

Conv 21 (1× 1× 32) − ReLU
Conv 22 (1× 1× 128)− ReLU
Conv 23 (3× 3× 128)− ReLU
Concat(Conv 22,Conv 23)

× 2

3× 3× 32
3× 3× 128
3× 3× 128
3× 3× 256

33 MaxPool (3× 3) (stride 2× 2) 1× 1× 256

34–35 Conv (1× 1× 10)− ReLU 1× 1× 10

36–37 GlobalAvgPool − SoftMax 10

TABLE A3: Specification of the custom ResNet-v1-like model
used for the experimentation.

Id. Layer type Output shape

0 Input 32× 32× 3

1–3 Conv 1 (3× 3× 16) −BN − ReLU 32× 32× 16

4–8 Conv (3× 3× 16)− BN − ReLU
Conv 2 (3× 3× 16)− BN 32× 32× 16

8–9 Add(Conv 1,Conv 2) − ReLU 32× 32× 16

10–14 Conv (3× 3× 32) (str. 2× 2)− BN − ReLU
Conv 3 (3× 3× 32)− BN 16× 16× 32

15 Conv 4 (3× 3× 16) (str. 2× 2) 16× 16× 32

16–17 Add(Conv 3,Conv 4) − ReLU 16× 16× 32

18–22 Conv (3× 3× 32) (str. 2× 2)− BN − ReLU
Conv 5 (3× 3× 32)− BN 8× 8× 64

23 Conv 6 (3× 3× 16) (str. 2× 2) 8× 8× 64

24–25 Add(Conv 5,Conv 6) − ReLU 8× 8× 64

26–30 Conv (3× 3× 32) (str. 2× 2)− BN − ReLU
Conv 7 (3× 3× 32)− BN 4× 4× 128

31 Conv 8 (3× 3× 16) (str. 2× 2) 4× 4× 128

32–33 Add(Conv 7,Conv 8) − ReLU 4× 4× 128

34 AvgPool (4× 4) 1× 1× 128

35 FC 10

TABLE A4: Specification of the custom MobileNet-v1-like
model used for the experimentation.

Id. Layer type Output shape

0 Input 96× 96× 3

1–3 Conv (3× 3× 8) (str. 2× 2) −BN − ReLU 48× 48× 8

4–6 Conv (3× 3× 8) −BN − ReLU 48× 48× 8

7–9 Conv (1× 1× 16) −BN − ReLU 48× 48× 16

10–12 Conv (3× 3× 16) (str. 2× 2) −BN − ReLU 24× 24× 16

13–15 Conv (1× 1× 32) −BN − ReLU 24× 24× 32

16–18 Conv (3× 3× 32) −BN − ReLU 24× 24× 32

17–21 Conv (1× 1× 32) −BN − ReLU 24× 24× 32

22–24 Conv (3× 3× 32) (str. 2× 2) −BN − ReLU 12× 12× 32

25–27 Conv (1× 1× 64) −BN − ReLU 12× 12× 64

28–30 Conv (3× 3× 64) −BN − ReLU 12× 12× 64

31–33 Conv (1× 1× 64) −BN − ReLU 12× 12× 64

34 AvgPool (12× 12) 1× 1× 64

35 FC 2

TABLE A5: VGG-like model generated by TFLite once quan-
tised to 8-bit integer.

Id. Layer type Output shape

0 Input 32× 32× 3

1–8 Conv (3× 3× 16) − ReLU
Mul − Add

}
× 2 32× 32× 16

9 MaxPool (2× 2) (stride 2× 2) 16× 16× 16

10–18 Conv (3× 3× 32) − ReLU
Mul − Add

}
× 2 16× 16× 32

19 MaxPool (2× 2) (stride 2× 2) 8× 8× 32

20–28 Conv (3× 3× 64) − ReLU
Mul − Add

}
× 2 8× 8× 64

29 MaxPool (2× 2) (stride 2× 2) 4× 4× 64

30–31 FC − ReLU 64

32–33 FC − SoftMax 10

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3395335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Background and related work
	Background
	Related work

	ARM Cortex-M-based microcontrollers
	Arduino Nano 33 BLE Sense
	CPU
	Memory organisation

	Arduino Portenta H7 Lite
	CPU
	Memory organisation

	Benchmarking memory accesses

	The Convolution Algorithm
	The lowering approach
	Lowering in CMSIS-NN
	Microkernel optimal size
	Optimising the microkernel
	Improving memory accesses

	The direct convolution algorithm
	The direct convolution in CMSIS-NN
	Optimising the direct convolution algorithm
	Improving memory access latency

	Experimental Results
	Hardware setup
	DL framework and libraries
	Testbed
	Cumulative results on the evaluated CNNs
	Convolutional layers results
	Results on the Nano MCU
	Results on the Port MCU

	Concluding Remarks
	References
	Appendix A: Models' specifications

