
ServiceNet: resource-efficient architecture for topology discovery
in large-scale multi-tenant clouds

Angel Gama Garcia1 • Jose M. Alcaraz Calero1 • Higinio Mora Mora2 • Qi Wang1

Received: 30 November 2023 / Revised: 18 January 2024 / Accepted: 5 February 2024
� The Author(s) 2024

Abstract
Modern computing infrastructures are evolving due to virtualisation, especially with the advent of 5G and future tech-

nologies. While this transition offers numerous benefits, it also presents challenges. Consequently, understanding these

complex systems, including networks, services, and their interconnections, is crucial. This paper introduces ServiceNet, a

groundbreaking architecture that accurately performs the important task of providing understanding of a multi-tenant

architecture by discovering the complete topology, crucial in the realm of high-performance distributed computing.

Experimental results have been carried out in different scenarios in order to validate our approach, demonstrating the

effectiveness of our approach in comprehensive multi-tenant topology discovery. The experiments, involving up to forty

tenant, highlight the adaptability of ServiceNet as a valuable tool for real-time monitoring in topology discovery purposes,

even in challenging scenarios.

Keywords Topology discovery � Distributed computing � Resource management � Multi-tenancy � 5G networks

1 Introduction

In recent years, modern computing infrastructures have

gone through a significant transformation encompassing

both hardware and software. This transformation has been

driven by a pursuit of increasing performance and effi-

ciency. The emergence of 5G and beyond such as 5G

Advanced networking towards 6G marks the beginning of a

new era, promising remarkable capabilities such as ultra-

high-speed connectivity, extremely low latency, softwari-

sation and virtualisation of infrastructures and services, and

the seamless integration of the digital and physical worlds.

However, these promises bring along substantial chal-

lenges such as an improved system comprehension, com-

munication or monitoring [1].

The backbone of our digital age now relies on large-

scale multi-tenant infrastructures. These infrastructures

host a wide range of services and applications that play a

crucial role in our daily lives. They encompass everything

from cloud-based business applications to edge computing

in different infrastructures. The size and complexity of

these infrastructures make conventional management

methods less and less adequate over time [2]. As these

multi-tenant infrastructures continue to grow and evolve,

the demand for solutions for efficient and scalable service

discovery is vital to facilitate service management in such

complex networking and computing environments.

While traditional infrastructure management often

involves static configurations and manual intervention, this

approach is increasingly being challenged. However, it is

important to note that, even though there have been sig-

nificant advancements in automation technologies and their

adoption, the transition towards automation in this field is

not yet complete. This can be due to a variety of factors,

including the complexity of existing systems, the need for

significant investment in new technologies, and the chal-

lenges associated with changing established operational

procedures and workforce skills. Today’s applications and

services are dynamic in nature, and resources need to scale

rapidly to meet fluctuating demands. This makes manual

intervention impractical and prone to errors. Infrastructure

& Jose M. Alcaraz Calero

jose.alcaraz-calero@uws.ac.uk

1 University of the West of Scotland, High Street, Paisley,

Renfrewshire PA1 2BE, Scotland

2 Universidad de Alicante, Carr. de San Vicente del Raspeig,

03690 Alicante, Spain

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04344-3(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04344-3&domain=pdf
https://doi.org/10.1007/s10586-024-04344-3

operators face a daunting challenge: they must ensure the

smooth operation of numerous services in a vast multi-

tenant environment while adapting to real-time changes.

Moreover, service disruptions in these infrastructures

can have far-reaching consequences. They affect not only

the businesses and organisations that depend on them, but

also the end-users who rely on uninterrupted access to

digital services. Consider, for instance, a scenario where a

cloud service outage occurs, leading to the temporary

suspension of critical business applications. Initially

affecting company revenues and operations, these disrup-

tions can subsequently reach end-users, disrupting their

daily activities. Therefore, the need to develop advanced

tools and methodologies for service discovery is driven not

only by technological progress but also by the social and

economic impact of infrastructure failures. This implies

that aside from the technical disruptions caused by service

outages, there are profound consequences on economic

stability, market dynamics, and various sectors.

Traditionally, monitoring tools have focused on host-

level services. Nevertheless, with the new digitalisation

era, rises a new challenge that lies in understanding the

behaviour and performance of resources at deeper and

wider levels [3]. The fundamental issue is clear: ensuring

service reliability, performance and security in softwarised

and virtualised environments requires new approaches that

go beyond the traditional techniques. This shift has given

rise to new terms like ‘slicing,’ applied to both network and

computer services [4, 5]. As these environments continue

evolving, the need for solutions increases and new chal-

lenges are emerging. These challenges can be categorised

into two main areas: Network Topologies, and Operation

and Performance. The first category, Network Topologies,

addresses issues such as the integration of both physical

and logical network topologies, which is crucial for cre-

ating a comprehensive view of service landscapes. The

orchestration of overlay topologies is another key chal-

lenge, as it entails coordinating the discovery of various

overlay network structures to allow a holistic understand-

ing of service deployments. The need of discovery

improvement in the area of multi-cloud environments

should be emphasised [6]. The second category, Operation

and Performance, deals with challenges related to data high

performance availability, its visualisation and cross-do-

main interoperability. Data visualisation is essential for

effectively presenting the discovered service topologies,

while ensuring seamless interoperability across different

domains. These challenges collectively form the founda-

tion for addressing the complexities of service topology

discovery in cutting-edge network environments.

In response to these challenges, this work delves deep into

the topology discovery in terms of a multi-tenant system in

5G and beyond networks, driven by the accelerating trend of

virtualisation and the growing complexity of service man-

agement requirements in this next-generation network

paradigm. Accordingly, the paper presents the following

technological contributions (Table 1).

• Creation of an innovative resource-efficient architecture

called ServiceNet to achieve a real-time multi-tenant

topology registry and further visualisation. It offers a

robust tool for managing and visualising topology

information across the large-scale system.

• New capabilities to allow gathering both network and

service topological information in complicated 5G and

beyond networking environments. Achieving a fully-

connected information space in order to visualise not

only the services but also their socket connection and

where they belong in the host.

• Experiments with different multi-tenant configurations

and empirical results on the testing and validation of the

functionality of the proposed architecture.

The remaining of this paper is organised as follows.

Section 2 reviews the current state of the art in the field of

service discovery. Section 3 describes the proposed archi-

tecture developed to achieve the services discovery in the

field of multi-tenant architectures. Section 4 provides

details on the design and implementation of the proposed

architecture. Section 5 presents the validation and results

of the proposed approach. Different experiments are car-

ried out to show how the architecture performs in different

scenarios. Finally, Sect. 6 concludes the paper with a brief

summary of the obtained results and their implications.

2 Related work

Topology discovery within complex IT infrastructures is a

pivotal undertaking, particularly in the domain of large-

scale multi-tenant environments. The ability to automati-

cally identify the services, locate them and finally find the

communication between them is essential for a better

understanding of the infrastructure as well as a real-time

responsiveness. In this section is carried out a study of the

related work in this field, with the aim to understand both

the strengths and weaknesses within the existing research.

Topology Discovery is a relative new area. In response to

the challenge on obtaining an overall picture of the whole

network and service topology, we conducted literature

searches with different configurations: Search 1: (‘‘All

Metadata’’:‘‘Topology discovery’’) AND (‘‘All Meta-

data’’:multi-tenant), Search 2 (‘‘All Metadata’’:‘‘Topology

discovery’’) AND (‘‘All Metadata’’:tenant), and Search 3

(‘‘All Metadata’’:‘‘Service topology’’) AND (‘‘All Meta-

data’’:discovery). It is noted that results are filtered between

2005 and 2023. In Table 2, we present the results searching

Cluster Computing

123

articles and conferences from three different online data-

bases, including Taylor & Francis, IEEE Xplore, Science-

Direct and Springer. The column ‘‘Data’’ introduces the

number of contributions in the search, and ‘‘Cited’’ the

papers that have been found related to our work and conse-

quently commented. The table indicates the level of novelty

of the proposed work in the field of topology discovery in

multi-tenant infrastructure, highlighting the overall enlarged

capabilities of the proposed and validated work in this paper,

beyond the state of the art.

In the realm of service management, we can divide the

service registry methods in four, each with its own set of

merits and drawbacks. First method involves services being

registered directly by the software that manage and deploys

them, can be found in tools such as Juju [16], Capistrano [17],

Scalr [18], and Puppet [19]. While offering reliability, this

approach often necessitates a substantial automation system,

making it less practical for organisations lacking advanced

automation capabilities. Method two hinges on API-based

self-registration, where services are autonomously regis-

tered by themselves, includes tools like RMI registry [20],

and CORBA [21]. However, implementing self-registration

may demand software modifications, posing challenges in

terms of compatibility. In Method number three, adminis-

trators manually register services, exemplified by systems

like OpenStack [22]. This method is knowledge-intensive as

well as time-consuming, relying heavily the expertise of the

administrator. Notably, in our work, we introduce the

method number 4, a novel approach for automatic software-

based registration, a method distinct from existing literature.

In this approach, services are registered automatically, mit-

igating the need for manual intervention and offering

enhanced efficiency and reliability in service management.

In the landscape of service discovery protocols and

methodologies, there are common service discovery

protocols worth commenting, as seen in [23]. They are

basically used to enable applications and microservices to

locate different components on a network. Some examples

include Bluetooth Service Discovery Protocol (SDP) [24]

used for discovering Bluetooth devices and services and

DNS Service Discovery (DNS-SD) [25], which enables

automatic discovery of computers, devices, and services on

an IP network. These protocols play a significant role in

automating the discovery of services and reducing manual

configuration tasks, which is crucial for efficient network

management.

mDNS zeroconf (zero-configuration) protocols allow

automatic device discovery and connections within a net-

work, removing the need for manual configuration. Avahi

[26] is an open-source implementation of zeroconf tech-

nologies for Unix-like systems. It works as an mDNS/

DNS-SD responder. It enables automatic service discovery

simplifying network setups by just plugging the computer

into a network and instantly viewing other services such as

printers, files being shared, media, and so on. Compatible

technology is found in Apple, branded Bonjour [27]. It

integrates mDNS and DNS-SD protocols into Apple

ecosystem and other platforms. It simplifies device and

service discovery on local networks, fostering easy con-

nectivity between Apple devices.

Table 1 Comparison of this

paper (ServiceNet) with related

work

Criteria [7] [8] [9] [10] [11] [12] [13] [14] ServiceNet

Discover Network Topology 4 4 4 4 8 4 4 4 4

Discover 5G Topology 4 8 8 8 8 8 4 8 4

Discover sockets 8 8 8 8 8 8 8 4 4

Discover service 8 4 4 4 8 4 4 4 4

Connection socket-service 8 8 8 8 8 8 8 4 4

Distributed discovery 4 4 4 8 4 4 4 4 4

Container network topology 4 8 8 8 8 8 8 8 4

Container socket topology 8 8 8 8 8 8 8 8 4

Container service topology 8 8 8 4 8 8 8 8 4

Multi-tenant topology 8 8 8 8 8 8 8 8 4

Fault tolerance 8 – 8 8 4 4 4 4 4

Automatic service registration 8 8 4 8 8 4 4 8 4

Real-time gathering 4 – 4 – 4 4 4 4 4

Real-time topology visualisation 8 8 8 8 8 8 8 – 4

Table 2 Literature review search

Search 1 Search 2 Search 3

Data Cited Data Cited Data Cited

Taylor &Francis 1 0 1 0 0 0

IEEE Xplore 0 0 3 [6] 4 [8]

ScienceDirect 21 [15] 40 [15] 31 –

Springer 11 [7, 14] 19 [7, 14] 38 [14]

Cluster Computing

123

Now, let’s delve into several papers that address various

aspects of topology discovery. Each of them is compared in

Table 1 having into account criteria regarding our corner-

stones. While each one approaches a different goal, they

share a common objective of improving network compre-

hension. In [28], Duan and Lu presents an architecture for

discovery on service-oriented networks, it highlights the

importance of virtualisation within networking and its

service-oriented nature. Sanchez et al set a good starting

point in network topology discovery in [7], showing

empirical validation experiments where they get the

topology and monitor a 5G multi-tenant network. In [8], is

introduced a novel approach to service composition in

dynamic ad hoc environments. It addresses the dynamic

nature of service discovery, emphasising the need for

flexibility, reduced communication overhead, and efficient

resource utilisation in such environments. The publication

[9] proposes a scalable and self-configuring peer-to-peer

(P2P)-based architecture for large-scale IoT networks,

focusing on automated service and resource discovery

mechanisms in IoT networks. It shows a 2D grid with the

smart objects deployments. Mathews et al present an

interesting discussion of fault management with cross-layer

service topology in [10]. It uses Gephi [29] to visualise the

topology discovery and identifies the need to discover the

cross-layer cloud service topology to deal with service

disruptions. This work presents valuable insights and

methods in the field of service topology visualisation, but it

lacks of more general network comprehension.

Closed-source tools related to our work can be found

from various sources [11–13] and are subsequently intro-

duced. An interesting product auto-defined as Network

Topology Mapper (NTM) [11] created by SolarWinds,

carries out an automated device discovery and mapping

using ICMP, SNMP, WMI, CDP, VMware, Microsoft

Hyper-V, and more. It limits its topology to just network-

ing information. There are more tools that delve deeper in

the topology discovery, [12] is a software that enables

network discovery, with a primary focus on network con-

figuration management. It uses network protocols such as

SNMP, WMI, and REST APIs to gather information.

Another software solution is [13], used to monitor indus-

trial IT and IoT infrastructures integrating technologies

such as Ping, SNMP, WMI, SSH, HTTP requests, and

different flow protocols (IPFIX, jFlow, sFlow, NetFlow).

Although it comments Virtual Machine (VM) monitoring,

it does not go deep in the topology or services being run. It

is important to note that due to their closed-source nature,

there is limited publicly available information and testing

on the three commented software [11–13].

Wei et al. in [14], achieve a very complete Topology

Discovery in the field of multi-cloud environments. In their

work it is proposed a framework that gathers topology

information by a ‘‘topology engine’’ and then it is shown

by a visualiser, being able to draw an overall application

distribution graph. As can be seen in the table, the paper is

highly aligned with our work, with some caveats, as it is

the only one accomplishing the ‘Discover Sockets’ and

‘Connection Socket-Service’ criteria, making it relevant for

our focus on multi-tenant environments.’’

Cummins [30] introduces the definition of modern ser-

vice as all the activities that an organisation does to plan,

design, deliver, operate, and control the applications in an

enterprise. It includes the people who do the work, pro-

cesses that define what work is needed and how it is done,

and tools to enable and support these activities. Applica-

tions are monitored to ensure availability and performance

according to service level agreements (SLAs) or service

level objectives (SLOs). Benefits of service management

are also commented. Along them are found an improved

effectiveness, increased operational reliability and agility,

operational efficiency by using real-time analytics, appli-

cation’s performance and higher management of risks and

threats.

A similar work can be found also from IBM where

Averdunk investigates in the principles of cloud service

management and operations [31]. It is underscored the

importance of several key principles in a production

environment that will help to adopt microservices-based

applications. It is commented the importance of service

discovery, workload based on resource requirements, self-

healing, and even the need of real time monitoring metrics

beyond CPU, memory and disk space. Our research

extends the principles commented by Cummins to indus-

trial environments. We aim to improve the digitalised

service management practice by real-time monitoring the

topology of the services. Thereby enhancing network

understanding and reliability in these critical contexts as

important keys mentioned in [31]. The lack of available

tools in the literature to perform both service and network

topology discovery in multi-tenant environment has been

the main motivation of this research work.

Moreover, in current software there is a trend in multi-

domain, specially in 5G networks. The majority of them

operate within multi-instance frameworks, often executing

across tenats and multi-cloud providers. Our approach

stands apart by operating from an external point consuming

resources in a singular instance rather than a multi-in-

stance, because it is only executed in the host. This allows

for resource optimisation. Being also useful for large scale

deployments together with our distributed architecture.

2.1 Findings

This section intends to clarify the key aspects of our

approach that contribute significantly with relation to the

Cluster Computing

123

current state of the art. Table 1 delineates the different key

points achieved in comparison to work found in the

topology discovery field. The network topology is the

feature that we have found more times [7–10, 12–14], as

well as the distributed configuration and Real-Time gath-

ering [7–9, 11–14]. In contrast, it has been difficult to see

discovery of 5G topology networks, this is a key aspect of

our approach achieved thanks to the application of RIA, an

agent found in the work done by Sanchez et al in [15].

Leveraging this, we can discover 5G and beyond network

topologies alongside their interconnected services and

sockets within virtualised components.

The literature review has encountered challenges in

discovering socket, only done by [14]. Notably, no work on

container socket topology has been found, being a key

point in our tenant discovery as we treat tenants as con-

tainers inside the multi-tenant. While discovery of services

is seen in various contributions [8–10, 12–14], there is a

clear lack when talking about tenant or containers. Only

one performs a topology discovery in this context, using it

to discuss further implementation of accurate fault man-

agement techniques [10].

Some of these also implement fault tolerance techniques

ensuring secure discovery [11–14]. The registration meth-

ods is previously commented in this section, we follow an

automatic registration without human intervention or cli-

ent/server acceptance, something seen in [9, 12, 13]. Also,

regarding visualisation it is true that some tools allow us to

visualise the topology but they are limited to rather net-

work or services, without going in deep as our approach

does with network, services, sockets and containers.

Overall, we can confirm that we have found different

contributions that are aligned to our approach, but is has

been identified a clear lack in the 5G and container dis-

covery, and so in its further visualisation.

3 Proposed architecture for service
topology discovery

In the context of this work, we define the term ‘‘Service’’ as

a software component within the computer system that

performs a defined task. Often defined as ‘‘micro-service’’

[14]. Services may include a wide range of elements such

as processes, which can encompass threads and daemons.

These components are the responsible for carrying out

specific operations using and managing computer resources

as well as providing communication capabilities. The inter-

connectivity and communication capabilities are exempli-

fied in our service topology discovery. Furthermore,

‘Socket,’ is defined as the communication endpoints for

services running on a device. Each socket is uniquely

identified by a combination of the device IP address and a

specific port number. This allows for services to transmit

and receive information using different protocols such as

TCP or UDP (Figs. 1, 2).

Topology Discovery Agent (TDA) is the core component

of the architecture. It is responsible for discovering both

network and services on the host and the containers. It

leverages the use of the component called Resource

Inventory Agent (RIA) presented in [15] by Sanchez et al.

which is responsible for for discovering the following

information: (i) Physical Machine and its logical and vir-

tual network interfaces, (ii) VMs and their virtual network

interfaces, (iii) Containers and their network interfaces, (iv)

Software switches, (v) Specialised Physical Devices such

as Software-Defined Radio (SDR) and their network

interfaces, (vi) Interconnection between network interfaces,

and (vii) Multi-tenant information of VMs. It is important

to provide information of where are the services located

and its relationship within the infrastructure. Due to this,

TDA goes further and gathers services information:

(i) Host Services, (ii) Containers Services, (iii) Host Net-

work Sockets, (iv) Container Network Sockets, (v) Host

Service to Host Network Socket connection, (vi) Container

Service to Container Network Socket connection.

Tenant host is formed by the physical computer or

Virtual Machine, depending on the scenario, which is

shared among multiple users, client organisations, or any

kind of tenant. In the context of 5G/6G virtualisation is one

of the main keys, which leads us to run multiple

TD API

TD Registry

Middleware

Tenant host 1
TDA (Topology Discovery Agent)

TD Agent

S1 UPF S2 AMF S3 vPLC

S4 S5 S6

Message broker
QueueR QueueB QueueG

 Host
resourcesIn

fra
st

ru
ct

ur
e

do
m

ai
n

Se
rv

ic
e

la
ye

r

Fig. 1 ServiceNet architecture design for service topology discovery

Cluster Computing

123

components that were physical in a new virtualised envi-

ronment. Those virtualised environments can be executed

and managed by a multi-tenant host.

Each tenant’s data is isolated from the other tenants even

when the share the application instance, being even invisible.

This ensures data security and privacy for all tenants. Here is

where visualising the topology plays a vital role. Due to the

growing technology times where everything tends to be

softwarised, it can become impossible to maintain a registry

and a complete comprehension of the services running, as

well as their connection to the network.

Each tenant will publish the updates and they will be

treated with the same priority because there is currently no

difference between them. It will update the new resources

received equally.

The approach presented in this work is not limited by a

number in multi-tenant discovery. It can discover the

topology of any tenant host available in the system. In

Fig. 3 the topology of two tenant hosts is depicted,

exemplifying the capability to handle structures of multi-

tenant environments.

In this architecture, a topic-based distribution model is

used to perform multiple message routes between pub-

lishers and subscribers. Each topic represents a specific

subject area, such as services topology or device socket

Fig. 2 Discovered service topology example using the proposed ServiceNet with 1 Multi-Tenant Host and 4 tenants

Cluster Computing

123

topology. The messages are published to a topic by a

publisher and then delivered to all interested subscribers.

To ensure that messages are delivered accurately it is

utilised an intermediary message broker between publish-

ers and subscribers. The broker receives messages from

publishers and distributes them to those subscribed to the

relevant topics. It also handles message queuing and

ensures that messages are delivered in the same order that

they were published.

The message broker is based on Advanced Message

Queuing Protocol (AMQP) [32]. This protocol provides a

standardised messaging format and ensures interoperability

between different message brokers and client applications.

It enables communication between nodes, addressing the

complexities inherent in multi-tenant environments that

involve distributed systems. It has been chosen due to its

high scalability and fault-tolerance, enabling us to handle

large volumes of messages and ensuring that message

delivery is not affected by system failures.

In order to make the choice of AMQP, it has been

meticulously evaluated against other alternatives, including

MQTT [33], XMPP [34], and STOMP [35]. It ensures

reliable data delivery and system resilience. In contrast, the

MQTT lightweight publish-subscribe structure lacks scal-

ability and security, offering limited features, relying on

underlying network security. Unlike AMQP, MQTT sup-

ports only a single messaging scenario: publisher/sub-

scriber [36], which may be a problem in multi-tenant

architectures. The fact that XMPP focus on real-time

communication, hinders its suitability for message relia-

bility and scalability requirements. Similarly, STOMP

simplicity comes at the expense of advanced features and

scalability, making AMQP the superior choice for

managing and visualising complex interactions within the

multi-tenant system.

The TD registry component is in charge of receiving all

the topology information published in the middleware. It is

subscribed to each one of the Exchanges created for each of

the tenants and information channel. There are currently

Fig. 3 Discovered service topology example using the proposed ServiceNet with 2 Multi-Tenant Host and 2 tenants each

Cluster Computing

123

two different queues for each tenant: network topology and

service topology. To maintain the separation of data, a

consistent routing key convention is employed, using the

format ‘‘services.tda.tenantIP.’’ In this convention, if the

tenant IP is, for instance, ‘‘192.168.121.2’’, the routing key

will be ‘‘services.tda.192.168.121.2’’. This meticulous

organisation ensures that each tenant’s information is

securely processed and stored.

Each tenant in our system has a unique message bash.

Additionally, each device has a hash associated with the

tenant ID, and this system is used to filter information

effectively. Each service and device socket also include a

field to identify the tenant ID to which they belong. This

ensures that information is properly filtered for each tenant,

avoiding the possibility of inadvertently discovering ser-

vices in different tenants with the same name and IP.

TD API gets the topology information and translates it to

a visual representation using a graph algorithm. This visual

representation is invaluable for understanding the complex

interactions within the multi-tenant system.

TD GUI shows the topology of the network and services

in a visual way. Services within the system are depicted in

a distinctive red, each labeled with its associated definition

name. Additionally, sockets, the communication endpoints

for services, are depicted in vibrant green, complete with

labels displaying their protocol type and port. It offers a

comprehensive and user-friendly view, enhancing the

overall comprehension and monitoring of the multi-tenant

system.

4 Design and implementation

4.1 Design approach

Figure 1 illustrates the architectural design of how is Ser-

viceNet composed. The key component for extracting

topology information is the TDA (Topology Discovery

Agent). The TDA periodically extracts both service and

interface topologies from the multi-tenant infrastructure.

The extraction frequency is fully configurable and is

determined by the configuration parameters explained in

Sect. 4.5. Subsequently, it transmits this data to the TD

Registry (Service Topology Discovery Registry) through a

middleware that manages how the information is shared.

The TD Registry serves as a central repository for this

topological data. It receives and stores the data making it

accessible to the API whenever needed. The GUI is

responsible for rendering this topology for end-users,

translating text to images in order to visually show the

information.

4.2 Discovery approach

The visualisation presented in Fig. 2 encapsulates the key

components and their interactions, offering a general view

of ServiceNet.

The multi-tenant system architecture visualisation pro-

vides a high-level overview of the discovery approach. In

(1) The multi-tenant host is identified. In (2) A tenant is

exemplified, illustrating the running services inside of it.

The subsequent elements are also found: (3) services, (4)

sockets, (5) device ports, and (6) connections. Each of them

are properly defined in 4.3.

4.3 Data model

ServiceNet defines a data model to represent topological

information within the infrastructure. The model comprises

several key concepts, each with a set of attributes. Some of

the primary concepts include:

1. Device: This concept is used to define physical or

logical devices within the infrastructure. It has

attributes such as HostName (a unique identifier for a

device) and tenantId (an optional attribute that refers to

the owner of the device, if applicable).

2. DevicePort: DevicePort represents any network port

within a Device. It includes attributes like inter-

faceName (the name or label of the network port),

hostName (the device where it is located), and tenantId

(an optional attribute specifying the device owner, if

relevant).

3. Connection: This concept is used to represent connec-

tions between Devices, DevicePorts, or between

DeviceSockets and Services. It includes attributes such

as srcResource (the source resource of the connection),

srcResourceId (an identifier for the source resource),

dstResource (the destination resource of the connec-

tion), and dstResourceId (an identifier for the destina-

tion resource).

4. Service: Service represents any software component

within the computer system that performs a defined

task. It includes attributes like ServiceId (the unique

identifier for the service assigned by the kernel when it

is created), DeviceId (the identifier for the device

hosting the service), and type (the space where the

service is executed, user space or kernel space).

5. DeviceSocket: DeviceSocket is used to define each of

the Sockets on the system. It includes attributes like

DeviceId (the identifier for the Device where the socket

is located), Direction (specifies whether the socket is a

server or client), Binding address (the network address

to which the socket is bound), and Port (the port

number associated with the socket).

Cluster Computing

123

An example of the concepts of the data model is found in

Fig. 4, which shows the different types of Device and

Resources found in our topology. As can be seen each

component has its own resourceId based on specific values

to create a unique identifier. In the figure is depicted a

multi-tenant host containing one Tenant, one Service and

Device Socket to make the example as simple as possible,

but keeping it informative. The multi-tenant host is named

‘‘MTHost’’ and its type is ‘‘PHYSICAL_HOST’’, its

resourceId is used to refer to the device where the

resources/tenants are found. It is found inside an orange

square. The tenant is represented in a grey box as a Device

with deviceType ‘‘VIRTUAL HOST’’. It is then connected

to the Host through DEVICE PORTS that represent the

interfaces in the tenant and in the host, finally a software

switch acts as a bridge created by docker0. The Service in

the MThost is connected to the Device Socket due to their

ServiceId. They have information that define its function-

ality as Sid (Service ID) and commandLine for Service,

and ipAddress and Port for the Device Socket. Regarding

the Connection entities, srcResourceId and dstResourceId

refers to the resourceId of the source and destination con-

cepts connected.

By defining each concept and their associated attributes

ServiceNet provides a structured and organised way to

describe the topology of the infrastructure. This makes it

easier to identify and understand the elements within the

topology.

4.4 Workflow details

To provide a comprehensive insight into the interaction of

various architectural components within our proposed

framework, we present a sequence diagram in Fig. 5. The

software components, TDA, API, and GUI, are instru-

mental in achieving service topology discovery and visual

representation. They use exchanges to communicate by

using a Publisher/Subscriber message broker middle-ware.

These exchanges are named Interfaces Exchange, Services

Exchange and Structure Exchange.

The workflow is organised into multiple loops, each of

them representing a key task. The first loop focuses on the

gathering and reporting of topological information, with

messages being published to either the Interfaces Exchange

or Services Exchange based on their nature. It is started by

STDA, which delay is fully configurable by the previously

commented parameter (TDA_PERIODIC_REPORTING_

INTERVAL). These messages are subsequently received

by the component that is subscribed to those two exchan-

ges, the API, which forms the second loop. The API

component then processes and generates the topology

structure, publishing it to the Structure Exchange. The GUI

DEVICE (VIRTUAL HOST)

MULTI-TENANT HOST

"iface": "docker0",
"deviceHostName": "MTHost",
"resourceType": "DEVICE",
"deviceType":"SOFTWARE_SWITCH"

SERVICE

CONNECTION

VIRTUAL HOST / TENANT: "tenant01"

DEVICE SOCKET

"direction": "SERVER",
"resourceType": "DEVICE_SOCKET",
"ipAddress":"224.0.0.251"
"port": "5353"

"deviceHostName": "MTHost",
"hostname": "tenant01",
"resourceType": "DEVICE",
"deviceType":"VIRTUAL_HOST"

"iface": "docker0",
"deviceHostName": "MTHost",
"resourceType": "DEVICE_PORT",
"deviceType": "PHYSICAL_HOST"

DEVICE PORT

"hostname": "MTHost",
"deviceType":"PHYSICAL_HOST",
"resourceAbstractionLayer":"0",
"resourceType":"DEVICE"

DEVICE (PHYSICAL HOST)

DEVICE PORT

"deviceHostName": "MTHost",
"hostName": "tenant01",
"iface": "eth0",
"resourceType": "DEVICE_PORT",
"deviceType": "VIRTUAL_HOST"

DEVICE (SOFTWARE SWITCH)

RESOURCE TYPES: DEVICE

DEVICE_SOCKET

DEVICE_PORT

"resourceType": "SERVICE",
"name": "VLC",
"serviceType": "userSpace"

SERVICE

Fig. 4 Service-Net data model example in a multi-tenant host

Cluster Computing

123

component is subscribed to this last Exchange, marking the

end loop. Finally, the GUI will update the the topology

structure rendering to show the new services or network

components available in the multi-tenant system.

After the process has finished, it will wait for the delay

time to start the discovery again. If it lasted more time than

the reporting interval, it will start right after the whole loop

has ended. If any error has been encountered, after the

value given by TDA_PERIODIC_FORCE_CHANGE_-

INTERVAL, it will restart the loop, ensuring error toler-

ance of our proposed approach.

4.5 Implementations details

Regarding the implementations details, the experiments are

executed in a Linux environment. To streamline our

resource usage and isolate experiments, we utilise Virtual

Machines. Vagrant is used to build and manage the VM

with libvirt as the underlying technology, a choice driven

by its open-source nature, performance, and scalability,

ensuring our experiments run optimally. Each of the

tenants is running on docker containers, which leverages

kernel containers and cgroups to provide isolation. All the

components have been implemented in Java 13. The TDA

has been integrated with Linux namespaces/containers (ip

netns), Linux inventory tools to gather both service

topology (ps, ss, conntrack) and devices topology (lshw

and lspci). JavaScript is used to interact with Cytoscape,

allowing for the creation of dynamic and interactive

network graphs in our GUI [37]. Furthermore, the message

broker in charge of the data communication is RabbitMQ

version 3.12.7, it is based on Advanced Message Queuing

Protocol (AMQP). To disrupt the discovery process by

flooding the system with update events, an adversary would

require authorised access, including valid credentials and

permissions within the system. It has been chosen due to its

high scalability and fault-tolerance, enabling us to handle

large volumes of messages and ensuring that message

delivery is not affected by system failures. All data is

stored and accessed through a relational database system,

MySQL, ensuring data integrity and efficient retrieval.

Regarding TDA component, it has different config-

ure options in order to provide a complete set of adapt-

ability depending on the desired discovery in each scenario.

For instance, you can adjust the following service and

socket configuration parameters based on your needs:

TDA_REPORT_SERVICE_TO_DEVICE_SOCKET_

CONNECTION

TDA_REPORT_DEVICE_SOCKET_

CONNECTION

TDA_REPORT_DEVICE_TO_DEVICE_SOCKET_

CONNECTION

TDA_REPORT_DEVICE_SOCKETS=

true/false

TDA_REPORT_ONLY_DEVICE_SOCK-

ETS_WITH_SERVICE TDA_REPORT_ONLY_

CHANGES

Fig. 5 Workflow in ServiceNet

Cluster Computing

123

TDA_REPORT_TENANT_

TOPOLOGY

TDA_REPORT_ONLY_SERVICE_WITH_DEVICE_

SOCKET

TDA_PERIODIC_REPORTING_INTERVAL=n1

TDA_PERIODIC_FORCE_CHANGE_INTERVAL=n2

TDA_RESOURCE_EXPIRATION_TIME=n3

All configure parameters are boolean, taking on true or

false values, with the exception of the last three, which are

integers representing time intervals. TDA_PER-

IODIC_REPORTING_INTERVAL sets the delay to start

the topology gathering. TDA_PERIODIC_FORCE_-

CHANGE_INTERVAL is designed to trigger a fresh

topology gathering resources. This ensures that the system

initiates a new discovery loop either in the absence of

errors that might have halted the previous loop, or upon

detecting dead or terminated resources. TDA_R-

ESOURCE_EXPIRATION_TIME is used to remove

resources from the TD registry. It may occur that a service

that is no longer running is still seen in the GUI. TDA

addresses this issue by setting the state of the resource as

expired when currentTime - resourceTime is higher than

TDA_RESOURCE_EXPIRATION_TIME. Subsequently,

it will be removed from the GUI. This helps to ensure that

the GUI remains up-to-date and does not display any out-

dated or irrelevant information.

To allow configuration for different scenarios where

real-time may not be crucial, there is no minimum time by

default. The only requirement is that TDA_PER-

IODIC_REPORTING_INTERVAL should be lower than

TDA_PERIODIC_FORCE_CHANGE_INTERVAL. Fail-

ure to meet this requirement will result in the forceful

initiation of a new gathering process before its scheduled

time.

5 Validation and empirical results

In this section, we provide an empirical evaluation and

analysis of the novel architecture for service topology

discovery. We focus on key parameters in terms of deliv-

ered QoS, including, responsiveness, scaling, number of

sockets and number of processes/threads within threads.

Furthermore, it is evaluated in various scenarios with dif-

ferent properties.

5.1 Testbed description

The experiments are carried out in a computer with an

Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz with 20

cores and 32 GB of RAM, running Ubuntu 20.04 LTS as

the operating system. To emulate a multi-tenant

environment, we employ a VM. The VM is allocated 12

cores and 16 GB of RAM, creating containers inside of it in

order to mirror the conditions of multi-tenant infrastruc-

tures where diverse tenants coexist and share resources.

The aim of doing it in a VM is to have a controlled system,

where we can represent best visible scenarios that are

easier to show and understand as a starting point.

This testbed allows us to assess the functionality of our

service topology discovery framework in a multi-tenant

context, where tenants demand efficient resource isolation,

scalability, and effective resource management. It is

aligned with the real-world scenarios of modern 5G/6G

networks, where multiple services and users share common

computing resources of a host while having isolation and

optimised performance.

5.2 Validation results

In Fig. 2, we present a comprehensive visualisation of a

multi-tenant system architecture. This architecture show-

cases the innovative features of our service topology dis-

covery framework and their potential implications for

future industries, particularly in the context of 5G/6G

networks.

5.2.1 Graph algorithm

The visualisation of the multi-tenant system architecture is

generated using the open source graph library Cytoscape

[37], as commented previously in Sect. 4.5. It processes

data from the tables stored in our MySQL database and

transforms it into a graph representation. The graph visu-

alisation uses the Cola layout with compound node support,

providing an organised and visually comprehensible view

of the network topology, services, and their interconnec-

tions. It also allows for different extensive configurability,

allowing gestures such as grab and drag, zoom or multiple

selection and also options for customising the arrangement

of nodes and edges.

5.2.2 Color key

To enhance clarity, we have adopted a color-coding con-

vention. Host and tenant names are highlighted in blue.

Services are represented in red, each labeled with its

respective service name, displayed on top of the red square.

They are denoted as ‘‘?service name’’. Device sockets are

depicted in green, and they provide critical information

about their communication. Each socket is labeled with the

internet protocol, followed by ‘‘/’’, then the transport pro-

tocol (TCP/UDP), and finally, the port number. This

information is displayed on top of the green square and is

presented as ‘‘protocol/TCP-UDP/port’’. The connections

Cluster Computing

123

between resources are depicted with orange lines. The

interfaces are shown with a big orange square and its name

with red on top such as ‘‘eth0’’ and ‘‘veth5a60e59’’. Con-

ceptually in our data model, each of the points in orange

inside them is referred to as device ports, which represent

network technologies used to monitor and control the

network.

5.2.3 Service and socket discovery

The graph features seven distinct services, each connected

to their respective sockets within the host, which are a total

of eleven. This outcome is attributable to the configuration

setting of the parameter:

TDA_REPORT_ONLY_SERVICE_WITH_DEVICE_

SOCKET

Which is set to true disabling the rest of services that do not

have sockets. With this parameter we ensure that although

all the services are saved in the database, for a matter of

clarity we only show those connections. This innovative

approach to service and socket discovery is a significant

feature of our framework.

5.2.4 Multi-tenant environment

The architecture is not limited to a single tenant but also for

and unlimited number of tenants, in the figure shown:

tenant_1, tenant_2, tenant_3, and tenant_4.

They are defined as ‘‘DEVICE’’ with type ‘‘VIRTUAL_-

HOST’’ (See Fig. 4). Within this multi-tenant context, each

tenant hosts between 2 to 3 services. This showcases the

framework adaptability and scalability to meet the

demands of a diverse multi-tenant environment. The

depicted architecture proposes a significant innovation with

profound implications for various industries, particularly

those at the forefront of 5G/6G network development. As

industries continue to face the challenges and embrace the

opportunities of the 5G/6G era, the insights and capabilities

offered by our service topology discovery framework stand

as a powerful resource for future innovations and appli-

cations by giving ability to efficiently and comprehensively

discover and visualise the complex interplay between ser-

vices, sockets, and devices.

5.3 Base line results

The testing environment makes use of a minimal host

configurations intended to show a reference base line

where there are no tenant available. This results can be

used as a base line for comparison to investigate overheads

relatated to tenant management.

For the gathering of percentage of CPU and memory

heap, it employed the widely recognised tool Visual VM

[38] (see Fig. 7). This software is a useful resource for

observing Garbage Collector (GC) patterns and it is

included with the Java Development Kit (JDK). It aids in

comprehending memory management and system behavior

during the experiments. Although CPU usage values are

then represented with our own code in order to enhance

visibility.

This experiment is the simplest scenario, we explore the

baseline performance. There are no tenants started or

running in the multi-tenant system. It provides valuable

insights into the framework’s minimal resource consump-

tion. It is worth to note the basis of our approach and then

compare it to more complex experiments. In Figs. 6 and 7

can be seen %CPU and heap memory behaviour during a

execution. The agent consumes an average of 0.85% of

CPU with a peak of 4.3%, the heap memory used has a

constant value of 250 MB. Being the heap memory the

specific portion of the computer memory where dynami-

cally allocated memory is used, for example, to store data

and objects created during the execution of the computer

program, in this case, the ST agent. Also, referring to each

of the task that the ST agent does regarding service and

their sockets discovery, which is one of the main corner-

stones of our approach, in Fig. 8 are shown different

metrics of this experiment. Regarding the average values

for each task, the sockets gathering is 43.9 ms, services

gathering 30.2 ms, and the publication of both resources

using the topic-based protocol has been 7.5 ms, The total

elapsed time for the full discovery is 94.9 ms, completing

the discovery in around 10.54 times per second. These

metrics and observations in the simplest scenario lay the

groundwork for the next experiment, enabling a compara-

tive analysis of the performance.

5.4 Most overloaded scenario (40 tenants)

This experiment investigates the performance of the system

with a higher number of tenants, providing a first insight

into its scalability previous to the Sect. 5.5. In this section

the topology is being collected for 40 tenants. A compre-

hensive view of the experiment results of the key perfor-

mance metrics is shown in Fig. 11.

The percentage of CPU utilisation is closely examined

in Fig. 9, noticing minor increase when compared to the

experiment with minimal configuration. the agent con-

sumes an average of 1.21%, with a peak value of 5.10%,

reflecting the higher workload due to the additional tenants,

but not a big change probably due to the fact that now there

are more tenants needing resources to work. Additionally,

the heap memory behavior, illustrated in Fig. 10, remains

Cluster Computing

123

consistent with the one seen in the Base Line, using a

constant heap memory of 250 MB.

This experiment also assesses the different tasks done by

the ST agent. As seen in Fig. 11, tenant services gathering

takes 633.1 ms per average, sockets gathering consumes

64.5 ms, services gathering lasts 40.6 ms, and the

publication of both resources using a topic-based protocol

completes in 7.8 ms. The total elapsed time for the full

discovery is 806.4 ms. This demonstrates that while the

agent requires more time for completing topology gather-

ing, it is still able to manage higher tenant workloads.

Fig. 6 CPU usage in base line

experiment

Fig. 7 Reserved and used heap

memory in base line experiment

Fig. 8 Time spent in each task

in base line experiment

Cluster Computing

123

5.5 Fine-grain analysis of tenant scalability

In this subsection, we examine the scalability of our sys-

tem, particularly in handling a large-scale distributed

architecture across varying numbers of tenants. The metrics

presented in Fig. 12 provide insights of the performance

depending on the tenants that are running on the system.

The number of tenants is systematically varied from five to

forty, allowing us to assess the performance of the system

across a range of scenarios. The following metrics are

gathered: Total elapsed time, Tenant Services Gathering,

Services Gathering, Sockets Gathering, Services Publish

and Sockets Publish. Those metrics reveal the distributed

ability to efficiently manage diverse workloads and main-

tain responsiveness across the different scenarios.

The total elapsed time is an essential factor in the analysis

of scalability, being calculated as the time since the loop

starts until it makes a complete gathering and reporting. We

can observe how it tends to increase as the number of tenant

grows. This is expected since a larger tenant base introduces

additional workload to the system, not only exposing the ST

agent to higher workload, but also consuming more system

resources. The tenant services gathering process also

demonstrates scalability as the number of tenants grows,

indicating a reasonable scaling trend. It is relatively normal

because of the same reason as the total elapsed time increase.

The minor changes observed in multi-tenant services gath-

ering and sockets gathering can be due to several factors,

including the allocation of system resources and the scala-

bility of these specific tasks. For example, multi-tenant ser-

vices gathering (depicted in green) varies from 38 ms with

five tenants to 46mswith themaximumnumber of tenants. A

similar pattern is observed in sockets gathering (depicted in

red), which takes 53 ms with five tenants, 56 ms with ten

tenants, and 61 ms with fifteen tenants, and it then reaches a

maximum of 76 ms with forty tenants, showing minimal

changes. The stability in these metrics may be influenced by

how system resources are shared and utilised across different

tenant scenarios. This is also seen in Fig. 9 where the per-

centage of CPU does not notice a big change in the load even

in the forty tenant case, possibly due to that they are also

consuming and limiting resources. The last two metrics are

the publication of services and sockets. The first one, in

purple, indicates a variation of only 41 s from the minimum

Fig. 9 CPU usage in most

overloaded experiment

Fig. 10 Reserved and used heap

memory in most overloaded

experiment

Cluster Computing

123

to the maximum of Services Publish elapsed time, being the

values 7 ms and 8 ms. And finally, the Sockets Publish, is

always 1ms, remarking that it is the fastest task in every case.

Regarding memory scalability, it has been seen a

‘‘Healthy Saw-Tooth Pattern’’ in heap memory utilisation

(Figs. 7, 10). This pattern is indicative of application health

as commented in [39]. It suggests that garbage collection

processes are functioning correctly. The saw-tooth pattern

reflects consistent rises in heap usage, followed by ‘Full

GC’ events, after which memory utilisation sharply drops.

This cyclic pattern, reaffirms the robustness of the system,

indicating that is is table and manages memory effectively.

Notably, even in the most challenging case with 40

tenants, the total elapsed time remains around 892 ms,

demonstrating highly satisfactory real-time monitoring

capabilities for service topology discovery.

5.6 Discovery and update convergence

Understanding how ServiceNet converges during the initial

discovery or when an update is crucial for evaluating its

performance. The study of Elapsed Time (ET) in Table 3

provides insights into the convergence dynamics under

different scenarios.

Scenarios are divided by the number of Multi-Tenant

systems (M-T), the number of Tenants (T) and the different

stages in the discovery lifecycle. The stages are from the

initial discovery (Cold Start), to the moment when an

update has occurred Hot Update, and finally Forced

Update, which is happening when a resource has not been

updated in a given time. Forced Update is needed to ensure

absence of errors or detect terminated resources that should

be removed from the TD Registry.

The average ET shows time the since the resource is

gathered by the TDA until it is inserted in the TD registry.

As the number of M-T and T increases, there is a general

upward trend in the ET, suggesting that the system takes

more time to handle a larger number of both multi-tenant

and tenant. For scenarios with M-T = 2 and T[0 Cold Start

and Forced Update show comparable ET, while Hot

Update typically takes less time, as expected due to

updating existing information. The increasing time may

indicate potential system resource limitations. High values,

specially in scenarios with more Tenants, may imply that

the system is approaching or exceeding its processing

capabilities. An example can be seen in the last scenario,

resulting in 200 tenants being executed at the same time in

a single computer (see computer specifications in 5.1).

Fig. 11 Time spent in each task

in most overloaded experiment

Cluster Computing

123

6 Conclusion

In this paper, a novel architecture has been designed,

prototyped and validated to meet the challenging require-

ments of 5G and beyond networks, where deep under-

standing of network topologies, services, and their

interconnections is essential for efficient resource man-

agement in large-scale environments. The proposed Ser-

viceNet architecture is widely applicable and useful to

discover complex topologies within multi-tenant systems

and virtualised environments. Furthermore, a new solution

based on a novel Topology Discovery Agent has been

introduced to efficiently discover both network and service

information, seeking to allow complete comprehension of

the big picture. The adaptability and configurability of the

solution allow it to be fine-tuned controlled to discover

services depending on the specific requirements. An

accurate and efficient data transmission is ensured due to

the use of a message-oriented middleware and a topic-

based distribution model. Moreover, the use of the Service

Topology Discover Registry ensures secure data storage,

crucial in dynamic networking environments. A realistic

testbed has been deployed to test, validate and evaluate the

proposed approach. Empirical results have demonstrated

the high scalability of the approach over different number

of tenants, as well as different metrics to understand how

the system performs, in spite of the limited resources of the

testbed. The CPU usage is low in both experiments with an

average of 0.85% and 1.21%, this allows the agent to be

non-invasive. The time to finish each loop goes from

285ms to a maximum of 829ms in the worst scenario,

which shows a satisfactory time for topology discovery

even in challenging scenarios. Lastly, the visualisation of a

large-scale multi-tenant system has been presented,

Fig. 12 Elapsed time depending

on the number of tenants

Table 3 Average elapsed time

(ET) from TDA to TD registry

insertion (in s) for Services and

Device Sockets

Scenario Services Device sockets

M-T T# Cold start Hot update Forced update Cold start Hot update Forced update

1 0 0.828 0.688 0.696 0.653 0.603 0.595

2 0 0.855 0.688 0.710 0.995 0.774 0.944

2 20 1.378 1.527 1.507 0.943 0.966 0.894

2 40 1.601 1.948 1.876 0.947 0.967 0.894

2 60 1.908 2.358 2.270 0.923 0.961 1.206

2 80 2.169 2.748 2.636 0.944 0.968 0.894

2 100 2.486 3.216 3.062 0.934 0.966 0.895

(#)T: number of tenants for each Multi-Tenant (M-T)

Cluster Computing

123

providing a valuable tool for complete understanding,

representing the data gathered using the data model created

with different resources and devices.

In the realm of future work, this paper opens up a wide

variety of opportunities. First, delving into the incorpora-

tion of advanced security mechanisms and encryption

protocols would fortify the TD registry. Moreover, con-

tinuous refinement and expansion of the visualisation tools

for large-scale multi-tenant systems could contribute to a

more comprehensive topology understanding. A good

example could be using virtual reality to allow for a 3D

view of the whole system and its interconnections. Lastly,

the integration with orchestration tools such as OpenShift

and Kubernetes is the next planned step, as it is recognised

by the authors that it would provide broader applicability.

Acknowledgements This work is in part funded by the European

Commission Horizon 2020 5G-PPP Program under Grant Agreement

Number: H2020-ICT-2020-2 / 101017226 ‘‘6G BRAINS: Bringing

Reinforcement learning Into Radio Light Network for Massive

Connections’’.

Author contributions Experiments, figures, and main manuscript text

performed by the corresponding author (Angel M. Gama). Concep-

tualization, methodology, and review conducted by the supervisors

(Jose M. Alcaraz, Higinio Mora, and Qi Wang).

Funding European Commission Horizon 2020 5G-PPP Program

under Grant Agreement Number: H2020-ICT-2020-2 / 101017226

‘‘6G BRAINS: Bringing Reinforcement learning Into Radio Light

Network for Massive Connections’’.

Data availability No datasets were generated or analysed during the

current study.

Declarations

Competing interests The authors have not disclosed any competing

interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Deng, X., Wang, L., Gui, J., Jiang, P., Chen, X., Zeng, F., Wan,

S.: A review of 6g autonomous intelligent transportation systems:

mechanisms, applications and challenges. J. Syst. Archit. 142,
102929 (2023). https://doi.org/10.1016/j.sysarc.2023.102929

2. Ghildiyal, Y., Singh, R., Alkhayyat, A., Gehlot, A., Malik, P.,

Sharma, R., Akram, S.V., Alkwai, L.M.: An imperative role of 6g

communication with perspective of industry 4.0: challenges and

research directions. Sustain. Energy Technol. Assess. 56, 103047
(2023). https://doi.org/10.1016/j.seta.2023.103047

3. Nzanywayingoma, F., Yang, Y.: Efficient resource management

techniques in cloud computing environment: a review and dis-

cussion. Int. J. Comput. Appl. 41(3), 165–182 (2019). https://doi.

org/10.1080/1206212X.2017.1416558

4. Chirivella-Perez, E., Salva-Garcia, P., Sanchez-Navarro, I.,

Alcaraz-Calero, J.M., Wang, Q.: E2e network slice management

framework for 5Gmulti-tenant networks. J. Commun.Netw. 25(3),
392–404 (2023). https://doi.org/10.23919/JCN.2023.000019

5. Garcia, A.M.G., Calero, J.M.A., Mora, H.M., Wang, Q.: Process

slicing: a new mitigation tool for cyber-attacks against soft-

warised industrial environments. In: 2023 IEEE 9th International

Conference on Network Softwarization (NetSoft), pp. 468–473.

(2023). https://doi.org/10.1109/NetSoft57336.2023.10175447

6. Baldin, I., Ruth, P., Wang, C., Chase, J.S.: The future of multi-

clouds: a survey of essential architectural elements. Int. Sci.

Tech. Conf. Mod. Comput. Netw. Technol. 2018, 1–13 (2018).

https://doi.org/10.1109/MoNeTeC.2018.8572139

7. Sanchez-Navarro, I., Bernal Bernabe, J., Alcaraz-Calero, J.M.,

Wang, Q.: Advanced spatial network metrics for cognitive

management of 5G networks. Soft Comput. 25(1), 215–232

(2021)

8. Groba, C., Clarke, S.: Synchronising service compositions in

dynamic ad hoc environments. IEEE First Int. Conf. Mob. Serv.

2012, 56–63 (2012). https://doi.org/10.1109/MobServ.2012.16

9. Cirani, S., Davoli, L., Ferrari, G., Léone,R.,Medagliani, P., Picone,

M., Veltri, L.: A scalable and self-configuring architecture for

service discovery in the internet of things. IEEE Internet Things J.

1(5), 508–521 (2014). https://doi.org/10.1109/JIOT.2014.2358296
10. Mathews, D.R., Verma, M., Lakshmi, J., Aggarwal, P.: Towards

more effective and explainable fault management using cross-

layer service topology. In: 2022 IEEE 15th International Con-

ference on Cloud Computing (CLOUD), pp. 94–96. (2022).

https://doi.org/10.1109/CLOUD55607.2022.00026

11. SolarWinds, Network topology mapper. (2023). https://www.

solarwinds.com/network-topology-mapper

12. NMSaaS, Comprehensive network and configuration manage-

ment for service providers and enterprise organizations. (2023).

https://www.nmsaas.com/

13. Paessler, Prtg network monitor. (2023) https://www.paessler.com/

14. Wei, H., Rodriguez, J.S., Garcia, O.N.-T.: Deployment manage-

ment and topology discovery of microservice applications in the

multicloud environment. J. Grid Comput. 19(1), 1 (2021). https://

doi.org/10.1007/s10723-021-09539-1

15. Sanchez-Navarro, I., Mamolar, A.S., Wang, Q., Alcaraz Calero,

J.M.: 5gtoponet: real-time topology discovery and management

on 5G multi-tenant networks. Future Gener. Comput. Syst. 114,
435–447 (2021). https://doi.org/10.1016/j.future.2020.08.025

16. Juju: The simplest way to deploy and maintain applications in the

cloud. (2023). https://juju.is/

17. Capistrano:A remote server automation and deployment toolwritten

in ruby. (2023) https://capistranorb.com/

18. Scalr: American cloud computing company specializing in

automation and collaboration software for terraform. (2023)

https://www.scalr.com/

19. Perforce: Puppet infrastructure & it automation at scale | puppet

by perforce. (2023) https://www.puppet.com/

20. Oracle: Java se remote method invocation apis and developer

guides. (2023) https://docs.oracle.com/javase/8/docs/technotes/

guides/rmi/index.html

21. Group, O.M.: Corba | object management group. (2023) https://

www.corba.org/

Cluster Computing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.sysarc.2023.102929
https://doi.org/10.1016/j.seta.2023.103047
https://doi.org/10.1080/1206212X.2017.1416558
https://doi.org/10.1080/1206212X.2017.1416558
https://doi.org/10.23919/JCN.2023.000019
https://doi.org/10.1109/NetSoft57336.2023.10175447
https://doi.org/10.1109/MoNeTeC.2018.8572139
https://doi.org/10.1109/MobServ.2012.16
https://doi.org/10.1109/JIOT.2014.2358296
https://doi.org/10.1109/CLOUD55607.2022.00026
https://www.solarwinds.com/network-topology-mapper
https://www.solarwinds.com/network-topology-mapper
https://www.nmsaas.com/
https://www.paessler.com/
https://doi.org/10.1007/s10723-021-09539-1
https://doi.org/10.1007/s10723-021-09539-1
https://doi.org/10.1016/j.future.2020.08.025
https://juju.is/
https://capistranorb.com/
https://www.scalr.com/
https://www.puppet.com/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html
https://www.corba.org/
https://www.corba.org/

22. OpenStack: Open source cloud computing infrastructure-open-

stack. (2023) https://www.openstack.org/

23. Trainer, T.: Sdp service discovery protocol. (2023). https://www.

telecomtrainer.com/sdp-service-discovery-protocol/ Accessed 12

Oct 2023

24. Universitat Rostock: Service discovery protocol (sdp). https://

www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/blue

tooth_info/sdp.html Accessed 08 Jan 2024

25. DNS-SD.org Project, Dns service discovery (dns-sd). http://www.

dns-sd.org/ Accessed 08 Jan 2024

26. Avahi.org, avahi - mdns/dns-sd. https://www.avahi.org Accessed

09 Jan 2024

27. Apple Inc., Bonjour-apple developer. https://developer.apple.

com/bonjour/ Accessed 09 Jan 2024

28. Duan, Q., Lu,Y.: Service-oriented network discovery and selection

in virtualization-based mobile internet. J. Comput. Inf. Syst. 53(3),
38–46 (2013). https://doi.org/10.1080/08874417.2013.11645630

29. Gephi, Open graph viz platform. https://gephi.org/ (2023)

30. Cummins, H.: Ibm garage methodology: the principles of modern

service management. https://www.ibm.com/garage/method/prac

tices/manage/principles-of-modern-service-management/ (2023)

31. Averdunk, I.: Ibm garage methodology: the 5 principles of cloud

service management and operations. https://www.ibm.com/gar

age/method/practices/manage/service-management-five-princi

ples/ (2023)

32. AMQP Open, Amqp | the advanced message queuing protocol.

https://www.amqp.org/Accessed 08 Jan 2024

33. OASIS, Mqtt - the standard for IoT messaging. https://www.mqtt.

org/ Accessed 08 Jan 2024

34. XMPP Standards Foundation, Xmpp | the universal messaging

standard. https://xmpp.org/ Accessed 08 Jan 2024

35. STOMP.io, Stomp protocol documentation. https://stomp.github.

io/stomp-specification-1.2.html Accessed 08 Jan 2024

36. Ashtari, H.: Amqp vs. mqtt: 9 key differences. https://www.spi

ceworks.com/article/274854 Accessed 08 Jan 2024

37. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T.,

Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a

software environment for integrated models of biomolecular

interaction networks. Genome Res. 13(11), 2498–2504 (2003)

38. VisualVM, Visualvm, https://visualvm.github.io/ (2023)

39. Lakshmanan, R.: Interesting garbage collection patterns. https://

dzone.com/ARTICLEs/interesting-garbage-collection-patterns

(2021)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Angel Gama Garcia is a Robotics
Engineer with a Master’s

Degree in Robotics and

Automation. He is currently a

Research Assistant and a Ph.D.

candidate at the University of

the West of Scotland. His

research focuses on service

management for vertical busi-

ness use cases, contributing to

funded projects such as 6G

BRAINS and INCODE, in col-

laboration with academic and

industry partners worldwide.

Jose M. Alcaraz Calero is a Full

Professor in networks and

security at the University of the

West of Scotland, and he is the

technical co-coordinator of the

EU H2020 5G-PPP Phase I

SELFNET and Phase II Slice-

Net. His professional interests

include network cognition,

management, security and con-

trol, service deployment,

automation and orchestration,

and 5G mobile networks. He has

a PhD in computer Science,

University of Murcia, Spain.

Higinio Mora Mora received the

first B.S. degree in computer

science engineering, the second

B.S. degree in business studies,

and the Ph.D. degree in com-

puter science from the Univer-

sity of Alicante, Spain, in 1996,

1997, and 2003, respectively.

Since 2002, he has been a

member of the Faculty of the

Computer Technology and

Computation Department,

University of Alicante, where he

is currently an Associate Pro-

fessor and a Researcher with the

Specialized Processors Architecture Laboratory. He has participated

in many conferences and most of his work has published in interna-

tional journals and conferences, with more than 50 published articles.

His research interests include computer modeling, computer archi-

tectures, high-performance computing, embedded systems, the Inter-

net of Things, and cloud computing paradigm.

Qi Wang is a Full Professor at

the University of the West of

Scotland, and he is the technical

cocoordinator of EU H2020 5G-

PPP Phase I SELFNET and

Phase II SliceNet. He is a Board

Member of the Technology

Board of EU 5G-PPP, and

Member of USA Video Quality

Expert Group (VQEG). His

research primarily focuses on

5G mobile networks and video

networking. He has a PhD in

mobile networking from the

University of Plymouth, UK.

Cluster Computing

123

https://www.openstack.org/
https://www.telecomtrainer.com/sdp-service-discovery-protocol/
https://www.telecomtrainer.com/sdp-service-discovery-protocol/
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/sdp.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/sdp.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/sdp.html
http://www.dns-sd.org/
http://www.dns-sd.org/
https://www.avahi.org
https://developer.apple.com/bonjour/
https://developer.apple.com/bonjour/
https://doi.org/10.1080/08874417.2013.11645630
https://gephi.org/
https://www.ibm.com/garage/method/practices/manage/principles-of-modern-service-management/
https://www.ibm.com/garage/method/practices/manage/principles-of-modern-service-management/
https://www.ibm.com/garage/method/practices/manage/service-management-five-principles/
https://www.ibm.com/garage/method/practices/manage/service-management-five-principles/
https://www.ibm.com/garage/method/practices/manage/service-management-five-principles/
https://www.amqp.org/
https://www.mqtt.org/
https://www.mqtt.org/
https://xmpp.org/
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/stomp-specification-1.2.html
https://www.spiceworks.com/article/274854
https://www.spiceworks.com/article/274854
https://visualvm.github.io/
https://dzone.com/ARTICLEs/interesting-garbage-collection-patterns
https://dzone.com/ARTICLEs/interesting-garbage-collection-patterns

	ServiceNet: resource-efficient architecture for topology discovery in large-scale multi-tenant clouds
	Abstract
	Introduction
	Related work
	Findings

	Proposed architecture for service topology discovery
	Design and implementation
	Design approach
	Discovery approach
	Data model
	Workflow details
	Implementations details

	Validation and empirical results
	Testbed description
	Validation results
	Graph algorithm
	Color key
	Service and socket discovery
	Multi-tenant environment

	Base line results
	Most overloaded scenario (40 tenants)
	Fine-grain analysis of tenant scalability
	Discovery and update convergence

	Conclusion
	Author contributions
	Data availability
	References

