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Abstract: Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme
halophilic microorganisms that constitute the major microbial populations in hypersaline envi-
ronments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and
oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in
summer). To survive under these harsh conditions, haloarchaea have developed molecular adapta-
tions including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise
the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin
and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR
and its derivatives have been the aim of research in several research groups all over the world
during the last decade. This review aims to summarise the most relevant characteristics of BR and its
derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant bio-
logical activities. Based on their biological activities, these carotenoids can be considered promising
natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical
formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other
potential uses.
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1. Introduction

Most moderate and extreme halophilic microorganisms require salt concentrations
above 1 M to be alive and metabolically active, although several species can endure a spec-
trum of saline conditions, ranging from low-salt to salt saturation concentrations (around
4 M) [1]. Based on the ionic strength required by the cells for stability and metabolic
activity, microbial halophilic microorganisms are mainly classified into the following cate-
gories: slight halophiles (0.34 to 0.85 M), moderate halophiles (0.85 to 3.4 M), and extreme
halophiles (3.4 M to saturation point) [2].

Studies based on microbial ecology and microbial biodiversity in salty aquatic environ-
ments confirmed that halophilic archaea species (also termed “haloarchaea”) constitute the
predominant populations, especially at high salt concentrations (2–4 M), apart from some
bacterial genera like Salinibacter [3]. At significantly high salt concentrations, halophilic
archaea belonging to the families Halobacteriaceae and Haloferacaceae (phylum Euryarchaeota
within the Archaea domain) are the most abundant populations [4]. These halophilic
archaea are widely distributed in saline environments, such as marshes or brackish ponds,
which serve as sources of NaCl for human consumption [5]. Halophilic archaea primar-
ily thrive in aerobic conditions, although certain species exhibit the capability to grow
under microaerobic or even anaerobic conditions, utilising nitrate and/or nitrite as the
final electron acceptors through denitrification processes [6]. Additionally, a noteworthy
characteristic of these archaea is that most of them typically show a distinctive red/orange
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pigmentation, thus providing these kinds of colours to the salted ponds where they live all
together with pigmented yeast and microalgae like Dunaliella salina [7]. These pigmented
halophilic archaea have mainly been isolated from water column and sediment sampling
at hypersaline environments such as hypersaline lakes such as the Great Salt Lake in Utah,
USA; salt marshes; coastal wetlands; or solar salterns like those located in the south and
southeast of Spain (Alicante, Murcia, or Huelva) [5].

Haloarchaea have attracted global scientific attention due to their unique features
related to the molecular machinery of nitrogen, biodegradable polymers, and carotenoid
metabolism; their easy manipulation; their reduced space requirements for cultivation
compared to other organisms like microalgae or yeast from which highly marketed com-
pounds can be obtained; and their capacity to produce a wide array of biomolecules and
metabolites with potential biotechnological applications compared to plants, bacteria, fungi,
or eukaryotic algae [8,9]. Their remarkable resilience and functionality even in the face
of challenging environmental conditions, including high salinity, intense ultraviolet (UV)
radiation, elevated ion concentrations, and extreme temperatures and pH, make them
good model organisms to be used as cell factories for different purposes compared to their
bacterial counterparts [10–12].

Among the biomolecules or metabolites of biotechnological interest synthesised by
haloarchaea, small proteins and peptides, enzyme bioplastics, carotenoids, and nanoparti-
cles can be highlighted. The carotenoids found in haloarchaea have garnered significant
attention in various industries due to their versatility, serving as antioxidants, anticancer
agents, antimicrobials, anti-inflammatory compounds, and food colourants, thus offering
numerous biotechnological and biomedical applications [13–15]. Bacterioruberin (BR), the
main carotenoid pigment synthesised by halophilic archaea, has demonstrated notable
biological activity, particularly in antioxidant properties [14,16–20]. Understanding its
biosynthesis pathways and structural features can provide insights into its potential ther-
apeutic applications. This review focuses on the multifaceted biological activity of BR
obtained from haloarchaea due to their better characterisation and the abundance of litera-
ture available on these microorganisms. BR, known for its characteristic red colouration,
exhibits remarkable antioxidant properties owing to its ability to scavenge reactive oxygen
species (ROS) and mitigate oxidative stress [21–23]. Additionally, recent studies have
unveiled its potential immunomodulatory effects, suggesting a role in modulating immune
responses and inflammation [24,25]. Therefore, advances in the comprehension of the phar-
macological relevance of bacterioruberin hold promise for developing novel therapeutic
interventions targeting oxidative-stress-related disorders, immune system dysregulation,
and potentially other pathological conditions.

2. Characteristics of Haloarchaeal Carotenoids and Their Biological Roles
2.1. Chemical Composition and Structure

The literature concerning carotenoids synthesised by haloarchaea is still scarce com-
pared to the literature available on carotenoids from other living beings, such as plants,
algae yeast, and fungi [26–32]. The first reported studies on carotenoids isolated from
haloarchaea date back to the 1970s, using Halobacterium cutirubrum as a model microor-
ganism [33,34]. At that time, it was confirmed that the major carotenoid produced by the
cells is the rare C50 BR followed by monoanhydrobacterioruberin (MABR) at the expense of
lycopene and bisanhydrobacterioruberin (BABR); both MABR and BABR are precursors of
BR [33,34]. Other carotenoids have been identified in haloarchaeal carotenoid extracts but
at lower percentages, including β-carotene, lycopene, and some xanthophylls [35,36]. Struc-
turally, BR is very unique among carotenoids (being considered a “rare C50 carotenoid”
by several authors), consisting of a primary conjugated isoprenoid chain that contains
13 conjugated double bonds and four hydroxyl groups arising from the terminal ends.
Table 1 displays the chemical structure of BR and its precursors (Table 1) [37].
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Table 1. Structures and common and scientific names of bacterioruberin (BR) and its precursors.
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Although BR is produced almost exclusively by haloarchaea, some studies confirmed
that few bacterial species showing extreme phenotypes like the Antarctic psychrotrophic
bacterium Micrococcus roseus and Arthrobacter species are also able to synthesise it [38–40].

2.2. Carotenogenesis and Biological Role of Carotenoids in Haloarchaeal Cells

The synthesis of carotenoids (also termed “carotenogenesis”) and its regulation have
not been studied as deeply in haloarchaea [26,41–44] as they have in bacteria, yeasts,
or plants [27,45–52]. In brief, haloarchaea use the mevalonate pathway to produce the
carotenoid precursor isopentenyl pyrophosphate. Then, it is converted into trans-phytoene,
which leads to ζ-carotene which is further converted to neurosporene. Neurosporene is
transformed into lycopene, from which most carotenoids derive, including β-carotene
with Υ-carotene as an intermediate compound. Bacterioruberin is also synthesised from
lycopene [26,41]. The main reaction involved is the addition of C5 isoprene units to
each end of the lycopene structure. However, in contrast to other secondary metabolites,
the enzymes related to carotenogenesis are not always encoded within the same gene
cluster [41] and some paralogs do not serve functional roles, as recently reported by Mishra
and collaborators [53]. This circumstance poses a challenge in accurately identifying
complete carotenogenesis pathways in each strain. Although other xanthophylls, including
cantaxanthin and astaxanthin, have been detected in carotenoid extracts obtained from
haloarchaeal cells [36,54], the genes coding for enzymes involved in their synthesis have
not been identified in haloarchaeal genomes [41]. More recently, Serrano and collaborators
reported that β-carotene could be converted to canthaxanthin by the action of a β-carotene
ketolase protein. Through genome analysis, the authors identified a crtO candidate in one
of the six circular plasmids in Haloterrigena turkmenica, which suggests that this species
can produce canthaxanthin from β-carotene [26]. CrtO ketolases are structurally related to
CrtI phytoene desaturases [55,56]. In consequence, haloarchaea without CrtO-like genes
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could still be producing canthaxanthin expressing one of their sometimes multiple CrtI
genes [26]. Alternative unidentified pathways for the synthesis of these carotenoids could
be a possible explanation.

Among all the carotenoids mentioned, BR is the most abundant natural carotenoid
produced by haloarchaea. It is responsible for the intense pink colour since it is located in
the cell membrane of the haloarchaea that synthesise it [57]. Its long hydrocarbon chain
makes it able to fit in between the glycerolipids forming the bilayer, with the hydroxyl
group facing outwards and inwards. Haloarchaeal pigments play a pivotal role in membrane
stability, acting as a protection mechanism against the harsh conditions usually present in
the natural environment of these extremophilic microorganisms, such as high oxidative and
osmotic stress and elevated radiation [21,39,57,58]. BR protects cells from oxidative damage
by acting as an antioxidant thanks to the electron transport between the pairs of conjugated
double bonds. Since bacterioruberin presents a longer hydrocarbon chain and a higher number
of conjugated double bonds than other carotenoids, such as β-carotene (C40 carotenoid, nine
conjugated double bonds), it has extraordinary scavenging activity [14,16,18,59–62].

In addition, the presence of bacterioruberin in the cell membrane increases the rigidity
and decreases water permeability, while allowing oxygen to enter inside the cell [63]. Thus,
cells are capable of modulating membrane rigidity in a wide range of temperatures as well
as in a concrete range of salinity conditions.

Finally, BR contributes to maintaining the structural stability of rhodopsin complexes.
More specifically, some studies have demonstrated that it is associated with archaer-
hodopsin, which is a complex formed by a retinal protein and a carotenoid, identified
in some haloarchaeal species, including Halobacterium salinarum [64–66].

3. Antioxidant Properties of Bacterioruberin and Its Precursors

Advances in the knowledge of the biological activities of BR have revealed that it could be
of interest in several industrial and biomedical sectors due to its high antioxidant activity [14,
15,25,59–61,67,68]. Based on the chemical composition and structure of BR, it was initially
assumed that this natural carotenoid has strong antioxidant properties as it was quantified
later compared to one of the most marketed carotenoids, β-carotene [14,16,18,59–61,69,70].
This is probably the biological activity that is better characterised in the case of BR (Table 2).

A recent study has reported how the modification of the nutritional conditions of
Haloferax mediterranei during growth can lead to changes in the carotenoid extract compo-
sition and, in consequence, its properties and antioxidant capacity [14]. The combination
of 2.5% (w/v) glucose with 12.5% (w/v) salinity led to a carotenoid extract with an IC50
value of 0.03 µg/mL in the ABTS (2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid)
assay. This value was lower than the one obtained for ascorbic acid [14], coinciding with
other reported results and confirming the remarkable antioxidant properties of these com-
plex extracts [19,20]. Other researchers have explored the activity of carotenoid extracts
of Haloarcula hispanica and Halobacterium salinarum, observing that they could scavenge
DPPH (2,2-diphenyl-1-picrylhydrazyl) (2.05 µg/mL and 8.9 µg/mL) and ABTS radicals
(3.89 µg/mL and low activity for H. salinarum) and reduce ferrocyanide and chelate copper,
but not scavenge NO radicals or chelate iron [60]. Carotenoid extracts from Halococcus
morrhuae and H. salinarum presented IC50 values of 0.85 µg/mL and 0.84 µg/mL for the
ABTS assay [18]. Haloferax sp. ME16, a haloarchaeal strain isolated from Algerian salt lakes,
displayed significantly higher antioxidant power than ascorbic acid in both the DPPH and
ABTS assays [69]. Recently, carotenoid extracts from Halorhabdus utahensis exerted their
scavenging power in a set of different antioxidant assays (DPPH, FRAP, and Superoxide
Scavenging Activity assays), confirming that haloarchaeal carotenoids have a broad range
of modes of action against oxidants [14,17]. A similar approach (ABTS, FRAP, and DPPH)
was chosen to evaluate the antioxidant activity of Natronoccoccus sp. TC6 and Halorubrum
tebenquichense carotenoid extracts. Although the extracts were efficient in all tests, they
showed a dominating capacity of hydrogen and single electron transfer [68]. In summary,
there are notable differences in the antioxidant activity of carotenoid extracts from different
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haloarchaeal species. There are different possible explanations for the variability in the
results. It is possible that halophilic archaea could synthesise antioxidant compounds
of different natures and polarities that contribute independently to the total antioxidant
activity of the extracts, and this might be dependent on the haloarchaeal species but also
influenced by the growth conditions. However, if this is the case, the concentration of those
compounds should be significantly low because they cannot be easily detected by standard
chromatographic-based approaches, at least those used in the case of Haloferax mediterranei
extracts. One of the greatest difficulties when comparing current studies is that although
they all agree that the all-trans-BR isomer is the most abundant, not all of them include
the percentages of the different components of the extract, which in turn could be one of
the factors influencing the antioxidant activity. Aside from that, there are experimental
differences that might also influence the results obtained in the antioxidant tests, such as
the organic solvent used for the extraction of carotenoids.

In addition, BR and intracellular KCl in Halobacterium salinarum and Halobacterium sp.
strain NRC1 act as a protective mechanism against oxidative DNA damage induced by
UV radiation. Therefore, this carotenoid might have potential applications in medicine
and cosmeceuticals focused on the mitigation of DNA damage and the preservation of
cellular integrity [71,72]. Understanding these protective mechanisms could inspire the
development of novel therapies and skincare products targeting oxidative-stress-induced
DNA damage, offering promising applications in healthcare and cosmetic industries.

Table 2. Antioxidant activity of BR with potential applications in food, cosmetics, and pharmacy.

Species Aim of the Research Reference

Halorubrum ruber
Optimisation of BR production and analysis of the effect of
its antioxidant activity on the survival rate of Caenorhabditis

elegans under oxidative stress conditions
[23]

Halorubrum ezzemoulense Description of the effects of BR on the thermal and oxidative
stabilities of fish oil [22]

Haloarcula japonica
Haloarcula salaria

Halococcus morrhuae
Halobacterium salinarium

Haloferax alexandrinus GUSF-1
Haloferax sp. ME16

Halogeometricum sp. ME3
Haloarcula sp. BT9

Halorhabdus utahensis
Halorubrum chaoviator
Halorubrum lipolyticum
Halorubrum sodomense

Halorubrum sp. BS2
Halorubrum tebenquichense SU10

Haloterrigena turkmenica
Natronoccoccus sp. TC6

Isolation and characterisation of the total carotenoid extract
and antioxidant activity quantification [16–19,68–70,73]

4. Immunomodulatory/Anti-Inflammatory Activities of BR Collectively with
Antioxidant Activity

In connection with the antioxidant activity, recent studies have described the anti-
inflammatory activities and immunomodulatory benefits of BR on human commercial
cell lines. For example, Haloarcula sp. isolated from Odiel Saltworks (south of Spain) was
used as the source of a carotenoid extract which is rich in BR and C18 fatty acids. This
extract showed potent antioxidant capacity using the ABTS assay. This study further
demonstrates that pretreatment with this carotenoid-rich extract of lipopolysaccharide
(LPS)-stimulated macrophages resulted in a reduction in ROS production, a decrease in the
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pro-inflammatory cytokines TNF-α and IL-6 levels, and an upregulation of the factor Nrf2
and its target gene heme oxygenase-1 (HO-1), supporting the potential of the carotenoid
extract as a therapeutic agent in the treatment of oxidative-stress-related inflammatory
diseases [24].

Similarly, another study carried out with BR from Halorubrum tebenquichense suggested
that the carotenoid in combination with dexamethasone (Dex) in ultra-small macrophage-
targeted nanoparticles could act as a potential intestinal repairing agent [25]. The ultra-small
structures in which BR and dexamethasone were embedded were extensively captured
by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant
activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide-
stimulated THP-1-derived macrophages, reducing 65% and 55% of TNF-α and IL-8 release,
respectively, and 60% of reactive oxygen species production. The ultra-small structures
also reversed the morphological changes induced by inflammation and increased the
transepithelial electrical resistance, partly reconstituting the barrier function. The main
conclusion was that this nanostructure containing BR and Dex deserves further exploration
as an intestinal-barrier-repairing agent [25].

In summary, while the evidence published until now suggests the therapeutic poten-
tial of bacterioruberin (BR) in mitigating oxidative-stress-related inflammatory diseases
and promoting intestinal repair, it is important to note that the current body of research is
limited, and further studies are needed to establish robust conclusions. These initial studies
underscore BR’s antioxidant capacity and its potential anti-inflammatory and immunomod-
ulatory effects. The utilisation of BR-rich extracts or BR in combination with drugs within
innovative nanostructures shows promise for addressing several pathologies. Nonethe-
less, the existing findings highlight the need to further research and develop BR-based
formulations, elucidate underlying mechanisms, and assess the safety and efficacy of BR in
clinical settings.

5. Antitumoral Properties of Bacterioruberin and Its Precursors

The effect of BR on tumoral cells has been recently explored. Thus, carotenoids
(0.2–1.5 µM) from a haloarchaeal strain (M8) could reduce up to 50% hepatoma cell line
(HepG2) viability in a concentration-dependent way. In addition, hepatoma cells treated
with haloarchaeal carotenoids were less sensitive to oxidative stress generated by H2O2,
thus exerting a protective effect [59]. The antiproliferative effect on hepatoma cells was
also reported for extracts obtained from Halogeometricum limi and Haloplanus vescus [61].
These extracts also presented antihemolytic activities against H2O2-induced hemolysis in
mouse erythrocytes [61]. The anticancer effect of Natrialba sp. M6 carotenoid extract was
reported again for hepatoma cells (HepG2) as well as for other types of cancer cell lines,
including Caco-2 (colon cancer), MCF-7 (breast cancer), and HeLa (cervical cancer) [74]. In
the case of MCF-7 commercial cell lines, a real-time PCR technique was used to monitor the
expression of genes specific for apoptosis, in the presence or absence of BR-rich carotenoid
extract. Both early and late apoptosis were increased significantly by about 10% and
39%, respectively, due to the upregulation of CASP3, CASP8, and BAX gene expression
in the MCF-7 cell line. In contrast, the expression of the genes MKI67 and SOX2 was
significantly downregulated in the treated MCF-7 cell line. The results of this study showed
that the carotenoid extract isolated from Haloarcula sp. A15 could be a good candidate
for the production of high-added-value bacterioruberin due to its possible anticancer
properties [75]. The antiproliferative effect on breast cancer cell lines has been explored
in other studies [15,75]. In particular, Haloferax mediterranei carotenoid extracts reduced
cell adhesion, viability, diameter, and cell concentrations in cell lines representative of the
four well-defined subtypes of breast cancer (Luminal A, Luminal B, HER2-enriched, and
triple-negative) [15].

In conclusion, the observed antiproliferative effects of BR-rich extracts from various
haloarchaeal strains, notably on hepatoma and breast cancer cell lines, suggest its potential
as a valuable candidate for novel anticancer therapies. However, to translate these find-
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ings into clinically relevant interventions, further investigations are necessary to elucidate
the underlying molecular mechanisms driving BR’s anticancer properties. Additionally,
comprehensive studies are needed to assess potential interactions between BR and current
anticancer drugs, ensuring their compatibility and optimizing therapeutic outcomes. It
is important to acknowledge the limitations associated with the use of carotenoids, in-
cluding challenges in identifying optimal doses and potential variations in bioavailability.
Moreover, while current preliminary studies may focus on treatment perspectives, clinical
investigations with other carotenoids often adopt a preventive approach, which limits the
accuracy of direct comparisons. Addressing these complexities will be essential for advanc-
ing our understanding of BR’s therapeutic potential and developing effective strategies for
cancer management.

6. Other Biological Activities of Interest for Biomedical and
Pharmaceutical Applications

Aside from their antitumor activity, haloarchaeal carotenoids could have an impact on
diabetes and obesity treatments. Haloferax mediterranei carotenoid extracts are capable of in-
hibiting α-glucosidase, α-amylase, and lipase enzymes which are involved in carbohydrate
and lipid metabolism. The inhibition of these enzymes is the target of several drugs used to
reduce blood glucose and lipid absorption, respectively [14]. Carotenoids from Halorhabdus
utahensis reached 90% hyaluronidase inhibition with 1.5 µg, demonstrating great potential
for applications in the skin care sector [17].

Halobacterium salinarum and Haloarcula hispanica carotenoid extracts can inhibit COX-2,
acetylcholinesterase, and tyrosinase enzymes and, therefore, they could have potential
applications as a treatment for inflammatory, neurological, and dermatological diseases [60].
In addition, haloarchaeal carotenoids exert antimicrobial activity against a wide range of
species. For example, bacterioruberin from Halorubrum tebenquichense inhibited Staphylo-
coccus aureus growth and biofilm formation [76]. Table 3 summaries more examples in
which other biological activities have been described for BR.

Table 3. Other biological activities of BR and its precursors with potential uses in food, cosmetics,
medicine, and pharmacy.

Species Aim of the Research Reference

Natronoccoccus sp.
Halorubrum tebenquichense

Matrix metallopeptidase 9 (MMP-9) inhibition
activities [68]

Haloferax mediterranei Characterisation of antiglycaemic and
antilipidemic activities [14]

Haloferax sp. ME16
Halogeometricum sp.

ME3Haloarcula sp. BT9

Characterisation of the antibacterial activity of
BR-rich extracts [69]

Halorubrum sp. BS2
Isolation and characterization of total

carotenoid extracts, and antibacterial activity
quantification

[70]

Natrialba sp. M6
Isolation and characterisation of total

carotenoid extracts, and antiviral activity
quantification

[74]

Haloferax volcanii
Bioactive properties of BR on sperm cells
(mainly in connection with antioxidant

properties)
[62]

Halogeometricum rufum
Halogeometricum limi
Haladaptatus litoreus

Haloplanus vescus
Halopelagius inordinatus

Halogranum rubrum
Haloferax volcanii

Antihaemolytic activity apart from
antitumoral and antioxidant activities [61]
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Finally, although synthetic colourants have been extensively used for numerous years
in the cosmetics industry, their detrimental impacts on both the environment and health
should not be disregarded. It is key to explore natural alternatives, with a particular focus on
microbial colourants, to increase safety and reduce potential side effects [77–80]. Currently,
there are multiple companies whose objective is to produce cosmetic and cosmeceutical
products that are visually attractive as well as respectful of the environment and human
health using ingredients of natural origin. In parallel, natural carotenoids are of interest and
currently highly demanded by textile industries. Carotenoids from biological sources are
increasingly used as ingredients in these kinds of formulations, due to both their colouring
and biological properties [81]. β-carotene is one of the most frequently used carotenoids
in this field and it can be obtained from the halophilic microalgae Dunaliella salina [82].
Other carotenoids that have been included in currently marketed cosmetic products are
astaxanthin (Haematococcus pluvialis) and fucoxanthin (Phaeodactylum tricornutum) [81].

BR emerges as a promising candidate due to its intense pink-red hue and notable
biological properties. As discussed earlier, BR possesses antioxidant, anti-inflammatory,
and immunomodulatory characteristics, making it not only aesthetically appealing but
also potentially beneficial for skin health. Its natural origin from halophilic archaea aligns
with the growing consumer demand for eco-conscious and sustainable products. Despite
its promising biological properties, its suitability for topical use on the skin is yet to
be addressed. Investigating bacterioruberin’s interactions with skin cells, its ability to
penetrate the epidermal barrier, and its potential benefits in addressing dermatological
conditions or enhancing cosmetic formulations would be invaluable.

BR’s potential as a colouring agent also remains relatively unexplored. Given its
intense pink-red hue, bacterioruberin holds promise as a natural and vibrant alternative to
synthetic colorants in various applications. However, there is a notable gap in research re-
garding its efficacy, stability, and safety as a colouring agent, particularly in food, cosmetics,
and textile industries. Understanding bacterioruberin’s colour stability under different pro-
cessing conditions, its compatibility with various matrices, and its potential allergenicity or
toxicity is crucial for its widespread adoption as a colouring agent. Furthermore, exploring
methods for extracting and purifying bacterioruberin on an industrial scale is essential for
its commercial viability. By bridging these knowledge gaps, BR could be an alternative
natural and sustainable colorant with diverse applications across industries.

7. Conclusions

Haloarchaeal carotenoids could have a diverse range of applications across the fields
of biomedicine, food processing and conservation, pharmaceuticals, and textiles. These nat-
urally occurring pigments have emerged as promising alternatives to synthetic colourants,
addressing the growing demand for natural food colouring options worldwide as well as
natural colourants as part of the formulations in cosmetics and pharmacology. Because of
the antioxidant, anti-inflammatory, immunomodulatory, and antitumoral activities of BR,
this C50 carotenoid offers new approaches and strategies for defining new drug formula-
tions or drug immobilisation techniques as part of the treatments of pathologies related
to the immune system and cancer, among others. By promoting research on haloarchaeal
pigments, it is possible to uncover novel applications for these promising C50 carotenoids.
Furthermore, the cultivation of haloarchaea and carotenoid extraction are more straightfor-
ward compared to other living beings, making them attractive subjects for the research and
development of sustainable processes aiming at the production of natural pigments with a
wider spectrum of applications, all following circular economy-based processes.
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