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Abstract: The growing significance of sensor data in the development of information technology
services finds obstacles due to disparate data presentations and non-adherence to FAIR principles.
This paper introduces a novel approach for sensor data gathering and retrieval. The proposal lever-
ages large language models to convert sensor data into FAIR-compliant formats and to provide word
embedding representations of tabular data for subsequent exploration, enabling semantic comparison.
The proposed system comprises two primary components. The first focuses on gathering data from
sensors and converting it into a reusable structured format, while the second component aims to
identify the most relevant sensor data to augment a given user-provided dataset. The evaluation
of the proposed approach involved comparing the performance of various large language models
in generating representative word embeddings for each table to retrieve related sensor data. The
results show promising performance in terms of precision and MRR (0.90 and 0.94 for the best-
performing model, respectively), indicating the system’s ability to retrieve pertinent sensor data that
fulfil user requirements.

Keywords: sensor data; large language models; word embeddings; data retrieval; FAIR principles

1. Introduction

Sensor data have become increasingly important for developing value-added infor-
mation technology (IT) services and products [1]. As highlighted in Ref. [2], most sensors
present data through web pages with diverse modes of presentation, layouts, and structures.
Additionally, sensor data often fail to adhere to FAIR (Findable, Accessible, Interoperable,
and Reusable) principles [3], suggesting that while sensor data may exist, accessing or
processing them proves challenging [4]. Consequently, automatically identifying sensors
that precisely cater to specific data needs remains a challenging task [5].

Existing methods for sensor data retrieval typically rely on inputting keywords or
spatial locations, leading to the identification of relevant sensors. However, the matched
sensor data should then be manually filtered and selected by the users. This selection is
demanding as there are usually massive connected sensors [6].

To tackle this challenge, this paper introduces an innovative approach that utilises
large language models (LLMs) [7] to convert raw sensor-generated data into a tabular
format compliant with FAIR principles. These data are then processed by LLMs to derive
word embedding representations, facilitating the indexing of the data for subsequent
retrieval through semantic comparison. Given an input tabular dataset provided by the
user, the proposed data retrieval system enables the identification of the most suitable
sensor data to augment the provided dataset by incorporating new instances into it. As
far as the authors are aware, there have been no prior approaches that utilise LLMs for
sensor data retrieval with the intention of augmenting existing datasets by adding new
relevant instances.

The performance of the retrieval system was assessed using a sensor dataset specif-
ically collected for this purpose. The evaluation involved comparing five different state-
of-the-art LLMs in the domain of word embedding representation. The findings indicate
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that the system can achieve high precision and MRR (0.90 and 0.94 for the best model,
respectively) in the task of row extension over sensor data.

The main objective of this paper is to leverage and evaluate LLMs for sensor data
retrieval. The contributions of this paper towards achieving this objective are as follows:

• An architecture for automatically ensuring compliance of sensor data with FAIR
principles. This architecture leverages LLMs for data transformation during the data
gathering process.

• An approach for indexing FAIR-compliant sensor data to facilitate their retrieval. This
approach relies on word embeddings to compute vectors that semantically represent
sensor data.

• A framework for integrating both data gathering and retrieval approaches to enable
efficient searches of sensor data.

• A case study in the domain of smart farming is presented to demonstrate the transfor-
mation of relevant sensor data into a FAIR-compliant format, thereby enhancing their
searchability.

• A quantitative evaluation of different state-of-the-art LLMs in the domain of sensor
data retrieval, accompanied by the development of a dataset specifically tailored for
this evaluation.

The structure of the remaining sections of this document is as follows: Section 2
provides a review of existing literature related to LLMs, word embeddings for tabular data
retrieval, and sensor data retrieval; Section 3 elaborates on the design and structure of
our proposed system; Section 4 offers an illustrative case study, showcasing the system’s
application in a specific example; Section 5 explores the system’s evaluation, focusing on
the efficacy of various LLMs in creating word embeddings for tabular data representation
and retrieval; and Section 6 concludes the paper, summarising key points and suggesting
directions for future research.

2. Related Work

The system presented in this study harnesses cutting-edge technologies within the
realm of natural language processing (NLP). Specifically, LLMs serve a dual purpose within
the system. Firstly, they are utilised to extract structured data (e.g., in CSV format) from
unstructured sensor data. Secondly, LLMs are employed to generate word embeddings,
enabling the representation of tabular data and facilitating semantic comparison during the
data retrieval process. This section provides an overview of pertinent literature concerning
these technologies.

2.1. Large Language Models

LLMs have rapidly emerged as a cornerstone in the field of NLP, fundamentally
transforming the landscape with their unprecedented capabilities. A goal of a language
model predicts the order of words in a sentence. These models are “large” not only in their
physical size, often comprising billions of parameters, but also in the vast amounts of text
data that they are trained on. LLMs leverage deep learning techniques, particularly neural
networks like Transformers [8], to analyse and produce human-like text.

These models have demonstrated remarkable proficiency across a wide spectrum of
NLP tasks, including but not limited to text generation [9], machine translation [10], and
answering questions [11], among others.

LLMs are pre-trained on diverse datasets from the internet, including books, articles,
and websites, allowing them to learn a wide range of language patterns, contexts, and
nuances. After the pre-training phase, these models can be fine-tuned for specific NLP
tasks, rendering them versatile and adaptable tools for a wide range of applications.

BERT (Bidirectional Encoder Representations from Transformers) [12] represented a
breakthrough in the field of language models. BERT introduced the concept of bidirectional
learning, whereas its predecessors processed text in a unidirectional manner. This model
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simultaneously considered both left and right contexts when training on a word, facilitating
a comprehensive understanding of its entire context.

Inspired by the BERT architecture, numerous other models have emerged. For exam-
ple, GPT-3 [13] (175B parameters) demonstrated its potential to generate text in a highly
human-like style. Another notable model is Megatron-Turing [14] (53B parameters), which
exhibited capabilities in reading comprehension and generation, thereby facilitating tasks
such as summarisation and text generation. Equally noteworthy is BLOOM [15], an open-
source LLM capable of handling 46 natural languages and 13 programming languages.

ChatGPT (https://chat.openai.com/, accessed on 15 January 2024) is a model built
upon the GPT-3 architecture, which has exhibited outstanding performance in replicating
the text generation capabilities of humans, expanding its capabilities to encompass multilin-
gual conversations. This model has been fine-tuned for conversations, offering responses
to a diverse array of questions and prompts. Similarly, Llama 2 [16] is another general-
purpose open-source LLM developed by Meta AI. Like ChatGPT, it provides functionalities
for text generation in various languages.

The capabilities of these models extend beyond human language, demonstrating
proficiency in understanding HTML as well. These abilities encompass parsing the HTML
of a webpage, semantic classification of HTML elements, generating descriptions of HTML
inputs, and navigating web pages [17].

In the present work, LLMs are employed for two distinct purposes. The first is to
transform raw HTML sensor information into structured data suitable for reuse. The
second is to utilise LLMs for creating word embedding representations of this tabular data
obtained from sensors, enhancing semantic search capabilities within tabular datasets, and
improving the overall performance of sensor data retrieval systems.

2.2. Word Embeddings for Table Retrieval

Word embeddings are dense vectors that represent a word’s meaning by positioning
it as a point within a semantic space. They capture the distributional meaning of words,
wherein similar representations are acquired for words found in analogous contexts [18].
Notable examples of such word representations include Word2vec [19], fastText [20], and
Glove [21].

In recent years, word embeddings have gained extensive popularity for various seman-
tic tasks within the field of NLP, including text classification [22], sentiment analysis [23],
machine translation [24], and dialogue systems [25].

Typically, word embedding vectors have between 50 and 1000 dimensions, which is
significantly less than standard sparse semantic vectors. The reduction in dimensions relies
on generalisations that encapsulate the semantic relationships of words according to their
context of occurrence.

Word embedding methodologies create a comprehensive lexicon from the unique
terms within texts, giving every word a singular representation while overlooking their
potential to convey various meanings in different scenarios. These are tagged as static mod-
els, which fail to encapsulate a word’s multiple interpretations. Conversely, contemporary
contextual word embeddings have the capacity to capture the multiple meanings of polyse-
mous words, as each vector signifies not just a word but a specific sense. Consequently,
each word can be depicted using distinct word embeddings, each tailored to a particular
context in which the word may be encountered. Notable examples include ELMo [26],
ULMFit [27], and BERT [12], among others [28].

Recent methodologies for table retrieval utilise word embeddings to represent tabular
data, employing vector similarity metrics to assess the relevance among tables. Depending
on the nature of the search query, table retrieval can be classified into keyword-based or
table-based searches [29]. In keyword-based search, the query consists of a set of keywords,
resembling the conventional approach used by search engines like Google. In contrast, in
table-based searches, the query itself takes the form of a table, and the goal is to determine a
similarity score between the input table and potential candidate tables. In the experiments

https://chat.openai.com/
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described in Section 5, tables function as queries to retrieve relevant tables, conducting a
table-based search within the dataset.

The study conducted by Chen et al. [30] employed contextual word embeddings to
enable table-based searches. They utilised a pretrained version of BERT, incorporating
various types of data present in the table, including textual and numerical information, to
provide context to BERT. This context was derived from the table’s title, caption, column
headings, and cell values.

In Ref. [31], the authors propose a method to preserve table structure and context in
semantic representations. The proposed ConvTab method, utilising Convolutional Neural
Networks, enhances table classification and semantic feature generation for query-table
similarity, demonstrating significant improvements in standard table retrieval metrics
over existing methods. In this proposal, tables are treated as 2D images. In the approach
proposed in Ref. [32], image and graphs were combined. The authors used WordNet to
represent cell content, constructing a graph to capture the similarities of the table content.

In the study by Shraga et al. [33], Word2vec was utilised by the authors to generate
semantic vectors. Table information was segmented into four semantic spaces: description,
schema, records, and facets. The proposal included using multilayer perceptrons (MLP) for
schema, recurrent convolutional neural networks for description, and 3D convolutional
neural networks to represent records and facets.

Nargesian et al. [34] proposed a method to retrieve tables compatible with an input
table. To this end, the approach tries to assess whether the content of the table belongs
to the same domain. Three statistical models were proposed to achieve this goal: inter-
secting content between two columns, semantic similarity between content by mapping
columns to classes in an ontology, and using word embeddings to measure the similarity of
textual content.

The work in Ref. [35] proposed a novel technique for pretraining embeddings on a
large web table corpus. The authors applied their models to various data analysis tasks,
including table retrieval, across different data sources. Evaluation demonstrated that
models using pretrained Web table embeddings outperformed those pretrained on text.

The approach in Ref. [36] uses graph-based methods to represent tabular data. More
specifically, data from relational databases was represented as a graph with three types of
nodes: content, header, and file name.

In the domain of question answering from tables, notable models include TAPAS [37],
which leverages BERT’s encoder. This model flattens the table into smaller tokens and
concatenates them with the query answer. Additionally, token embeddings are integrated
with table-aware positional embeddings before being input into the model.

Lastly, also in the field of question-answering models, TaBERT [38] aims to acquire
contextual representations for both utterances and the structured schema of tables. This is
achieved by generating a content snapshot comprising relevant information related to the
utterance, encoding both the utterance and content snapshot using BERT, and applying a
vertical self-attention layer to aggregate information from various rows within the content
snapshot, effectively capturing cross-row dependencies among cell values.

To the best of the authors’ knowledge, there are no previous approaches that leverage
LLMs for sensor data retrieval with the aim of augmenting existing datasets with new
relevant instances.

2.3. Sensor Data Retrieval

Information retrieval systems for sensor data encompasses advancements in tech-
niques and technologies aimed at enhancing the efficiency, accuracy, and scalability of
data collection, processing, and analysis from diverse sensor networks. These systems
are increasingly critical in various domains, including environmental monitoring, health-
care, smart cities, and industrial automation. With the exponential growth of Internet
of Things (IoT) devices, efficient information retrieval from large-scale sensor networks
has become paramount.
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In the context of sensor data storage in information retrieval systems, various schemas
and data models are utilised to efficiently manage and retrieve sensor data. Location-Free
schemas do not rely on geographic information for data storage and retrieval. Instead, they
may use distributed hash tables on combinatorial tile adjacency graphs and double-ruling
schemes within each tile for efficient routing and load balancing [39].

A uniform representation model for sensor information recordings was proposed
in Ref. [40] to handle heterogeneous, high-dimensional, and voluminous data in IoT-based
sensor networks. This includes designing query models that represent different information
query styles and developing indexing mechanisms to support historical and real-time search
for spatiotemporal observation data.

The use of NoSQL databases like Hypertable (https://hypertable.org/, accessed on 15
January 2024) is considered suitable for storing massive amounts of sensor data due to their
ability to handle heterogeneous, redundant, real-time streaming data [41]. These databases
require manual query programming and can be optimised for sensor data storage and
retrieval tasks.

Data-centric storage schemes, such as Geographic Hash Tables (GHT), distribute
sensor data across the network based on the data content itself, allowing queries to be
directed towards the location where relevant data are stored, thus reducing overall network
traffic and improving efficiency [42].

Another way of storing sensor data is by applying data warehousing techniques,
developing multidimensional schemata to capture contextual metadata alongside sensor
datasets, supporting the analysis of datasets long after collection and providing a structured
way to manage and query large volumes of sensor data [43].

The application of word embeddings and LLMs for sensor data retrieval is a largely
unexplored field. One relevant work in this area is presented in Ref. [44]. This paper
proposes a method to generate word embeddings for IoT devices and sensors in a smart
home based on their activity, extending the theory of word embeddings to the area of
IoT devices. The model, akin to Word2Vec and App2Vec [45], considers the time between
device firings in its calculations. These embeddings can be used to find similar devices
in an IoT device store or as a signature for each type of IoT device, among other use
cases. The feasibility study on the CASAS dataset and a private real-world dataset of IoT
device activity logs demonstrated the potential of this approach for identifying patterns in
embeddings of various types of IoT devices in a household.

Although the method of representing sensor data information relies on word em-
beddings, the purpose of the previous article differs from the one proposed here in the
task objective, as the present work aims at sensor data retrieval with the intention of aug-
menting datasets with similar data. Furthermore, the embedding models used in Ref. [44]
are static, with the limitations mentioned earlier, whereas in the present work contextual
embeddings are employed.

3. Architecture of the System

This section outlines the architecture of the proposed system, which consists of two
primary components. The first one focuses on efficiently gathering structured data from
sensor web pages. This phase leverages LLMs to convert raw sensor-generated data into a
more reusable format, aligning it with FAIR principles.

Upon transforming the data into a suitable format (such as CSV, as shown in the
experiments conducted in Section 5), the second component of the architecture enables
indexing these data for subsequent exploration. This component furnishes functionali-
ties to retrieve and integrate relevant sensor data from the previously collected datasets.
To enhance retrieval performance, this component uses LLMS to create word embed-
ding representations of tabular data for semantic comparisons between sensor datasets.
The following subsections describe these two components in more detail.

https://hypertable.org/
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3.1. Data Gathering

The aim of the first component is to gather sensor data and ensure that they are in a
structured reusable format that is suitable for further exploitation by the second component.
As mentioned previously, sensor data frequently originate from web pages [2], presenting
challenges in their handling due to system and data heterogeneity. Consequently, effective
management requires significant effort. The primary objective of this first component
is to improve sensor data accessibility by harnessing the contextual comprehension and
text generation capabilities inherent in modern LLMs to convert raw sensor data into
a reusable format.

This procedure comprises two steps: data identification and, if needed, employing
a LLM to parse raw sensor data and convert them into a structured format suitable for
sharing and reuse. Figure 1 presents a visual summary of this process. The following lines
elaborate on each of these steps.

Data identification

location.city=’Madrid’
location.country=’Spain’
labels=['sensors','sensors-data','iot']
ports=[80,443,1883,..]
response.status_code=200
….

Data transformation

Raw data Structured data

Search parameters

Censys

LLM

<?xml version=”1.0” encoding=”UTF-8”?>
<baseInformation>
    <deviceName>SondaSAI-COM</deviceName>
    <time>22:28:14</time>
    <date>30.10.2023</date>
</baseInformation>
<sensors>
    <sensorCom>

<state>Online</state>
<name>Temp. Com.</name>
<type>Temperature</type>
<currentValue>17.8 ºC</currentValue>

    </sensorCom>
    …
</sensors>

Figure 1. Two steps in the data gathering process: data identification and data transformation.

3.1.1. Data Identification

Before diving into the data identification process, it is crucial to ascertain the data
prerequisites necessary to accomplish the desired objectives and select a suitable output
format for subsequent utilisation. For example, the objective of the data gathering process
could be to acquire weather sensor data from a particular region in CSV format.

After defining the objective, it is necessary to pinpoint web portals that facilitate
the attainment of the goal established in the previous step. A range of options exist
for retrieving data from sensors, including Shodan (https://www.shodan.io/, accessed
on 15 January 2024), Censys (https://search.censys.io/, accessed on 15 January 2024),
and ZoomEye (https://www.zoomeye.org/, accessed on 15 January 2024). These portals
provide different tools, including APIs and filtering capabilities. It should be noted that a
large portion of these data are in formats that make their reuse difficult, such as HTML.

One of the problems with these portals is the access limitations. APIs usually have
access limits, and there are restrictions on the number of search filters that can be applied.
Moreover, not all the geographical regions are covered equally. For insntace, ZoomEye is
specially focused in China. For these reasons, it is necessary to properly verify that the
chosen portal is suitable for the objectives established.

The process of data identification requires querying sensors in the selected portals. To
this end, specific search parameters are required to extract pertinent information. Different

https://www.shodan.io/
https://search.censys.io/
https://www.zoomeye.org/
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filters can be applied in the search for sensors with specific features. In the case of Censys,
geographic area can be narrowed down by using filters like location.city: Madrid,
Spain, and sensors can be identified by using tag:IoT or tag:Sensor. It should be noted
that the definition of filters changes from one portal to another. Thus, it is required to know
their specific syntax; although, all portals share a common syntax basis.

In the case of Censys, applying the previous filters reveal that most sensors have
HTTP or MQTT (https://mqtt.org/, accessed on 15 January 2024) services enabled. Usually
the open ports are 80 and 1883 (used by MQTT). Moreover, filtering for a response status
code of 200 (successful response) using response.status is necessary to avoid defunct or
malfunctioning sensors. These filters allow retrieving sensor data that are mainly shared in
HTML format, combined with XML or JSON responses.

3.1.2. Data Transformation

When the sensor data returned in the previous step are unstructured, this second step
allows these data to be transformed into reusable structured format. For this purpose,
LLM is utilised to process raw sensor data, transforming them into structured information.
This procedure involves creating a comprehensive prompt that outlines the specific data
needed (e.g., “meteorological information”) and specifying the desired output format.
In this study, to seamlessly handle the subsequent retrieval process (see Section 3.2), data
are transformed into CSV format.

Figure 2 shows an example of a prompt defined for an LLM to transform meteorolog-
ical raw sensor data into CSV format. In this example, {input} represents the raw data
from the sensor that will be transformed into CSV. This prompt facilitates the parsing of
sensor data provided in formats such as HTML. The generated output produces data in a
more reusable format, in accordance with the FAIR principles.

Figure 2. Prompt to transform raw data into CSV format.

3.2. Data Retrieval

Once sensor data have been collected and properly formatted, the second component
of the system manages user requests for that data. This component consists of a table-based
search system that accepts user requests in the form of an initial dataset in tabular format.
It then retrieves the most relevant indexed sensor datasets related to the user-provided
dataset. This fulfils the requirement to retrieve sensor information that can complement
the user’s initial data.

At the core of this component lies the utilisation of word embeddings to conduct
semantic comparisons between different sensor datasets. This component involves a three-
step process: data preprocessing, word embeddings indexing, and the final stage of search
and retrieval. The following lines describe each of them in more detail.

3.2.1. Data Preprocessing

Before indexing the data, a preprocessing and cleaning phase is often necessary.
This includes tasks like removing punctuation from text, splitting CamelCase words, and
converting all text to lowercase. These cleaning procedures ensure that the data are in a
suitable format for subsequent processing.

Furthermore, in this step, the extraction of all columns from each table is carried out.
LLMs typically have a token limit for processing, often around 512 tokens. Going beyond
this limit risks losing essential information. To avoid such losses, in this step, the content of
each column is divided into appropriately sized chunks of tokens. This not only prevents

https://mqtt.org/


Appl. Sci. 2024, 14, 2506 8 of 18

the loss of information but also enables parallel processing, expediting the computation of
word embeddings.

3.2.2. Word Embeddings Indexing

Once the tables have undergone cleaning and formatting, the following phase involves
computing the word embeddings of each column and indexing them for further searches.
The top part of Figure 3 shows the word embedding indexing step.

Figure 3. Word embeddings indexing (top part) and subsequent search and retrieval (bottom part).

During the indexing step, every preprocessed column passes through an LLM, gener-
ating a dense vector for each one. The vector’s dimensionality varies, typically between
384 and 1024 dimensions depending on the model employed. In cases where the column’s
content exceeds the token limit of the model, as described in the previous step, the content
is split, and a different word embedding is created for each chunk, averaging these vectors
to create a single representative embedding for the column.

Following word embedding generation, the vectors are stored in an index using the
Faiss library (https://faiss.ai/, accessed on 15 January 2024). Faiss provides an efficient
means of storing and executing similarity searches based on dense vectors.

3.2.3. Search and Retrieval

The search and retrieval phase aims to identify sensor data that can be related with
the user’s input dataset. Specifically, this process entails seeking out other tables with
highly relevant content that can be combined with the initial table to augment its content.
The bottom part of Figure 3 shows the search and retrieval process.

In the same way as in the previous step for indexed tables, the input table is split
into columns, and word embeddings are generated for each column. Following this, the
system uses each column’s embedding to query the index, retrieving the top-k similar
columns that have been indexed. The similarity between columns is computed using cosine
similarity, ranging between −1 and 1, where a value closer to 1 indicates greater similarity.
The k-value, representing the total number of documents retrieved by a query, was set to
1000 in the experiments carried out in Section 5.

Next, to calculate the overall similarity for a table, the retrieved columns that belong
to the same table are grouped, and their similarity scores are aggregated. The resulting sum
is divided by the total number of columns in the input table, yielding a similarity score for
each resultant table. Finally, the tables are ranked based on this score, providing an ordered
list according to their relevance.

4. Case Study

This section presents a case study to better illustrate the process of data gathering and
retrieval. This case study focuses on smart farming, which aims to utilise IoT technology
along with machine learning algorithms to address current challenges in agricultural
sustainability [46], such as predicting soil parameters or crop yields. To be conveniently

https://faiss.ai/


Appl. Sci. 2024, 14, 2506 9 of 18

applied, machine learning algorithms require data obtained from sensors, climatic records,
and satellite images [46]. However, the selection of the right data to be used in prediction
systems remains a challenge in current smart farming approaches [46].

This case study focuses on demonstrating the usefulness and feasibility of the pro-
posed retrieval approach for predicting evapotranspiration. Evapotranspiration is the loss
of moisture from a surface by direct evaporation together with the loss of water by tran-
spiration of vegetation, i.e., combined processes that move water from the Earth’s surface
into the atmosphere [47]. The prediction of evapotranspiration is crucial for estimating
the amount of water required by agriculture projects, thus necessitating a variety of data
sources, including data collected from weather stations [47].

The objective set in this use case is to develop a machine learning approach for pre-
dicting evapotranspiration in a specific region. Atmospheric variables are often available
through public institutions via open data portals, but these institutions do not cover all ter-
ritories, and there are places where weather stations are far from the required location [48].
Fortunately, many citizens, non-governmental organisations, and academic institutions
have their own weather stations and publish data on the web in portals such as the afore-
mentioned ZoomEye or Censys. Following the first step of the data gathering process,
the required data are retrieved from these portals regardless of the format. In this case
study, data from the website shown in Figure 4 are retrieved (https://www.mesonet.org/,
accessed on 15 January 2024).

Figure 4. Mesonet portal containing data from weather stations.

Since these data are in HTML format and thus not properly structured for further
analysis, the second step of the approach involves leveraging LLMs to transform the raw
weather data shown in Figure 4 into the CSV format depicted in Figure 5.

Figure 5. CSV output after data transformation.

https://www.mesonet.org/
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After the data gathering process ends, the data retrieval starts. The following step in
this use case involves the machine learning expert querying the retrieval system with a
table containing sensor data that the expert wants to expand with additional relevant data.
This input dataset could include different instances of sensor data including attributes such
as location, temperature, dew point, and humidity. Figure 6 illustrates an example of how
such an input table may be used to retrieve relevant data.

Figure 6. Example input tabular data for retrieving related sensor content.

In the final step of the data retrieval process, the tabular search engine would retrieve
a ranking of tabular datasets that the system considered relevant according to the input
data. These datasets can then be used to further train machine learning algorithms in the
task of evapotranspiration prediction.

5. Evaluation

As described in Section 3, the system comprises two primary components: data
gathering and data retrieval. Concerning the data gathering component, prior work by
the authors [49] evaluated various LLMs, including ChatGPT and Llama 2, to assess
their performance in transforming raw sensor data into a structured format. The highest
precision and recall achieved were 93.51% and 85.33%, respectively, demonstrating their
suitability for the task.

Therefore, this study focuses solely on evaluating the second component, data re-
trieval, utilising different LLMs to generate representative word embeddings for each
table. Specifically, given an input table containing sensor data, this evaluation measures
the precision and Mean Reciprocal Rank (MRR) [50] of the retrieval system in delivering
relevant indexed sensor datasets that could be combined with the query data content.

The primary objective of this experimentation is to assess the effectiveness and effi-
ciency of the proposed LLMs in a specific, well-defined context rather than to exhaustively
explore all potential variables and scenarios. The experimental setup has been designed
to provide a clear and focused investigation into the models’ capabilities, particularly
in relation to execution time and retrieval accuracy. These metrics were chosen because
they are critical to the practical application of these models in real-world settings, where
performance and speed are often key considerations for deployment.

Applying this approach to a specific use case will allow assessing the feasibility of
applying it more broadly to other contexts. Future work may extend this foundation,
exploring additional dimensions and scenarios to build upon the insights presented herein.

The remainder of this section presents the models utilised, the datasets collected, and
the outcomes of each proposed experiment. Furthermore, a final section is included,
discussing the limitations of this approach and the privacy and security issues that may
arise from the use of LLMs in the context of sensor data and IoT.

5.1. Large Language Models

The architecture proposed in this work implies using an LLM to transform tabular
data into word embedding vectors. The evaluation aims to assess the models’ effectiveness
in generating precise word embeddings to represent sensor data content.

Previous work [51] has shown the superiority of contextual word embeddings, such
as BERT and RoBERTa [52], over static word embeddings like Word2vec and fastText, as
well as traditional information retrieval techniques such as BM25 [53]. For this reason, this
evaluation focuses on five different language models featuring diverse architectures that
produce contextual word embeddings:

1. Universal AnglE Embedding [54]: This model is based on BERT and introduces angle
optimisation in a complex space. This approach effectively overcomes the limitations of
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the cosine function’s saturation zone, which can interfere with gradient and optimisa-
tion processes. The model tested, UAE-Large-V1 (https://huggingface.co/WhereIsAI/
UAE-Large-V1, accessed on 10 December 2023), produces 1024-dimensional vec-
tors and is currently the state of the art for Semantic Textual Similarity, as per
the Massive Text Embedding Benchmark (MTEB) Leaderboard from Huggingface
(https://huggingface.co/spaces/mteb/leaderboard, accessed on 15 January 2024.)

2. BGE Embedding [55]: It is an open-source general embedding model that was
trained on large-scale pair data using contrastive learning. The model provides
embeddings ranging from 384 to 768 dimensions. Three different versions of this
model that vary in the number of parameters were tested: bge-large-en-v1.5 (https:
//huggingface.co/BAAI/bge-large-en-v1.5, accessed on 10 December 2023), bge-base-
en-v1.5 (https://huggingface.co/BAAI/bge-base-en-v1.5, accessed on 10 December
2023) and bge-small-en-v1.5 (https://huggingface.co/BAAI/bge-small-en-v1.5, ac-
cessed on 10 December 2023).

3. Ember: The model has undergone training on a vast collection of text pairs covering
diverse domains, such as finance, science, medicine, law, and various others. The
resulting word embedding vectors consist of 1024 dimensions. The specific model
employed was ember-v1 (https://huggingface.co/llmrails/ember-v1, accessed on 10
December 2023).

4. General Text Embeddings [56]: GTE models primarily rely on the BERT framework
and currently come in three sizes: large, base, and small. They are trained on a
comprehensive corpus of relevant text pairs, spanning various domains and scenarios.
The model undergoes training using multi-stage contrastive learning techniques. The
models tested were gte-large (https://huggingface.co/thenlper/gte-large, accessed on
10 December 2023) and gte-base (https://huggingface.co/thenlper/gte-base, accessed
on 10 December 2023).

5. SentenceBERT [57]: This model generates contextual embedding vectors by employ-
ing siamese and triplet network architectures to derive semantically meaningful
sentence embeddings. Specifically, the model all-MiniLM-L6-v2 (https://huggingface.
co/sentence-transformers/all-MiniLM-L6-v2, accessed on 10 December 2023), trained
on one billion sentence pairs, was used in this experiments. This model produces
word embedding vectors of 768 dimensions.

The selection of these models was based on their high rankings in the MTEB Leader-
board. Notably, a conventional model like BERT currently holds the 100th position
on this list.

In the current body of literature, there is not a formal agreement regarding the mini-
mum parameter scale required for LLMs, as the model’s capacity is intertwined with both
data volume and total computational resources [58]. In this work, the proposed models are
considered LLMs as they are at least one order of magnitude larger, regarding the number
of parameters, than small-scale language models like BERT.

5.2. Dataset

The evaluation proposed aims to measure the precision and MRR of the data retrieval
component. However, no existing dataset was available for testing retrieval systems
involving sensor data. Hence, it was necessary to curate a dataset from scratch.

Initially, raw sensor data were retrieved by following the architecture outlined in
Section 3.1 focusing on meteorological data. The selected portal was the aforementioned
Censys, which is a scanning service specifically engineered to aggregate information about
Internet devices and resources. It is open source and freely available for academic purposes.
The search carried out on meteorological data provided 35 datasets in HTML format.

Subsequently, an LLM (GPT-3.5 Turbo from OpenAI) was employed to transform
these datasets into CSV format, as described in Ref. [49]. The average number of tokens in
each input file was 98,885.87, so most of the files to be transformed by the LLM had to be
split into several files that met the maximum input tokens of the model (16,385 tokens in

https://huggingface.co/WhereIsAI/UAE-Large-V1
https://huggingface.co/WhereIsAI/UAE-Large-V1
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/BAAI/bge-small-en-v1.5
https://huggingface.co/llmrails/ember-v1
https://huggingface.co/thenlper/gte-large
https://huggingface.co/thenlper/gte-base
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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the case of GPT-3.5 Turbo). Once transformed, each individual file was merged back into a
single file resulting in the complete transformation of the original file to CSV. The average
transformation time per complete file was 2308.89 s. Note that this time depends on the
infrastructure provided by OpenAI and may be constrained by API demand and file size.

To complement this collection with additional CSV files for the evaluation, various
open data portals were scanned for sensor data: Government of Spain (https://datos.
gob.es/, accessed on 10 December 2023) (1194 tables), Government of the United States
(https://data.gov/, accessed on 10 December 2023) (54 tables), and Valencia City Hall
(https://valencia.opendatasoft.com/, accessed on 10 December 2023) (16 tables). The
final dataset comprises 1299 tables in CSV format encompassing data from sensors across
different domains, including environment, transportation, energy, science, and technology.
Table 1 provides an overview of the primary characteristics of the compiled dataset.

Table 1. Characteristics of the sensors dataset gathered.

Characteristic Value

Number of tables 1299
Total number of rows 163,981,050
Total number of columns 10,487
Total number of numerical columns 4746
Avg. number of rows 126,236.37
Avg. number of columns 8.07
Avg. number of numerical columns 3.65
Max. number of rows 324,000
Max. number of columns 26
Max. number of numerical columns 20

5.3. Results and Discussion

This section presents the evaluation conducted to measure the performance of the
previously mentioned LLMs in the data retrieval task. The first part of this section delves
into the accuracy assessment of these models in retrieving pertinent sensor data to augment
an initial dataset. The second part provides details regarding the execution time of the
proposed models during the indexing and retrieval processes.

5.3.1. Retrieval Performance

This section presents the evaluation of the performance of the different LLMs. In order
to automatically evaluate the retrieval performance of the models, for each CSV file in the
dataset gathered, 10% of the rows were randomly extracted and used to configure a new
table to be used as a query in the evaluation. The remaining 90% of the content of each
table was indexed and used as the target of the data retrieval system.

Thus, when a query table with 10% of the information was issued to the system, the
goal was to retrieve the table with the 90% of information that complements it. If this is the
case, there is a match, and it is considered that the system satisfactorily retrieved a dataset
that can augment the query data.

The system was evaluated in terms of precision at one (P@1) and MMR, in the task
of retrieving relevant sensor data to augment a query table. The P@1 measure indicates
the model’s accuracy in retrieving the most relevant dataset as the top result, while MRR
provides an average of the reciprocal ranks of the models’ results, giving a sense of the
overall quality of the retrieved datasets across the top-ranked positions. Other popular
metrics in information retrieval, such as nDCG or recall, cannot be applied in this context
since they require more than one relevant document to be implemented.

Table 2 provides the performance achieved by each model. The results show that the
current cutting-edge model UAE-Large-v1 is not yielding the expected outcomes, showing
the poorest scores in P@1 and MMR. This behaviour might be attributed to its backbone
model, the pre-trained uncased BERT base model (with 110M parameters), fine-tuned on a

https://datos.gob.es/
https://datos.gob.es/
https://data.gov/
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wide range of data primarily focusing on other specific topics. This indicates that the model
may struggle to provide representative embeddings for the experimental data without
prior fine-tuning.

Table 2. P@1 and MMR for each model in the data retrieval task. Best results are boldfaced.

Model P@1 MMR

UAE-Large-V1 0.33 0.51
bge-large-en-v1.5 0.37 0.51
bge-base-en-v1.5 0.90 0.94
bge-small-en-v1.5 0.75 0.85
ember-v1 0.48 0.62
gte-large 0.73 0.83
gte-base 0.67 0.77
all-MiniLM-L6-v2 0.52 0.69

The bge-base-en-v1.5 model exhibited exceptional accuracy, achieving 0.90 P@1 and
0.94 MRR, indicating that it is highly accurate at not only placing the most relevant dataset
at the top of its retrieval list but also maintaining high relevance across its top-ranked
results. This suggests that bge-base-en-v1.5 has a robust understanding of tabular data
representation. Interestingly, the results of its large version did not surpass its smaller
model. The bge-small-en-v1.5 model, utilising only 384 dimensions, exhibited remarkable
performance, achieving the second-best results and emerging as a promising option for
real-time systems due to its speed and lightweight nature.

Ember’s results, despite holding a top position on the MTEB leaderboard, did not
reflect similarly in these experiments. This discrepancy might be related to their training
data not aligning with the data used in this experiment, resulting in non-representative
word embeddings.

On the other hand, the GTE models achieved moderately good results, with the large
model showing slightly higher precision compared to the base models. Conversely, the
all-MiniLM-L6-v2, one of the smallest and oldest models, delivered scores slightly higher
than ember-v1, maintaining competitiveness but being outperformed by more recent models
like the BGE variants.

The results suggest that base versions of models (bge-base-en-v1.5 and gte-base) provide
a good balance between size and performance. This could imply that for the task of
representing tabular data and retrieving similar datasets, having an excessively large model
does not necessarily translate to better performance.

5.3.2. Execution Time

These experiments were performed using an A100-SXM4 GPU with 40 GB of RAM.
Table 3 presents the execution times for each model in the indexing and retrieval phases.
Notably, the processing times for indexing a table was consistently low, typically ranging
between 60 and 160 milliseconds. This efficiency enabled the indexing of the entire dataset
comprising 1299 files using all proposed models in less than 20 min.

Table 3. Indexing (seconds) and retrieval (hours and minutes) execution time by model.

Model Indexing (s) Retrieval (hh:mm)

UAE-Large-V1 184 01:27
bge-large-en-v1.5 217 01:28
bge-base-en-v1.5 128 01:27
bge-small-en-v1.5 127 01:28
ember-v1 216 01:28
gte-large 218 01:28
gte-base 127 01:26
all-MiniLM-L6-v2 86 01:26
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Variations in the time taken for word embedding calculations were observed among
different models, influencing their overall speed. Notably, larger models generating em-
beddings of size 1024 and smaller models of size 768 exhibited similar duration for the
indexing process. Conversely, the smallest models, specifically all-MiniLM-L6-v2 with a
size of 384, were notably faster, indexing all datasets in just 86 s.

In contrast, the retrieval operation demanded substantially more time than the index-
ing phase. On average, the entire retrieval process across all models required approximately
12 h, averaging around 1 h and 27 min per model. Unlike the indexing phase primarily
relying on embedding calculations, the retrieval process involves a series of steps outlined
in Section 3. This includes retrieving the top-k comparable columns for each column in
the query table, computing similarity scores, and re-ranking the results. The duration
increases with the number of indexed datasets. It is notable that the choice of model does
not significantly impact the average time spent on the retrieval process, ranging from
3.2 to 5.9 s per query. Nevertheless, this time range can be considered reasonable for a
production environment.

5.4. Limitations

The approach proposed in this work, while promising, presents several challenges
and limitations that require consideration. The data identification process requires expert
knowledge within the specific field of study to comprehensively identify and evaluate
relevant data portals and sources. Additionally, access to these data sources may be
restricted due to a variety of factors, including limited query allowances, proprietary
data restrictions, licensing requirements, lack of API access, and permission constraints.
Such limitations necessitate extensive familiarisation with API documentation and the
customisation of data collection scripts to ensure compatibility with selected data sources.

Furthermore, the application of LLMs introduces its own set of challenges. Despite
their advanced comprehension abilities, issues such as slow response generation, handling
data in varied formats, and mitigating the occurrence of hallucinations (the generation of in-
accurate or nonsensical responses) are areas that require further research and development
to fully leverage the capabilities of LLMs in enhancing data portal usability and efficiency.

Furthermore, data security and privacy issues must be taken into account when
using LLMs in the context of sensor data, particularly within IoT ecosystems. As these
models process vast amounts of data, including potentially sensitive information, they can
inadvertently introduce risks and limitations that need to be addressed. Sensor data can
include personal and sensitive information, especially in domains like healthcare and smart
homes. LLMs trained on such data might learn to replicate or infer personal information,
leading to privacy breaches.

Ensuring compliance with data protection regulations (such as GDPR (http://data.
europa.eu/eli/reg/2016/679/oj, accessed 15 January 2024) and HIPAA (https://www.hhs.
gov/hipaa/index.html, accessed 15 January 2024) can be challenging when using LLMs.
The models must be designed and operated in ways that respect data privacy, consent,
and the right to be forgotten, which can be difficult when models integrate and learn from
vast datasets.

Large language models can inadvertently encode and reveal sensitive information
from their training data, raising significant privacy concerns. For example, models like
GPT-2 have been shown to leak personally identifiable information through membership
inference attacks [59].

The leakage of training data, intentional or accidental, can pose a significant risk,
particularly when models are trained on sensitive or proprietary datasets. This includes the
potential for models to memorise and replicate exact snippets of sensitive training data [60].
Furthermore, inference attacks, such as model inversion or membership inference attacks,
can be used to extract detailed information about the training data or about individuals’
data used in the training set, leading to privacy violations [61].

http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://www.hhs.gov/hipaa/index.html
https://www.hhs.gov/hipaa/index.html
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Malicious actors could potentially insert backdoors or other vulnerabilities into LLMs,
which could be exploited later to compromise data privacy or security. These backdoors
could be activated by specific inputs to cause the model to output predetermined or harmful
responses [62].

Moreover LLMs are often seen as “black boxes” due to their complex and opaque
nature, making it difficult to understand how they process data and arrive at specific
outputs [63]. This lack of transparency can hinder the identification and rectification of
privacy and security issues within the model.

6. Conclusions and Future Work

This paper proposed an innovative method for searching relevant sensor data, en-
compassing two key components: data gathering and data retrieval. The former employs
LLMs to convert sensor data into a reusable format, when necessary, showcasing the
potential of language models in promoting FAIR compliance for sensor data. The latter
utilises LLMs to create word embedding representations of tabular data, providing seman-
tic search capabilities to extract the most relevant indexed sensor datasets for augmenting
user-provided data.

Several contributions were made in this paper to achieve these goals. First, an archi-
tecture was proposed to automate the alignment of sensor data with the FAIR principles.
This architecture leverages LLMs to facilitate the transformation of data during the data
gathering phase. Additionally, an approach is developed for indexing sensor data that com-
ply with FAIR principles, thereby facilitating their retrieval. This approach utilises word
embeddings to generate vectors that semantically represent sensor data, aiding in efficient
retrieval. Furthermore, a framework is introduced to integrate both data gathering and re-
trieval approaches, enhancing the searchability of sensor data. In order to demonstrate the
practical application of these contributions, a case study was presented within the domain
of smart farming. This case study illustrates the transformation of relevant sensor data into
a FAIR-compliant format, consequently improving their accessibility and searchability.

The evaluation of the proposed approach involved comparing the performance of
different LLMs in generating representative word embeddings for each table in order to
retrieve relevant sensor data for a given tabular query. An evaluation dataset containing
1299 CSV files with sensor data was specifically gathered for this task.

The evaluation measured the P@1 and MRR of the retrieval system. The performance of
the different language models varied, with the bge-base-en-v1.5 model exhibiting exceptional
accuracy with a precision of 0.90 and MRR of 0.94. In contrast, the UAE-Large-V1 model
showed the poorest scores in precision and MRR, despite being the top-performing model
in NLP tasks according to the MTEB leaderboard. The fact that this model was fine-tuned
on a wide range of data suggests that the model may struggle to provide representative
embeddings for the experimental data without prior fine-tuning.

The study also evaluated the indexing and retrieval execution times for each model.
The time taken for indexing a table was low for all the models, ranging between 60 and 160
milliseconds. On the contrary, the retrieval operation required notably more time, taking
into account that this process implied retrieving the top-k comparable columns for each
column in the query table, computing similarity scores, and re-ranking the results.

Future work involves enhancing the retrieval component by fine-tuning language
models specifically on sensor data, which could improve their ability to generate repre-
sentative embeddings for these datasets. Moreover, further exploring the effectiveness of
smaller models, such as bge-small-en-v1.5, might offer a lightweight and efficient solution
for real-time systems.

Furthermore, the application to other scenarios is a future line that must be explored
to demonstrate the effectiveness and flexibility of the proposed system across a wide range
of domains.
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