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Abstract

In the network coding framework, given a prime power q and the vector
space Fn

q , a constant type flag code is a set of nested sequences of Fq-subspaces
(flags) with the same increasing sequence of dimensions (the type of the flag).
If a flag code arises as the orbit under the action of a cyclic subgroup of the
general linear group over a flag, we say that it is a cyclic orbit flag code.
Among the parameters of such a family of codes, we have its best friend,
that is the largest field over which all the subspaces in the generating flag
are vector spaces. This object permits to compute the cardinality of the
code and estimate its minimum distance. However, as it occurs with other
absolute parameters of a flag code, the information given by the best friend
is not complete in many cases due to the fact that it can be obtained in
different ways. In this work, we present a new invariant, the best friend vector,
that captures the specific way the best friend can be unfolded. Furthermore,
throughout the paper we analyze the strong underlying interaction between
this invariant and other parameters such as the cardinality, the flag distance,
or the type vector, and how it conditions them. Finally, we investigate the
realizability of a prescribed best friend vector in a vector space.

Keywords: Vector spaces over different fields, best friend of a vector space,
flags, flag codes.

1 Introduction

Network coding was presented as an effective method to transmit information en-
coded as vector spaces over a finite field (see [8]). The use of flags in the context of
network coding was first introduced in [10]. Fixed a prime power q we can take the
field extension Fqn , with n > 2 a positive integer, and consider it as a vector space
of dimension n over Fq. A flag on Fqn is a sequence of nested proper subspaces of
Fqn . The increasing sequence of dimensions of the subspaces in a flag is called its
type. Collections of flags of constant type are denominated flag codes. The recent
works [3, 4, 5, 9], among others, show a growing interest in this subject.

Flag codes can be seen as a generalization of constant dimension codes, sets of
subspaces of Fqn sharing the same dimension (for more information on this family
of codes, consult [13] and the references therein). A special family of constant
dimension codes is the one of orbit (subspace) codes, introduced in [12], as orbits
under the action of a subgroup of the general linear group on the set of subspaces of
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Fqn . In particular, in [11], the authors focused on the situation in which the acting
group is cyclic and define cyclic orbit (subspace) codes.

In [7], Gluesing-Luerssen et al. studied cyclic orbit codes under the natural
action of multiplicative subgroups of F∗

qn (cyclic groups as well) on Fq-vector spaces
of Fqn . Following this approach, in [1], the authors defined cyclic orbit flag codes in
the same way but considering the action of such subgroups on flags. Also in [7], it
was introduced the notion of best friend of a cyclic orbit code as the main tool for the
study of this family of codes: fixed a generating subspace U and its corresponding
orbit Orb(U), the best friend of U , and then of Orb(U), is the largest subfield of
Fqn over which U is a vector space. In [1], this concept was generalized to the flag
codes framework by defining the best friend of a flag code of the form Orb(F) as
the largest subfield of Fqn over which every subspace in the generating flag F is a
vector space. Similarly to the case of constant dimension codes, the knowledge of
the best friend of a cyclic orbit flag code Orb(F) permits to determine directly its
size and to give estimates for its distance.

Nevertheless, as it happens with other parameters of a flag code, the information
provided by the best friend associated to Orb(F), could not be sufficient to deter-
mine specific properties of the code, which makes necessary to take into account
how these parameters are unfolded according to the nested structure of the flag. In
the case of the flag distance, this viewpoint was developed in [4] where the authors
coined the concept of distance vector associated with a pair of flags to describe
how a flag distance value is obtained as the sum of subspace distances between the
corresponding subspaces. The knowledge of the distance vectors set associated with
the minimum distance of a flag code provides more precise information that allows
us to derive important properties (see [4]). In the paper at hand, we propose a new
invariant, the best friend vector of a cyclic orbit flag code, that describes how the
best friend is obtained and, consequently, encloses more accurate information than
it. In fact, throughout this article it will be revealed the strong underlying interplay
between the best friend vector and other invariants such as the cardinality, the flag
distance and the type vector, and how them are conditioned by this new object.

The text is organized as follows. In Section 2, we recall the basics on constant
dimension codes, cyclic orbit (subspace) codes and some known ideas related to flag
codes. In Section 3, we focus on cyclic orbit flag codes, putting the accent on the
concept of best friend of a flag. Then we introduce the notion of best friend vector
and explore some features of this new invariant of a flag (and, consequently, of the
cyclic orbit flag code that it generates). Section 4 is devoted to study how the best
friend vector of a flag influences the rest of parameters of the code. More precisely,
in Subsection 4.1, we derive new lower and upper bounds for the minimum distance
of Orb(F) in terms of the best friend vector of F and see that they considerably
improve those obtained in [1, 2] just taking into consideration the best friend of
the flag. Later, in Subsection 4.2, we observe that having a prescribed best friend
vector is not always compatible with a given type vector or a given value of n and
investigate the interaction between these parameters. This study is carried out in
two steps: first we consider best friend vectors of length r = 2 for which we present
a characterization of those that are realizable in Fqn . Secondly, we address the
case of length r > 2 and provide a sufficient condition on n for the realizability of a
prescribed best friend vector by developing a systematic construction of appropriate
flags. Finally, we propose a reciprocal to our result for some special best friend
vector choices. Last, in Section 5, we summarize the advances provided in our work
and present some related open questions.
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2 Preliminaries

Let q be a prime power and Fq the finite field with q elements. For every integer
n > 2, we write Fqn to denote the extension field with qn elements, which also is
an n-dimensional vector space over Fq. For every 1 6 k < n, the Grassmannian (of
dimension k of Fqn) is the set Gq(k, n) of Fq-subspaces of dimension k of Fqn . This
set is a metric space endowed with the subspace distance, computed as

dS(U ,V) = dim(U+V)−dim(U ∩V) = 2(k−dim(U ∩V)) 6 min{2k, 2(n−k)}. (1)

A constant dimension code of Fqn is a nonempty subset C ⊆ Gq(k, n) and its
minimum distance is the value

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V}

whenever |C| > 2. According to (1), it is an even integer 0 6 dS(C) 6 min{2k, 2(n−
k)}. In case that |C| = 1, we simply put dS(C) = 0.

The group F∗
qn acts naturally on the Grassmannian in this way: Uα = {uα | u ∈

U}, for every U ∈ Gq(k, n) and every α ∈ F∗
qn . In [7], the authors use this action

and consider constant dimension codes arising as its orbits.

Definition 2.1. Given U ∈ G(k, n), the set

Orb(U) = {Uα | α ∈ F∗
qn} ⊆ Gq(k, n)

is a constant dimension code called the cyclic orbit code generated by U . The
stabilizer subgroup of U in F∗

qn is Stab(U) = {α ∈ F∗
qn | Uα = U} and it holds

|Orb(U)| =
|F∗

qn |

|Stab(U)| .

In [7], it was also introduced the notion of best friend of a subspace.

Definition 2.2. Let U be a subspace of Fqn , a subfield Fqm of Fqn is a friend of
U if U is a vector space over Fqm . The largest subfield satisfying this property is
called the best friend of U .

The knowledge of the best friend of a subspace gives information about the
parameters and features of the cyclic orbit code that it generates. As we can see
in the following results, it describes some properties of the minimum distance and
also determines the stabilizer subgroup (then the cardinality of the code).

Theorem 2.3. ([7, Lemma 4.1]) Let U ∈ Gq(k, n), and assume that Fqm is a friend
of U . Then m is a divisor of gcd(k, n) and 2m divides dS(U ,Uα), for every α ∈ F∗

qn .
In particular, 2m divides dS(Orb(U)).

Theorem 2.4. ([7, Cor. 3.13]) Let U be a subspace of Fqn . The following state-
ments are equivalent:

(1) The orbit Orb(U) contains qn−1
qm−1 elements,

(2) the subfield Fqm is the best friend of U and

(3) Stab(U) = F∗
qm .

In [10], the authors introduce the family of flag codes as a generalization of
constant dimension codes. In this new setting, codewords are flags defined as follows.

Definition 2.5. Given integers 0 < t1 < · · · < tr < n, a sequence F = (F1, . . . ,Fr)
is called flag of type (t1, . . . , tr) on Fqn if

F1 ( · · · ( Fr ( Fqn

and Fi ∈ Gq(ti, n), for every 1 6 i 6 r.
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The set of flags of a given type on Fqn is also a metric space. Given two flags
F ,F ′ of type (t1, . . . , tr) on Fqn , their flag distance is

df (F ,F ′) =

r
∑

i=1

dS(Fi,F
′
i). (2)

According to the definition of the subspace distance and expression (1), df (F ,F ′)
is an even integer satisfying 0 6 df (F ,F ′) 6 D(t,n), where D(t,n) is the maximum
possible value of the flag distance for type (t1, . . . , tn), that is,

D(t,n) = 2





∑

ti6
n
2

ti +
∑

ti>
n
2

(n− ti)



 . (3)

In this new framework, flag codes are defined as follows.

Definition 2.6. A flag code C of type (t1, . . . , tr) on Fqn is a nonempty set of flags
of this type. Its minimum distance is the value

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′}

if |C| > 2. If |C| = 1, we put df (C) = 0.

There is a family of constant dimension codes naturally induced by a flag code,
introduced for the first time in [5].

Definition 2.7. Let C be a flag code of type (t1, . . . , tr) on Fqn . For every 1 6 i 6 r,
the i-th projected code of C is the constant dimension code

Ci = {Fi | F ∈ C} ⊆ Gq(ti, n).

In the same paper, the authors introduce the family of flag codes attaining the
maximum possible distance (see (3)), they are called optimum distance flag codes,
and characterize them in terms of the projected codes.

Theorem 2.8. A flag code C of type (t1, . . . , tr) on Fqn is an optimum distance
flag code, i.e., df (C) = D(t,n), if, and only if, the following statements hold:

(1) ds(Ci) = min{2ti, 2(n− ti)}, for every 1 6 i 6 r and

(2) |C| = |C1| = · · · = |Cr|.

Notice that, in this result, we can already appreciate a first connection between
the parameters (minimum distance and size) of flag codes: attaining the maximum
possible distance requires certain conditions on the cardinality of the flag code.

For other values of the minimum distance, characterizing flag codes in terms
of their projected codes is still an open problem. This is due to the fact that
the maximum possible distance value D(t,n) can only be obtained by summing the
maximum possible subspace distances for every dimension in the type vector. Out
of this case, lower values of the flag distance can be reached from the sum of different
combinations of subspace distances. To deal with this problem, in [4] the authors
introduce the concept of distance vector associated with a pair of flags as follows:

d(F ,F) = (dS(F1,F
′
1), . . . , dS(Fr,F

′
r)) ∈ 2Zr.

Notice that the sum of the components of d(F ,F ′) is the value df (F ,F ′). Similarly,
a vector d ∈ 2Zr is called a distance vector associated to a distance value 0 6 d 6

D(t,n) if there exist flags F ,F ′ (of type (t1, . . . , tr) on Fqn) such that d = d(F ,F ′)
and d = df (F ,F ′). In the same paper, the next characterization of distance vectors
is given.
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Theorem 2.9. ([4, Th. 3.9]) Consider an even integer 0 6 d 6 D(t,n). A vector
d = (d1, . . . , dr) ∈ 2Zr is a distance vector associated to d if, and only if, the
following statements hold.

(1)
∑r

i=1 di = d,

(2) 0 6 di 6 min{2ti, 2(n− ti)}, for every 1 6 i 6 r and

(3) |di+1 − di| 6 2(ti+1 − ti), for every 1 6 i 6 r − 1.

The concept of distance vector has been extremely useful to better understand
the different possible combinations that can provide the same distance value and to
provide upper bounds for the cardinality of flag codes having a prescribed minimum
distance for every choice of the type vector. This fact demonstrates again the
intrinsic connection that exists between the parameters (minimum distance and
size) of a flag code. Also in [4], the authors use other particular values of the flag
distance that will be also useful in the paper at hand.

Definition 2.10. Consider the type vector (t1, . . . , tr) on Fqn and integers 1 6

M 6 r, 1 6 i1 < · · · < iM 6 r. We write D(i1, . . . , iM )(t,n) to denote the maximum
possible distance that can be attained with a distance vector having zeroes at the
positions i1, . . . , iM . In other words

D(t,n)(i1, . . . , iM ) = max{df (F ,F ′) | Fij = F ′
ij
, 1 6 j 6 M}.

According to Theorem 2.9, the value D(t,n)(i1, . . . , iM ) can be computed explic-
itly and satisfies:

D(t,n)(i1, . . . , iM ) =

r
∑

k=1

min
16j6M

{2tk, 2(n− tk), 2|tk − tij |}. (4)

As it occurs for subspaces of Fqn , the multiplication by nonzero elements in Fqn

defines an action on the set of flags. More precisely, given a flag F = (F1, . . . ,Fr)
of type (t1, . . . , tr) on Fqn and α ∈ F∗

qm , we have that Fα = (F1α, . . . ,Frα) is a
flag of the same type.

Definition 2.11. Let F = (F1, . . . ,Fr) of type (t1, . . . , tr) on Fqn . The set

Orb(F) = {Fα | α ∈ F∗
qn}.

is called the cyclic orbit flag code generated by F and Stab(F) = {α ∈ F∗
qn | F =

Fα} is its stabilizer subgroup under the action of F∗
qn .

As for cyclic orbit subspace codes, we can define the concept of best friend of
a cyclic orbit flag code Orb(F). It was introduced in [1] and used also to obtain
certain information about its parameters. In the following section we will recall
this notion and how the parameters of cyclic orbit flag codes are influenced by it.
Moreover, as it happens with other absolute parameters as the flag distance, the
information given by the best friend is not complete in many cases. If the concept
of distance vector comes to help in the determination of properties of a flag code
beyond those derived from the flag distance value, in this paper, we present the new
concept of best friend vector of a flag in order to obtain more precise information
about cyclic orbit flag codes. Furthermore, the use of this new invariant allows us
to evince the strong underlying interaction between different parameters.
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3 Best friend and best friend vector of a flag

Following the viewpoint developed in [7] for the case of cyclic orbit codes, in [1],
the authors introduce the best friend of a flag F . With the help of this new object
they can compute the cardinality and estimate the distance of the cyclic orbit flag
code generated by F . However, there are some properties of Orb(F) that are not
completely determined from its best friend but rather by the way it is obtained.
In this section we go further and propose a finer invariant associated with F , its
best friend vector, and use it to obtain more precise information about Orb(F), its
parameters and those of its projected codes, and how they are related.

3.1 Best friend of a flag

Le us recall the definition of best friend of a flag given in [1].

Definition 3.1. Given a flag F = (F1, . . . ,Fr) on Fqn , we say that a subfield Fqm

of Fqn is a friend of F if every Fi is a vector space over Fqm . Among the friends of
F , the largest one is called its best friend.

Remark 3.2. Notice that the vector space structure of any subspace of Fqn is
preserved under multiplication by elements in F∗

qn . As a consequence, given a flag
F on Fqn , it is clear that every flag in the orbit Orb(F) has exactly the same
best friend. Thus, we will speak indistinctly about the best friend of a flag F or
the best friend of the code Orb(F). Moreover, without loss of generality, in some
cases, we will consider flags F = (F1, . . . ,Fr) on Fqn such that 1 ∈ F1. This is
not restrictive at all since, if for a given flag F we take α ∈ F1 \ {0}, we have
that Orb(F) = Orb(Fα−1) and, at the same time, it holds 1 ∈ F1α

−1. Under the
assumption 1 ∈ F1, every subspace in the flag contains its best friend.

As it happens for cyclic orbit subspace codes, the best friend of a flag F is clearly
connected with the orbit size of Orb(F).

Theorem 3.3. ([1, Prop. 4.1]) The size of Orb(F) is qn−1
qm−1 for some divisor m of

n if, and only if, Fqm is the best friend of F .

On the other hand, if Fqm is the best friend of a flag F , then F if a flag of type
(ms1, . . . ,msr), for some integers 1 6 s1 < · · · < sr < s = n

m
, and we can provide

some bounds for the distance of Orb(F).

Proposition 3.4. Let F be a flag of type (ms1, . . . ,msr) on Fqms with the subfield
Fqm as its best friend and take β ∈ F∗

qn . Then 2m divides df (Orb(F)) and it holds

2m 6 df (Orb(F)) 6 2m





∑

si6⌊ s
2
⌋

si +
∑

si>⌊ s
2
⌋

(s− si)



 = D((ms1,...,msr),ms). (5)

Notice that, according to Definition 3.1, if Fqm is a friend of a flag F =
(F1, . . . ,Fr), then it is a friend of all the subspaces Fi. Even more, to compute
the best friend of a flag it is enough to know the ones of its subspaces. In [1], the
next property is proved.

Proposition 3.5. ([1, Cor. 3.18]) The best friend of a flag is the intersection of
the best friends of its subspaces.

A special case of cyclic orbit flag codes is the one of Galois flag codes proposed
in [1].
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Example 3.6. Given a sequence of divisors t1, . . . , tr of n such that every ti divides
ti+1, the Galois flag of type (t1, . . . , tr) is the sequence of nested subfields

F = (Fqt1 , . . . ,Fqtr ) (6)

of Fqn . The code Orb(F) is called the Galois flag code of type (t1, . . . , tr). Here,
each subspace Fi is its own best friend and, in particular, the best friend of F is its
first subspace Fqt1 .

From Proposition 3.5 it is immediate to realize that we can have two flags F ,F ′

of type (t1, . . . , tr) that share the same best friend but such that some of their
corresponding respective subspaces Fi,F

′
i do not satisfy this condition.

Example 3.7. For type (2, 4, 8) consider the Galois flag F = (Fq2 ,Fq4 ,Fq8) and the
flag F ′ = (Fq2 ,Fq2 ⊕ Fq2β,Fq8) with β ∈ Fq8 \ Fq4 . Notice that F ′

2 is an Fq2 -vector
space with 1 ∈ F ′

2 and dimq(F
′
2) = 4. Moreover, it is different from Fq4 by the

choice of β. Then its best friend is clearly Fq2 . As a consequence, the best friend
of both F and F ′ is Fq2 , whereas subspaces F2 and F ′

2 have the subfields Fq4 and
Fq2 as their best friends, respectively.

Clearly, in light of Theorem 3.3 and Proposition 3.4, for the flags F ,F ′ of the
previous example, the codes Orb(F) and Orb(F ′) have the same cardinality and
the same estimates for the minimum distance. Nevertheless, we wonder if the fact
that their best friend is equal but obtained in different ways, provokes that other
of their parameters or properties might be different. To this end, in the following
subsection we introduce the notion of best friend vector of a flag. In Section 4 we
discuss the relationship of this new invariant with other parameters of a cyclic orbit
flag codes such as the distance and the type vector.

3.2 Best friend vector of a flag

The best friend vector of a flag F specifies the sequence of best friends of its sub-
spaces, that is, the way we obtain the best friend of F . More in precise:

Definition 3.8. Consider a flag F = (F1, . . . ,Fr) on Fqn such that Fqmi is the
best friend of Fi, for any i ∈ {1, . . . , r}. Then the sequence (m1, . . . ,mr) will be
called the best friend vector of F .

As a consequence of Proposition 3.5 and the previous definition, the next result
clearly holds.

Proposition 3.9. Let F be a flag of type (t1, . . . , tr) on Fqn with best friend
vector (m1, . . . ,mr). Then mi divides ti for every 1 6 i 6 r. Moreover, if
m = gcd(m1, . . . ,mr), then the subfield Fqm is the best friend of F .

As underlined in Remark 3.2, given a flag F = (F1, . . . ,Fr) on Fqn , we have
that every subspace in the orbit Orb(Fi) has exactly the same best friend. Hence
every flag in Orb(F) share the same best friend vector. Thus, also in this case, we
speak indistinctly about the best friend vector of a flag F or the best friend vector
of the code Orb(F).

At this point, a natural question is if a best friend vector must satisfy any kind
of property beyond the fact that their entries must be divisors of n. Example 3.7
shows that, even if the subspaces in a flag are nested, that is, the entries in the
type vector of a flag give a strictly increasing sequence of dimensions, this property
is not transferred to the best friend vector. More precisely, flags F and F ′ in that
example have best friend vectors (2, 4, 8) an (2, 2, 8), respectively. Moreover, the
best friend vector might not even be an increasing sequence of divisors of n.
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Example 3.10. Consider any flag of type (2, 5, 8) on Fq16 of the form

F = (Fq2 ,U ,Fq8).

Since gcd(5, 16) = 1, the best friend of U is Fq and the best friend vector of F ,
which is (2, 1, 8), is not an increasing sequence.

However, in the previous example, the sequence of best friends was Fq2 ,Fq,Fq8

that, up to order, constitutes a sequence of nested subfields. Consequently, the best
friend of the flag F still coincides with the best friend of one of its subspaces. As
we can see in the following example, this property is also not true in general.

Example 3.11. Consider any element α ∈ Fq24 \ Fq12 and the subspace U =
Fq12 ⊕Fq3α, which has dimension 15 over Fq. Clearly Fq3 is a friend of U and, since
gcd(15, 24) = 3, it is its best friend. Take now the flag F = (Fq4 ,U) of type (4, 15)
on Fq24 . Its best friend vector is clearly (4, 3). As a result, the best friend of F is
the ground field Fq.

As showed in Example 3.11, consecutive subspaces in a flag can have non-nested
best friends and hence, as we can see, the best friend of a flag does not need to
coincide with the best friend of any of its subspaces. In the next section we study
how the presence of consecutive subfields of Fqn in the sequence of best friends of a
flag F determines a set of possibilities for the minimum distance and for the type
vector of Orb(F). This study is undertaken by considering all the different options
for two subfields in the sequence of best friends of a flag: equal, different but nested
or not nested.

4 Parameters interdependence

It is clear that the best friend vector of Orb(F) completely determines the best
friend of Orb(F) even though the converse is not true. In this section we exhibit
how the knowledge of the best friend vector of a flag F provides more accurate
information about the minimum distance of Orb(F) and, at the same type, impose
conditions on the type vector of F itself. Concerning the cardinality of Orb(F),
Theorem 3.3, it can be calculated directly from the best friend. Moreover, as showed
in [1], we always have the next connection.

Theorem 4.1. Let F = (F1, . . . ,Fr) be a flag on Fqn . Then, for every 1 6 i 6 r,
the value |Orb(Fi)| divides |Orb(F)|. More precisely, if the best friend vector of F

is (m1, . . . ,mr) and m = gcd(m1, . . . ,mr), then |Orb(F)| = |Orb(Fi)| ·
qmi−1
qm−1 , for

every 1 6 i 6 r.

This result comes from the relationship between the best friend and the stabilizer
subgroup of a flag under the action of F∗

qn . More precisely, if F = (F1, . . . ,Fr) is a
flag on Fqn with best friend Fqm and such that the best friend of Fi is Fqmi , then

Stab(F) = F∗
qm and Stab(Fi) = F∗

qmi , for every 1 6 i 6 r. (7)

As a consequence we can straightforwardly derive the following result:

Proposition 4.2. Let F = (F1, . . . ,Fr) a flag with best friend vector (m1, . . . ,mr).
Take m = gcd(m1, . . . ,mr). Hence |Orb(F)| = |Orb(Fi)| if, and only if, m = mi.
Otherwise |Orb(F)| > |Orb(Fi)|.

We continue by analyzing how with the help of the best friend vector we can
better estimate the minimum distance of a cyclic orbit flag code.
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4.1 Best friend vector and minimum distance

As pointed out before, in [1], the authors showed that the knowledge of the best
friend of the generating flag F can give some estimates about the minimum distance
of the code Orb(F). In that paper it was proved that, if F ,F ′ are flags with Fqm

as their best friend, then 2m divides df (F ,F ′). As a direct consequence, one has
that

2m 6 df (Orb(F)) 6 D(t,n). (8)

Let us see how the additional knowledge of the best friend vector of F can improve
considerably this lower bound for the minimum distance of Orb(F).

Theorem 4.3. Let F = (F1, . . . ,Fr) be a flag on Fqn with best friend vector
(m1, . . . ,mr). Then it holds

df (Orb(F)) > 2min{mi | 1 6 i 6 r}.

Proof. Take any α ∈ F∗
qn \ Stab(F) and compute df (F ,Fα). Let us write mj =

min{mi | 1 6 i 6 r}. If α /∈ Fq
mj = Stab(Fj), then we have Fj 6= Fjα and

df (F ,Fα) > dS(Fj ,Fjα) > 2mj.

On the other hand, if α ∈ Fq
mj = Stab(Fj), since α /∈ Stab(F), there exists at least

a subspace Fi in F such that Fi 6= Fiα. In this case, it clearly holds

df (F ,Fα) > dS(Fi,Fiα) > 2mi > 2mj.

Hence, we conclude that df (Orb(F)) > 2mj = 2min{mi | 1 6 i 6 r}.

Remark 4.4. Notice that Theorem 4.3 notably improves the lower bound given
in (8). If F is a flag with best friend Fqm and best friend vector (m1, . . . ,mr), by
means of Proposition 3.5, we have

m = gcd(m1, . . . ,mr) 6 min{mi | 1 6 i 6 r}.

Equality holds if, and only if, there is one index i ∈ {i1, . . . , ir} such that mi divides
the rest ones. For this particular mi, it holds mi = m.

In view of this result, we can appreciate that the best friend vector allows us to
better estimate the minimum distance than just the best friend. Hence, it is worth
asking what features of this new invariant may be helpful in this direction. For
instance, we may ask if the number of subspaces in F having the same best friend
Fqm than F could have any relevance in order to bounding the minimum distance of
Orb(F). This approach was already suggested in [2] where this number was taken
into account to propose lower bounds for the minimum distance. Here, we complete
this idea by also considering those subspaces having as best friend a subfield bigger
than Fqm . In this way we can also provide upper bounds for the minimum distance
improving that in (8).

Theorem 4.5. Let F be a flag on Fqn with (m1, . . . ,mr) as best friend vector.
Consider m = gcd(m1, . . . ,mr) and j = |{i | mi = m}|. Then we have:

(1) If j > 0, then df (Orb(F)) > 2mj. In case j = 0, it holds df (Orb(F)) > 2m.
Conversely, if df (Orb(F)) = 2m, then j = 1.

(2) Assume that j < r. Let 1 6 i 6 r be any index such that mi 6= m, then

2mj 6 df (Orb(F)) 6 D(t,n)(i).

9
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Proof. Consider the value j = |{i | mi = m}|. For (1), we start assuming j > 0
and we take 1 6 i1 < · · · < ij 6 r such that mik = m. If α /∈ Stab(F) = F∗

qm =
Stab(Fik), then we have Fik 6= Fikα. Consequently,

df (F ,Fα) >

j
∑

k=1

dS(Fik ,Fikα) >

j
∑

k=1

2m = 2mj,

where the last inequality follows from Theorem 2.3. As a result, df (Orb(F)) >

2mj, as stated. On the other hand, if j = 0, by means of Theorem 4.3, we have
df (Orb(F)) > 2min{mi | 1 6 i 6 r} > 2m. In particular, if df (Orb(F)) = 2m,
then j 6= 0 and j < 2, i.e., j = 1.

To prove (2), suppose that, for some 1 6 i 6 r, the subspace Fi has best friend
Fqmi 6= Fqm . By Proposition 3.5, we clearly have Fqm ( Fqmi and we can find
elements in α ∈ Fqmi \ Fqm . Recall that Stab(F) = F∗

qm and Stab(Fi) = F∗
qmi (see

(7)), then we have F 6= Fα whereas Fi = Fiα. Finally,

df (Orb(F)) 6 df (F ,Fα) 6 D(t,n)(i).

Repeating this argument for every subspace with best friend different from Fqm

gives the stated bound.

The following example reflects that the converse of this result does not hold.

Example 4.6. Consider the flag

F = (Fq4 ,Fq12 ,Fq12 ⊕ Fq3α),

for some α ∈ Fq24 \ Fq12 . Its type vector is (4, 12, 15) and it has best friend vector
(m1,m2,m3) = (4, 12, 3). Clearly, the best friend of the flag is Fq, since m =
gcd(4, 12, 3) = 1. By means of Theorem 4.3, we know that

df (Orb(F)) > 2 · 3 = 2 · 1 · 3.

However, we have j = |{i | mi = m}| = 0 6= 3.
On the other hand, take the same α ∈ Fq24 \ Fq12 and form a a flag

F ′ = (Fq4 ,F
′
2,Fq12 ,Fq12 ⊕ Fq3α)

of type t = (4, 5, 12, 15) on Fq24 . In this case, the best friend vector is (m1, . . . ,m4) =
(4, 1, 12, 3) and m = m2 = 1. Notice that, since m3 = 12 6= m = 1, by Theorem 4.5,
we have

df (Orb(F ′)) 6 D(t,24)(3) = 8 + 10 + 0 + 6 = 24.

Hence, it also holds df (Orb(F ′)) < D(t,24)(2) = 2+ 0+ 14 + 18 = 34. However, we
have m = m2 = 1.

We can go further and consider the case where a subfield other than the best
friend of a flag F is, in turn, the best friend of several of its subspaces. Paying
attention to this fact permits us to directly improve the previous upper bound as
follows.

Theorem 4.7. Let F = (F1, . . . ,Fr) be a flag on Fqn with best friend vector
(m1, . . . ,mr). Let l be a positive integer with l 6= gcd(m1, . . . ,mr) such that l = mi

for exactly 1 6 s < r entries in (m1, . . . ,mr). Then

df (Orb(F)) 6 D(t,n)(i1, . . . , is).

10
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Remark 4.8. Observe that D(t,n)(i1, . . . , is) < D(t,n)(ij), ∀j = 1, . . . , s, which
makes the last bound be tighter than the one in Theorem 4.5. On the other hand,
a subfield Fql 6= Fqm can appear in the sequence of best friends of a flag F at most
r − 1 times. Otherwise, Fql would be the best friend of all the subspaces in F and,
by means of Proposition 3.5, also its best friend.

Another property of the best friend vector of flag F that we can also take into
account is that, even if its entries are not equal to m, some of them can give a
(possibly unordered) sequence of consecutive divisors, that is, the corresponding
best friends of the subspaces of F might be nested. This situation is considered in
the next result.

Theorem 4.9. Let F = (F1, . . . ,Fr) be a flag on Fqn with best friend vector
(m1, . . . ,mr) and put m = gcd(m1, . . . ,mr). Assume that (m1, . . . ,mr) contains
1 6 s < r (possibly unordered) entries mi1 , . . . ,mis different from m and such that
mik divides mik+1

, for every 1 6 k < s. Then

df (Orb(F)) 6 D(t,n)(i1, . . . , is).

Proof. By hypothesis, we know that Fq
mi1 ⊆ Fq

mi2 ⊆ · · · ⊆ Fq
mis are subfields

different from Fqm appearing in the sequence of best friends of the subspaces in F ,
possibly not in this order. Since m 6= mi1 , we can find elements α ∈ F∗

q
mi1

\ F∗
qm .

Recall that Stab(F) = F∗
qm and, for every 1 6 i 6 r, it also holds Stab(Fi) = F∗

qmi .
Thus, the flag Fα is different from F but Fik = Fikα for every 1 6 k 6 s. Then
the distance vector associated to the pair of flags F and Fα contains zeros in the
(possibly not ordered) positions i1, . . . , is, which leads to

df (Orb(F)) 6 df (F ,Fα) 6 D(t,n)(i1, . . . , is).

Following with Example 3.7, we can see that flag codes with the same best friend
can have different parameters if they do not share their best friend vector.

Example 4.10. Consider integers s > 2 and n = 8s and take the flags F =
(Fq2 ,Fq4 ,Fq8) and F ′ = (Fq2 ,Fq2 ⊕ Fq2β,Fq8) on Fqn given in Example 3.7. These
two flags have best friend Fq2 and respective best friend vectors (2, 4, 8) and (2, 2, 8).

Clearly both codes Orb(F) and Orb(F ′) have the same cardinality qn−1
q2−1 . However,

the list of sizes of their projected codes differ. More precisely, as stated in Theorem
4.1, it holds

|Orb(Fq4)| =
qn − 1

q4 − 1
6=

qn − 1

q2 − 1
= |Orb(Fq2 ⊕ Fq2β)|.

Concerning the mininimum distance, by application of Theorem 4.5 and Theorem
4.9, we have

4 = 2 · 2 · 1 6 df (Orb(F)) 6 D((2,4,8),n)(2, 3) = 4

and then df (Orb(F)) = 4. On the other hand, since the value 2 appears twice in
the best friend vector of F ′, by means of Theorem 4.5, we get

df (Orb(F ′)) > 2 · 2 · 2 = 8.

The next example exhibits how the knowledge of the best friend vector consid-
erably improves the estimates for the minimum distance of cyclic orbit flag codes,
compared to the bounds obtained in Proposition 3.4, where just the best friend of
the flag (and not the ones of its subspaces) is taken into consideration.

11
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Example 4.11. Consider a flag F of type t = (2, 4, 5, 12, 15, 18, 21) on Fq24 with
best friend vector (m1, . . . ,m7) = (2, 4, 1, 12, 3, 3, 3). The best friend of F is the
ground field Fq. In this case, since j = |{i | mi = m = 1}| = 1, the lower bound
given in Proposition 3.4 and Theorem 4.3 coincide and df (Orb(F)) > 2. Concerning
upper bounds, according to Proposition 3.4, that is, just looking at the best friend
of F , the minimum distance of Orb(F) satisfies

df (Orb(F)) 6 D(t,24) = 4 + 8 + 10 + 24 + 18 + 12 + 6 = 82.

On the other hand, if take into consideration the best friend vector (2, 4, 1, 12, 3, 3, 3),
we observe that the previous bound can be considerably improved:

• Since m5 = m6 = m7 = 3 6= m = 1, by Theorem 4.7, we obtain

df (Orb(F)) 6 D(t,24)(5, 6, 7) = 4 + 8 + 10 + 6 + 0 + 0 + 0 = 28.

• From the subsequence of divisors m1 = 2, m2 = 4 and m4 = 12 and by
Theorem 4.9, we get

df (Orb(F)) 6 D(t,24)(1, 2, 4) = 0 + 0 + 2 + 0 + 6 + 12 + 6 = 26.

• The same result, but considering the subsequence of divisors given by m5 =
m6 = m7 = 3 and m4 = 12 leads to

df (Orb(F)) 6 D(t,24)(4, 5, 6, 7) = 4 + 8 + 10 + 0 + 0 + 0 + 0 = 22.

4.2 Best friend vector and type vector

In this part, we analyze how the knowledge of the best friend vector of a flag F on
Fqn , hence the one of Orb(F), conditions its type vector and even the dimension
of the ambient space. In order to simplify our approach, we work first with flags
of length two on Fqn with prescribed best friend vector (m1,m2). We distinguish
different possibilities based on whether or not the value gcd(m1,m2) belongs to
{m1,m2}. The results obtained for this particular situation will give us the clue to
address the case of flags of any length.

Theorem 4.12. Let F = (F1,F2) be a flag of type (t1, t2) on Fqn with best friend
vector (m1,m2). Then t2 is a multiple of m2 and the following statements hold:

(1) If gcd(m1,m2) = mi, where i ∈ {1, 2}, then t2 > t1 +mi.

(2) If gcd(m1,m2) /∈ {m1,m2}, then t2 > t1 +max{m1,m2}.

Proof. Let us prove (1). If m1 = m2 = m, the result follows from the fact that m
divides both t1 and t2, and t1 < t2. Let us assume that m1 6= m2 but gcd(m1,m2) =
m1, that is, Fqm1 ( Fqm2 . We can consider some element α ∈ Fqm2 \ Fqm1 . Hence,
F1 6= F1α but F2 = F2α. In this case,

d(F ,Fα) = (dS(F1,F1α), 0).

Moreover, by means of Theorem 2.3, we have that 2m1 divides dS(F1,F1α) and, in
particular, dS(F1,F1α) > 2m1. Moreover, Theorem 2.9 implies that

2m1 6 dS(F1,F1α) = |0− dS(F1,F1α)| 6 2(t2 − t1)

and the first statement holds in case gcd(m1,m2) = m1. The case gcd(m1,m2) =
m2 is analogous.

12
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To prove (2), suppose that gcd(m1,m2) /∈ {m1,m2}, that is, Fqm1 ∩ Fqm2 /∈
{Fqm1 ,Fqm2 }. In such a case, we can find elements α ∈ Fqm1 \ Fqm2 and β ∈
Fqm2 \ Fqm1 and

d(F ,Fα) = (0, dS(F2,F2α)), d(F ,Fβ) = (dS(F1,F1β), 0).

Moreover, we have dS(F2,F2α) > 2m2 and dS(F1,F1β) > 2m1. Hence, by means
of Theorem 2.9, we obtain

2m1 6 dS(F1,F1β) = |0− dS(F1,F1α)| 6 2(t2 − t1)
2m2 6 dS(F2,F2α) = |dS(F2,F2α)− 0| 6 2(t2 − t1)

and conclude that t2 > t1 +m1 and t2 > t1 +m2, which finishes the proof.

Example 4.13. For a flag F in Fn
q with n = 24 and best friend vector (4, 3), in

light of Theorem 4.12, the type vectors (4, 6), (8, 9), (12, 15), (16, 18) and (20, 21)
are not allowed.

The previous result can be iteratively applied in order to determine bounds for
the dimensions in the type vector of a flag of any length, provided its best friend
vector.

Corollary 4.14. Let F be a flag of type (t1, . . . , tr) on Fqn with best friend vector
(m1, . . . ,mr). For every 1 6 i < r, we have

ti+1 >







ti +mi if gcd(mi,mi+1) = mi,
ti +mi+1 if gcd(mi,mi+1) = mi+1,
ti +max{mi,mi+1} otherwise.

Notice that, even if the previous results give information on the type vector in
terms of the best friend vector, their proofs are based on distance vectors properties.
The following results provide complementary bounds for the dimensions in the type
vector of a flag. In this case, we use the nested structure of flags, combined with
the properties of towers of subfields of Fqn . To this end, we come back to flags of
length two and then extract conclusions for the general case.

Lemma 4.15. Consider subfields Fqm1 and Fqm2 of Fqn and let U be an Fqm2 -
subspace of Fqn . If Fqm1 ⊆ U , then U also contains the minimum field containing
both Fqm1 and Fqm2 , that is, the subfield Fql , with l = lcm(m1,m2).

Proof. Consider Fq-basis {1, α, . . . , αm1−1} and {1, β, . . . , βm2−1} of Fqm1 and Fqm2 ,
respectively. Since scalar multiplication by elements in Fqm2 is closed in U , then it
clearly contains the set

{αiβj | 0 6 i 6 m1 − 1, 0 6 j 6 m2 − 1},

which is an Fq-basis of the minimum field containing both Fqm1 and Fqm2 , that is,
Fql with l = lcm(m1,m2).

The previous result has clear consequences for the type vector of flags as we can
see in the next result.

Theorem 4.16. Consider a flag F = (F1,F2) of type (t1, t2) on Fqn with best
friend vector (m1,m2). Then t2 is a multiple of m2 satisfying t2 > lcm(m1,m2).
Moreover, if m1 does not divide m2, then t2 > lcm(m1,m2) +m2.

13
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Proof. First of all, consider a flag F ′ = Fα−1 for some α ∈ F1 ⊂ F∗
qn . Notice

that 1 ∈ F ′
1 and both flags F and F ′ have the same type (t1, t2) and best friend

vector (m1,m2). Hence Fqm2 is the best friend of F ′
2, and it is an Fqm2 -vector

space. Thus, the value m2 clearly divides t2. Moreover, since 1 ∈ F ′
1 ⊂ F ′

2, we have
Fqm1 ⊆ F ′

1 ⊂ F ′
2. Hence, by means of Lemma 4.15, F ′

2 contains the subfield Fql with
l = lcm(m1,m2) and then t2 > l. Moreover, if m1 does not divide m2, we still have
t2 > l = lcm(m1,m2) 6= m2 and, if the equality holds, then Fqm2 ( Fql = F ′

2. In this
case, the best friend vector of F ′ would be (m1, l) 6= (m1,m2). As a consequence,
t2 is, at least, the next multiple of m2, i.e., t2 > l + m2 = lcm(m1,m2) + m2, as
stated.

Remark 4.17. In case m1 divides m2, the previous bound just says t2 > l =
lcm(m1,m2) = m2, which is a direct consequence of having the subfield Fqm2 as a
best friend. In this situation, the equality can hold; it suffices to consider the Galois
flag of type (m1,m2). The bound in case m1 does not divide m2 is also tight in
some cases, as we can see in Example 3.11: for m1 = 4 and m2 = 3, the dimension
t2 is t2 = lcm(4, 3) + 3 = 15. On the other hand, and as stated in Example 4.19,
not every type vector is admissible. Notice that the second case also contemplates
the situation in which m2 divides m1. For instance, if {1, α} is an Fq4 -basis of Fq8 ,
it suffices to consider the flag F = (Fq4 ,Fq4 ⊕ Fq2α) of type (4, 6) on Fq8 . For this
flag, it holds: m1 = 4, m2 = 2 and t2 = 6 = lcm(4, 2) + 2.

As stated before, Theorem 4.12 and Theorem 4.16 provide different and com-
plementary lower bounds for the dimension t2 in the type vector of a flag of
F = (F1,F2). The next example shows that, in some cases, the bounds obtained
in Theorem 4.12 are better than the ones in Theorem 4.16 and vice versa.

Example 4.18. Take a type vector (t1, t2) on Fq24 and fix the best friend vector
(4, 3). We consider two cases:

• If t1 = 4, since gcd(4, 3) = 1 /∈ {4, 3}, by means of Theorem 4.12, we conclude
that t2 must be a multiple of 3 with t2 > t1 +max{4, 3} = 8. In other words,
we obtain t2 > 9. On the other hand, given that 4 does not divides 3, Theorem
4.16 leads to t2 > lcm(4, 3) + 3 = 15, which is a better lower bound for t2.

• On the contrary, if t1 = 12, Theorem 4.12 ensures that t2 > lcm(4, 3)+3 = 15.
On the other hand, by application of Theorem 4.16, the dimension t2 must be
a multiple of m2 = 3 satisfying t2 > t1 +max{4, 3} = 16, i.e., t2 > 18.

Example 4.19. Following with the parameters of Example 3.11, and by means of
Theorem 4.16, we see that it is not possible to give a couple of nested subspaces
with respective best friends Fq4 and Fq3 for every choice of the type vector. For
instance, type vectors (4, 6), (4, 9), (4, 12) or (8, 12) are not allowed.

From Theorem 4.16 we can derive the next result, which states that some com-
binations of subfields are not permitted as a part of the sequence of best friends of
the subspaces of a flag (of any length, not necessarily two).

Corollary 4.20. Consider m1 and m2 divisors of n. If lcm(m1,m2) = n, then
there is no flag on Fqn with both m1 and m2 as entries in its best friend vector.

Proof. Consider a flag F = (F1, . . . ,Fr) on Fqn and assume that there are different
indices 1 6 i1, i2 6 r, not necessarily ordered, such that Fq

mj is the best friend
of Fij for j ∈ {1, 2}. In such a case, by means of Theorem 4.16, the dimension of
Fmax{i1,i2} is equal to lcm(m1,m2) = n, which is not possible according to Definition
2.5.
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The next result, in turn, characterizes those values of n that make it possible
having two arbitrary fields in the sequence of best friends of a flag.

Theorem 4.21. Take positive integers m1 and m2. There are flags on Fqn with
best friend vector (m1,m2) if, and only if, n = s · lcm(m1,m2), for some integer

s >

{

3 if m1 = m2,
2 otherwise.

Proof. Let us first assume that F is a flag on Fqn with (m1,m2) as its best friend
vector. In particular, both Fqm1 and Fqm2 are subfields of Fqn and then m1 and m2

divide n. As a consequence, the value lcm(m1,m2) also divides n and we can write
n = s · lcm(m1,m2) for some positive integer s. From Corollary 4.20 we conclude
that s 6= 1 and then s > 2. Moreover, if m1 = m2, then n = s · lcm(m1,m2) = sm1

and, by means of Theorem 4.12, it holds t2 > t1 + m1 > 2m1. Consequently, we
have n = sm1 > t2 > 2m1, i.e., s > 3.

Conversely, suppose that m1 6= m2 and n = s · lcm(m1,m2) for some s > 2.
Let us construct a flag F = (F1,F2) with best friend vector (m1,m2) as follows. If
m1 divides m2, we just take the Galois flag (Fqm1 ,Fqm2 ). Otherwise, we consider
l = lcm(m1,m2) > m2 and the subfield Fql of Fqn . Note that the dimension
of Fqn as an Fql -vector space is s > 2. Hence, if α ∈ Fqn \ Fql , the subspace
Fql ⊕ Fqlα is a direct sum. In particular, the subspace U = Fql ⊕ Fqm2α has
dimension l +m2 < 2l 6 n and has Fqm2 as a friend. Let us see that it is precisely
the best friend of U . To do so, we consider any other friend Fqh of U and we prove
that h 6 m2. Notice that h divides dim(U) = l+m2, while l does not. Thus Fql is
not the best friend of U and then there are elements in Fql not stabilizing U (recall
that Stab(U) is the multiplicative group of the best friend of U). In particular, we
can find an element β ∈ F∗

ql
\ Stab(U) and form the subspace

Uβ = Fql ⊕ Fqm2αβ,

which is also an Fqh -vector space. Now, if αβ ∈ U , then Fqm2αβ ⊂ U and U = Uβ,
which is a contradiction. Hence

U + Uβ = Fql ⊕ Fqm2α⊕ Fqm2αβ

has dimension l+2m2 6 2l 6 n and Fqh is one of its friends. In particular, h divides
both l +m2 and l + 2m2 and, consequently, it also divides m2. We conclude that
Fqh ⊂ Fqm2 , which proves that Fqm2 is the best friend of U .

In case m1 = m2 and n = sm1 with s > 3, we just need to consider a primitive
element α of Fqn and form the flag F = (F1,F2) = (Fqm1 ,Fqm1 ⊕ Fqm1α) of type
(m1, 2m1) on Fqn . The best friend of F1 is clearly Fqm1 . Now assume that Fqh2

is a friend of F2. In particular, h2 divides 2m1. On the other hand, the subspace
F2 + F2α = Fqm1 ⊕ Fqm1α ⊕ Fqm1α2 is also a vector space over Fqh2 and it has
dimension 3m1. Hence, h2 divides 3m1 as well and we conclude that h2 divides
m1. This means that Fqm1 is the best friend of F2 and F has best friend vector
(m1,m1).

Example 4.22. The best friend vector (4, 3) is not valid on Fq12 since lcm(4, 3) = 12
(see Corollary 4.20). However, it is permitted for any value of n = 12s, with s > 2
by means of Theorem 4.21. In particular, for n = 24, the flag F given in Example
3.11 has (4, 3) as best friend vector and it has been constructed following the ideas
in the proof of Theorem 4.21.

We finish this section by studying how the type vector of a flag F , then the type
vector of the cyclic orbit code Orb(F), is affected by the choice of the best friend
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vector of F in case of considering flags of any length, not necessarily two. We do
so by generalizing Lemma 4.15 and Theorem 4.16 but paying attention to the fact
that, when the length of the flag is r > 2, the entries ti of the type vector with
i > 3 are influenced also by the entries mj in the best friend vector with j 6 i due,
once again, to the nested structure of flags. Let us first provide a lower bound for
each dimension in the type vector in terms of the best friend vector. For the next
result, we take a flag F such that 1 ∈ F1 (see Remark 3.2).

Lemma 4.23. Let F = (F1, . . . ,Fr) be a flag of type (t1, . . . , tr) on Fqn with 1 ∈ F1

and best friend vector (m1, . . . ,mr). Then, for every 1 6 i 6 r, the subspace Fi

contains the subfield Fqli , with li = lcm(m1, . . . ,mi).

Proof. We prove the result by induction on 1 6 i 6 r. For i = 1, the result clearly
holds. For i = 2, it is proved in Lemma 4.15.

Assume now that, for every 1 < i 6 r, we have that F
q
li−1 ⊆ Fi−1, with

li−1 = lcm(m1, . . . ,mi−1). Let us prove the result for Fi. Notice that Fi is a vector
space over Fqmi . By the induction hypothesis, it is satisfied that F

q
li−1 ⊆ Fi−1 ⊂ Fi.

Hence, by means of Lemma 4.15, we conclude that Fqli ⊆ Fi, where

li = lcm(li−1,mi) = lcm(lcm(m1, . . . ,mi−1),mi) = lcm(m1, . . . ,mi−1,mi),

as stated.

This result has a direct impact on the type vector configuration of a flag having
a prescribed best friend vector.

Corollary 4.24. Let F = (F1, . . . ,Fr) be a flag of type (t1, . . . , tr) on Fqn and
best friend vector (m1, . . . ,mr). Then, for every 1 6 i 6 r, the dimension ti is a
multiple of mi satisfying

ti > lcm(m1, . . . ,mi).

Equality holds if, and only if, ti = mi = lcm(m1, . . . ,mi).

Proof. Consider an element α ∈ F1 ⊂ F∗
qn and form the flag F ′ = Fα−1. This flag

has both the same type and best friend vectors as F and satisfies 1 ∈ F ′. For every
1 6 i 6 r, we apply Theorem 4.23 to the subspace F ′

i and conclude that Fqli ⊆ F ′
i ,

with li = lcm(m1, . . . ,mi). Hence ti > li = lcm(m1, . . . ,mi) and the equality is
satisfied if, and only if, F ′

i = Fqli = Fqmi but, since the best friend of F ′
i is precisely

Fqmi , it must hold mi = li.

Last, we apply this result in order to discard many best friend vectors on Fqn .

Corollary 4.25. Let m1, . . . ,mr be divisors of n. If lcm(m1, . . . ,mr) = n, then
there is no flag on Fqn whose best friend vector has m1, . . . ,mr as its entries.

The previous corollary leads to the following result, which states a necessary
condition for a maximal subfield of Fqn to be the best friend of a subspace of a flag.

Corollary 4.26. Let Fqm be a maximal subfield of Fqn . If m is an entry in the best
friend vector of a flag F , then the rest of components on it are divisors of m.

Proof. It suffices to consider a subfield Fql of Fqn not being a subfield of Fqm .
Observe that the minimum field containing both Fqm and Fql is the whole Fqn by
maximality of Fqm . Hence, lcm(m, l) = n and Corollary 4.25 concludes the proof.

Example 4.27. On Fq12 , there is no flag F = (F1,F2) with best friend vector
(4, 3). In fact, with this best friend vector, and according to Theorem 4.16, the
second dimension t2 must satisfy t2 > 15 > 12. This is due to the maximality of
Fq4 as a subfield of Fq12 . On the other hand, if n = 24, the same best friend vector
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is allowed (see Example 3.11). Similarly, due to the maximality of Fq8 as a subfield
of Fq24 , and as a consequence of Corollary 4.26, if 8 is a component in the best
friend vector of a flag, the rest of components in that vector are forced to belong to
{1, 2, 4, 8}. Likewise, if Fq12 is the best friend of a subspace of a flag on Fq24 , then
Fq8 is not permitted as the best friend for other subspaces in the same flag.

We end the section with a partial generalization of Theorem 4.21. There, we
proved the existence of flags with best friend vector (m1,m2) on Fqn if, and only
if, n = s · lcm(m1,m2) and s ∈ {2, 3}. In this case, we give a sufficient condition
on n to ensure the existence of flags on Fqn with best friend vector (m1, . . . ,mr)
and propose a systematic construction of them. However, as we will see later with
several examples, this condition is not always necessary.

Theorem 4.28. Take m1, . . . ,mr positive integers. For each index 2 6 i 6 r,
define

ki = |{j ∈ {1, . . . , i− 1}; lcm(mj ,mj+1) = mj+1 > mj}|.

Denote k = kr and l = lcm(m1, . . . ,mr) and consider the value

s =

{

r − k if mr 6= l
r − k + 1 otherwise.

If n > s · lcm(m1, . . . ,mr), then there exist flags F = (F1, . . . ,Fr) on Fqn such that
(m1, . . . ,mr) is the best friend vector of Orb(F).

Proof. For each index 1 6 i 6 r, let us denote li = lcm(m1, . . . ,mi). Hence l = lr.
Note that k 6 r − 1. If k < r − 1, then s > 2. In case k = r − 1, the sequence
l1, . . . , lr = l is strictly increasing. In particular, l = mr and, by definition, we have
s = r − k + 1, thus s > 2.

Assume that n > sl. As s > 2, there is α ∈ Fqn \Fql such that Fqn = Fql(α) and
{1, α, . . . , αs−1} is a basis of Fqn over Fql . In particular Fql ⊕ Fqlα⊕ · · · ⊕ Fqlα

s−1

is a direct sum. Let us build the subspaces of F by considering F1,F2 separately
to adapt the process described in Theorem 4.21 to length r > 2.

• Construction of F1. Just take F1 = Fqm1 = Fql1 .

• Construction of F2. We distinguish two cases:

(1) If lcm(m1,m2) = m2 > m1, take F2 = Fql2 = Fqm2 .

(2) If m1 does not divide m2 or m1 = m2 (then l2 = m2 = m1 = l1), take
F2 = Fql2 ⊕ Fqm2α.

• Construction of Fi. For 2 < i 6 r, we take

Fi = Fqli + · · ·+ Fqliα
i−ki−2 + Fqmiαi−ki−1.

Notice that for every 2 6 i < r, we have ki+1 ∈ {ki, ki + 1}. In particular, ki+1 =
ki + 1 if lcm(mi,mi+1) = mi+1 > mi. Hence, every Fi consists of the sum of i− ki
summands. In fact, in Fi+1 we have

i+ 1− ki+1 =

{

i− ki if ki+1 = ki + 1,
i− ki + 1 if ki = ki+1

summands. In other words, every subspace Fi+1 is described as a sum having
either the same number of summands as Fi or exactly one more. Moreover, since
Fqmi ⊆ Fqli ⊆ Fqli+1 , we have Fi ⊂ Fi+1 and we can form a flag F = (F1, . . . ,Fr).

Let us see that F has best friend vector (m1, . . . ,mr), i.e., that Fqmi is the best
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friend of Fi, for every 1 6 i 6 r. For i = 1, the result clearly holds and the case
i = 2 has been already proved in Theorem 4.21. For higher values of i, note first
that ki 6 i− 1 and then i− ki − 1 > 0. The case i− ki − 1 = 0 corresponds to the
situation

k2 = 1, . . . , ki = i− 1,

which happens if, and only if, every mj divides mj+1 and mj 6= mj+1 for 1 6 j 6 i.
In such a case, we have mi = li and Fi = Fqli + Fqmiα0 = Fqli = Fqmi , which has
dimension ti = li = mi and best friend precisely Fqmi .

Assume that i− ki − 1 > 0 and also that a subfield Fqhi of Fqn is a friend of Fi.
Let us see that hi divides mi. Observe that

i− ki 6 i+ 1− ki+1 6 . . . 6 r − kr = r − k 6 s. (9)

Hence, i − ki − 1 6 s − 1 and, since the elements 1, α, . . . , αs−1 are linearly
independent over Fql and Fqmi ⊂ Fqli ⊂ Fql , then

Fi = Fqli ⊕ · · · ⊕ Fqliα
i−ki−2 ⊕ Fqmiαi−ki−1

is a direct sum of dimension ti = li(i − ki − 1) +mi. Moreover, assuming that Fi

is a vector space over Fqhi , implies that hi must divide ti. Now we distinguish two
situations:

• i−ki−1 < s−1. We consider the subspace Fiα, which clearly is also a vector
space over Fqhi , and compute the sum Fi + Fiα. As i− ki 6 s− 1, we get

Fi + Fiα = Fqli ⊕ · · · ⊕ Fqliα
i−ki−2 ⊕ Fqliα

i−ki−1 ⊕ Fqmiαi−ki

a direct sum with dim(Fi+Fiα) = li(i−ki)+mi and, since Fi+Fiα is a vector
space over Fqhi , then hi divides its dimension. Given that hi also divides
ti = li(i − ki − 1) +mi, we conclude that hi divides dim(Fi + Fiα) − ti = li
and, as a consequence, it divides mi too. Hence, Fqhi ⊆ Fqmi and Fqmi is the
best friend of Fi.

• i− ki − 1 = s− 1. From (9), this equality holds if, and only if, s = r − k and
kj+1 = kj + 1 for every i 6 j < r. This implies that mr 6= l and every mj

divides mj+1 6= mj , for i 6 j < r. Moreover, notice that mi 6= li (otherwise,
mj = lj for i 6 j 6 r but we know that mr 6= l). As a consequence, Fqli is
not the best friend of Fi since li does not divide ti = li(i − ki − 1) +mi and
hence Stab(Fi) 6= F∗

qli
. We can find elements β ∈ F∗

qli
\Stab(Fi) and compute

Fiβ. Taking into account that β stabilizes Fqli but it cannot stabilize Fqmi ,
we have

Fiβ = Fqli + · · ·+ Fqliα
i−ki−2 + Fqmiαi−ki−1β.

Notice that, if αi−ki−1β ∈ Fi, since multiplication by elements in Fqmi is
closed in Fi, we would have Fqmiαi−ki−1β ⊂ Fi and then Fi = Fiβ, which is
a contradiction. Thus Fqmiαi−ki−1β ∩ Fi = {0} and

Fi + Fiβ = Fqli ⊕ · · · ⊕ Fqliα
i−ki−2 ⊕ Fqmiαi−ki−1 ⊕ Fqmiαi−ki−1β

is again a vector space over Fqhi and has dimension li(i−ki−1)+2mi. Hence
hi divides both ti = li(i− ki − 1)+mi and li(i− ki − 1)+ 2mi. In particular,
hi divides mi and Fqmi is the best friend of Fi.

Last, notice that tr = dim(Fr) = lr(r − kr − 1) +mr = l(r − k − 1) +mr. We
consider two possibilities:

• If mr = l, we have tr = l(r − k) < l(r − k + 1) = ls 6 n.
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• Otherwise mr < l and it holds tr = l(r − k − 1) +mr < l(r − k) = ls 6 n.

We conclude that the chosen value of n ensures the existence of flags F on Fqn with
best friend vector (m1, . . . ,mr), that is, the cyclic orbit flag code Orb(F) has also
(m1, . . . ,mr) as best friend vector.

Remark 4.29. Notice that, for r = 2, we have

k = k2 =

{

1 if m1 divides m2 and m1 6= m2,
0 otherwise.

Hence, the value s defined in Theorem 4.28 is

s =







2 if m1 does not divide m2,
2 if m1 divides m2 and m1 6= m2,
3 if m1 = m2.

In other words, the choice of s coincides with the one made in Theorem 4.21.

For some special choices of the best friend vector, the previous result is a char-
acterization of the minimum value of n needed for the existence of flags on Fqn with
the given best friend vector.

Corollary 4.30. Let m be a positive integer and consider r > 2. There are flags

with best friend vector (m, (r). . .,m) on Fqn if, and only if, n = sm with s > r + 1.

Proof. Assume that F is a flag of length r on Fqn with best friend vector (m, . . . ,m).
Hence, F has type (t1, . . . , tr) and m divides every ti and n. Put n = sm and notice
that t1 < · · · < tr < n. Hence, for every 1 6 i 6 r, it holds ti > mi. In particular,
n = sm > tr > mr and then s > r + 1, as stated.

For the converse, put n = sm with s > r + 1. We apply Theorem 4.28, taking
into account that k = kr = 0 and mr = m = l and the result holds. More precisely,
the flag F = (F1, . . . ,Fr) given in the proof of Theorem 4.28 is given by

Fi = Fqm ⊕ Fqmα⊕ · · · ⊕ Fqmαi−1,

for 1 6 i 6 r, where {1, α, . . . , αr, . . . , αs−1} is an Fqm -basis of Fqn .

Corollary 4.31. Consider positive integers m1, . . . ,mr such that, for every 1 6

i < r, the value mi divides mi+1 and mi 6= mi+1. There are flags on Fqn with best
friend vector (m1, . . . ,mr) if, and only if, n = smr, with s > 2.

Proof. Let F be a flag satisfying these properties, then n = s · lcm(m1, . . . ,mr) =
smr and, by Corollary 4.25, we know that s > 2. For the converse, observe that, in
this situation we have ki = i− 1 for every 1 < i 6 r. In particular, k = kr = r − 1.
Moreover, mr = l = lcm(m1, . . . ,mr). Hence, if n = smr with s > r − k + 1 =
r − (r − 1) + 1 = 2, there are flags on Fqn with best friend vector (m1, . . . ,mr) by
application of Theorem 4.28. More precisely, the flag constructed using the proof of
such a result is the Galois flag (Fqm1 , . . . ,Fqmr ) of type (m1, . . . ,mr) on Fqn with
n = smr and s > 2.

Despite for these particular cases the converse of Theorem 4.28 also holds, the
following examples show that this is not true in general.

Example 4.32. Consider the best friend vector (m1,m2,m3) = (3, 2, 1) of length
r = 3. For this choice, we have k2 = k3 = k = 0. Moreover, l = lcm(3, 2, 1) = 6 and
m3 6= 6. Hence, Theorem 4.28 ensures the existence of flags on Fn

q with the given
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best friend vector provided that n > 3 · 6 = 18. In fact, the flag proposed in the
proof of that result is F = (F1,F2,F3) with subspaces

F1 = Fq3 , F2 = Fq6 ⊕ Fq2α, F2 = Fq6 ⊕ Fq6α⊕ Fqα
2,

where {1, α, α2} are Fq6-linearly independent elements in Fq6s and s > 3.
However, for this particular case, we can also construct a flag F ′ on Fq12 with

best friend vector (3, 2, 1) as follows: take β ∈ Fq12 \Fq6 and γ ∈ Fq12 \ (Fq6 ⊕Fq2β)
and consider

F ′ = (Fq3 , Fq6 ⊕ Fq2β, Fq6 ⊕ Fq2β ⊕ Fqγ)

that clearly satisfies the required conditions.

Example 4.33. For the type vector (m1, . . . ,m5) = (2, 4, 8, 1, 1) of length r = 5,
we have k2 = 1, k3 = k4 = k5 = k = 2 and m5 = 1 6= l = lcm(m1, . . . ,m5) = 8.
Hence, Theorem 4.28 guarantees the existence of flags on Fqn whenever n = 8s and
s > r−k = 5−2 = 3. However, for every choice of subspaces U and V of dimensions
dim(U) = 11 and dim(V) = 13 satisfying Fq8 ⊂ U ⊂ V ⊂ Fq16 , the flag

F = (Fq2 , Fq4 , Fq8 , U , V)

has best friend vector (2, 4, 8, 1, 1) and it is a flag on Fq16 .

5 Conclusions

In this work we have introduced a new invariant for cyclic orbit flag codes: the
best friend vector. This invariant depends exclusively on the generating flag F and
captures the way the best friend of Orb(F) is obtained taking into account those of
the subspaces of F . At the same time, it conditions the rest of parameters of Orb(F)
and provides more precise information about them than just the best friend. First
of all, it permits to determine the cardinality of the orbit code as well as those of its
projected codes. Moreover, paying attention to the configuration of the best friend
vector we have derived better lower and upper bounds for the minimum distance.
In particular, this study opens the door to find constructions of cyclic orbit flag
codes having a prescribed value of the minimum distance, by taking into account
the best friend vector of the generating flag as a crucial ingredient. On the other
hand, we have also studied how this new invariant and the type vector of a flag are
related. Moreover, we have seen that not every best friend vector can be realized on
Fqn . For flags of length r = 2, we have completely determined the minimum value
of n making a best friend vector (m1,m2) feasible on Fqn . On the other hand, for
higher values of r, we have provided a sufficient condition on n for flags on Fqn with
best friend vector (m1, . . . ,mr) to exist by exhibiting a systematic construction of
such flags. For special choices of the best friend vector, we see that this condition
on n is also necessary. Nevertheless, determining the minimum value of n for which
we can ensure the existence of flags with prescribed best friend vector on Fqn is still
an open question.
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