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Abstract: In this work we study the 2 + 1-Einstein–Klein–Gordon system in the framework of
Gravitational Decoupling. We associate the generic matter decoupling sector with a real scalar
field so we can obtain a constraint which allows us to close the system of differential equations.
The constraint corresponds to a differential equation involving the decoupling functions and the
metric of the seed sector and will be independent of the scalar field itself. We show that when the
equation admits analytical solutions, the scalar field and the self-interacting potential can be obtained
straightforwardly. We found that, in the cases under consideration, it is possible to express the
potential as an explicit function of the scalar field only for certain particular cases corresponding to
limiting values of the parameters involved.

Keywords: black holes; gravitational decoupling; minimal geometric deformation

1. Introduction

As a theory of gravitation for spacetime, Einstein’s theory of General Relativity is con-
sidered one of the most successful theories in sciences, with a wide variety of predictions,
many of them in cosmology, interpreting the dynamics of the universe. Despite the incredi-
ble success of the theory, recently confirmed by the detection of gravitational waves [1,2]
and the reconstruction of the shadow of a supermassive black hole [3,4], some alternative
approaches are still under consideration given that they could play an important role in
some scenarios in which General Relativity could fail. For example, it is a well-known
fact that modified gravity theories usually admit more gravitational wave polarizations,
and, in turn, different interferometric response functions, with respect to standard General
Relativity (see [5], for example). Besides, its geometric character implies that quantizing
gravity means quantizing spacetime itself, and we do not know what this means. Therefore,
it seems natural to look for simpler models that share the important conceptual features of
General Relativity and many of the fundamental issues of quantum gravity. In this sense,
General Relativity in 2 + 1 dimensions is of importance [6]. Despite 2 + 1-dimensional
gravity having no propagating gravitational degrees of freedom, the seminal discovery of
the Bañados–Teitelboim–Zanelli (BTZ) solution [7,8] paved the way towards establishing a
complex catalog of exact solutions due to nontrivial interactions between gravitational and
other fundamental fields. So, three-dimensional gravity has resulted a fertile ground in
which nontrivial interactions between gravitational and fundamental fields produce exact
analytical solutions. The reasons are many, but most of them are simply to obtain some
insights about how to face apparent unsolvable issues in 3 + 1–dimensional models.
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There is a vast amount of literature about solutions in 2+ 1 dimensions in the presence
of matter and fields, for instance, point particle solutions, perfect fluids, cosmological
spacetimes, dilatons, inflatons, and stringy solutions (see [9] and references therein). Simi-
larly, these systems have been the preferable arena for toy models in alternative theories
as in scale-dependent gravity where the matter fields are associated to nonlinear electro-
dynamics [10]. However, probably the most interesting problems arise when the source
corresponds to certain fundamental field, for example a scalar field in the framework of
Einstein–Klein–Gordon (EKG) system. The EKG equations, representing a scalar field
coupled to gravity, have regular, static and stable solutions: the so-called boson stars.
Due to their characteristics of a stable and static nature they may have astrophysical
relevance [11–13]. Either they are related to Dark Matter structures, in the context of Scalar
Dark Matter models or, in general, they could be formed by any of the various scalar fields
that the extensions to the Standard Model of particles or unification theories predict.

Scalar fields are interesting in their own right. The discovery of the Higgs field
has opened the possibility for the existence of other scalar fields, such as quintessence,
which could be responsible for universe dynamics [14,15] or inflation [16,17]. In any
case, scalar fields provide a simple toy model for understanding the behaviour of more
general fields in more complicated scenarios. In the cosmological context, 2 + 1 physics
and scalar fields have a venerable history. There are scalar field solutions related with
Friedmann–Robertson–Walker cosmologies (in flat or curved) spaces, as well as scalar field
solutions for barotropic and linear equations of state coupled with perfect or anisotropic
fluids [9]. In addition, black hole solutions for minimally and nonminimally coupled scalar
fields have been constructed [18–21]. Very recently, a plethora of new analytic black holes
and globally regular three-dimensional horizonless spacetimes have been reported [22].
Specifically, there have been several interesting advances in theories considering stationary
rotating scalar field solutions in 2 + 1 dimensions, using Schwarzschild coordinates frame,
for a static cyclic symmetric metric coupled minimally to a dilation in the presence of
an exponential potential. In this case, it is also possible (or not) to introduce a Maxwell
field [23,24]. In most of these scenarios in which scalar fields play a primary role, the
strategy is always the same: the assumption of the profile of the self-interacting potential
seems to be an obligated requirement.

In this work we consider the 2 + 1 EKG system with the aim to solve it for both the
scalar field and the self-interacting potential without assuming any ansatz as is usually
done in the literature. To this end, we identify the generic source which arises in the
framework of Gravitational Decoupling (GD) [25] by the Minimal Geometric Deformation
(MGD) approach with the matter sector associated with the scalar field (for implementation
in 3 + 1 and 2 + 1 dimensional spacetimes see [26–39] and references therein).

This work is organized as follows. In the Section 2 we briefly review the GD by MGD
in 2 + 1 dimensions with cosmological constant. In Section 3 we introduce the EKG system
and identify the associated matter sector with the decoupling source of well-known models,
namely, the BTZ black hole (BH) and the 2 + 1 BH with Coulomb field in the framework
of the minimal deformation. Section 4 is devoted to the discussion of the extended MGD
corresponding case, while final comments and conclusions are given in the Section 5.

2. Gravitational Decoupling in 2+ 1 Dimensional Space–Time with Cosmological Term

Before entering into the details of the GD by MGD, here we will briefly outline the
main features of the method. The GD can be implemented in two different ways. In its
reduced form, it implies the so-called MGD approach (where only one metric function is
deformed) in which the Einstein’s equations can be decoupled in two sets: a system of
Einstein’s equations whose solution is known (which is used as a seed solution); and another
decoupling sector which corresponds to Einstein’s field equations in 2 + 1 dimensions
and quasi-Einstein field equations in 3 + 1. The MGD-decoupling works as long as the
sources do not exchange energy–momentum among them, which further clarifies that, in
this case, their interaction is purely gravitational. In the extended case, the implementation
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of the GD implies the deformation of both metric potentials, gtt and grr and, contrary to
what happens with MGD, both sources can be successfully decoupled as long as there is
exchange of energy between them.

Let us now go into the details of the method.
Let us consider the Einstein field equations

Gµν + Λgµν = Rµν −
1
2

Rgµν + Λgµν = κ2Tµν, (1)

where Gµν corresponds to the Einstein tensor, Rµν and R are the Ricci tensor and the scalar
curvature respectively, Tµν is the energy–momentum tensor, that by virtue of the Bianchi
identity, fulfills the energy conservation condition Tµ

ν;µ = 0, Λ is the cosmological constant,
κ2 is a coupling constant, that in three dimensions, is measured in units of inverse of mass
and Greek indices are used to label the three–dimensional space–time coordinates, namely,
µ, ν, ρ, .. = 0, 1, 2. Now, let us assume that the total energy–momentum tensor can be
decomposed as

Tµν = T(s)
µν + θµν, (2)

where Tµ(s)
ν = diag(−ρ, pr, p⊥) and θ

µ
ν = diag(−ρθ , pθ

r , pθ
⊥) are sources with a different

nature. For example, T(s)
µν could represent the energy momentum tensor of a generic

anisotropic fluid and θµν could encode the information of some fundamental field, namely
scalar, vector or tensor field. Of course, given the nonlinearity of Einstein equations,
Equation (2) does not necessarily imply that Einstein tensor can be written as

Gµν = G(s)
µν + Gθ

µν. (3)

However, contrary which is broadly believed, such a decomposition can be achieved
in a particular case in circularly symmetric space–times as we shall explain in what follows.
Let us start with a line element

ds2 = −eνdt2 + eλdr2 + r2dφ2, (4)

where ν and λ are functions of the radial coordinate, r, only. Now, replacing (2) and (4) in
(1) we see that the metric must satisfy the Einstein equations, which in terms of the two
sources explicitly leads to,

κ2ρ̃ = −Λ +
e−λλ′

2r
(5)

κ2 p̃r = Λ +
e−λν′

2r
(6)

κ2 p̃⊥ = Λ +
1
4

e−λ
(
−λ′ν′ + 2ν′′ + ν′2

)
, (7)

where the prime denotes derivation with respect to the radial coordinate and we have defined

ρ̃ ≡ ρ + ρθ , (8)

p̃r ≡ pr + pθ
r , (9)

p̃⊥ ≡ p⊥ + pθ
⊥, (10)

as the effective physical quantities.
Now, as was shown in [33], a decoupling in the geometric sector can be successfully

implemented through
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ν = ξ + αg (11)

e−λ = e−µ + α f , (12)

where g and f are the geometric deformation undergone by ξ and µ, “controlled” by the free
parameter α. It is important to note that Equations (11) and (12) are not merely coordinate
transformations. Indeed, they can be viewed as a consequence of a source with energy
momentum tensor given by θµν. Now, replacing (11) and (12) in (5) and (6) we obtain on
the one hand

κ2ρ = −Λ +
e−µµ′

2r
(13)

κ2 pr = Λ +
e−µξ ′

2κ2r
(14)

κ2 p⊥ = Λ−
e−µ
(
µ′ξ ′ − 2ξ ′′ − ξ ′2

)
4

, (15)

with T(s)
µν satisfying,

∇(ξ,µ)
ν Tν(s)

1 = p′ +
1
2
(p + ρ)ξ ′ = 0, (16)

where (ξ, µ) means that the covariant derivative is compatible with the metric (11) and (12)
with α = 0. Since the metric (ξ, µ) is a solution of Einstein Equations (13)–(15) which is
independent of θµν we will say that they represent the seed sector. On the other hand, we
have the set of equations of motion for the source θµν, they read

κ2ρθ = −α f ′

2r
(17)

κ2 pθ
r = αZ1 +

α f ν′

2r
(18)

κ2 pθ
⊥ = αZ2 +

α

4
f ′ν +

α

4
f
(

2ν′′ + ν′2
)

, (19)

where

Z1 =
e−µg′

2r
(20)

Z2 =
1
4

e−µ
(
2g′′ + g′

(
αg′ − µ′ + 2ξ ′

))
. (21)

It is necessary to mention at this point that, although it may seem surprising, the trans-
formation performed in Equations (5)–(7) which brings us to systems of Equations (13)–(15)
and (17)–(19) is extendible to 3 + 1 dimensions, which is why it represents a remarkable
fact. Note that Equations (17)–(19) correspond to a set of quasi-Einstein equations sourced
by θµν satisfying

∇ρθ
ρ
ν = −1

2
αg′(p + ρ)δ1

ν , (22)

which ensures the conservation of the total energy momentum tensor. It is worth mention-
ing that when α = 0 the solution corresponds to that parametrized by the metric of the
seed sector. Now, given that for α 6= 0 the enegy–momentum tensor θµν induce a deforma-
tion in the metric, it is said that (17)–(19) represent the equations of the decoupling sector.
Furthermore, it is noticeable that (22) means that a decoupling without energy–momentum
exchange can be reached either by imposing g′ = 0 or p + ρ = 0. The former requirement
corresponds to the standard MGD where only g−1

rr undergoes a geometrical deformation.
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The latter entails a barotropic equation of state in the isotropic sector. What is more, if
the isotropic sector is vacuum (the exterior of a star), the barotropic condition is trivially
fulfilled and the decoupling without exchange of energy–momentum is straightforward.
We conclude this section pointing out that the conditions for the decoupling of the sources
T(s)

µν and θµν coincides with those found for the 3 + 1 dimensions case reported in Ref. [32]
where is effectively reported that both sources can be successfully decoupled as long as
there is exchange of energy between them.

3. 2 + 1 Einstein–Klein–Gordon System: The Minimal Case

In the previous section we obtained that the decoupling sector is a system of three
equations for five unknowns variables, { f , g, ρθ , pθ

r , pθ
⊥}. Of course, this number decreases

to four unknowns when the minimal geometric deformation is implemented, namely, when
g→ 0 which, besides from (22), implies

∇ρθ
ρ
ν = 0. (23)

The meaning of (23) is clear: both the seed and the decoupling sectors are conserved
independently so that the interaction is only gravitational. However, in order to integrate
the system the imposition of an extra constraint is mandatory. Note that, if θµν remains as a
generic source, any suitable equation of state can be used to reduce the number degrees of
freedom. Indeed, it was the case reported in [31] where the GD by MGD was implemented
to deform a BTZ background by implementing isotropic condition (pθ

r = pθ
⊥), conformally

flat condition (pθ
⊥ = ρθ − pθ

r ) and a linear anisotropic equation of state (ρθ = apθ
r + bpθ

⊥).
In this work we shall follow an alternative strategy. To be more precise, we associate

θµν with a physical field to explore if this extra constraint required to integrate the system
arises naturally. To this end we assume the Einstein–Klein–Gordon system

SEKG =
∫

d4x
√
−g
(

R− 2Λ
2κ

− 1
2

∂µΦ∂µΦ−V(Φ)

)
, (24)

where Φ es the scalar field and V(Φ) the self interaction potential. From (24), we can identify

αθµν = − 2√−g
δLφ

δgµν , (25)

with

Lφ = −
√
−g
(

1
2

∂µΦ∂µΦ + V(Φ)

)
. (26)

Now, when the minimal deformation is impossed, (17)–(19) read (using κ2 = 8π)

−1
2

e−λΦ′2 −V(Φ) =
α f ′

16πr
(27)

1
2

e−λΦ′2 −V(Φ) =
α f ν′

16πr
(28)

−1
2

e−λΦ′2 −V(Φ) =
α
(

f ′ν′ + f
(
2ν′′ + 2ν′2

))
32π

. (29)

Note that Tµν
;µ = 0 leads to

Φ′′ +
(

2
r
+

1
2
(ν′ − λ′)

)
Φ′ =

dV
dΦ

eλ, (30)

which corresponds to the explicit form of the Klein–Gordon equation in circular symmetry.
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Next, a direct comparison between Equations (27) and (29) reveals that

α f ′(rν′ − 2)
r

+ 2α f
(

ν′′ + ν′2
)
= 0, (31)

which corresponds to an extra constraint useful to close the system of equations. Note
that (31) constitutes a differential equation for the decoupling function f (r) which is
independent of both the scalar field Φ and the self–interacting potential V(Φ). In this
sense, we have not only provided a constraint to solve the system but we have reduced the
problem to solve (31) for the decoupling function f for some seed sector. However, note that
given the nonlinearity of (31), finding analytical solutions for f could be a nontrivial task.
Indeed, it will depend on the functional form of the metric potential ν. In the next section
we shall provide the metric functions {ν, µ} associated to BTZ and a 2 + 1 dimensional BH
with a Coulomb field to solve (31) and finally obtain Φ and V(Φ).

3.1. Case 1. BTZ

In this section we assume the well-known static BTZ as the seed solution, which metric
functions are given by

eν = e−µ = −M +
r2

L2 , (32)

where L2 = −1/Λ. In three dimensions the full curvature tensor is defined by the Ricci
tensor, so any smooth solution of Einstein’s equations is a space–time of constant curvature.
This solution is asymptotically anti-de Sitter and has a horizon located at

rH = L
√

M, (33)

which is both a Killing (gtt = 0) and a causal (grr = 0). Replacing (32) in (31) we obtain

f = c1e−
r2

L2 M . (34)

so that the total solution reads

eν = −M +
r2

L2 (35)

e−λ = −M +
r2

L2 + αc1e−
r2

L2 M . (36)

At this point some comments are in order. First, note that the total solution is asymp-
totically anti-de Sitter. Second, its Killing horizon coincides with the BTZ solution but the
causal horizon determined by the condition eλ(rc) = 0 is given by

r2
c

L2 + αc1e−
r2
c

L2 M = M, (37)

which only coincides with the Killing horizon when α = 0. However, rc > rH in general,
so the signature of the metric becomes (−−+) for some rH < r < rc which should be
discarded. In this sense, although the solution can not be interpreted as a proper BH, we
can consider it as the exterior of a 2 + 1 star with radius R > rc.

Next, using (34) in (27)–(29) we obtain Φ as a formal solution

Φ = −
√

αc1

8π

∫ u√
L2M(u2 − L2M)

(
αc1 + e

u2
L2 M µ(u)

)du, (38)



Astronomy 2022, 1 8

from where

V(Φ) =
αc1
(
2L2M− r2)

16πL2M(L2M− r2)
e−

r2

L2 M . (39)

Note that, since an analytical solution for the scalar field can not be obtained, the
interpretation of the potential as a function of Φ is not possible. However, we can go
a step further as long as some appropriate limiting values of the parameters involved
are considered. For example, if the integrand in (38) is expanded around α << 1 and

r2

L2 M << 1, we obtain

Φ2 ≈ αc1

32πM

( r
L2M

)4
. (40)

We see that, in this limit, the scalar field depends on the value of r2. This divergent
behavior is not surprising, it is a known fact that just inherits from BTZ’s solution, which is
asymptotically anti-de Sitter due to the remnant field located in spatial infinity. From (40)
we get,

V(Φ) ≈ 1
L4M2

(
αc1

8π
−
√

αc1M
8π

Φ + 2MΦ2

)
. (41)

At this point some comments are in order. First, note that exponential potentials
such as that of Equation (39) are typical for moduli or dilaton fields [40]. Even more, the
potential (41) looks formally (with the exception of a constant term) as the potential in the
spatially flat (2 + 1) cosmological models with [9]

V(Φ) = A(αΦ2/(1−β) −Φ2β/(1−β)). (42)

Second, it is worth noticing that the first term is a constant which depend on the
decoupling parameter α. Now, it is clear that at the level of the action (24) this constant
modifies the values of the cosmological term Λ. More precisely, the first term of the
potential leads to a effective cosmological constant which reads

Λe f f = Λ + α
κc1

8πL4M2 . (43)

Furthermore, as we are considering a negative cosmological constant, namely
Λ = −1/L2, the effect of the extra term arising from the potential will depend on the
sign of αc1. In summary, the identification of the decoupling sector with the scalar field has
a nontrivial effect on the cosmological constant through the decoupling parameter. Then,
the third term in (41) can be interpreted as the massive term of the scalar field as usual.
Finally, given that the second term in (41) is linear in Φ, it can not be interpreted as a self
interacting term. It is known that polynomial expansions of scalar field potentials that
include odd terms have not yet a clear physical interpretation but in this case is a direct
consequence of the decoupling sector mechanism and cannot be removed.

Despite these issues, the aforementioned linear term could be of importance in relation
with dark energy. Specifically, one of the first models of dark energy [41] considered
to replace the cosmological constant by the energy density of a slowly changing scalar
field with a linear effective potential V(Φ) = V0(1 + βΦ), where β is a parameter such
that |β| is related with the lifetime of the Universe. Even more, it has been argued that
such a potential is favored by anthropic principle considerations [42–45] and can solve
the coincidence problem [46]. Recently, the fate of a universe driven by a linear potential
has been the subject of Refs. [47,48] in light of sequestration of vacuum energy and the
end of the universe. Finally, we note that string cosmology predicts that, in the presence
of suitable wrapped branes, the potential energy grows linearly with the canonically
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normalized inflaton field [49]. In this sense, our model indicates that MGD could provide a
natural way of creating dark energy- or certain string-like mechanism in 2 + 1 dimensions.

3.2. Case 2. 2 + 1 Dimensional BH with a Coulomb Field

In this case, we consider the 2 + 1–dimensional BH with Coulomb field given by

eν = e−µ = −M +
r2

L2 +
4q2

3r
, (44)

as the seed solution. As in the BTZ case, the Killing and the causal horizons coincides and
are located at

r2
H

L2 +
4q2

3rH
= M. (45)

Now, from (31) the decoupling function is given by

f = c1r4/3e−
r

L2 M2 (4q2+M)(2q2 −Mr)
−
(

4
3+

8q4

L2 M3

)
, (46)

from where the total solution reads

eν = −M +
r2

L2 +
4q2

3r
(47)

e−λ = −M +
r2

L2 +
4q2

3r
+ αc1r4/3e−

r
L2 M2 (4q2+M)(2q2 −Mr)

−
(

4
3+

8q4

L2 M3

)
(48)

In contrast to the previous case, we can enforce eν(rH) = e−λ(rH), namely

α =
e

rH(MrH+4q2)
L2 M2

(
2q2 −MrH

) 8q4

L2 M3 +
4
3
(

L2(3MrH − 4q2)− 3r3
H
)

3c1L2r7/3
H

, (49)

so that the total solution has a well-defined event horizon. Note also that, e−λ has a critical
point at

r∗ =
2q2

M
, (50)

which can be hidden in the interior horizon when r∗ < rH .
For the expansion argued above α << 1, q2/r << 1 and r2/L2M << 1, the the field

takes the form

Φ ≈
√

αc1

32πM7/3

( r
L2M

)2
, (51)

again presenting an r2-type divergence inherited from the asymptotic behavior present
in the seed solution. We emphasize that this is a known fact and does not depend on our
development. The potential associated to this solution reads,

V(Φ) =
1

L4M2

(
αc1

8πM4/3 −
√

αc1

8πM1/3 Φ
)

, (52)

which again looks similar to Equation (42), including the extra constant term. As we
already said, this produces a modification in the cosmological constant. Also, in this case,
the potential depends on the dark-energy or string-like linear term.
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4. 2 + 1 Einstein–Klein–Gordon System: Extended Case

In the previous section we reduced the problem of solving the Einstein–Klein–Gordon
system to seek for solutions of the constraint involving the decoupling function f through
the MGD approach. It is worth mentioning that solving the same problem without MGD is
clearly more involved in the sense that two extra constraints are required to close the system.
However, in the framework of MGD, we reduce the degrees of freedoms by providing a
seed solution so the other condition arise naturally from the structure of the matter sector
associated to the scalar field. Nevertheless, the original of horizon is lost, given that only the
grr function is modified. In this regard, if we want to conserve the same horizon structure,
we can use the extended version of MGD where g 6= 0. In this case, Equation (25) reads

−1
2

e−µΦ′2(α f eµ + 1)−V(Φ) =
α2 f ′

16πr
, (53)

1
2

e−µΦ′2(α f eµ + 1)−V(Φ) = α

(
α f (αg′ + ξ ′)

16πr
+

αe−µg′

16πr

)
, (54)

−1
2

e−µΦ′2(α f eµ + 1)−V(Φ) =
α

32π

(
α
(

f ′
(
αg′ + ξ ′

)
+ f

(
2αg′′ +

(
αg′ + ξ ′

)2
+ 2ξ ′′

))
+e−µ

(
2αg′′ + αg′

(
αg′ − µ′ + 2ξ ′

)))
, (55)

from where

f ′(αrg′ + rξ ′ − 2)
r

+ f
(

2αg′′ +
(
αg′ + ξ ′

)2
+ 2ξ ′′

)
+ e−µ

(
2g′′ + g′

(
αg′ − µ′ + 2ξ ′

))
. (56)

As a particular case, let us consider again the BTZ geometry as the seed solution,

eξ = e−µ = M− r2

L2 . (57)

Now, a straightforward computation reveals that, after choosing

g =
2
α

log
(

αr− 2c1

c2

)
, (58)

with c1 and c2 constants with dimensions of length, we obtain

f =

(
−M +

r2

L2

)
4c1L2r3 − αr6 + L2c3

(αr3 − 2c1L2M)2 = 0, (59)

with c3 a constant with dimensions of a length to the power of three. It is worth mentioning
that Equation (58) is the simplest choice which allows analytical solution for f . Another
possibility could be assuming some equations of state of the θ sector but is easy to check
that the classical relations; namely, barotropic and polytropic equations, lead to complicated
relations which cannot be integrated analytically. Now, the total solution reads

eν =

(
−M +

r2

L2

)(
αr− 2c1

c2

)2
, (60)

e−λ =

(
−M +

r2

L2

)(
1 + α

4c1L2Mr3 + c3L2 − αr6

(αr3 − 2c1L2M)2

)
. (61)

Note that, Equations (60) and (61) looks formally as solutions with the same horizon
structure that BTZ.

Then, with the aim to recover the BTZ solution when α→ 0, Equation (60) reveals that
c1/c2 = −1/2. Moreover, this condition implies that eν has no extra roots so that the Killing
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horizon coincides with its BTZ counterpart. Second, to ensure that the causal horizon is the
same as in the BTZ solution, we require that the factor

1 + α
4c1L2Mr3 + c3L2 − αr6

(αLr3 − 2c1L3M)2 , (62)

has no real roots. This condition leads to

αc3L2 + L6M2 − 2α
(

L2 − 1
)

L2Mr3 + α2
(

L2 − 1
)

r6 6= 0, (63)

which can be achieved if we choose L = 1. Finally, from (61) we must ensure that α > 0
to avoid the apparition of critical points. For α << 1 and r2/L2M << 1 the field takes
the form

Φ2 ≈ α2

4π
r, (64)

and the potential

V(Φ) ≈ α5M
128π2Φ2(2πΦ2 − α)

. (65)

We observe that this potential is regular whenever Φ 6=
√

α/2π. Besides, as it can not
be written in terms of powers of Φ its interpretation is less straightforward in comparison
with the previous cases under consideration. In any case, we have obtained, for the
same limit considered previously, an analytical expression for the self-interaction potential
using the extended MGD method, which in itself provides an advantage in the sense
that it represents a more general method. The case of the Coulomb field was considered
but without the feasibility of finding analytical solutions it does not represent such an
interesting result.

Before concluding this section we would like to discuss some aspects about the asymp-
totic behaviour of the solutions (60) and (61). Note that, although grr is asymptotically
BTZ as r → ∞, the tt component has two extra terms which violates the desired limit.
This issue could be addressed if we consider that the geometry described by (60) and (61),
which we shall callM1, must be matched with another geometryM2 (the BTZ solution for
example) though the Darmois conditions. In this sense, the total manifoldM corresponds
the unionM1 ∪M2. The above strategy has been broadly used to construct, for example,
vacuum bubbles characterized by having an inner vacuum region separated by a thin layer
of matter from an outer region in the context of black holes, wormholes solutions (see for
example [50,51], and references there in).

The other possibility is to set the free parameters in order to avoid such a undesired
behaviour as we shall work out in what follows. First, let us consider c2 = a(1− b)−1

and c1 = −a(1 + α)1/2(1− b)−1/2 with a a constant with dimensions of length and b is a
dimensionless constant. With this choice, Equation (60) reads,

eν =

(
−M +

r2

L2

)(
α(1− b)r

a
+ (1 + α)1/2

)2

, (66)

which ensures the desired asymptotic behaviour when b→ 1, namely

eν =

(
−M +

r2

L2

)
(1 + α) (67)

Besides, the original BTZ solution is recovered when α → 0 as required. In the case
of Equation (61) we obtain two solutions depending on the choice of c3. For example,
if we replace the expressions of c1 and c2 previously defined, but leaving c3 arbitrary
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we obtain that (61) reduces to e−µ in (57). However, by taken c3 = a4(α + 1)(1− b)−2,
Equation (61) reads

e−λ =

(
−M +

r2

L2

)(
1 +

αa2

L2M2

)
, (68)

which reduces to the BTZ metric when α → 0 as required. However, in this case the
scalar field and its corresponding self-interaction potential are trivial. Indeed, an explicit
computation reveals that

Φ = Φ0 = constant (69)

V(Φ) = − a2α2

8πL4M2 = constant. (70)

5. Conclusions

The existence of stable and regular solutions to the Einstein–Klein–Gordon equations
suggest that self-gravitating objects formed by scalar fields can be astrophysically relevant.
The study of the gravitational interaction between several objects of this type with other
sources could be essential in many phenomena, so, in this sense, any related study may be
useful. In this work we have implemented the Gravitational Decoupling in the framework
of the Minimal Geometric Deformation approach to the Einstein–Klein–Gordon system in
2 + 1 dimensional spacetimes. We found that after identifying the decoupling sector with
the energy–momentum associated to the scalar field, the system of differential equations
lead to a constraint which allows to obtain the decoupling function. Besides, the method
allows us to obtain analytical solutions for the scalar field and the self-interacting potential
after considering some limiting values of the parameters involved performing the expan-
sion around α << 1 and r2/L2M << 1. In this sense, we conclude that the gravitational
decoupling can be used to solve, at least to some extent, the Einsten-Klein–Gordon sys-
tem without assuming any ansatz for the self-interacting potential, as is usually done in
the literature.

In order to have a more complete view of the problem, a different seed solution could
be considered in order to achieve the gravitational decoupling. Then, it would be interesting
to compare the results obtained for the scalar fields and their respective self-interaction
potentials in order to obtain more clear interpretations. A possible generalization is to
use the complete BTZ solution [7] (taking into account symmetry considerations over
the metric) containing now two integration constants, M and J, the mass and angular
momentum of the black hole. This solution could be of interest since it also has two Killing
vectors (instead of one) associated with their respective space–time symmetries.

Another possible extension of the present work may consist in considering more
general couplings and possibly including other fields in the treatment. Einstein-dilaton
solutions in (2 + 1) gravity could be studied, and it could even be extended to the
Einstein–Maxwell-dilaton case. There, the Schwarzschild coordinate frame is used to
determine static cyclic symmetric metrics for (2 + 1) Einstein equations coupled to an
electric Maxwell field and a dilaton in the presence of an exponential potential. The general
solution can be derived and identified with the Chan–Mann charged dilaton solution [23].
In this sense, a family of stationary dilaton solutions can be generated; the solutions pos-
sessing a richer variety of parameters include dilaton and cosmological constants, charge,
momentum, and mass. These solutions have been characterized by their quasilocal en-
ergy, mass, and momentum by means of expansions at spatial infinity. This fact could
be interesting to connect with the interpretation of the scalar potential. These and other
considerations can and will be addressed in future research.
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