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Introducción

´(English version on page 33)

El uso de códigos flag en el ámbito de la codificación de red fue recientemente
propuesto por Liebhold, Nebe and VAzquez-Castro como una generalización de
los códigos de dimensión constante. El primer trabajo en esta línea de investi-
gación es [54] y, desde entonces, varios autores han contribuido con los recientes
trabajos [2, 3, 4, 5, 6, 7, 8, 9, 23, 47, 52, 53, 59].

Esta tesis, dedicada al estudio de diferentes aspectos de la teoría de códigos
flag, se presenta como el compendio de los siguientes trabajos, que el lector puede
encontrar, en este orden, en los Capítulos 1-9.

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, Flag
codes from planar spreads in Network Coding, Finite Fields and their
Applications, Vol. 68 (2020), 101745.

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, Opti-
mum distance flag codes from spreads via perfect matchings in graphs,
Journal of Algebraic Combinatorics (2021), https://doi.org/10.
1007/s10801-021-01086-y.

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, An
orbital construction of optimum distance flag codes, Finite Fields and
their Applications, Vol. 73 (2021), 101861.

• C. Alonso-González and M. A. Navarro-Pérez, Cyclic orbit flag codes,
Designs, Codes and Cryptography, Vol. 89 (2021), 2331-2356.

• C. Alonso-González and M. A. Navarro-Pérez, Consistent flag codes,
Mathematics, Vol. 8(12) (2020), 2234.

• M. A. Navarro-Pérez and X. Soler-Escrivà, Flag codes of maximum
distance and constructions using Singer groups, https://arxiv.
org/abs/2109.00270 (preprint)

• C. Alonso-González and M. A. Navarro-Pérez, On generalized Ga-
lois cyclic orbit flag codes, https://arxiv.org/abs/2111.09615
(preprint).

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, Flag
codes: distance vectors and cardinality bounds, https://arxiv.org/
abs/2111.00910 (preprint).

• C. Alonso-González and M. A. Navarro-Pérez, A combinato-
rial approach to flag codes, https://arxiv.org/abs/2111.15388
(preprint).
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New insights into the study of flag codes

En esta primera parte, detallamos los resultados más importantes de dichos
trabajos, haciendo especial énfasis en las conexiones que pueden establecerse entre
ellos. Para ello, recordaremos algunas definiciones y resultados conocidos de la
teoría de códigos de dimensión constante, así como el estado del arte de la teoría
de códigos flag, en el que este tesis se enmarca.

Códigos de dimensión constante

El término codificación de red, introducido en [1], hace referencia al método de
envío de información a través de redes, modeladas como multigrafos dirigidos
acíclicos con, al menos, un emisor y un receptor, en las que los nodos intermedios,
en lugar de simplemente reenviar los paquetes de información (vectores) que
reciben, tienen la capacidad de realizar combinaciones lineales de dichos paquetes.
En el mismo trabajo se prueba que este nuevo comportamiento de los nodos
intermedios permite mejorar la velocidad de la comunicación, como podemos
observar en el siguiente ejemplo, en el que consideramos el envío de mensajes a
través de la conocida red de mariposa.

S

R1 − {a}

R2 − {a, b}

a

b b

a

a

aa

a

b

S

R1 − {a, a+ b}

R2 − {a+ b, b}

a

b b

a+ b

a+ b

a+ ba

a

b

Figure 1: Red de mariposa

Notemos que en el primer caso, en el que los nodos intermedios simplemente
reenvían la información recibida, un solo uso del canal es insuficiente si queremos
que los dos receptores, R1 y R2, reciban ambos mensajes a y b. Esto se debe
a que el nodo señalado en rojo actúa como “cuello de botella” y, aunque reciba
los dos mensajes a y b, solo puede reenviar uno de ellos en cada uso del canal.
Sin embargo, la segunda situación, en la que permitimos que este nodo calcule y
envíe combinaciones lineales de a y b, los dos receptores pueden recuperar a y b
en un solo uso del canal.

Sin embargo, un aspecto negativo de la codificación de red es al alta vul-
nerabilidad ante la propagación de errores: basta observar que la presencia de
errores en un determinado paquete afecta a también a todos aquellos obtenidos
como combinaciones lineales que lo involucren. Otra desventaja de este tipo de
redes que podemos apreciar en el ejemplo anterior es que los receptores necesitan
conocer qué combinaciones lineales se han producido durante la comunicación
para poder recuperar a y b a partir de los paquetes recibidos. Como solución
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a este problema, en [45], Koetter and Kschischang proponen el uso de subespa-
cios vectoriales (en lugar de vectores) como palabras código y, puesto que estos
objetos son invariantes bajo el uso de combinaciones lineales, ni el emisor ni los
receptores necesitan saber cómo funciona la red. En [45], encontramos el primer
estudio (desde un punto de vista algebraico) sobre codificación de red a través de
redes no-coherentes, es decir, aquellas en las que los nodos intermedios realizan
combinaciones lineales aleatorias y la topología de la red no es necesariamente
conocida por los usuarios. En dicho artículo, los autores presentan la noción de
código de subespacio y definen una métrica adecuada para el conteo de errores
y borrados que puedan producirse durante el proceso de comunicación en este
nuevo escenario.

A continuación, recordamos algunos elementos clave en la teoría de códigos
de subespacio. Para ello, primero, fijamos la notación que utilizaremos durante
el resto de esta memoria:

• Sea q una potencia de primo,

• Fq denota el cuerpo finito con q elementos,

• k y n son enteros positivos satisfaciendo 1 6 k < n.

• Fnq representa el espacio vectorial n-dimensional sobre el cuerpo Fq.

• La variedad de Grassamann (o la Grassmanniana) Gq(k, n) es el con-
junto de Fq-subespacios vectoriales k-dimensionales de Fnq .

• La geometría proyectiva de Fnq es el conjunto Pq(n) que consta de
todos los Fq-subespacios vectoriales de Fnq .

La geometría proyectiva Pq(n) es un espacio métrico. En general, dados dos
subespacios U ,V ∈ Pq(n), su distancia de subespacio es

dS(U ,V) = dim(U + V)− dim(U ∩ V). (1)

En caso de que los subespacios U y V tengan la misma dimensión, pongamos
dim(U) = dim(V) = k, el cálculo de su distancia se reduce a

dS(U ,V) = 2
(
k − dim(U ∩ V)

)
. (2)

Esta métrica sobre Pq(n) abre la puerta al uso de la siguiente familia de códigos
correctores de errores, introducida en [45].

Un código de subespacio de longitud n es un subconjunto no vacío C ⊆
Pq(n). Si todas las palabras código (subespacios de Fnq ) tienen la misma
dimensión 1 6 k < n, decimos que C es un código de dimensión constante
(en Gq(k, n)).
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Dado un código de dimensión constante C ⊆ Gq(k, n) con |C| > 2, su distancia
mínima se define como

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V}.

Si |C| = 1, convenimos dS(C) = 0. En general, y de acuerdo con (2), la distancia
dS(C) es un entero par acotado por

0 6 dS(C) 6
{

2k si 2k 6 n,
2(n− k) si 2k > n.

(3)

El cardinal de un código de dimensión constante indica la cantidad de men-
sajes diferentes que este puede codificar. Por ello, una vez fijados el resto de
parámetros, existe un gran interés en obtener códigos de dimensión constante de
gran tamaño. En concreto, dados 1 6 k < n y un posible valor para la distancia
d, escribimos Aq(n, d, k) para denotar el máximo cardinal posible para códigos en
Gq(k, n) con distancia mínima d. Obtener el valor exacto Aq(n, d, k) para cada
elección de los parámetros no es, en absoluto, una tarea sencilla. Como con-
secuencia, el estudio de cotas (tanto inferiores como superiores) para este valor
ha dado lugar a multitud de trabajos en los últimos años como, por ejemplo,
[22, 35, 41, 43, 48, 66, 67, 70, 71, 73].

Por otra parte, la distancia mínima de un código de dimensión constante está
íntimamente relacionada con su capacidad para detectar y corregir errores. Con-
cretamente, un código de dimensión constante C detecta hasta dS(C) errores y
puede corregir hasta dS(C)/2− 1. Por ende, desde su aparición en 2008, y hasta
la actualidad, se ha prestado especial atención al estudio de códigos de dimensión
constante de máxima distancia. En particular, en [30], los autores introducen la
siguiente familia de códigos de dimensión constante de distancia máxima, para
dimensiones 1 6 k 6

⌊
n
2

⌋
.

Un códgigo spread parcial de dimensión k (or un k-spread parcial) de Fnq
es un subconjunto C de Gq(k, n) en que subespacios diferentes se cortan
siempre trivialmente. Equivalentemente, C es un k-spread parcial si cada
vector no nulo de Fnq vive, a lo sumo, en un elemento de C.

El cardinal de un k-spread parcial C de Fnq está acotado superiormente por el
valor

|C| 6 Aq(n, 2k, k) 6
qn − qr

qk − 1
, (4)

donde r es el resto de dividir n entre k. Como caso particular de estos códigos,
tenemos los códigos spread , introducidos en [56].
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Un (código) k-spread S of Fnq es un subconjunto de Gq(k, n) tal que cada
vector no nulo de Fnq vive en uno, y solo en uno, de los elementos de S.
En otras palabras, un k-spread es una partición de Fnq en subespacios k-
dimensionales.

Los k-spreads son objetos clásicos ampliamente estudiados desde el prisma de
la Geometría Finita (véase [65]). Su existencia está condicionada por la relación
entre k y n. Más concretamente, k debe ser un divisor de n. En esta situación,
el cardinal de cualquier k-spread S de Fnq es

|S| = Aq(n, 2k, k) =
qn − 1

qk − 1
.

En este sentido, los códigos spread son óptimos ya que alcanzan la distancia má-
xima para su dimensión k y tienen el mejor cardinal posible, fijadas su dimensión
y distancia. El estudio de esta familia de códigos de dimensión constante ha
dado lugar a multitud de trabajos en la última década, basta ver [56, 57, 68, 69].
Como ejemplo de k-spread de Fnq , tenemos la siguiente construcción, presentada
por primera vez en el contexto de la codificación de red en [56, Teorema 1]. Dados
enteros positivos k y s, consideremos n = ks y la matriz companion P ∈ GL(k, q)
de un polinomio mónico e irreducble de grado k en Fq[x]. El conjunto

S(s, k, P ) = {rowsp(S) | S ∈ Σ} ⊆ Gq(k, n) (5)

es un k-spread de Fnq , donde Σ es el conjunto de matrices

Σ = {(A1|A2| . . . |As)
∣∣Ai ∈ Fq[P ]} (6)

tales que el primer bloque no nulo (por la izquierda) es la matriz identidad Ik. En
el ámbito de la Geometría Finita, esta construcción se debe a Segre (véase [65])
y se obtiene por aplicación de técnicas conocidas como reducción del cuerpo
a la Grassmanniana de rectas de Fs

qk
.

Otra familia de códigos de dimensión constante que ha despertado el interés de
los expertos es la de los códigos orbitales. Estos códigos aparecen por primera
vez en [69] como órbitas de la acción transitiva del grupo general lineal GL(n, q)
sobre la Grassmanniana Gq(k, n) dada por

Gq(k, n)×GL(n, q) −→ Gq(k, n)
(U , A) 7−→ U · A = rowsp(UA),

(7)

donde U ∈ Fk×nq es cualquier matriz generadora del subespacio U .
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Dados U ∈ Gq(k, n) y un subgrupo H de GL(n, q), llamamos código orbital
generado por U bajo la acción de H a la órbita

OrbH(U) = {U · A | A ∈ H} ⊆ Gq(k, n).

El estabilizador de U (en H) es el subgrupo de H dado por

StabH(U) = {A ∈ H | U · A = U}.

En [69] se prueba que la estructura orbital de un código simplifica en gran
medida el cálculo de sus parámetros y también es útil a la hora de encontrar
algoritmos de decodificación eficientes. Además, en el mismo artículo, los autores
exhiben construcciones orbitales con parámetros óptimos, motivando así, más si
cabe, el uso de códigos orbitales. En especial, prueban que el k-spread S(s, k, P )
dado en la expresión (5) es la órbita del subespacio U = rowsp(Ik | 0k×(n−k))
bajo la acción del subgrupo generado por el siguiente conjunto de matrices por
bloques


Ik A1 · · · As−1

0 Ik · · · 0
...

...
. . .

...

0 0 · · · Ik

 ,


0 Ik A1 · · · As−2

Ik 0 0 · · · 0

0 0 Ik · · · 0
...

...
...

. . .
...

0 0 0 · · · Ik

 , . . . ,


0 . . . 0 Ik
0 . . . Ik 0
... . .

. ...
...

Ik . . . 0 0


(8)

con Ai ∈ Fq[P ], para todo 1 6 i 6 s− 1.
Por otra parte, en [68] se hace un estudio específico de códigos orbitales cícli-

cos : aquellos obtenidos como órbitas de grupos cíclicos de GL(n, q). En dicho
trabajo, los autores utilizan el isomorfismo Fq-lineal entre el cuerpo Fqn y el
espacio vectorial Fnq y prueban que, para cada divisor k de n, la órbita

S = OrbF∗qn (Fqk) = {Fqkα | α ∈ F∗qn} (9)

es un k-spread del cuerpo Fqn , con estabilizador StabF∗qn (Fqk) = F∗
qk
. En este

caso, se utiliza la acción natural del grupo multiplicativo F∗qn sobre los ele-
mentos del cuerpo Fqn . Este mismo enfoque aparece de nuevo en [25], donde
Gluesing-Luerssen et al. presentan la familia de códigos β-cíclicos, es decir,
aquellos obtenidos como órbitas bajo la acción de subgrupos 〈β〉 de F∗qn . Más
concretamente, dado un Fq-espacio vectorial U ⊆ Fqn , el código (orbital) β-cíclico
generado por U es la órbita

Orbβ(U) = {Uβi | 1 6 i 6 |β|},

donde Uβi = {uβi | u ∈ U}. En ese mismo trabajo, los autores estudian los
posibles parámetros de los códigos β-cíclicos en función de su mejor amigo,
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es decir, el mayor subcuerpo de Fnq sobre el que los elementos de la órbita son
espacios vectoriales.

Códigos flag : el estado del arte

Cuando trabajamos con códigos de dimensión constante, cada palabra código
(un subespacio) es enviada haciendo un solo uso del canal. Sin embargo, esta
operación puede repetirse tantas veces como sea preciso. En tal caso, hablamos de
códigos (de subespacio) multi-disparo, cuyo estudio se aborda por primera
vez en [60]. En este contexto, las palabras código son elementos de Pq(n)r,
es decir, sucesiones de r subespacios de Fnq . Estos códigos son una alternativa
muy interesante a los códigos de subespacio cuando queremos obtener mejores
parámetros pero no podemos modificar los valores de n o q. Por otra parte,
trabajar con códigos multi-disparo en Pq(n)r es más sencillo que hacerlo con sus
códigos de subespacio equivalentes de Fnrq .

Como ejemplo de códigos multi-disparo, tenemos la familia de códigos flag ,
cuyo uso en el ámbito de la codificación de red fue introducido por Liebhold et al.
en sus trabajos [52, 53, 54]. A continuación, recordaremos algunas definiciones
básicas en esta línea de investigación.

Dados enteros 1 6 t1 < · · · < tr < n, llamamos flag de tipo (t1, . . . , tr) en
Fnq a toda sucesión F = (F1, . . . ,Fr) de Fq-subespacios vectoriales de Fnq
tales que

{0} ( F1 ( · · · ( Fr ( Fnq .

y dim(Fi) = ti, para todo 1 6 i 6 r. La variedad de flags de tipo (t1, . . . , tr)
es el conjunto Fq((t1, . . . , tr), n) de todos los flags de ese tipo. Llamamos
tipo completo al vector (1, . . . , n−1) y nos referimos a los flags de este tipo
como flags completos.

La variedad de flags también tiene estructura de espacio métrico, de hecho, en
[54], los autores analizan varias distancias para flags y concluyen que la siguiente
es la más apropiada para cuantificar errores y borrados en el contexto de la
codificacción de red. Dados dos flags F = (F1, . . . ,Fr) y F ′ = (F ′1, . . . ,F ′r) de
tipo (t1, . . . , tr), su distancia de flags es

df (F ,F ′) =
r∑
i=1

dS(Fi,F ′i). (10)

Esta métrica generaliza la distancia de subespacio definida en (2) a la variedad
de flags. Por analogía a los códigos de dimensión constante, definimos los códigos
flag (de tipo constante) de la siguiente forma.
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Dada una sucesión de enteros positivos 1 6 t1 < · · · < tr < n, llamamos
código flag de tipo (t1, . . . , tr) en Fnq a todo subconjunto no vacío C de
Fq((t1, . . . , tr), n). Su distancia (de flags) mínima es

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′} (11)

siempre que |C| > 2. En otro caso, convenimos df (C) = 0.

El grupo general lineal GL(n, q) también actúa transitivamente sobre la va-
riedad de flags Fq((t1, . . . , tr), n) vía

F · A := (F1 · A, . . . ,Fr · A), (12)

donde Fi·A es el subespacio definido como en (7). En consecuencia, para cualquier
flag F ∈ Fq((t1, . . . , tr), n), se cumple Fq((t1, . . . , tr), n) = OrbGL(n,q)(F). El esta-
bilizador asociado a esta órbita es un subgrupo de matrices triangulares inferiores
por bloques, donde el tamaño de dichos bloques está determinado por los enteros
positivos t1, t2 − t1, . . . , tr − tr−1 y n − tr. Esta acción permite obtener códigos
flag como órbitas bajo la acción de subgrupos de GL(n, q).

Dados un flag F ∈ Fq((t1, . . . , tr), n) y un subgrupo H de GL(n, q). El
código flag orbital generado por F bajo la acción de H es

OrbH(F) = {F · A | A ∈ H}.

Su estabilizador asociado es el subgrupo de H

StabH(F) = {A ∈ H | F · A = F}.

Este es el enfoque utilizado en [54], donde el lector puede encontrar las
primeras construcciones de códigos flag orbitales, todas ellas con estabilizador
trivial, y un algoritmo de decodificación sobre el canal de borrado. En el mismo
trabajo, los autores también generalizan la noción de código matricial (dotado
de la métrica de rango) al contexto de los códigos flag.

Tal y como ocurre con los códigos de dimensión constante, determinar el valor
Afq (n, d, (t1, . . . , tr)), es decir, el máximo cardinal posible para códigos flag en
Fq((t1, . . . , tr), n) con distancia d, es un problema de gran interés. Esta cuestión
ha sido recientemente abordada por Kurz en su trabajo [47], donde desarrolla
técnicas para obtener cotas inferiores y superiores para Afq (n, d, (1, . . . , n − 1)).
En el mismo trabajo, podemos encontrar una lista exhaustiva de dichas cotas
para valores pequeños de n, así como algunos ejemplos fuera del tipo completo.
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Nuestras contribuciones a la teoría de códigos flag

A lo largo de esta sección, detallamos los avances en la teoría de códigos flag
derivados de los trabajos presentados en esta tesis. Algunos de ellos ya han sido
publicados (Capítulos 1-5). Otros se encuentran en proceso de revisión por parte
de las revistas correspondientes (Capítulos 6-9). A continuación, presentamos
algunos de los resultados más relevantes que el lector puede encontrar en dichos
trabajos. Con el objetivo de mostrar de forma clara las conexiones entre ellos,
seguiremos este orden:

Capítulo 1 → Capítulo 2 → Capítulo 3 → Capítulo 6 → Capítulo 4 →
Capítulo 7 → Capítulo 5 → Capítulo 8 → Capítulo 9.

Empezaremos, como si de un cuento se tratara, por el principio. El origen de
esta tesis, y el verdadero leitmotiv de nuestros trabajos, es la relación existente
entre un código flag y sus códigos proyectados: una familia de códigos de
dimensión constante que podemos asociar de forma natural al código flag de par-
tida. El concepto de código proyectado (de un código flag) aparece por primera
vez en el Capítulo 1 y juega un papel protagonista en el resto nuestros trabajos.
A continuación, daremos la definición formal de estos códigos.

Consideremos una sucesión de enteros 1 6 t1 < · · · < tr < n. Para cada
índice 1 6 i 6 r, utilizaremos la proyección

pi : Fq((t1, . . . , tr), n)→ Gq(ti, n) (13)

dada por pi((F1, . . . ,Fr)) = Fi, para definir el i-ésimo código proyectado de la
siguiente forma.

(Capítulo 1, Definición 3.6) Sea C un código flag de tipo (t1, . . . , tr) en
Fnq . Para cada 1 6 i 6 r, el i-ésimo código projectado de C es el código de
dimensión constante

Ci = pi(C) = {pi(F) | F ∈ C} ⊆ Gq(ti, n). (14)

Notemos que, para cada 1 6 i 6 r, la desigualdad |Ci| 6 |C| se cumple
trivialmente. En caso de darse la igualdad para cada valor 1 6 i 6 r, tenemos la
siguiente familia de códigos flag.

(Capítulo 1, Definición 3.10) Decimos que un código flag C de tipo
(t1, . . . , tr) en Fnq es disjunto si

|C| = |C1| = · · · = |Cr|. (15)

En otra palabras, si para cada 1 6 i 6 r, la proyección pi restringida a C
es inyectiva.
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Desde el punto de vista geométrico, un código flag es disjunto si flags dife-
rentes en él tienen todos sus subespacios distintos. Estos dos conceptos –el de
códigos proyectados y la disyunción de códigos flag– fueron introducidos en nues-
tro primer trabajo [8] (Capítulo 1), como herramientas cruciales para el estudio
de códigos flag de máxima distancia. Dado un código flag C ⊆ Fq((t1, . . . , tr), n),
su distancia mínima es un entero par df (C) que satisface

0 6 df (C) 6
∑
2ti6n

2ti +
∑

2ti>n

2(n− ti). (16)

En el caso de que df (C) alcance esta cota superior, decimos que C es un código flag
de distancia óptima. El siguiente resultado caracteriza a esta familia de códigos
en función de sus códigos proyectados.

(Capítulo 1, Teorema 3.11) Un código flag es de distancia óptima si,
y solo si, es disjunto y todos sus códigos proyectados alcanzan la distancia
máxima para las dimensiones correspondientes.

Notemos que, en particular, para dimensiones hasta bn
2
c, los códigos proyec-

tados de un código flag de distancia óptima son spreads parciales, todos ellos del
mismo cardinal. Por ello, y motivados por las buenas propiedades de los códigos
spread, nos planteamos la posibilidad de construir códigos flag de distancia óp-
tima con un spread como código proyectado. En tal caso, debido a la condición
de disyunción, solo un spread puede aparecer como proyectado. Este tema será
ampliamente abordado en el Capítulo 1. Además, en el Teorema 3.12, probamos
que, si un divisor k de n forma parte del vector tipo de un código flag de distancia
óptima C ⊆ Fq((t1, . . . , tr), n), entonces

|C| 6 qn − 1

qk − 1

y la igualdad se alcanza si, y solo si, el código proyectado de dimensión k es un k-
spread de Fnq . En cierto sentido, los códigos flag de distancia óptima con un spread
entre sus códigos proyectados heredan las buenas propiedades del spread. Esta
idea aparece constantemente a lo largo de los Capítulos 1-3 y 6, donde, usando
diferentes enfoques, construimos códigos flag de distancia óptima con un spread
como código proyectado para cada situación posible. En concreto, en el Capítulo
1, atacamos este problema para el tipo completo y concluimos que, en caso de
existir códigos flag de distancia óptima en Fnq con un k-spread como proyectado,
debe ocurrir n = 2k o k = 1 y n = 3 (Capítulo 1, Proposición 4.1) y probamos
su existencia para el caso n = 2k, para cualquier elección del entero positivo k,
al exhibir una construcción sistemática con el k-spread S(2, k, P ) definido en (5)
como código proyectado. Los detalles de esta construcción pueden encontrarse
en el Capítulo 1 (Teorema 4.5).

22



Introducción

El caso k = 1 y n = 3 forma parte del estudio que realizamos en el Capítulo 2,
donde tratamos el problema general de construir códigos flag de distancia óptima
en Fnq con un k-spread como código proyectado, ahora sí, para cualquier divisor
k de n. En primer lugar, probamos que tan solo los vectores tipo (t1, . . . , tr)
satisfaciendo

k ∈ {t1, . . . , tr} ⊆ {1, . . . , k, n− k, . . . , n− 1}. (17)

son admisibles para nuestro objetivo. Esta condición es, hasta cierto punto,
razonable. Los códigos k-spread alcanzan la maxima distancia y tienen el mejor
cardinal posible. ¿El precio a pagar para poder construirlos? Su dimensión k
debe ser un divisor de n. En nuestro caso, los códigos flag de distancia óptima
con un k-spread como código proyectado tienen también parámetros óptimos. A
cambio, la condición anterior sobre el vector tipo es necesaria. El resto del trabajo
está dedicado a la construcción sistemática de estos códigos, para cada elección
de los parámetros. Esta construcción se presenta de forma gradual y se apoya
en dos pilares fundamentales: el primero es la existencia de emparejamientos
perfectos en grafos bipartitos regulares, que nos permite dar códigos flag de
distancia óptima de tipo (1, n − 1) con el spread de rectas de Fnq como código
proyectado (Capítulo 2, Teorema 3.6). Por otra parte, utilizando técnicas de
reducción del cuerpo obtenemos una nueva construcción de tipo (k, n−k) con
un k-spread Desarguesiano como código proyectado (Teorema 3.8), para cualquier
valor de k. A continuación, extendemos esta construcción al vector admisible
completo (1, . . . , k, n−k, . . . , n−1) en el Teorema 3.10 del mismo trabajo. A partir
de esta última, podemos obtener construcciones para cualquier tipo admisible
simplemente eliminando aquellas dimensiones del vector tipo admisible completo
que no queramos conservar. La traducción de nuestro problema en un problema
clásico de Teoría de Grafos –el de encontrar emparejamientos perfectos de grafos
bipartitos y regulares– nos permite salvar el salto entre las dimensiones k y n−k
y obtener flags adecuados para nuestros propósitos.

Por otra parte, en los Capítulos 3 y 6, consideramos la posibilidad de construir
códigos flag orbitales de distancia óptima con un k-spread como proyectado, bajo
la acción de algún subgrupo de GL(n, q). Esta pregunta surge de forma natural,
teniendo en cuenta que los códigos spread han sido tratados desde el punto de
vista orbital. En el Capítulo 3, nos centramos en esta cuestión para el tipo
completo con n = 2k. Nuestro punto de partida es el k-spread S(2, k, P ) dado
en (5). Recordemos que, en [69], se prueba que S(2, k, P ) puede ser visto como
la órbita del subespacio U = rowsp(Ik | 0k×k) bajo la acción del subgrupo

G =

〈(
0k×k Ik
Ik 0k×k

)
,

(
Ik A

0k×k Ik

) ∣∣∣ A ∈ Fq[P ]

〉
(18)

de GL(n, q) dado en (8). En nuestro caso, empezamos el Capítulo 3 probando que
G no proporciona códigos flag de distancia óptima. De hecho, sus órbitas no son
siquiera códigos flag disjuntos. Por ello, estudiamos condiciones para asegurar
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la disyunción de códigos orbitales bajo la acción de subgrupos arbitrarios de
GL(n, q) y concluimos que, dados un flag F ∈ Fq((t1, . . . , tr), n) y un subgrupo
H de GL(n, q), la órbita OrbH(F) es un código flag disjunto si, y solo si, se
cumple la relación

StabH(F1) = · · · = StabH(Fr). (19)

Además, en el mismo capítulo, el lector puede encontrar el siguiente resultado.

(Capítulo 3, Proposición 3.7) Sea F un flag completo en F2k
q y H, un

subgrupo de GL(2k, q) tal que el código orbital OrbH(Fk) es de máxima
distancia. Si StabH(Fk) ⊆ StabH(Fi) para todo 1 6 i 6 2k − 1, entonces
OrbH(F) es un código flag de distancia óptima de tamaño |OrbH(Fk)|.

En virtud de este resultado, para obtener códigos flag de distancia óptima
bajo la acción de cierto subgrupo H de G basta que dicho subgrupo proporcione
estabilizador trivial al actuar sobre U (o cualquier otro subespacio del k-spread
S(2, k, P )). En tal caso, el mejor cardinal possible solo podría alcanzarse si H
fuese de orden qn−1

qk−1
. Con el objetivo de encontrar un subgrupo H de G adecuado,

nos sumergimos en la estructura de grupo de G y probamos que contiene una
copia isomorfa del grupo special lineal SL(2, qk) (Capítulo 3, Proposición 4.2). En
nuestro caso, seleccionamos un grupo H de G isomorfo a un subgrupo de Singer
de SL(2, qk) y lo hacemos actuar sobre flags. Los subgrupos de Singer de GL(n, q)
son grupos cíclicos del mayor orden posible: qn − 1. Sabemos que estos grupos
actúan transitivamente sobre las Grassmannianas de rectas e hiperplanos de Fnq .
Además, en [18], se prueba que, para cada divisor k de n, existe exactamente
una órbita de bajo la acción de un subgrupo de Singer que es un k-spread de Fnq .
Utilizando el grupo H, obtenemos construcciones de códigos flag completos de
distancia óptima en F2k

q con el k-spread S(2, k, P ) como código proyectado para
valores pares de q (Capítulo 3, Teorema 4.14). Si q es impar, alcanzamos también
el máximo cardinal al considerar la unión de dos órbitas distintas, ambas bajo la
acción de H (Capítulo 3, Proposición 4.15).

La continuación natural de este trabajo puede encontrarse en el Capítulo 6,
donde encontramos dos partes muy diferenciadas. La primera de ellas se centra
en el estudio general de códigos flag de distancia óptima. En el Teorema 4.8
de este trabajo damos una nueva caracterización de los códigos flag de distancia
óptima en términos de, a lo sumo, dos códigos proyectados: aquellos con las
dimensiones más próximas a n

2
, tanto por la izquierda como por la derecha. Este

resultado se aplica a lo largo de la segunda parte para construir códigos flag
orbitales de distancia óptima de tipo (1, . . . , k, n− k, . . . , n− 1) en Fnq con un k-
spread como código proyectado, para cada divisor arbitrario k de n. En este caso,
en virtud del Teorema 4.8, las dimensiones k y n− k son las protagonistas de la
construcción, en la que utilizamos la acción de un subgrupo de Singer de GL(n, q)
sobre la variedad de flags de este tipo. Además, la unicidad de los subgrupos de
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un grupo cíclico nos permite caracterizar qué subgrupos (del subgrupo de Singer
de partida) proporcionan códigos flag de distancia óptima como sus órbitas, en
términos de sus órdenes (Capítulo 6, Teorema 5.1). Además, para aquellos casos
en que el código flag orbital obtenido no alcanza el máximo cardinal posible, es
decir, q

n−1
qk−1

, damos una nueva construcción como unión de distintas órbitas (bajo
la acción de un mismo subgrupo) de tamaño máximo en función del orden del
subgrupo que actúa (Capítulo 6, Teorema 5.2).

Recordemos que, por tener un k-spread como código proyectado, esta cons-
trucción orbital de código flag de distancia óptima presenta la restricción del
vector tipo dada en (17). Dicha restricción desaparece en los casos k = 1 y n = 3
o n = 2k, en los que somos capaces de dar construcciones orbitales de máxima
distancia de tipo completo y, a través de un proceso de agujereado adecuado, de
cualquier otro tipo. El caso n = 2k también queda cubierto con la construcción
que presentamos en el Capítulo 3. No obstante, hasta el momento, no se conocía
ninguna construcción sistemática de códigos flag orbitales de distancia óptima
con máximo cardinal para valores impares de n. La parte final del Capítulo 6 está
dedicada a este problema. Concretamente, si n = 2k+ 1, utilizamos la acción de
un subgrupo G de GL(n, q) isomorfo a un subgrupo de Singer de GL(k + 1, q)
y caracterizamos aquellos flags completos F que proporcionan órbitas OrbG(F)
de máxima distancia. Todas ellas contienen exactamente qk+1−1 flags (Teorema
5.7). No obstante, en [47, Proposición 2.4] se prueba que el mejor cardinal para
un código flag completo de estas características es qk+1 + 1. Por ello, dedicamos
el resto del trabajo a la caracterización de aquellos flags completos F ′,F ′′ que
hacen que Orb(F) ∪ {F ′,F ′′} siga teniendo la mejor distancia posible y, en este
caso, también tamaño máximo (Capítulo 6, Teorema 5.11).

En [25] se prueba que que la acción de los subgrupos de Singer de GL(n, q)
sobre los Fq-subespacios vectoriales de Fnq puede interpretarse como la acción
del grupo multiplicativo F∗qn sobre los Fq-subespacios del cuerpo Fqn . Este es el
lenguaje que usamos en el Capítulo 4, donde trabajamos con flags en el cuerpo
Fqn y estudiamos propiedades teóricas de los códigos flag construidos como ór-
bitas bajo la acción de subgrupos 〈β〉 del grupo de Singer F∗qn , a los que llamamos
códigos flag β-cíclicos. En nuestro estudio, generalizamos algunos conceptos pre-
sentados en [25] al contexto de los códigos flag como, por ejemplo:

Sea F = (F1, . . . ,Fr) un flag en Fqn . Llamamos mejor amigo del flag F
al mayor subcuerpo Fqm de Fqn sobre el que todos los subespacios del flag
tienen estructura de espacio vectorial.

Tal y como ocurre en el caso de los códigos de subespacio, el mejor amigo
de un flag está íntimamente ligado a su estabilizador bajo la acción de F∗qn . Más
concretamente, si Fqm es el mejor amigo del flag F , entonces StabF∗qn (F) = F∗qm .
Este hecho permite obtener el cardinal y cotas para la distancia mínima de los
códigos β-cíclicos generados por F . También dedicamos parte de este trabajo al
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estudio de familias de códigos flag orbitales β-cíclicos con valores extremos de
la distancia (una vez fijado el mejor amigo). En primer lugar, nos centramos
en los códigos flag β-cíclicos de Galois, es decir, aquellos generados por flags
dados por torres de cuerpos encajados, a los que llamamos flags de Galois, bajo
la acción de subgrupos de F∗qn . Para ser más exactos, dada una sucesión de
divisores 1 6 t1 < t2 < · · · < tr de n tales que cada ti divide a ti+1, el flag de
Galois de tipo (t1, . . . , tr) es F = (Fqt1 , . . . ,Fqtr ). En el Capítulo 4 (Teorema
4.14), probamos que el conjunto de distancias admisibles para Orbβ(F) es

{2t1, 2(t1 + t2), . . . , 2(t1 + · · ·+ tr)} (20)

y caracterizamos los subgrupos 〈β〉 de F∗qn que proporcionan cada uno de estos
valores de la distancia. En particular, si el grupo que actúa es F∗qn , obtenemos
la menor distancia posible para códigos con Fqt1 como mejor amigo: 2t1. Sin
embargo, este caso nos resulta especialmente interesante pues encierra una en-
granaje de spreads perfectamente encajados. Precisamente, para cada 1 6 i 6 r,
el i-ésimo proyectado es el ti-spread OrbF∗qn (Fqti ) dado en (9) y todos estos spreads
bailan al son del grupo F∗qn . Además, establecemos una correspondencia entre el
conjunto de distancias en (20) y los subgrupos 〈β〉 de F∗qn . En concreto, también
obtenemos construcciones de distancia óptima 2(t1 + · · ·+ tr). Conectamos este
hecho con el estudio general de códigos orbitales cíclicos de distancia óptima con
mejor amigo prefijado. En primer lugar, caracterizamos los códigos flag orbitales
β-cíclicos de distancia óptima cuando β es un elemento primitivo del cuerpo F∗qn
(Capítulo 4, Corolario 4.23) y damos condiciones necesarias para las dimensiones
del vector tipo cuando β no es necesariamente primitivo (Capítulo 4, Teorema
4.21). Notemos que las construcciones dadas en los Capítulos 3 y 6 pueden inter-
pretarse en este escenario, identificando los grupos que allí intervienen con (un
subgrupo de) F∗qn . La condición de tener un k-spread como código proyectado
se traduce en elegir un flag generador en Fqn con el subcuerpo Fqk entre sus
subespacios y con el cuerpo base Fq como mejor amigo.

La idea de utilizar subcuerpos de Fqn como subespacios del flag generador es
estudiada en mayor profundidad en el Capítulo 7. Allí, introducimos los flags de
Galois generalizados : flags en Fqn con subcuerpos en al menos uno pero no todos
sus subespacios. La cadena maximal de cuerpos encajados en un flag de estas
características es su flag de Galois subyacente. En este capítulo estudiamos cómo
la presencia de ciertos cuerpos distribuidos a lo largo del flag semilla afecta al
comportamiento de los códigos orbitales que este genera. En particular, probamos
que el flag de Galois subyacente determina un conjunto de valores potencialmente
alcanzables para la distancia mínima (Capítulo 7, Teorema 3.31 y Definición
3.32). Los valores de la distancia fuera de este conjunto son automáticamente
descartados de nuestro estudio. Por similitud con los códigos flag de Galois,
y motivados por el Teorema 4.14 del Capítulo 4, nos preguntamos si, dado un
flag de Galois generalizado F , todos los valores potencialmente alcanzables de la
distancia son realmente alcanzables para algún código Orbβ(F), con β ∈ F∗qn .
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Sin perder esta cuestión de vista, en la segunda parte de este capítulo, pre-
sentamos una construcción sistemática de códigos flag de Galois generalizados
con código de Galois subyacente prefijado. En nuestro caso, utilizamos flag ge-
neradores escritos en una forma regular muy concreta, lo que nos permite con-
trolar los parámetros y algunas propiedades estructurales del código. Además,
cuando consideramos órbitas bajo la acción de F∗qn , obtenemos construcciones que
pueden ser fácilamente decodificadas haciendo uso de las técnicas desarrolladas
en el Capítulo 5 y determinamos los valores exactos de los parámetros de nues-
tra construcción. Eventualmente, estas construcciones son de distancia óptima
(Corolarios 4.4 y 4.16). Por otra parte, cuando hacemos actuar a un subgrupo
propio 〈β〉 de F∗qn , perdemos parte del control pero todavía somos capaces de
determinar un reducido abanico de posibilidades para la distancia mínima (Capí-
tulo 7, Teorema 4.15). Estas construcciones, además de constituir una variada
batería de ejemplos de códigos de Galois generalizados, nos permiten asegurar
que no todos los valores potencialmente alcanzables de la distancia (fijado el flag
de Galois subyacente) pueden ser obtenidos como la distancia mínima de algún
código flag β-cíclico de Galois generalizado.

Como dijimos al principio de la introducción, establecer conexiones entre los
códigos flag y sus códigos proyectados se ha convertido el hilo conductor de esta
tesis. Hasta ahora nos hemos centrado principalmente en los códigos flag de
distancia óptima que, como se prueba en el Capítulo 1, deben ser, en particular,
disjuntos. El concepto de disyunción para códigos flag se estudia con mayor
detalle en los Capítulos 5 y 8, donde introducimos la noción de consistencia
para códigos flag (respecto a sus proyectados) y la familia de códigos flag M-
disjuntos, respectivamente. A continuación exponemos las ideas principales de
estos trabajos.

En primer lugar, en el Capítulo 5, partimos de un código flag disjunto C ⊆
Fq((t1, . . . , tr), n). En otras palabras, un código C satisfaciendo |C| = |C1| =
· · · = |Cr|. Esta condición no es más que una relación de consistencia entre los
cardinales del código flag y los de sus proyectados. Por ello, empleamos también
el término de cardinal-consistente para referirnos a los códigos flag disjuntos. Por
otra parte, también presentamos la siguiente familia de códigos flag, en la que
la distancia mínima del código flag es, en cierto modo, consistente con la de sus
códigos proyectados.

Decimos que un código flag C ⊆ Fq((t1, . . . , tr), n) es distancia-consistente
si, para cada par de flags F ,F ′ ∈ C, se cumple

df (C) = df (F ,F ′) ⇐⇒ dS(Ci) = dS(Fi,F ′i), ∀i = 1, . . . , r. (21)

Esta condición es equivalente a decir que los flags más cercanos en un código
distancia-consistente C están dados por sucesiones de subespacios que determinan
las distancias mínimas de todos los proyectados. En otras palabras, la idea de
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“proximidad” en el código flag es consistente con la de sus códigos proyectados.
Además, y como consecuencia directa de (21), si C es distancia-consistente, en
particular, verifica df (C) =

∑r
i=1 dS(Ci). No obstante, esta condición no carac-

teriza a la familia de códigos distancia-consistentes. Con el objetivo de poder
controlar perfectamente los parámetros de los códigos flag en términos de los
de sus códigos proyectados, presentamos también la clase de códigos flag consis-
tentes como aquellos que son a la vez consistentes para el cardinal (disjuntos) y
para la distancia. Además, los caracterizamos a través del siguiente resultado:

(Capítulo 5, Teorema 1) Un código flag C ⊆ Fq((t1, . . . , tr), n) es con-
sistente si, y solo si, se verifican las siguientes afirmaciones:

(1) |C| = |C1| = · · · = |Cr| y

(2) df (C) =
∑r

i=1 dS(Ci).

En particular, los códigos flag de distancia óptima son ejemplo de códigos
consistentes en los que los proyectados alcanzan la distancia máxima para sus
respectivas dimensiones (Capítulo 5, Corolario 3).

Además del cardinal y la distancia mínima, probamos que algunas propiedades
estructurales también se transfieren de un código flag consistente a sus códigos
proyectados y viceversa, como explicamos a continuación. Para ello, notemos
que trabajar con códigos flag utilizando sus códigos proyectados nos permite, en
general, traer algunos conceptos de la teoría de códigos de subespacio al escenario
de los códigos flag de dos formas, en principio, distintas. Por ejemplo, en el
Capítulo 5, generalizamos los conceptos de código equidistante y código girasol,
previamente estudiados en [21, 29] en el ámbito de los códigos de subespacio.

(Capítulo 5, Definiciones 6-9) Decimos que un código flag C ⊆
Fq((t1, . . . , tr), n) es:

• Equidistante si, para cada pareja de flags distintos F ,F ′ ∈ C, se
verifica df (C) = df (F ,F ′).

• Equidistante-proyectado si todos sus códigos proyectados son códigos
de dimension constante equidistantes.

• Un girasol si existe una sucesión de subespacios encajados C1 ⊆ · · · ⊆
Cr tales que, para cada par de flags distintos F ,F ′ en C y todo 1 6
i 6 r, tenemos Fi∩F ′i = Ci. En tal caso, la sucesión C = (C1, . . . , Cr)
se llama el centro del girasol.

• Un girasol-proyectado si cada código proyectado Ci de C es un girasol
de Gq(ti, n).
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En general, no hay una relación directa entre las propiedades de ser equidis-
tante (resp. un girasol) y equidistante-proyectado (resp. girasol-proyectado). Sin
embargo, bajo la condición de consistencia para códigos flag, probamos que son
equivalentes, es decir, un código flag consistente es equidistante (resp. un gira-
sol) si, y solo si, todos sus proyectados son equidistantes (resp. girasoles) de las
dimensiones correspondientes (Capítulo 5, Teoremas 2 y 3). Por último, y tam-
bién en el Capítulo 5, mostramos que los códigos consistentes presentan grandes
bendiciones a la hora de ser decodificados y damos un algoritmo de decodifi-
cación (Capítulo 5, Algoritmo 1) válido para cualquier código flag consistente.
En particular, dicho algoritmo puede aplicarse a la construcción presentada en el
Teorema 4.2 del Capítulo 7 o a cualquiera de los códigos flag de distancia óptima
construidos en los Capítulos 1-4, 6 y 7.

Cuando trabajamos con códigos flag consistentes –y, en particular, con códi-
gos de distancia óptima– la distancia mínima se calcula siempre de la misma
forma: sumando las distancias de los códigos proyectados. Este comportamiento
es característico de esta familia de códigos pero, en general, cada valor de la
distancia de flags puede obtenerse como suma de distintas combinaciones de dis-
tancias de subespacio. Por esta razón, en el Capítulo 8, introducimos diferentes
versiones del concepto de vector distancia.

(Capítulo 8, Definiciones 3.1 y 3.6 ) El vector distancia asociado al
par de flags F ,F ′ ∈ Fq((t1, . . . , tr), n) es

d(F ,F ′) = (dS(F1,F ′1), . . . , dS(Fr,F ′r)) ∈ 2Zr. (22)

El conjunto de vectores distancia de un código flag C ⊆ Fq((t1, . . . , tr), n)
contiene a todos los vectores distancia asociados a pares de flags en C para
los que se alcanza la distancia mínima del código.

En particular, los códigos flag consistentes se caracterizan por ser disjuntos
y tener a (dS(C1), . . . , dS(Cr)) como único vector distancia. Por el contrario, un
código flag arbitrario puede tener un conjunto de vectores distancia con más de
un elemento.

El Teorema 3.9 de este Capítulo 8 permite caracterizar a los vectores distancia
(asociados a cierto valor de la distancia de flags) en términos de sus componentes
y una serie de relaciones entre ellas. En otras palabras, determinamos todos los
vectores de 2Zr que realmente representan configuraciones válidas de la distancia
entre flags. Además, parte del mismo trabajo está dedicado al estudio de las
distancias alcanzables al fijar cierta componente en un vector distancia. Presta-
mos especial atención a aquellas distancias asociadas a vectores distancia con
una componente nula, es decir, aquellas entre flags con, el menos, un subespacio
común. A continuación, extendemos este análisis y consideramos vectores dis-
tancia de longitud r con 1 6 M 6 r componentes nulas, dicho de otro modo,
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investigamos distancias entre flags que comparten, al menos, M subespacios.
En la segunda parte del Capítulo 8, utilizamos nuestro estudio previos para

obtener propiedades de códigos flag con una distancia mínima prefijada. En
nuestro camino, generalizamos el concepto de disyunción de códigos flag y el
de códigos proyectados, haciendo uso de la siguiente familia de proyecciones.
Dado un vector tipo (t1, . . . , tr), un entero 1 6 M 6 r e índices ordenados
1 6 i1 < · · · < iM 6 r, consideramos la proyección

p(i1,...,iM ) : Fq((t1, . . . , tr), n) −→ Fq((ti1 , . . . , tiM ), n)
(F1, . . . ,Fr) 7−→ (Fti1 , . . . ,FtiM ).

(23)

(Capítulo 8, Definición 5.2) Sea C un código flag en Fq((t1, . . . , tr), n).
Su (i1, . . . , iM)-código proyectado es el código flag

p(i1,...,iM )(C) = { p(i1,...,iM )(F) | F ∈ C } (24)

de tipo (ti1 , . . . , tiM ) en Fnq .

Notemos que, para cualquier elección de índices 1 6 i1 < · · · < iM 6 r, se
cumple trivialmente |p(i1,...,iM )(C)| 6 |C|. Aquellos códigos flag para los que se
alcanza la igualdad son de especial interés para nuestro estudio.

(Capítulo 8, Definición 5.3) Un código flag C se dice (i1, . . . , iM)-
disjunto si la proyección p(i1,...,iM ) restringida a C es inyectiva, es decir,
si |C| = |p(i1,...,iM )(C)|. Si esto ocurre para cada elección de M índices
1 6 i1 < · · · < iM 6 r, entonces decimos que C es M-disjunto.

En estos términos, los códigos flag disjuntos son ahora 1-disjuntos. Por otra
parte, la clase de códigos flag M -disjuntos conecta perfectamente con nuestro
estudio previo de la distancia, ya que ningún vector distancia de un código flag
M -disjunto puede contar conM componentes nulas. Esta propiedad nos permite
dar una condición suficiente sobre la distancia mínima de un código para asegurar
cierto grado de disyunción (Capítulo 8, Teorema 5.9). Este resultado nos permite,
por otra parte, obtener de forma muy natural nuevas cotas superiores para el
valor Afq (n, d, (t1, . . . , tr)), esto es, el máximo cardinal posible para un código flag
en Fq((t1, . . . , tr), n) con distancia mínima d, en función de cuántos subespacios
pueden compartir dos flags distintos sin bajar de la distancia d. La Sección 6
del Capítulo 8 esta dedicada a esta cuestión. Allí obtenemos resultados para
cualquier valor de los parámetros q, n, d y el vector tipo.

Este estudio de la distancia de flags utiliza un enfoque algebraico, donde los
vectores distancia y sus propiedades nos permiten obtener información relevante
sobre los códigos flag. Por otra parte, en el Capítulo 9 presentamos un estudio
de la distancia entre flags completos, desde un punto de vista combinatorio. En
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este caso, por razones técnicas, utilizamos la métrica equivalente inducida por la
distancia de inyección (de subespacios) dada por:

dI(F ,F ′) =
n−1∑
i=1

(i− dim(Fi ∩ F ′i)) =
1

2
df (F ,F ′).

En este trabajo, introducimos la idea de camino de distancia (en el soporte
de distancia) como una representación gráfica de los vectores distancia.

1 2 3 4 5 6 7

1
2
3

Figure 2: Caminos de distancia en el soporte de distancia para n = 7.

Utilizando esta nueva perspectiva, el cálculo de distancias de flag se reduce a
contar puntos circulares del soporte de distancia en un camino de distancia o
por debajo de él. Análogamente, el valor complementario de la distancia, al que
llamamos codistancia, coincide con el número de puntos que quedan sobre un
camino. Por otra parte, tras enriquecer el soporte de distancia, añadiendo una
red auxiliar de puntos rojos, y efectuar una rotación, obtenemos un diagrama de
Ferrers: el diagrama de Ferrers marco asociado a la variedad de flags completos
en Fnq .

Figure 3: Soporte, soporte enriquecido y diagrama de Ferrers marco para n = 7.

Haciendo uso de este diagrama de Ferrers, establecemos una correspondencia
biyectiva entre el conjunto de caminos de distancia y determinados elementos pro-
pios de la Teoría de Particiones, relacionados con el número de puntos circulares
negros contenidos en subdiagramas de Ferrers adecuados (Capítulo 9, Teorema
4.28). Este punto de vista combinatorio nos permite establecer conexiones entre
los parámetros de códigos flag completos y los de sus códigos proyectados. Más
concretamente, fijado un código flag completo C en Fnq , le asociamos un conjunto

31



New insights into the study of flag codes

de diagramas de Ferrers y utilizamos sus rectángulos de Durfee para obtener in-
formación sobre el cardinal y la distancia de cada uno de sus proyectados Ci y
viceversa (Capítulo 9, Teoremas 5.2, 5.6-5.8, 5.11 y Corolario 5.10). Estas nuevas
herramientas nos permiten, además, reinterpretar algunos resultados conocidos
en términos combinatorios. Prueba de ello es el Teorema 5.17 del Capítulo 9,
donde caracterizamos de nuevo los códigos flag de distancia óptima en función
de sus conjuntos de caminos de distancia y/o de subdiagramas de Ferrers asoci-
ados. Este resultado, el último teorema de esta tesis pero también el primero,
cierra nuestro estudio sobre códigos flag.

Las relaciones descritas a lo largo de esta sección introductoria quedan recogi-
das de forma esquemática en el Figura 7 de la página 53 de esta memoria.
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Introduction

Flag codes in the network coding setting were introduced by Liebhold, Nebe
and Vazquez-Castro a few years ago as a generalization of constant dimension
codes. The seminal work in this research line is [54] and, since then, other works
in this respect have appeared (see, for instance, [2, 3, 4, 5, 6, 7, 8, 9, 23, 47, 52,
53, 59]).

This thesis is devoted to the study of different but interconnected aspects
related to flag codes. It is presented as the compendium of the following works,
that the reader can find, in this order, in Chapters 1-9.

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, Flag
codes from planar spreads in Network Coding, Finite Fields and their
Applications, Vol. 68 (2020), 101745.

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, Opti-
mum distance flag codes from spreads via perfect matchings in graphs,
Journal of Algebraic Combinatorics (2021), https://doi.org/10.
1007/s10801-021-01086-y.

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, An
orbital construction of optimum distance flag codes, Finite Fields and
their Applications, Vol. 73 (2021), 101861.

• C. Alonso-González and M. A. Navarro-Pérez, Cyclic orbit flag codes,
Designs, Codes and Cryptography, Vol. 89 (2021), 2331-2356.

• C. Alonso-González and M. A. Navarro-Pérez, Consistent flag codes,
Mathematics, Vol. 8(12) (2020), 2234.

• M. A. Navarro-Pérez and X. Soler-Escrivà, Flag codes of maximum
distance and constructions using Singer groups, https://arxiv.
org/abs/2109.00270 (preprint)

• C. Alonso-González and M. A. Navarro-Pérez, On generalized Ga-
lois cyclic orbit flag codes, https://arxiv.org/abs/2111.09615
(preprint).

• C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà, Flag
codes: distance vectors and cardinality bounds, https://arxiv.org/
abs/2111.00910 (preprint).

• C. Alonso-González and M. A. Navarro-Pérez, A combinato-
rial approach to flag codes, https://arxiv.org/abs/2111.15388
(preprint).

We dedicate the first part of the thesis to explain the main contributions in
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these works as well as to exhibit the interrelationship among them. To this end,
we start with some preliminaries about constant dimension codes and we also
comment the state of the art in the flag codes framework.

Constant dimension codes

Network coding was introduced in [1] as a new method to send information
through channels modelled as directed acyclic multigraphs with (possibly) sev-
eral senders and receivers, where intermediate nodes are allowed to perform linear
combinations of the received packets (vectors), instead of simply routing them.
In [1], it was proved that the use of linear combinations at every intermediate
node improves the communication rate. The butterfly network, represented in
the next figure, is a well-known example of this:

S

R1 → {a}

R2 → {a, b}

a

b b

a

a

aa

a

b

S

R1 → {a, a+ b}

R2 → {a+ b, b}

a

b b

a+ b

a+ b

a+ ba

a

b

Figure 4: Butterfly network

Observe that in the first case, where intermediate nodes just resend packets,
two uses of the channel are needed so that both receivers R1 and R2 get messages
a and b since, despite the fact that the “bottleneck” node (marked in red) receives
both a and b, it can just send one of these messages. On the other hand, if we
allow coding at intermediate nodes, both receivers are able to recover a and b in
just a channel use.

On the negative side, whenever errors occur and a packet (a vector) is affected,
every linear combination involving it is corrupted as well. This fact makes net-
work coding especially vulnerable to error propagation and opens the door to
construct suitable error-correcting codes for this new scenario. Moreover, in view
of the previous example, one can see that the receivers need to know how the
network works to be able to recover vectors a and b from the received ones. In
order to overcome this problem, in [45], Koetter and Kschischang suggest the
use of vector subspaces (instead of vectors) as codewords. Notice that, since
vector subspaces are invariant under linear combinations, neither the sender(s)
nor the receiver(s) need information about the performed linear combinations of
the network. That paper represents the first algebraic approach to network cod-
ing through non-coherent networks, those where intermediate nodes compute and
send random linear combinations and the topology of the network is unknown.
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There, the authors introduce the class of subspace codes and define a suitable
metric to count errors and erasures produced through the communication pro-
cess. Let us precise these ideas. To do so, and for the rest of the thesis, we will
consider the following notation:

• Let q be a prime power,

• Fq denotes the finite field with q elements and

• k and n are positive integers such that 1 6 k < n.

• Fnq represents the n-dimensional vector space over the field Fq.

• The Grassmann variety (or just the Grassmannian) Gq(k, n) is the
set of k-dimensional Fq-vector subspaces of Fnq .

• The projective geometry of Fnq is the set Pq(n) containing all the vector
subspaces of Fnq .

The projective geometry Pq(n) can be seen as a metric space endowed with
the subspace distance given by

dS(U ,V) = dim(U + V)− dim(U ∩ V), (25)

for every U ,V ∈ Pq(n). In particular, if both subspaces have the same dimension,
say dim(U) = dim(V) = k, the previous expression becomes

dS(U ,V) = 2
(
k − dim(U ∩ V)

)
. (26)

This metric allows to define error-correcting codes as follows (see [45]).

A subspace code of length n is a nonempty subset C ⊆ Pq(n). If every
codeword (subspace) in C has the same dimension, say 1 6 k < n, then C
is said to be a constant dimension code (in Gq(k, n)).

Given a constant dimension code C ⊆ Gq(k, n), its minimum distance is given
by

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V},
whenever |C| > 2. In case that |C| = 1, we just put dS(C) = 0. In general,
according to (26), we have that dS(C) is an even integer such that

0 6 dS(C) 6
{

2k if 2k 6 n,
2(n− k) if 2k > n.

(27)

The cardinality of a constant dimension code is related to the amount of
different messages it can encode. As a consequence, given 1 6 k < n and a
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value of the distance d satisfying these bounds, we are interested in obtaining
constructions of constant dimension codes in Gq(k, n) having minimum distance
d and large cardinality. The value Aq(n, d, k) represents the largest possible
size for such codes. However, in many cases, these values are not even known.
Determining the exact value of Aq(n, d, k) or giving lower and upper bounds for
it is a interesting problem that has been tackled in many papers in recent years
(see [22, 35, 41, 43, 48, 66, 67, 70, 71, 73], for instance).

As for general error-correcting codes, the minimum distance of a constant
dimension code is clearly related to its capability to detect and correct errors.
More precisely, a constant dimension code C detects up to dS(C) − 1 errors and
corrects up to dS(C)/2− 1. As a result, special attention has been given to those
codes in Gq(k, n) attaining the maximum possible (minimum) distance.

More precisely, in [30], the following family of constant dimension codes of
maximum distance is well studied, for k 6

⌊
n
2

⌋
.

A partial spread code of dimension k (or partial k-spread, for short) of
Fnq is a subset C of Gq(k, n) in which different subspaces pairwise intersect
trivially. Equivalently, C ⊆ Gq(k, n) is a partial k-spread if every nonzero
vector of Fnq lies in, at most, a subspace in C.

It is well-known that the cardinality of any partial k-spread of Fnq is upper
bounded by

Aq(n, 2k, k) 6
qn − qr

qk − 1
, (28)

where r is the remainder obtained dividing n by k. As a special case of these
codes, one has the class of spread codes, first introduced in [56] as follows.

A k-spread (code) S of Fnq is a subset of Gq(k, n) in which every nonzero
vector of Fnq lies in one, and only one, subspace in S. In other words, spreads
are partitions of Fnq into k-dimensional vector subspaces.

Spreads are classical objects coming from Finite Geometry (see [65]). It is
well-known that k-spreads of Fnq exist if, and only if, k is a divisor of n and in
this case, their cardinality is exactly

|S| = Aq(n, 2k, k) =
qn − 1

qk − 1
.

It turns out that spreads are optimal codes in the following sense: they attain
the best distance for their dimension and have the largest possible size among
codes with their dimension and distance.

The study of spread codes has lead to many papers in the last decade (see,
for instance, [56, 57, 68, 69]). If n = ks and P ∈ GL(k, q) is the companion
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matrix of a monic irreducible polynomial of degree k in Fq[x], the following set is
a well-known example of k-spread:

S(s, k, P ) = {rowsp(S) | S ∈ Σ} ⊆ Gq(k, n), (29)

where
Σ = {(A1|A2| . . . |As)

∣∣Ai ∈ Fq[P ]} (30)

and the first non-zero block from the left is equal to Ik. This construction is
originally due to Segre (see [65]) and it is obtained by applying field reduction to
the Grassmannian of lines of Fs

qk
. In the network coding setting, this construction

was presented in [56, Theorem 1].
Another interesting family of constant dimension codes is the one of orbit

codes. They were presented in [69]. In that paper, the authors introduce those
constant dimension codes arising as orbits under the transitive action of the
general linear group GL(n, q) on the Grassmannian Gq(k, n) defined as

Gq(k, n)×GL(n, q) −→ Gq(k, n)
(U , A) 7−→ U · A = rowsp(UA),

(31)

where U ∈ Fk×nq is any generator matrix of U .

Given U ∈ Gq(k, n) and a subgroup H of GL(n, q), the set

OrbH(U) = {U · A | A ∈ H} ⊆ Gq(k, n)

is called the orbit code generated by U under the action of H. The stabilizer
of U (w.r.t. H) is the subgroup of H given by

StabH(U) = {A ∈ H | U · A = U}.

The parameters of orbit codes can be computed in an easier manner (than the
ones of general constant dimension codes). Moreover, the orbital structure has
been exploited to provide efficient decoding algorithms (see [68]). The authors
also motivate the use of orbit codes by exhibiting constructions with optimal
parameters. More precisely, in [69], they show that the k-spread S(s, k, P ) in
(29) can be expressed as the orbit generated by U = rowsp(Ik | 0k×(n−k)) under
the action of the subgroup of GL(n, q) generated by the set of block matrices


Ik A1 · · · As−1

0 Ik · · · 0
...

...
. . .

...

0 0 · · · Ik

 ,


0 Ik A1 · · · As−2

Ik 0 0 · · · 0

0 0 Ik · · · 0
...

...
...

. . .
...

0 0 0 · · · Ik

 , . . . ,


0 . . . 0 Ik
0 . . . Ik 0
... . .

. ...
...

Ik . . . 0 0


(32)
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where Ai ∈ Fq[P ], for 1 6 i 6 s− 1.

When the acting group is cyclic, we speak about cyclic orbit codes. The
seminal work in this line is [68]. In that work, another construction of k-spread
appears. In this case, the authors use the fact that the extension field Fqn is
isomorphic to Fnq (as Fq-vector spaces) and show that if k divides n, then the
orbit

S = OrbF∗qn (Fqk) = {Fqkα | α ∈ F∗qn} (33)

is a k-spread of the field Fqn , with StabF∗qn (Fqk) = F∗
qk
. Following this approach,

in [25], Gluesing-Luerssen et al. present the class of β-cyclic codes by using
the natural multiplicative action of subgroups 〈β〉 of F∗qn . More precisely, given
a k-dimensional Fq-vector subspace U of the extension field Fqn and a nonzero
element β ∈ F∗qn with multiplicative order |β|, the β-cyclic (orbit) code generated
by U is the set

Orbβ(U) = {Uβi | 1 6 i 6 |β|},

where Uβi = {uβi | u ∈ U}. In the same work, the authors study the possible
parameters of β-cyclic codes depending on largest field over which the generating
subspace is a vector space, that is, its best friend.

Flag codes: state of the art

Constant dimension codes in Gq(k, n) are examples of codes in which every code-
word (a subspace) requires a single use of the channel to be sent. However, the
subspace channel can be used many times, giving rise to the so-called multishot
(subspace) codes, introduced in [60]. In this setting, codewords are elements of
Pq(n)r, i.e., sequences of r subspaces of Fnq . The authors suggest using this class
of codes as an interesting alternative to subspace codes if we are interested in
obtaining better values of the distance or the cardinality in case that neither the
field size q nor the length n could be modified. Moreover, working with multishot
codes in Pq(n)r can be easier than doing it with their equivalent subspace codes
of Fnrq .

As a particular case of multishot codes, we have the class of flag codes. These
codes were introduced by Liebhold et al. in their pioneering works [52, 53, 54].
Let us recall the basic definitions with this respect.
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Given integers 1 6 t1 < · · · < tr < n, a flag of type (t1, . . . , tr) on Fnq is a
sequence F = (F1, . . . ,Fr) of Fq-vector subspaces of Fnq such that

{0} ( F1 ( · · · ( Fr ( Fnq

and dim(Fi) = ti, for 1 6 i 6 r. The flag variety of type (t1, . . . , tr) is the
set Fq((t1, . . . , tr), n) containing all the flags of this type. If the type vector
is (1, . . . , n− 1) we speak about full flags and the full flag variety.

The flag variety can be seen as a metric space. In [54], the authors analyze
several distances and conclude that the following one is the most appropriate
to measure errors and erasures in the network coding setting. Given flags F =
(F1, . . . ,Fr) and F ′ = (F ′1, . . . ,F ′r) in Fq((t1, . . . , tr), n), their flag distance is
given by

df (F ,F ′) =
r∑
i=1

dS(Fi,F ′i). (34)

Observe that it generalizes the subspace distance given in (26) to the flag scenario.
By analogy to constant dimension codes, flag codes are defined as follows.

Given integers 1 6 t1 < · · · < tr < n, a flag code of type (t1, . . . , tr) on Fnq
is a nonempty subset C of Fq((t1, . . . , tr), n). Its minimum (flag) distance
is the value

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′} (35)

whenever |C| > 2. For trivial codes with |C| = 1, we put df (C) = 0.

In [54], the authors work with the well-known transitive action of the general
linear group GL(n, q) on the flag variety Fq((t1, . . . , tr), n) given by

F · A := (F1 · A, . . . ,Fr · A), (36)

where Fi · A is defined in (31). This means that the whole flag variety can be
expressed as the orbit OrbGL(n,q)(F) generated by any flag F ∈ Fq((t1, . . . , tr), n).
The stabilizer of this orbit is given by the subgroup of lower block triangular
matrices, with blocks sizes determined by the positive integers t1, t2− t1, . . . , tr−
tr−1 and n− tr. In this context, one can also study flag codes arising as orbits of
this action.
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Given a flag F ∈ Fq((t1, . . . , tr), n) and a subgroup H of GL(n, q), the orbit
flag code generated by F under the action of H is

OrbH(F) = {F · A | A ∈ H}.

Its associated stabilizer is the subgroup of H given as

StabH(F) = {A ∈ H | F · A = F}.

The reader can find some interesting orbit constructions of flag codes in [54],
all of them with trivial stabilizer. Moreover, the authors bring matrix codes
(endowed with the rank metric) into the flag code setting and also present a
decoding algorithm for one of their constructions.

As for constant dimension codes, determining the value ofAfq (n, d, (t1, . . . , tr)),
i.e, the maximum possible size for flag codes in Fq((t1, . . . , tr), n) with minimum
distance equal to d, is an interesting problem which has been recently tack-
led in [47]. There, the author develops techniques to obtain upper bounds for
Afq (n, d, (1, . . . , n − 1)) and give an exhaustive list of bounds for small values of
n. Out of the full type case, some examples are also given.

Flag codes: our contributions

This part of the section is devoted to explain in detail the advances in the theory
of flag codes introduced in our published papers (Chapters 1-5), preprints and
forthcoming works (Chapters 6-9). We do so by collecting the most relevant
results in the subsequent sections. In order to relate them and exhibit properly
the connections among our works, we follow this order:

Chapter 1 → Chapter 2 → Chapter 3 → Chapter 6 → Chapter 4 →
Chapter 7 → Chapter 5 → Chapter 8 → Chapter 9.

Let us start from the very beginning. The origin of this thesis, and a recurrent
leitmotiv in our works, is the relationship of a given flag code with a special family
of constant dimension codes that can be naturally associated to it: the projected
codes, first introduced in Chapter 1 and used through the rest of chapters. Let
us precise this concept. To do so, given positive integers t1 < · · · < tr < n and
1 6 i 6 r, we consider the projection

pi : Fq((t1, . . . , tr), n)→ Gq(ti, n) (37)

defined as pi((F1, . . . ,Fr)) = Fi. Using these maps we define the projected codes
of a flag code as follows.
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(Chapter 1, Definition 3.6) Let C be a flag code of type (t1, . . . , tr) on
Fnq . For every 1 6 i 6 r, its i-th projected code is the constant dimension
code

Ci = pi(C) = {pi(F) | F ∈ C} ⊆ Gq(ti, n). (38)

Observe that, for every 1 6 i 6 r, we clearly have |Ci| 6 |C|. If the last
inequality holds with equality for every projected code, we have the next special
class of flag codes.

(Chapter 1, Definition 3.10) A flag code C of type (t1, . . . , tr) on Fnq is
said to be disjoint if it holds

|C| = |C1| = · · · = |Cr| (39)

or, equivalently, if for every 1 6 i 6 r, the projection map pi is injective
when restricted to C.

Observe that, from a geometrical point of view, disjoint flag codes are those
where different flags have all their subspaces different. These two concepts –
the one of projected code and the notion of disjointness for flag codes– were
introduced in our first work, [8] (see Chapter 1), in order to study flag codes with
maximum distance. More precisely, given a flag code C ⊆ Fq((t1, . . . , tr), n), its
minimum distance is an even integer df (C) satisfying

0 6 df (C) 6
∑
2ti6n

2ti +
∑

2ti>n

2(n− ti). (40)

In case df (C) attains this upper bound, we say that C is an optimum distance
flag code. One of the most relevant results in the same paper is the next charac-
terization for optimum distance flag codes.

(Chapter 1, Theorem 3.11) A flag code C ⊆ Fq((t1, . . . , tr), n) is an
optimum distance flag code if, and only if, it is disjoint and every projected
code Ci attains the maximum distance for dimension ti.

At this point, motivated by this result and also by the optimality of spread
codes among constant dimension codes with maximum distance, we consider the
possibility of constructing optimum distance flag codes having a spread as a
projected code. In such a case, by means of the disjointness condition, only one
spread can appear as the projected code of an optimum distance flag code. More-
over, in Chapter 1 (see Theorem 3.12), we show that, whenever a divisor k of n ap-
pears in the type vector of an optimum distance flag code C ⊆ Fq((t1, . . . , tr), n),
then its cardinality must satisfy

|C| 6 qn − 1

qk − 1
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and the equality holds, if and only if, C has a k-spread as its projected code of
dimension k. In other words, the excellent properties satisfied by spread codes are,
in some sense, transferred to optimum distance flag codes when a k-spread arises
as their projected code. This idea is also present in Chapters 1-3 and 6, where,
for distinct situations and using different approaches, we provide constructions of
optimum distance flag codes with a spread as a projected code. More precisely, in
Chapter 1, we address the construction of such codes for the full type vector. We
conclude that, if optimum distance full flag codes with a k-spread as a projected
code exist, then it holds either n = 2k or k = 1 and n = 3 (Chapter 1, Proposition
4.1). In the same work, we prove the existence of such codes in case that n = 2k,
for every value of k, by giving a systematic construction of them with the k-
spread S(2, k, P ), defined in (29), as a projected code (see Chapter 1, Theorem
4.5), together with a decoding algorithm over the erasure channel.

The remaining situation, that is, k = 1 and n = 3, becomes a particular
case of the study provided in Chapter 2, where we tackle the general problem of
constructing optimum distance flag codes on Fnq with a k-spread as a projected
code for an arbitrary divisor k of n. To this end, we show (see Chapter 2, Theorem
3.3) that such codes could only be constructed for a set of admissible type vectors,
i.e., those (t1, . . . , tr) satisfying

k ∈ {t1, . . . , tr} ⊆ {1, . . . , k, n− k, . . . , n− 1}. (41)

This condition is, up to certain point, expected. Spread codes have the maxi-
mum possible distance and give the largest possible size. The price to pay for
constructing them is a condition on the dimension: k must divide n. In our case,
optimum distance flag codes with a k-spread as their projected code have the
maximum possible distance and optimal cardinality. In this case, a condition on
the type vector is demanded. The rest of the paper is dedicated to prove the
existence of these codes by giving a systematic construction for every choice of
the parameters. We do it gradually by using two essential arguments. On the one
hand, the existence of perfect matchings on bipartite regular graphs allows us
to give optimum distance flag codes of type (1, n − 1) with the spread of lines
of Fnq as a projected code (Theorem 3.6 in Chapter 2). On the other hand, we
use field reduction techniques to suitably translate the previous construction
into another one of type (k, n− k) on Fnq , having a Desarguesian k-spread as its
projected code (see Theorem 3.8). We finish that work by extending the last
construction to the full admissible type vector, i.e., (1, . . . , k, n− k, . . . , n− 1) in
Theorem 3.10 and, by suitably removing projected codes, to any other admissible
type vector (Theorem 3.12). The key point in this work is the suitable translation
of our problem into a classical and well studied question in Graph Theory. More
precisely, the existence of perfect matchings on bipartite graphs allows us to link
dimensions k and n− k, whenever 2k < n.

In Chapters 3 and 6, we wonder if these optimum distance flag codes with
a k-spread as a projected code could be constructed as orbits under the action
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of some subgroup of the general linear group GL(n, q) on the corresponding flag
variety. This question naturally arises from the existence of some well-known
orbit constructions for spreads. As before, we tackle this problem in two different
works. We start by constructing optimum distance full flag codes on Fnq with
a k-spread as a projected code for the case n = 2k in Chapter 3. To do this,
our starting point is the planar k-spread S(2, k, P ) given in (29). Recall that,
in [69], the authors exhibit this spread as the orbit generated by the subspace
U = rowsp(Ik | 0k×k) under the action of the subgroup

G =

〈(
0k×k Ik
Ik 0k×k

)
,

(
Ik A

0k×k Ik

) ∣∣∣ A ∈ Fq[P ]

〉
(42)

of GL(n, q) (see (32)). We start Chapter 3 by showing that G does not generate
optimum distance flag codes since their orbits are not even disjoint flag codes.
Hence, we study conditions for an orbit flag code to be disjoint, obtaining that,
in general, if we consider a flag F ∈ Fq((t1, . . . , tr), n) and an arbitrary subgroup
H of GL(n, q), the orbit flag code OrbH(F) is disjoint if, and only if, we have the
equality of stabilizer subgroups

StabH(F1) = · · · = StabH(Fr). (43)

Moreover, in Chapter 3, the reader can find the next result.

(Chapter 3, Proposition 3.7) Let F be a full flag on F2k
q and H, a

subgroup of GL(2k, q) such that OrbH(Fk) has maximum distance. If
StabH(Fk) ⊆ StabH(Fi) for all 1 6 i 6 2k − 1, then OrbH(F) is an
optimum distance flag code with size |OrbH(Fk)|.

Hence, a sufficient condition for a subgroup H of G to generate optimum
distance full flag codes on F2k

q is providing trivial stabilizer when acting on U (or
any other subspace in S(2, k, P )). In this situation, the maximum possible size
would only be attained if that subgroup had order qn−1

qk−1
. Then, with the goal of

extracting a suitable subgroup H of G in mind, we study the group structure of
G and show that it always contains an isomorphic copy of the special linear group
SL(2, qk) (Chapter 3, Proposition 4.2). Moreover, the existence of subgroups of
SL(2, qk) of the desired order, allows us to choose a subgroup H of G, isomorphic
to a Singer subgroup of SL(2, qk), as our acting group. Singer subgroups of
GL(n, q) are cyclic subgroups with the largest possible order, that is, qn−1. It is
well-known that these groups act transitively on the Grassmannians of lines (and
also) hyperplanes of Fnq . Moreover, in [18], the author shows that, if k divides n,
there is exactly one orbit of a Singer subgroup of GL(n, q) that is a k-spread of
Fnq . In our case, using the action of H allows us to obtain an orbit construction
of optimum distance full flag codes on F2k

q with the k-spread S(2, k, P ) as their
projected code whenever q is even (see Theorem 4.14 in Chapter 3). For odd
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values of q, we get another construction, given as the union of two different
orbits under the action of H (Chapter 3, Proposition 4.15).

The natural continuation of this work is carried in Chapter 6, which contains
two differentiated parts. The first one is devoted to study general optimum dis-
tance flag codes. There, a new characterization for them is provided in terms of,
at most, two projected codes: those with the closest dimensions to the value n

2

both from left and right (see Theorem 4.8). We apply this result to the construc-
tion of optimum distance orbit flag codes of type (1, . . . , k, n−k, . . . , n−1) on Fnq
with a k-spread as its projected code, for an arbitrary divisor k of n. In this case,
the dimensions k and n− k are the ones that play a key role in the construction.
Moreover, we consider the action of a Singer subgroup of GL(n, q) on flags of
this type and, by means of the uniqueness of subgroups of cyclic groups, we are
able to characterize those subgroups providing optimum distance flag codes as
their orbits in terms of their order (see Chapter 6, Theorem 5.1). For those cases
in which the maximum cardinality is not obtained by a single orbit, we provide
a sufficient condition to attain the largest possible size as the union of different
orbits (Chapter 6, Theorem 5.2), just depending on the order of the acting sub-
group. Recall that these constructions present the restriction on the type vector
given in (41). However, when k = 1 and n = 3 or n = 2k, it allows us to give
constructions of full type vector and, by using a suitable puncturing process, of
any other type. The case n = 2k was also covered with our work in Chapter 3.
On the other hand, systematic constructions of orbit optimum distance full flag
codes with the maximum cardinality for odd values of n were not known. In order
to fill this gap, for n = 2k + 1, we use the action of a subgroup G of GL(n, q)
isomorphic to a Singer subgroup of GL(k + 1, q) and a suitable full flag F to
get an orbit construction of optimum distance full flag code OrbG(F) with size
qk+1 − 1 (Theorem 5.7), whereas, by means of [47, Proposition 2.4], the largest
possible size in this case is qk+1 + 1. Thus, we discuss and characterize how to
choose two extra full flags F ′,F ′′ so that the code OrbG(F) ∪ {F ′,F ′′} still has
the maximum distance and optimal size (see Theorem 5.11 in Chapter 6).

Recall that the action of Singer subgroups of GL(n, q) on Fq-subspaces of Fnq
can be translated into the action of the multiplicative group F∗qn on Fq-subspaces
of the extension field Fqn (see [25]). This is the approach that we follow in Chapter
4, where we work with flags on the field Fqn and study theoretical features of those
flag codes arising as orbits under the action of subgroups 〈β〉 of the Singer group
Fqn , i.e., β-cyclic orbit codes. We do so by generalizing some concepts coming
from [25] to the flag codes framework. One of them is the following one:

Let F = (F1, . . . ,Fr) be a flag on Fqn . The largest subfield Fqm of Fqn over
which all the subspaces of the flag are vector spaces is called the best friend
of F .

As it happens for subspaces, we prove that the best friend of a flag is closely
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related to its stabilizer under the action of F∗qn . More precisely, if Fqm is the
best friend of a flag F , then StabF∗qn (F) = F∗qm . Due to this fact, we use the best
friend of a flag in order to give the cardinality and lower and upper bounds for the
distance of those β-cyclic orbit flag codes that it generates. Moreover, we devote
part of this work to study families of flag codes attaining the extreme values
of the distance. We start with the so-called β-Galois flag codes, that is, those
generated by flags given by sequences of nested subfields of Fqn , i.e., Galois flags,
under the action of subgroups of F∗qn . More precisely, if 1 6 t1 < t2 < · · · < tr
are divisors of n such that every ti divides ti+1, the Galois flag of type (t1, . . . , tr)
is F = (Fqt1 , . . . ,Fqtr ). In Chapter 4 (Theorem 4.14), we prove that the set of
possible distances for the code Orbβ(F) is exactly

{2t1, 2(t1 + t2), . . . , 2(t1 + · · ·+ tr)} (44)

and characterize those subgroups 〈β〉 of F∗qn that give each of these distance
values. In particular, when the acting group is F∗qn , we obtain the minimum
possible distance for codes with Fqt1 as their best friend, which is 2t1. However,
an interesting structure of nested spreads appears. More precisely, for every
1 6 i 6 r, the i-th projected code is the ti-spread OrbF∗qn (Fqti ) given in (33)
and all these spreads “dance to the tune” of the acting group F∗qn . Moreover,
we are able to establish a correspondence between distance values in (44) and
subgroups 〈β〉 of F∗qn . In particular, we also obtain constructions with distance
2(t1 + · · · + tr), i.e., optimum distance flag codes, and connect this fact with
the study of general optimum distance flag codes with a prescribed best friend.
More precisely, we characterize those optimum distance flag codes arising as β-
cyclic orbit flag codes for β ∈ F∗qn primitive (Chapter 4, Corollary 4.23) and give
necessary conditions for the dimensions that can appear in the type vector for
not necessarily primitive elements β (Chapter 4, Theorem 4.21). In particular,
the constructions given in Chapters 3 and 6 can be translated into this general
scenario by identifying the acting groups used there with (a subgroup of) F∗qn .
Recall that those constructions have a k-spread of Fnq as a projected code for
some divisor of n. In this framework, that property can be translated by suitably
placing the subfield Fqk as a subspace of the generating flag F (on the extension
field) Fqn , with the ground field Fq as its best friend.

This idea of using subfields as subspaces of the generating flag is explored in
more detail in Chapter 7. There, we introduce generalized Galois flags as flags
on Fqn with at least one but not all its subspaces being a subfield of Fqn . The
maximal sequence of subfields in a generalized Galois flag is called its underly-
ing Galois flag. In this work, we study how the presence of certain subfields
affects the behaviour of cyclic orbit flag codes. In particular, we show that the
underlying Galois flag determines a set of potential values for the distance (see
Chapter 7, Theorem 3.31 and Definition 3.32). Distance values out of this set
are automatically discarded. This fact makes us wonder how far the structure
of the underlying Galois flag determines the properties of the generalized Galois
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flag code. More precisely, and motivated by Theorem 4.14 in Chapter 4, given
a generalized Galois flag F , we wonder if all these potential distance values can
actually be attained by some code Orbβ(F), with β ∈ F∗qn .

In order to put some light on this matter, we provide a systematic construction
of generalized Galois flag codes for every prescribed underlying Galois flag. We
do so by using a specific generalized Galois flag written in a regular form that
allows us to control the parameters of the code. In case of considering F∗qn as
the acting group, we obtain interesting examples of flag codes that can be easily
decoded by using techniques provided in Chapter 5 and we determine the exact
parameters of our codes. Moreover, we derive constructions of optimum distance
flag codes (Corollaries 4.4 and 4.16). On the other hand, if we take a proper
subgroup 〈β〉 of F∗qn as the acting group, we lose some control of our codes but
still obtain a reduced range of possibilities for the minimum distance (Chapter 7,
Theorem 4.15). These constructions, apart from being a miscellaneous battery
of examples of generalized Galois flag codes, allow us to ensure that not every
potential value of the distance (fixed the underlying Galois flag) can be obtained
as the minimum distance of a generalized β-Galois flag code.

Recall that making connections between a flag code and its set of projected
codes is the thread that runs through this whole dissertation. Up to now, we
have focused mostly on optimum distance flag codes. As proved in Chapter 1,
the property of attaining the maximum possible distance requires, in particular,
the flag code to be disjoint. This concept of disjointness has been deeply studied
in Chapters 5 and 8, giving rise to the notions of consistency (of a flag code
w.r.t. its projected codes) and M-disjoint flag codes. Let us explain these works
in detail.

First, in Chapter 5, we start from a disjoint flag code C ⊆ Fq((t1, . . . , tr), n),
i.e., a flag code with |C| = |C1| = · · · = |Cr|. This condition represents a
cardinality-consistency relationship for flag codes. On the other hand, we in-
troduce the notion of distance-consistency for flag codes.

A flag code C ⊆ Fq((t1, . . . , tr), n) is said to be distance-consistent if, for
every pair of flags F ,F ′ ∈ C, if holds

df (C) = df (F ,F ′) ⇐⇒ dS(Ci) = df (Fi,F ′i), ∀i = 1, . . . , r. (45)

Observe that this condition is equivalent to say that pairs of closest flags in a
distance-consistent flag code are given by nested sequences of closest subspaces
in the corresponding projected code. Moreover, as a consequence of (45), for a
distance-consistent flag code C, it clearly holds df (C) =

∑r
i=1 dS(Ci). However,

this condition does not characterize this class of flag codes. In order to better
control the parameters of flag codes, we introduce the class of consistent flag codes
as those flag codes being both cardinality-consistent and distance-consistent. For
these codes, both cardinality and distance are perfectly determined by the ones
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of its projected codes. More precisely, we characterize them as follows.

(Chapter 5, Theorem 1) A flag code C ⊆ Fq((t1, . . . , tr), n) is consistent
if, and only if, the following statements hold:

(1) |C| = |C1| = · · · = |Cr| and

(2) df (C) =
∑r

i=1 dS(Ci).

In particular, optimum distance flag codes are consistent flag codes where
every projected code, in addition, has the maximum possible distance (Chapter
5, Corollary 3).

Apart from the cardinality and the minimum distance, we show that some
structural properties are transferred from a consistent flag code to its projected
codes and vice versa. Observe that using the projected codes of a flag code makes
us able to generalize some concepts coming from the constant dimension codes
framework to flag codes in two possible ways. In Chapter 5 we bring the notions
of equidistant and sunflower codes, studied for subspace codes in [21, 29], to the
flag codes setting.

(Chapter 5, Definitions 6, 7, 8 and 9) A flag code C ⊆
Fq((t1, . . . , tr), n) is said to be:

• Equidistant if, for every pair of different flags F ,F ′ ∈ C, it holds

df (C) = df (F ,F ′).

• Projected-equidistant if all its projected codes are equidistant con-
stant dimension codes.

• A sunflower flag code if there exist nested subspaces C1 ⊆ · · · ⊆ Cr
such that, for every pair of different flags F ,F ′ ∈ C and every 1 6 i 6
r, we have Fi ∩F ′i = Ci. In this case, the sequence C = (C1, . . . , Cr)
is called the center of the sunflower.

• A projected-sunflower flag code if every projected code Ci of C is a
sunflower in Gq(ti, n).

In general, there is not a clear relationship between the properties of be-
ing equidistant (resp. sunflower) and projected-equidistant (resp. projected-
sunflower). However, under the consistency condition, we prove that they are
equivalent, i.e., a consistent flag code is equidistant (resp. a sunflower) if, and
only if, their projected codes are equidistant (resp. sunflower) constant dimen-
sion codes of the corresponding dimensions (Chapter 5, Theorems 2 and 3). In
addition, the consistency condition is also exploited in Chapter 5 to provide a
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decoding algorithm over the erasure channel (see Algorithm 1), valid for arbitrary
consistent flag codes. In particular, it can be applied to the construction given
in Theorem 4.2 (Chapter 7) or any optimum distance flag code constructed in
Chapters 1-4, 6 and 7.

Observe that when working with consistent flag codes –and, in particular, with
optimum distance flag codes– the minimum distance of the flag code is always
obtained in the same way, that is, by adding the distances of the projected codes.
This behaviour is characteristic of consistent flag codes but, in general, any value
of the flag distance might be obtained by many different combinations of subspace
distances. This is the reason why, in Chapter 8, we present the notion of distance
vector.

(Chapter 8, Definitions 3.1 and 3.6 ) The distance vector associated
to a pair of flags F ,F ′ ∈ Fq((t1, . . . , tr), n) is

d(F ,F ′) = (dS(F1,F ′1), . . . , dS(Fr,F ′r)) ∈ 2Zr. (46)

The set of distance vectors of a flag code C ⊆ Fq((t1, . . . , tr), n) contains
those distance vectors associated to pairs of flags in C and giving the min-
imum distance of the code.

In particular, consistent flag codes can be seen as disjoint flag codes with
the singleton set of distance vectors {(dS(C1), . . . , dS(Cr))} but general flag codes
might have a set of distance vectors with more than one element.

In the same work, see Chapter 8 (Theorem 3.9), we also characterize dis-
tance vectors in terms of certain conditions satisfied by their components, i.e.,
we determine those sequences in 2Zr that truly represent possible realizations
of the flag distance. Moreover, we devote part of the paper to determine which
values of the flag distance can be obtained by distance vectors with a prescribed
component. This can be particularized to the study of attainable values of the
flag distance by distance vectors with a null component, that is, flag distances
between flags with exactly one common subspace. Later on, we generalized our
study to flag distances obtained with distance vectors of length r and 1 6M 6 r
a components equal to zero, i.e., distances between flags with at leastM identical
subspaces.

In the second part of Chapter 8, we apply our analysis of the flag distance
to derive properties of flag codes with a given minimum distance. In particular,
we generalize the class of disjoint flag codes by using the following new family of
projected codes. Given a type vector (t1, . . . , tr), a positive integer 1 6 M 6 r
and ordered indices 1 6 i1 < · · · < iM 6 r, we consider the projection map

p(i1,...,iM ) : Fq((t1, . . . , tr), n) −→ Fq((ti1 , . . . , tiM ), n)
(F1, . . . ,Fr) 7−→ (Fti1 , . . . ,FtiM ).

(47)
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(Chapter 8, Definition 5.2) If C is a flag code in Fq((t1, . . . , tr), n), then
its (i1, . . . , iM)-projected code is the flag code

p(i1,...,iM )(C) = { p(i1,...,iM )(F) | F ∈ C }. (48)

Observe that, for every choice of indices 1 6 i1 < · · · < iM , it clearly holds
|p(i1,...,iM )(C)| 6 |C|. Those flag codes where this inequality holds with equality
have special interest for our study.

A flag code C is (i1, . . . , iM)-disjoint if the projection p(i1,...,iM ) is injective
when restricted to C, i.e., if |C| = |p(i1,...,iM )(C)|. If this happens for every
choice of M indices 1 6 i1 < · · · < iM 6 r, then we say that C is an
M-disjoint flag code.

In these new terms, disjoint flag codes are 1-disjoint. Moreover, notice that
distance vectors between different flags in an M -disjoint flag code cannot contain
M null components. This fact is used in Chapter 8 in order to give a sufficient
condition on the minimum distance of a flag code to ensure certain degree of
disjointness (Chapter 8, Theorem 5.9). This result allows us to derive natural
upper bounds for Afq (n, d, (t1, . . . , tr)) (the maximum possible size for flag codes
in Fq((t1, . . . , tr), n) with minimum distance d) in terms of the maximum number
of subspaces that different flags can share without compromising the minimum
distance d. We do this for every choice of the parameters q, n, d and the type
vector. These results can be found in Section 6 of Chapter 8.

This study of the flag distance parameter is carried from an algebraic point
of view. On the other hand, in Chapter 9, the reader can find a combinatorial
approach for the full flag distance. In this case, for technical reasons, we use the
equivalent metric induced by the injection distance for full flags, defined as

dI(F ,F ′) =
n−1∑
i=1

(i− dim(Fi ∩ F ′i)) =
1

2
df (F ,F ′).

In this work, we introduce the notion of distance path in the distance support
as a graphic representation of a distance vector defined as above.

1 2 3 4 5 6 7

1
2
3

Figure 5: Examples of distance paths in the distance support for n = 7.
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Using this perspective, we are able to compute flag distances by simply count-
ing the number of circle points (in the distance support) in a given distance path
or below it. Similarly, the complementary value of the distance –the codistance–
coincides with the number of points over a distance path. After a suitable process
of enrichment of the distance support and a rotation, we get the Ferrers diagram
frame associated to the full flag variety on Fnq .

Figure 6: Enrichment and rotation of the distance support for n = 7.

We use this new object to establish a one-to-one correspondence between
the set of distance paths (associated to a given value of the flag distance) and
some elements coming form the Theory of partitions, related to the set of circle
black points contained in certain Ferrers subdiagram (see Chapter 9, Theorem
4.26). Using this combinatorial viewpoint, we exhibit connections between the
parameters of a given full flag code and the ones of its projected codes (of length
one). More precisely, given a full flag code C on Fnq we associate to it a set of
Ferrers diagrams and use their Durfee rectangles to obtain information about the
distance and size of every projected code Ci and conversely (Chapter 9, Theorems
5.2, 5.6-5.8, 5.11 and Corollary 5.10). These new tools allow us to interpret some
known results in combinatorial terms as, for instance, Theorem 5.17 in Chapter
9, which is a characterization of optimum distance flag codes by using the sets of
distance paths or Ferrers subdiagrams associated to a flag code. With this result,
which is the last theorem in this thesis but also the first one, we close our study
on flag codes.

We finish this section with the following bird’s-eye view of our work where
the reader can see at a glance all the connections described through these pages.
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Figure 7: Our contributions to the study of flag codes
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CHAPTER 1

FLAG CODES FROM PLANAR SPREADS IN
NETWORK CODING

C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà,
Flag Codes from Planar Spreads in Network Coding,
Finite Fields and Their Applications, Vol. 68 (2020), 101745.

Abstract:

In this paper we study a class of multishot network codes given by families of
nested subspaces (flags) of a vector space Fnq , being q a prime power and Fq the
finite field of q elements. In particular, we focus on flag codes having maximum
distance (optimum distance flag codes). We explore the existence of these codes
from spreads, based on the good properties of the latter ones. For n = 2k, we
show that optimum distance full flag codes with the largest size are exactly those
that can be constructed from a planar spread. We give a precise construction of
them as well as a decoding algorithm.

https://doi.org/10.1016/j.ffa.2020.101745
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CHAPTER 2

FLAG CODES FROM SPREADS VIA PERFECT
MATCHINGS IN GRAPHS

C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà,
Optimum Distance Flag Codes from Spreads via Perfect Matchings in Graphs,
Journal of Algebraic Combinatorics (2021).

Abstract:

In this paper, we study flag codes on the vector space Fnq , being q a prime power
and Fq the finite field of q elements. More precisely, we focus on flag codes that
attain the maximum possible distance (optimum distance flag codes) and can be
obtained from a spread of Fnq . We characterize the set of admissible type vectors
for this family of flag codes and also provide a construction of them based on
well-known results about perfect matchings in graphs. This construction attains
both the maximum distance for its type vector and the largest possible cardinality
for that distance.

https://doi.org/10.1007/s10801-021-01086-y
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CHAPTER 3

AN ORBITAL CONSTRUCTION OF OPTIMUM
DISTANCE FLAG CODES

C. Alonso-González, M. A. Navarro-Pérez and X. Soler-Escrivà,
An Orbital Construction of Optimum Distance Flag Codes,
Finite Fields and Their Applications, Vol. 73 (2021), 101861.

Abstract:

Flag codes are multishot network codes consisting of sequences of nested sub-
spaces (flags) of a vector space Fnq , where q is a prime power and Fq, the finite
field of size q. In this paper we study the construction on F2k

q of full flag codes
having maximum distance (optimum distance full flag codes) that can be endowed
with an orbital structure provided by the action of a subgroup of the general lin-
ear group. More precisely, starting from a subspace code of dimension k and
maximum distance with a given orbital description, we provide sufficient condi-
tions to get an optimum distance full flag code on F2k

q having an orbital structure
directly induced by the previous one. In particular, we exhibit a specific orbital
construction with the best possible size from an orbital construction of a planar
spread on F2k

q that strongly depends on the characteristic of the field.

https://doi.org/10.1016/j.ffa.2021.101861
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CHAPTER 4

CYCLIC ORBIT FLAG CODES

C. Alonso-González and M. A. Navarro-Pérez,
Cyclic Orbit Flag Codes,
Designs, Codes and Cryptography, Vol. 89 (2021), 2331–2356.

Abstract:

In network coding, a flag code is a set of sequences of nested subspaces of Fnq ,
being Fq the finite field with q elements. Flag codes defined as orbits of a cyclic
subgroup of the general linear group acting on flags of Fnq are called cyclic orbit
flag codes. Inspired by the ideas in [25], we determine the cardinality of a cyclic
orbit flag code and provide bounds for its distance with the help of the largest
subfield over which all the subspaces of a flag are vector spaces (the best friend
of the flag). Special attention is paid to two specific families of cyclic orbit flag
codes attaining the extreme possible values of the distance: Galois cyclic orbit
flag codes and optimum distance cyclic orbit flag codes. We study in detail both
classes of codes and analyze the parameters of the respective subcodes that still
have a cyclic orbital structure.

https://doi.org/10.1007/s10623-021-00920-5
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CHAPTER 5

CONSISTENT FLAG CODES

C. Alonso-González and M. A. Navarro-Pérez,
Consistent Flag Codes,
Mathematics, Vol. 8(12) (2020), 2234.

Abstract:

In this paper we study flag codes on Fnq , being Fq the finite field with q elements.
Special attention is given to the connection between the parameters and proper-
ties of a flag code and the ones of a family of constant dimension codes naturally
associated to it (the projected codes). More precisely, we focus on consistent flag
codes, that is, flag codes whose distance and size are completely determined by
their projected codes. We explore some aspects of this family of codes and present
examples of them by generalizing the concepts of equidistant and sunflower sub-
space code to the flag codes setting. Finally, we present a decoding algorithm for
consistent flag codes that fully exploits the consistency condition.

https://doi.org/10.3390/math8122234
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Chapter 6: Flag codes of max distance and constructions using Singer groups

Abstract:

In this paper we study flag codes of maximum distance. We characterize these
codes in terms of, at most, two relevant constant dimension codes naturally as-
sociated to them. We do this first for general flag codes and then particularize
to those arising as orbits under the action of arbitrary subgroups of the general
linear group. We provide two different systematic orbital constructions of flag
codes attaining both maximum distance and size. To this end, we use the action
of Singer groups and take advantage of the good relation between these groups
and Desarguesian spreads, as well as the fact that they act transitively on lines
and hyperplanes.
Keywords: Network coding, flag codes, orbit codes, Desarguesian spreads,
Singer group actions.

1 Introduction
Network Coding appeared in [1] as a method for maximize the information rate
of a network modelled as an acyclic directed multigraph with possibly several
senders and receivers. Afterwards, Koetter and Kchischang stated in [16] an
algebraic approach for coding in non-coherent networks (Random Network Cod-
ing). In this setting, subspace codes stand as the most appropriate codes for error
correction. Given a finite field Fq, a subspace code is just a set of subspaces of
the Fq-vector space Fnq , for a positive integer n. Since their definition in [16], re-
search works on the structure, construction and decoding methods of this type of
codes have proliferated considerably, e.g. in [9, 10, 15, 21, 28]. In many of these
articles, all the codewords are vector subspaces having the same dimension, in
which case we speak about constant dimension codes. Among them, spread codes,
that is, constant dimension codes which partition the ambient space, appear as
a remarkable subfamily, since they have the best distance and the largest size
for that distance. Besides, a particular way of constructing constant dimension
codes is based on the natural and transitive action of the general linear group,
GL(n, q), on the Grassmannian Gq(k, n), which is the set of all k-dimensional
vector subspaces of Fnq over Fq. In this context, an orbit code is a constant di-
mension code which is the orbit under the action of some subgroup of GL(n, q)
acting on Gq(k, n). When the acting group is cyclic, we call them cyclic orbit
codes. First studied in [27], orbit codes have a rich mathematical structure due
to the group action point of view. Concerning cyclic orbit codes, Singer groups,
that is, cyclic subgroups of GL(n, q) of order qn − 1, play a very important role.
The structure of these groups, as well as their multiple mathematical proper-
ties, have permitted to obtain relevant information about the orbit codes they
generate (see [8, 13, 22, 24, 26], for instance).

Flag codes can be seen as a generalization of constant dimension codes. In
this case, the codewords are flags on Fnq , that is, tuples of nested vector subspaces
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of prescribed dimensions. The use of these codes is particularly interesting when
there are limitations on the size q of the field or the length n of the information
packets to be transmitted [23]. The use of flags in the Network Coding setting
began with the work [20] by Liebhold et al. and has continued with several
articles that have extended and deepened this line of research [4, 5, 17]. The
action of the general linear group on the Grassmannian can be easily extended to
any variety of flags. Consequently, it also makes sense to study those flag codes
arising as orbits of some relevant groups (see [2, 3, 20]). The paper at hand is
also involved in this research. Concretely, we deal with flag codes of maximum
distance (optimum distance flag codes), with special emphasis on those having an
orbital structure under the action of a suitable Singer group.

The paper is structured as follows. In Section 2 we give all the background we
need on finite fields, constant dimension codes and Singer group actions. Section
3 is devoted to highlighting the well-known relationship between Desarguesian
spreads and Singer groups, which will be very important for the subsequent
derivation of our flag codes. In Section 4 we start with a summary of known
results on flag codes, after which we delve into optimum distance flag codes. In
Theorem 4.8 we characterize these flag codes in terms of at most two constant
dimension codes, improving considerably on the, up to now, only known result
in this respect (see [4]). Moreover, we give several characterizations of optimum
distance flag codes when arising as orbits of the action of an arbitrary subgroup
of the general linear group (Theorem 4.11). In Section 5, we use the action of ap-
propriate Singer groups and the theoretical results previously obtained, in order
to provide two systematic orbital constructions of optimum distance flag codes
having the best cardinality. First, in Section 5.1, we give a construction starting
from a Desarguesian spread of Fnq and the results set out in Section 3. Since this
kind of construction entails a restriction on the type vector of the flags (see [5]),
we complete our research in Section 5.2, where we deal with the construction of
orbit flag codes of full type having maximum distance and size.

2 Preliminaries

2.1 Finite fields

We begin this section by recalling some definitions and results that can be found
in any textbook on finite fields (see [19], for instance).

Let Fq denote the finite field of q elements, for a prime power q. Given a
positive integer k, we put Fk×kq for the set of all k × k matrices with entries
in Fq and GL(k, q) for the general linear group of degree k over Fq, composed
by all invertible matrices in Fk×kq . A primitive element ω of the field Fqk is
just a generator of the cyclic group F∗

qk
, which has order qk − 1. Let p(x) =

xk +
∑k−1

i=0 pix
i ∈ Fq[x] be the minimal polynomial of ω over Fq. It turns out that
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p(x) is the characteristic polynomial of the matrix

Mk =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−p0 −p1 −p2 · · · −pk−1

 ∈ GL(k, q),

which is called the companion matrix of p(x). In particular, Mk can be seen as
a root of p(x) and the finite field Fqk can be realized as Fqk ∼= Fq[ω] ∼= Fq[Mk],
where the last field isomorphism is given by:

φ : Fq[ω] −→ Fq [Mk]∑k−1
i=0 aiω

i 7−→
∑k−1

i=0 aiM
i
k,

(6.1)

Consequently, the multiplicative order of Mk is qk − 1, that is, Mk generates a
cyclic subgroup 〈Mk〉 of order qk− 1 in GL(k, q). Equivalently, Mk is a primitive
element of the finite field Fq[Mk] ⊆ Fk×kq .

For any positive integer n and i ∈ {0, . . . , n}, we denote by Gq(i, n) the set of
all i-dimensional vector subspaces of Fnq over Fq, which is called the Grassmann
variety (or simply the Grassmannian). For any positive integer s > 2, the field
isomorphism φ is useful to map vector subspaces of Fs

qk
into vector subspaces of

Fksq . For m ∈ {1, . . . , s}, one has the following embedding map

ϕ : Gqk(m, s) −→ Gq(km, ks)

rowsp

a11 · · · a1s

...
. . .

...
am1 · · · ams

 7−→ rowsp

 φ(a11) · · · φ(a1s)
...

. . .
...

φ(am1) · · · φ(ams)

 ,
(6.2)

which is called a field reduction map. In particular, ϕ(U)∩ϕ(V) = ϕ(U ∩V), for
all U ,V ∈ Gqk(m, s), since ϕ is an injective map.

Besides, we can also use φ to obtain the following group monomorphism (see
[29, Th. 2.4]):

ψ : GL(s, qk) −→ GL(ks, q)a11 · · · a1s

...
. . .

...
as1 · · · ass

 7−→

 φ(a11) · · · φ(a1s)
...

. . .
...

φ(as1) · · · φ(ass)

 .
(6.3)

2.2 Subspace codes, orbit codes and Singer group actions

For any integers 1 6 k < n, the Grassmannian Gq(k, n) can be seen as a metric
space endowed with the following subspace distance (see [16]):
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dS(U ,V) = dim(U + V)− dim(U ∩ V) = 2(k − dim(U ∩ V)), (6.4)

for all U ,V ∈ Gq(k, n). Using this metric, a constant dimension code is just a
nonempty subset C of Gq(k, n) and its minimum distance is defined as

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V} 6
{

2k if 2k 6 n,
2(n− k) if 2k > n.

(6.5)

In case that |C| = 1, we put dS(C) = 0. In any other case, dS(C) is always a
positive even integer. When the upper bound provided by (6.5) is attained we
say that C is a constant dimension code of maximum distance.

Notice that the distance dS(C) = 2k can only be attained if 2k 6 n and dif-
ferent subspaces in C pairwise intersect trivially. This class of codes of maximum
distance were introduced in [10] as partial spread codes since they generalize the
class of spread codes, previously studied in [21]. A spread code is just a spread in
the geometrical sense, that is, its elements pairwise intersect trivially and cover
the whole space Fnq (see [12]). The size of a partial spread code of dimension k
(or k-partial spread code) is always upper bounded by

qn − qr

qk − 1
, (6.6)

where r is the reminder obtained dividing n by k (see [10]). In turn, k-spreads
exist if, and only if, k divides n and, in this case, they have cardinality (qn −
1)/(qk − 1), which is the largest size among k-partial spreads of Fnq .

On the other hand, if 2k > n and C ⊆ Gq(k, n), then the dual code of C
is the set C⊥ = {V⊥ | V ∈ C}. It is a constant dimension code of dimension
n − k with the same cardinality and distance than C (see [16]). In particular, if
dS(C) = 2(n− k), then C⊥ is an (n− k)-partial spread code and the size of C can
be also upper bounded in terms of (6.6).

Notice that any code C included in the Grassmannian of lines Gq(1, n) or in the
Grassmannian of hyperplanes Gq(n− 1, n), with |C| > 2, is a constant dimension
code of maximum distance and its size is upper bounded by (qn − 1)/(q − 1).

Orbit codes were introduced in [27] as constant dimension codes arising as
orbits under the action of some subgroup of the general linear group. Given a
subspace V ∈ Gq(k, n) and a full-rank matrix V ∈ Fk×nq generating V , that is,
V = rowsp(V ), the map

Gq(k, n)×GL(n, q) −→ Gq(k, n)
(V , A) 7−→ V · A = rowsp(V A),

is independent from the choice of V and it defines a group action on Gq(k, n) (see
[27]). For a subgroup H of GL(n, q), the orbit code OrbH(V) is just:

OrbH(V) = {V · A | A ∈ H} ⊆ Gq(k, n).
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The size of an orbit code can be computed as |OrbH(V)| = |H|
|StabH(V)| , where

StabH(V) = {A ∈ H | V · A = V} is the stabilizer subgroup of the sub-
space V under the action of H. If H = StabH(V), then OrbH(V) = {V} and
dS(OrbH(V)) = 0. In any other case, the minimum distance of the orbit code
OrbH(V) can be computed as (see [27]) :

dS(OrbH(V)) = min{dS(V ,V · A) | A ∈ H \ StabH(V)}.

When the acting group is cyclic, the corresponding orbit codes are called cyclic
orbit codes. These particular type of orbit codes have been deeply studied in
several papers (see [8, 22, 24, 26] for instance).

In this paper we will use the action of Singer cyclic subgroups of GL(n, q),
which are generated by the so called Singer cycles of GL(n, q). These are elements
of GL(n, q) having order qn − 1, which is the largest element order in GL(n, q).
Although Singer cycles are not necessarily conjugate, the generated subgroups
are always conjugate subgroups of GL(n, q) (see [11, 14] for more information on
Singer groups).

The following seminal result about the action of a Singer group on the Grass-
mannian of lines and the Grassmannian of hyperplanes is due to Singer (1938)
and will be used extensively throughout this article:

Theorem 2.1. [6, Th. 6.2] Any Singer cyclic subgroup S of GL(n, q) acts tran-
sitively on both Gq(1, n) and Gq(n− 1, n). Moreover, for any l ∈ Gq(1, n) and any
h ∈ Gq(n− 1, n), it holds

StabS(l) = StabS(h) = {aIs | a ∈ F∗q},

which is the unique cyclic subgroup of S of order q − 1.

3 Desarguesian spread codes and Singer groups

In this section we focus on the action of Singer groups in order to obtain certain
k-spreads of Fnq as their orbits, for n = ks and s > 2. Later on, in Section 5.1,
we will use the results obtained here to construct orbit flag codes by considering
Singer groups and their subgroups.

Consider the field reduction map ϕ defined in (6.2) which maps vector sub-
spaces of Fs

qk
into vector subspaces of Fnq . Applying ϕ to a constant dimen-

sion code C ⊆ Gqk(m, s), we obtain another constant dimension code ϕ(C) ⊆
Gq(km, n). Since ϕ is injective, it preserves intersections and therefore it follows
that dS(ϕ(C)) = kdS(C). In particular, if C attains the maximum possible dis-
tance, then ϕ(C) do it as well. Even more, if C is a m-spread code of Fs

qk
, then

ϕ(C) is a km-spread code of Fnq .
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We will use two constant dimension codes of Fnq constructed in this way. First,
from the spread of lines of Fs

qk
, we consider

S = ϕ(Gqk(1, s)) ⊆ Gq(k, n), (6.7)

which is a k-spread of Fnq . Originally due to Segre (see [25]), in the network
coding setting, this construction appears for the first time in [21]. Secondly, from
the Grassmannian of hyperplanes of Fs

qk
, we obtain

H = ϕ(Gqk(s− 1, s)) ⊆ Gq(n− k, n), (6.8)

which is a constant dimension code of Fnq with maximum distance.
Notice that the field reduction map ϕ together with the group monomorphism

ψ defined in (6.3) make it possible to establish the following relation between
the group action of GL(s, qk) on Gqk(m, s) and the group action of GL(n, q) on
Gq(km, n):

ϕ(V · A) = ϕ(V) · ψ(A), (6.9)

for all V ∈ Gqk(m, s) and A ∈ GL(s, qk). In particular, we will use this equality
to relate the respective actions of two Singer cyclic subgroups in which we are
very interested.

Let α be a primitive element of Fqn . Recall that, given the minimal polynomial
of α over Fqk and its companion matrix, Ms ∈ GL(s, qk), then Fqn ∼= Fqk [α] ∼=
Fqk [Ms]. Therefore, the multiplicative order of Ms is qn − 1 and Fqk [Ms] =
{0s×s}∪ 〈Ms〉 ⊆ Fs×s

qk
. In particular, Ms is a Singer cycle of GL(s, qk), generating

the Singer cyclic subgroup 〈Ms〉 of GL(s, qk). Furthermore, ψ(〈Ms〉) = 〈ψ(Ms)〉
is a Singer cyclic subgroup of GL(n, q). These two Singer groups will be crucial
in Section 5.1.

Coming back to the spread S = ϕ(Gqk(1, s)) defined in (6.7), let us denote
Gqk(1, s) = {l1, l2, . . . , lr} and S = {S1,S2, . . . ,Sr}, where r = qn−1

qk−1
and Si =

ϕ(li) for all i = 1, . . . , r. In accordance with (6.9) and Theorem 2.1, for every
i ∈ {1, . . . , r}, we can write

S = ϕ(Gqk(1, s)) = ϕ(Orb〈Ms〉(li)) = {ϕ(li · A) | A ∈ 〈Ms〉}
= {Si · ψ(A) | ψ(A) ∈ 〈ψ(Ms)〉} = Orb〈ψ(Ms)〉(Si). (6.10)

In an analogous way, we denote Gqk(s − 1, s) = {h1, h2, . . . , hr} and the code
H = {H1,H2, . . . ,Hr}, where Hi = ϕ(hi), for all i = 1, . . . , r. Then, for every
hi ∈ Gqk(s− 1, s), we obtain that

H = ϕ(Gqk(s− 1, s)) = ϕ(Orb〈Ms〉(hi)) = Orb〈ψ(Ms)〉(Hi). (6.11)

That is, the transitive action of 〈Ms〉 on the lines and hyperplanes of Fs
qk

is
translated to the transitive action of 〈ψ(Ms)〉 on the constant dimension codes of
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maximum distance S and H. Moreover, from Theorem 2.1 we also obtain that,
for any Si ∈ S and Hi ∈ H it holds

Stab〈ψ(Ms)〉(Si) = Stab〈ψ(Ms)〉(Hi) = ψ
(
Stab〈Ms〉(li)

)
= {ψ(aIs) | a ∈ F∗qk}

=


 φ(a) · · · 0k×k

...
. . .

...
0k×k · · · φ(a)

 ∣∣∣ a ∈ F∗qk

 , (6.12)

which has order qk − 1 (see also [29, Lemma 3.5]).

Remark 3.1. Following [18] and [29, Cor. 3.8], we can say that a k-spread D
of Fnq is Desarguesian if it is GL(n, q)-equivalent to S, that is, if there exists
B ∈ GL(n, q) such that

D = S ·B = {S1,S2, . . . ,Sr} ·B = {S1 ·B,S2 ·B, . . . ,Sr ·B}.

From [7, 29], we know that, given a Singer cyclic subgroup of GL(n, q), there
exists a unique k-spread of Fnq which appears as its orbit. Moreover this k-spread
is Desarguesian. Consequently, S is the unique k-spread of Fnq which arises as an
orbit of the Singer cyclic subgroup 〈ψ(Ms)〉. Besides, given another Desarguesian
k-spread D of Fnq and B ∈ GL(n, q) such that S ·B = D, it follows that

D = S ·B = Orb〈ψ(Ms)〉(Si) ·B
= {Si · A | A ∈ 〈ψ(Ms)〉} ·B
= {Si · AB | A ∈ 〈ψ(Ms)〉}
= {(Si ·B) ·B−1AB | A ∈ 〈ψ(Ms)〉}
= Orb〈ψ(Ms)〉B(Si ·B), (6.13)

that is, the k-spread D appears as the orbit under the action of the Singer cyclic
subgroup 〈ψ(Ms)〉B = B−1〈ψ(Ms)〉B. In Section 5.1, we will construct flag codes
with maximum distance and an orbital structure. To do so, we will make use of
the k-spread S defined in (6.7) and its orbital structure under the action of the
Singer group 〈ψ(Ms)〉. By virtue of (6.13), to work with any other Desarguesian k-
spread D, it would be enough to consider the group 〈ψ(Ms)〉B instead of 〈ψ(Ms)〉.

4 On Flag codes
The present section is devoted to a theoretical study of flag codes. We start in
Section 4.1 with a revision of some known results. Next, in Section 4.2 we focus on
flag codes attaining the maximum possible distance and give a characterization
of them that considerably improves the one obtained in [4]. We finish the section
by studying how to construct these flag codes as orbits (or union of orbits) of
arbitrary subgroups of the general linear group.
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4.1 Background of flag codes

Given integers 0 < t1 < · · · < tr < n, a flag F = (F1, . . . ,Fr) of type (t1, . . . , tr)
on Fnq is a sequence of nested subspaces of Fnq ,

{0} ( F1 ( · · · ( Fr ( Fnq ,

with Fi ∈ Gq(ti, n), for all i = 1, . . . , r. We say that Fi is the i-th subspace of the
flag F and when the type vector is (1, 2, . . . , n− 1) we speak about full flags.

The set of all flags of type (t1, . . . , tr) on Fnq is known as the flag variety of
type (t1, . . . , tr) on Fnq and will be denoted here by Fq((t1, . . . , tr), n).

The subspace distance defined in (6.4) for the Grassmann variety can be
naturally extended to Fq((t1, . . . , tr), n) as follows. Given F = (F1, . . . ,Fr) and
F ′ = (F ′1, . . . ,F ′r) two flags in Fq((t1, . . . , tr), n), their flag distance is

df (F ,F ′) =
r∑
i=1

dS(Fi,F ′i).

The use of flags in the network coding setting appears for the first time in [20].
Since then, several papers on this subject have recently appeared (see, for in-
stance, [2, 3, 4, 5, 17]). If ∅ 6= C ⊆ Fq((t1, . . . , tr), n), we say that C is a flag code
of type (t1, . . . , tr) on Fnq . The minimum distance of C is given by

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′}.

As for subspace codes, if |C| = 1, we put df (C) = 0. Notice that df (C) is upper
bounded by (see [4])

df (C) 6 2

(∑
2ti6n

ti +
∑

2ti>n

(n− ti)

)
. (6.14)

For any i ∈ {1, . . . , r}, the i-projected code Ci of C is defined in [4] as the constant
dimension code

Ci = {Fi | (F1, . . . ,Fr) ∈ C} ⊆ Gq(ti, n).

Observe that |Ci| 6 |C|, for every 1 6 i 6 r. When we have the equalities
|C| = |C1| = · · · = |Cr|, the flag code C is said to be disjoint (see [4]). In the same
paper, optimum distance flag codes (ODFCs, for short) are defined as flag codes
attaining the upper bound given in (6.14). The close relationship between a flag
code C and its projected codes can be used to characterize this class of flag codes
by using the concept of disjointness.

Theorem 4.1. [4, Th. 3.11] Let C be a flag code of type (t1, . . . , tr). The following
statements are equivalent:

(i) C is an ODFC.
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(ii) C is a disjoint flag code and every projected code Ci is a constant dimension
code of maximum distance.

As a result, the size of an ODFC can be upper bounded in terms of the upper
bound given by (6.6) of Section 2.2.

Theorem 4.2. [4, Th. 3.12] Let k be a divisor of n and assume that C is an
ODFC of type (t1, . . . , tr) on Fnq . If k is a dimension in the type vector, say ti = k,
then |C| 6 qn−1

qk−1
. Equality holds if, and only if, the projected code Ci is a k-spread

of Fnq .

On the other hand, requiring an ODFC to have a k-spread as one of its
projected codes leads to a condition on its type vector.

Theorem 4.3. [5, Th. 3.3] Let C be an ODFC of type (t1, . . . , tr) on Fnq . Assume
that some dimension ti = k divides n and the associated projected code Ci is a
k-spread. Then, for each j ∈ {1, . . . , r}, either tj 6 k or tj > n− k holds.

Consequently, when n = ks and s > 2, the full admissible type vector for an
ODFC having a k-spread as a projected code is (1, . . . , k, n − k, . . . , n − 1). We
will come back to this situation in Section 5.1. Besides, notice that for s = 2 the
full admissible type vector is just the full type vector. A construction of ODFCs
with the largest possible size in this particular case, together with a decoding
algorithm, can be found in [4].

The action of the general linear group on the Grassmannian seen in Section
2 can be naturally extended to flags as follows. This approach already appears
in [2, 3, 20]. Given a flag F = (F1, . . . ,Fr) ∈ Fq((t1, . . . , tr), n) and a subgroup
H of GL(n, q), the orbit flag code generated by F under the action of H is

OrbH(F) = {F ·A | A ∈ H} = {(F1 ·A, . . . ,Fr ·A) | A ∈ H} ⊆ Fq((t1, . . . , tr), n).

Its associated stabilizer subgroup is StabH(F) = {A ∈ H | F · A = F} and it
holds |OrbH(F)| = |H|

|StabH(F)| . Moreover, the minimum distance of the orbit flag
code can be obtained as

df (OrbH(F)) = min{df (F ,F · A) | A ∈ H \ StabH(F)}

and it holds df (OrbH(F)) = 0 if, and only if, StabH(F) = H. The projected
codes of an orbit flag code are orbit (subspace) codes. More precisely, for every
1 6 i 6 r, we have OrbH(F)i = OrbH(Fi) ⊆ Gq(ti, n). Besides, the stabilizer
subgroup of F is closely related to the ones of its subspaces:

StabH(F) =
r⋂
i=1

StabH(Fi). (6.15)
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Remark that, fixed an acting subgroup H of GL(n, q), the cardinality of the
flag code OrbH(F) and their projected codes are determined by the orders of
the corresponding stabilizer subgroups of H. The equality given in (6.15) allows
to obtain that disjoint flag codes, in the orbital scenario, involve an equality of
subgroups and not only of cardinalities.

Proposition 4.4. [3, Prop. 3.5] Given a flag F = (F1, . . . ,Fr) of type (t1, . . . , tr)
on Fnq and a subgroup H of GL(n, q), the following statements are equivalent:

(i) OrbH(F) is a disjoint flag code.

(ii) StabH(F) = StabH(F1) = · · · = StabH(Fr).

(iii) StabH(F1) = · · · = StabH(Fr).

4.2 On Optimum Distance Flag Codes

Next, we will go deeper into the theoretical study of ODFCs, obtaining some
important properties that will be useful for the subsequent orbital constructions
(Section 5). In Theorem 4.1, ODFCs are characterized in terms of all their
projected codes. In this section, we go one step further and present a new criterion
to characterize them just regarding, at most, two of its projected codes. To
achieve this result, we start studying how the fact of having a projected code
with maximum distance gives us some information about the cardinality and
distance of some other projected codes.

Proposition 4.5. Let C be a flag code of type (t1, . . . , tr) on Fnq having a projected
code Ci of maximum distance, for some i ∈ {1, . . . , r}, and take flags F ,F ′ ∈ C
such that Fi 6= F ′i .

(a) If 2ti 6 n, then dS(Fj,F ′j) = 2tj, for every 1 6 j 6 i. In particular,
|Ci| 6 |Cj|, for 1 6 j 6 i.

(b) If 2ti > n, then dS(Fj,F ′j) = 2(n − tj) for all i 6 j 6 r. As a consequence,
|Ci| 6 |Cj|, for values i 6 j 6 r.

Proof. Assume that Ci is a constant dimension code of maximum distance. In
particular, |Ci| > 1 and we can consider flags F ,F ′ ∈ C such that Fi 6= F ′i . We
distinguish two possibilities:

(a) If 2ti 6 n, then dS(Fi,F ′i) = dS(Ci) = 2ti or, equivalently, Fi ∩ F ′i = {0}.
Hence, for every 1 6 j 6 i, it holds that Fj∩F ′j = {0} and then dS(Fj,F ′j) =
2tj, which is the maximum possible distance between tj-dimensional sub-
spaces. In particular, Fj 6= F ′j and we conclude that |Ci| 6 |Cj|, for all
1 6 j 6 i.
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(b) If 2ti > n, then dS(Fi,F ′i) = dS(Ci) = 2(n−ti) or, equivalently, Fi+F ′i = Fnq .
As a result, when we consider higher dimensions tj > ti in the type vector,
we obtain Fj +F ′j = Fnq as well. Consequently, dS(Fj,F ′j) = 2(n− tj), which
is the maximum distance between tj-dimensional subspaces of Fnq . Moreover,
Fj and F ′j are different and we obtain |Ci| 6 |Cj|, for all i 6 j 6 r.

Remark 4.6. Notice that having a projected code attaining the maximum dis-
tance it is not enough to deduce that other projected codes satisfy the same
property. The following example shows this situation.

Example 4.7. Consider the canonical basis {e1, . . . , e6} of F6
q and let C be the

flag code of type (2, 3) on F6
q given by the flags

F1 = (〈e1, e2〉, 〈e1, e2, e3〉),
F2 = (〈e1, e3〉, 〈e1, e2, e3〉),
F3 = (〈e4, e5〉, 〈e4, e5, e6〉).

Notice that C2 = {〈e1, e2, e3〉, 〈e4, e5, e6〉} is a code of maximum distance, dS(C2) =
6. However, the first projected code C1 = {〈e1, e2〉, 〈e1, e3〉, 〈e4, e5〉} has distance
dS(C1) = dS(F1

1 ,F2
1 ) = 2, whereas the maximum distance for its dimension is 4.

We will use Proposition 4.5 in order to characterize ODFCs in terms of, at
most, two of their projected codes. These constant dimension codes are the ones
(if they exist) of closest dimensions to n

2
in the type vector, both at left and right.

Let us make this idea precise. Given an arbitrary but fixed type vector (t1, . . . , tr)
and an ambient space Fnq , we give special attention to two indices defined as

a = max{i ∈ {1, . . . , r} | 2ti 6 n} and
b = min{i ∈ {1, . . . , r} | 2ti > n}. (6.16)

Note that the sets

{i ∈ {1, . . . , r} | 2ti 6 n} and {i ∈ {1, . . . , r} | 2ti > n}

cover the family of indices {1, . . . , r}. Hence, at least one of them must be
nonempty. Even more, the first set is empty if, and only if, b = 1 and every
dimension in the type vector is lower bounded by n

2
. Similarly, the second one

does not contain any element if, and only if, a = r, i.e., if all the dimensions
in the type vector are upper bounded by n

2
. In any other situation, a and b are

well-defined and a 6 b. The equality holds if, and only if, n is even and the
dimension n

2
appears in the type vector. In this case ta = tb = n

2
. In any other

situation, these two sets partition

{1, . . . , r} = {1, . . . , a} ∪̇ {b, . . . , r},
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with b = a+ 1.
For sake of simplicity, the following results are presented in terms of both

indices a and b. Despite the fact that these two indices do not need to exist
simultaneously, at least one of them is always well defined. In that way, for type
vectors in which the index a (resp. b) does not exist, the next result still holds
true and gives a characterization of ODFCs just in terms of the projected code
of dimension tb = t1 (resp. ta = tr). In any case, it represents a significant
improvement with respect to Theorem 4.1 (see [4, Th. 3.11]).

Theorem 4.8. Let C be a flag code of type (t1, . . . , tr) on Fnq and consider indices
a and b as in (6.16). The following statements are equivalent:

(i) The flag code C is an ODFC.

(ii) Ca and Cb are constant dimensions codes of maximum distance with cardi-
nality |Ca| = |Cb| = |C|.

Proof. The implication (i) =⇒ (ii) follows straightforwardly from Theorem 4.1.
To show (ii) =⇒ (i), notice that if Ca and Cb have the maximum possible distance,
by means of Proposition 4.5, we have

|C| = |Ca| 6 |Ci| for every i 6 a and
|C| = |Cb| 6 |Cj| for every j > b.

Since the cardinality of every projected code is upper bounded by |C|, we conclude
that |C| = |C1| = · · · = |Cr|, i.e., the flag code C is disjoint. Now, in order to
see that every projected code attains the maximum possible distance, we argue
as follows. Take an index 1 6 i 6 r and consider a pair of different subspaces
Fi,F ′i ∈ Ci. These subspaces come from different flags F ,F ′ ∈ C and, since C
is disjoint, we have Fj 6= F ′j for every 1 6 j 6 r. In particular, Fa 6= F ′a and
Fb 6= F ′b. Hence, by means of Proposition 4.5, in any case, the distance dS(Fi,F ′i)
is the maximum possible one for dimension ti and, as a result, every projected
code Ci is a constant dimension code of maximum distance. Thus, by application
of Theorem 4.1, the flag code C is an ODFC.

Here below we translate the previous results into the orbital scenario. As
before, we express them in terms of both indices a and b defined in (6.16), but
always having in mind that one of them might not exist. In such a case, the
result is fulfilled by the remaining index.

The following proposition was already stated in [3] for n = 2k and flags of full
type vector.

Proposition 4.9. Let F be a flag of type (t1, . . . , tr) on Fnq and H a subgroup
of GL(n, q) such that OrbH(Fa) and OrbH(Fb) are subspace codes of maximum
distance. Then
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(i) StabH(Fi) ⊆ StabH(Fa) for all i 6 a and

(ii) StabH(Fi) ⊆ StabH(Fb) for all i > b.

Proof. (i) Consider a matrix A ∈ H\StabH(Fa). Then Fa 6= Fa ·A and, by means
of Proposition 4.5, for every i 6 a, it holds dS(Fi,Fi · A) = 2ti. In particular,
it is clear that A 6∈ StabH(Fi), whenever i 6 a. Equivalently, we have that
StabH(Fi) ⊆ StabH(Fa) for all i 6 a.
(ii) If A ∈ H\StabH(Fb), then Fb 6= Fb ·A and Proposition 4.5 leads to dS(Fi,Fi ·
A) = 2(n − ti) for all i > b. Consequently, A 6∈ StabH(Fi), for every i > b, and
the result holds.

Remark 4.10. Observe that Proposition 4.5 gives us some conditions on the
cardinality of the projected codes. From that result, in the orbital scenario, if
we assume that Ca and Cb attain the maximum possible distance, it follows that
the order of every StabH(Fi) must be upper bounded either by |StabH(Fa)| or
|StabH(Fb)|. However, in Proposition 4.9, we obtain a stronger condition: a
subgroup relationship.

Next we summarize several different characterizations for ODFCs arising as
orbits of the action of an arbitrary subgroup of GL(n, q).

Theorem 4.11. Consider a flag F of type (t1, . . . , tr) on Fnq and a subgroup H
of GL(n, q). The following statements are equivalent:

(i) The flag code OrbH(F) is an ODFC.

(ii) The subspace codes OrbH(Fa) and OrbH(Fb) are of maximum distance and
StabH(Fa) = StabH(Fb) ⊆ StabH(Fi), for every 1 6 i 6 r.

(iii) The subspace codes OrbH(Fa) and OrbH(Fb) are of maximum distance and
StabH(Fa) = StabH(Fb) ⊆ StabH(F).

(iv) The subspace codes OrbH(Fa) and OrbH(Fb) are of maximum distance and
|StabH(Fa)| = |StabH(Fb)| 6 |StabH(F)|.

The cardinality of such a flag code is |OrbH(F)| = |OrbH(Fa)| = |OrbH(Fb)|.

Proof. Observe that, by means of Theorem 4.1, together with Proposition 4.4,
statement (i) clearly implies the other ones. On the other hand, by application of
Proposition 4.9 and expression (6.15), all conditions (ii), (iii) and (iv) are equiv-
alent and make the code OrbH(F) be disjoint by Proposition 4.4. In particular, it
holds |OrbH(F)| = |OrbH(Fa)| = |OrbH(Fb)| with projected codes of dimensions
ta and tb attaining the maximum possible distances. Theorem 4.8 finishes the
proof.
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Recall that the cardinality of an orbit flag code is completely determined by
the orders of the acting group and the stabilizer subgroup of the generating flag.
Fixed the acting group, a natural way of obtaining codes with better cardinalities
is to consider the union of different orbits. We finish this section by characterizing
when the union of orbit flag codes is an ODFC. To this purpose, notice that every
nonempty subset of an ODFC is either an ODFC too or a trivial code having
just one element. In both cases, such a subset is a disjoint flag code. With the
goal of obtaining better cardinalities in mind, we proof first the following lemma
where we work with the union of two disjoint flag codes that are orbits of the
same group.

Lemma 4.12. Let F and F ′ be flags of type (t1, . . . , tr) on Fnq and take a subgroup
H of GL(n, q) such that the orbits OrbH(F) and OrbH(F ′) are disjoint flag codes.
The following statements hold:

(a) If OrbH(Fi) 6= OrbH(F ′i), for some i ∈ {1, . . . , r}, then |OrbH(F)∪OrbH(F ′)| =
|OrbH(F)|+ |OrbH(F ′)|.

(b) If OrbH(Fi) 6= OrbH(F ′i), for all i = 1, . . . , r, then OrbH(F) ∪ OrbH(F ′) is
a disjoint flag code.

(c) If OrbH(Fi) = OrbH(F ′i), for some i ∈ {1, . . . , r}, then OrbH(F)∪OrbH(F ′)
is a disjoint flag code if, and only if, OrbH(F) = OrbH(F ′).

Proof. (a) Since OrbH(Fi) 6= OrbH(F ′i), their intersection is the empty set and,
since OrbH(F) and OrbH(F ′) are disjoint flag codes, it follows that

|OrbH(F) ∪OrbH(F ′)| 6 |OrbH(F)|+ |OrbH(F ′)| = |OrbH(Fi)|+ |OrbH(F ′i)|
= |OrbH(Fi) ∪OrbH(F ′i)| = |(OrbH(F) ∪OrbH(F ′))i|
6 |OrbH(F) ∪OrbH(F ′)|.

(6.17)
Therefore, |OrbH(F) ∪OrbH(F ′)| = |OrbH(F)|+ |OrbH(F ′)| and the statement
holds.

(b) Follows directly from applying (6.17) for all i = 1, . . . , r.
(c) Assume that the union code OrbH(F) ∪OrbH(F ′) is a disjoint flag code.

Given that OrbH(Fi) = OrbH(F ′i), there must exist a matrix A ∈ H such that
Fi = F ′i · A. Hence, both flags F and F ′ · A are in OrbH(F) ∪ OrbH(F ′) and
they share their i-th subspace. Thus, we conclude that F = F ′ ·A and therefore
OrbH(F) = OrbH(F ′). The converse statement trivially holds.

Now, with the benefit of the above lemma and using Theorem 4.8, the next
result states when the union of a family of disjoint flag codes, arising as orbits
of the same group, provides ODFCs of larger cardinality. To do so, we consider
indices a and b as in (6.16).
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Theorem 4.13. Let {F j = (F j1 , . . . ,F jr )}mj=1 be a family of flags of type (t1, . . . , tr)
on Fnq and consider a subgroup H of GL(n, q) such that every orbit OrbH(F j) is
a disjoint flag code, for 1 6 j 6 m. If the subspaces F1

a , . . . ,Fma and F1
b , . . . ,Fmb

lie in different orbits under the action of H, then

|
m⋃
j=1

OrbH(F j)| =
m∑
j=1

|OrbH(F j)|.

Moreover, the following statements are equivalent:

(i) The union flag code
⋃m
j=1 OrbH(F j) is an ODFC.

(ii) The projected union codes
⋃m
j=1 OrbH(F ja) and

⋃m
j=1 OrbH(F jb ) have the

maximum possible distance.

Proof. Since every orbit OrbH(F j) is a disjoint flag code, we can argue as in
(6.17) of the previous lemma to obtain that

|
m⋃
j=1

OrbH(F j)| =
m∑
j=1

|OrbH(F j)| =
m∑
j=1

|OrbH(F ji )|, (6.18)

for i = a, b. Hence, by means of Theorem 4.8, the union flag code is an ODFC
if, and only if, its projected codes of dimensions ta and tb attain the maximum
possible distance.

We will use these theoretical results in the following section in order to give
specific constructions of orbit ODFCs having the maximum possible cardinalities
for the corresponding type vectors.

5 ODFC From Singer Groups

This section is devoted to construct flag codes of maximum distance having an
orbital structure. For this, we will use suitable Singer groups (or their subgroups)
and their transitive action on lines and hyperplanes (Theorem 2.1). The goal of
Section 5.1 is to obtain ODFCs on Fnq having a k-spread as a projected code,
for k a divisor of n. To do so, according to Theorem 4.3, we consider first flags
of type (1, . . . , k, n − k, . . . , n − 1). Such a construction leads to full flag codes
whenever n = 2k or k = 1 and n = 3. In Section 5.2, we build ODFCs of full
type vector for the remaining cases.
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5.1 Orbit ODFC from Desarguesian spreads

In this section we address the orbital construction of ODFCs on Fnq with the k-
spread S defined in (6.7) as a projected code. To this end, write n = ks for some
s > 2. Recall that, by virtue of Theorem 4.2, such a code has also the largest
possible size. Throughout the rest of this section, and for sake of simplicity,
we will write F = (F1, . . . ,Fk,Fn−k, . . . ,Fn−1) to denote an arbitrary flag of
the full admissible type vector (1, . . . , k, n − k, . . . , n − 1). In these conditions,
indices a and b of (6.16) are such that ta = k and tb = n − k. Consider the
Singer group 〈ψ(Ms)〉 of GL(n, q) defined in Section 3. Recall that the constant
dimension codes S and H arise as their orbits (see (6.10) and (6.11)). Next, we
use Theorem 4.11 in order to characterize those subgroups of 〈ψ(Ms)〉 that are
appropriate to construct ODFCs.

Theorem 5.1. Let F = (F1, . . . ,Fk,Fn−k, . . . ,Fn−1) be a flag of full admissible
type vector such that Fk ∈ S and Fn−k ∈ H. For any positive integer t dividing
qn − 1, consider the unique subgroup T of 〈ψ(Ms)〉 of order t. Then:

(i) |OrbT(F)| = t
gcd(t,q−1)

.

(ii) OrbT(F) is an ODFC if, and only if, gcd(t, qk − 1) = gcd(t, q − 1) 6= t.

Proof. (i) By (6.15) and Theorem 2.1, it follows that

Stab〈ψ(Ms)〉(F) = Stab〈ψ(Ms)〉(F1) = Stab〈ψ(Ms)〉(Fn−1) = {aIn | a ∈ F∗q},

which has order q − 1. As a result, StabT(F) = T ∩ {aIn | a ∈ F∗q}, is a
group of order gcd(t, q − 1) and the statement holds. Notice that, in particular,
OrbT(F) = {F} exactly when t | q − 1.

(ii) By using (6.12), it follows that

StabT(Fk) = T ∩ Stab〈ψ(Ms)〉(Fk) = T ∩ {ψ(aIs) | a ∈ F∗qk} =

= T ∩ Stab〈ψ(Ms)〉(Fn−k) = StabT(Fn−k),

which is a group of order gcd(t, qk−1). Since we are working with cyclic groups, we
obtain that StabT(Fk) = StabT(Fn−k) = StabT(F) if, and only if, gcd(t, qk−1) =
gcd(t, q − 1). On the other hand, since OrbT(Fk) ⊆ S and OrbT(Fn−k) ⊆ H,
these projected codes of the flag code OrbT(F) will be constant dimension codes
of maximum distance whenever they have at least 2 elements. As a result, the
statement (ii) follows from Theorem 4.11 and (i).

As stated in Theorem 4.2, the size of the k-spread S, that is, qn−1
qk−1

, determines
the maximum size of an ODFC having S as a projected code. In order to achieve
this optimal size, we will consider unions of orbits under the action of a suitable
subgroup T of 〈ψ(Ms)〉 and then apply Theorem 4.13 as follows.
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Theorem 5.2. Let T be a subgroup of order t of 〈ψ(Ms)〉 such that gcd(t, qk−1) =
gcd(t, q− 1). For m > 2, let {F j = (F j1 , . . . ,F

j
k ,F

j
n−k, . . . ,F

j
n−1)}mj=1 be a family

of flags of full admissible type such that F1
k , . . . ,Fmk ∈ S and F1

n−k, . . . ,Fmn−k ∈ H
lie in different orbits under the action of T. Then

(i) ∪mj=1OrbT(F j) is an ODFC of size mt
gcd(t,q−1)

.

(ii) If m = (qn−1) gcd(t,q−1)
(qk−1)t

, then ∪mj=1OrbT(F j) is an ODFC of the maximum
size, that is, qn−1

qk−1
.

Proof. (i) By Theorem 5.1 we know that |OrbT(F j)| = t
gcd(t,q−1)

, for all 1 6 j 6

m. Moreover, since gcd(t, qk − 1) = gcd(t, q − 1), the same theorem ensures that
either OrbT(F j) = {F j} or OrbT(F j) is an ODFC, for all 1 6 j 6 m. In any
case, one has that OrbT(F j) is a disjoint flag code, for all 1 6 j 6 m. Thus, we
have the hypotheses of Theorem 4.13 and following (6.18) we can write

| ∪mj=1 OrbT(F j)| =
m∑
j=1

|OrbT(F j)| =
m∑
j=1

|OrbT(F ji )| = mt

gcd(t, q − 1)
> 2,

for i = k, n− k. In particular, the projected codes of dimensions k and n− k of
the union flag code ∪mj=1OrbT(F j) are subsets of S and H, respectively, having
at least two elements. Hence they are subspace codes of maximum distance and
Theorem 4.13 states that ∪mj=1OrbT(F j) is an ODFC.

Statement (ii) follows just by computing the number of orbits of the action
of T on S.

Remark 5.3. Theorem 5.1 states which subgroups of 〈ψ(Ms)〉 allow the con-
struction of ODFCs as a single orbit of them. Notice that bigger subgroups not
always will provide bigger orbit flag codes. In addition, it may eventually happen
that some subgroup provides an orbit ODFC of the maximum possible size, q

n−1
qk−1

.
Otherwise, Theorem 5.2 leads to an optimal construction consisting of the union
of several orbits. Clearly, the larger the size of each orbit, the fewer orbits we
need to join to reach the maximum size and vice versa. In particular, the degen-
erate case where an ODFC is constructed as a union of qn−1

qk−1
orbits with just one

element is also contemplated in Theorem 5.2.
All these considerations are reflected in the following examples, in which we

apply Theorems 5.1 and 5.2 for different values of the parameters.

Example 5.4. With the notation of Theorem 5.1, we consider all the divisors t
of qn−1 such that gcd(t, qk−1) = gcd(t, q−1) and the corresponding subgroup T
of 〈ψ(Mk)〉 of order t. Consider a flag F of the full admissible type (1, . . . , k, n−
k, . . . , n− 1) such that Fk ∈ S and Fn−k ∈ H. Finally, denote by m the number
of required orbits of T to attain the maximum size, qn−1

qk−1
, for an ODFC with these

parameters.
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(1) Put q = 3, k = 3 and n = 6. Thus, k = n − k, qn − 1 = 728, qk − 1 = 26
and qn−1

qk−1
= 28. Then

t 1 2 4 7 8 14 28 56
|OrbT(F)| 1 1 2 7 4 7 14 28

m 28 28 14 4 7 4 2 1

Table 6.1: q = 3, k = 3 and n = 6.

Notice that, in this case, the subgroup of order t = 56 allows us to obtain
ODFCs of full type vector and having the best possible size, i.e., 28, by using
a single orbit. In this sense, for odd characteristic, Theorem 5.1 eventually
improves the construction presented in [3, Prop. 4.15], where two orbits
were always needed. Moreover, remark that the subgroup of order t = 8
gives an orbit ODFC of smaller size than the obtained with the subgroup of
order t = 7.

(2) Put q = 4, k = 3 and n = 9. Thus, n−k = 6, qn−1 = 262143, qk−1 = 63
and qn−1

qk−1
= 4161. Then

t 1 3 19 57 73 219 1387 4161
|OrbT(F)| 1 1 19 19 73 73 1387 1387

m 4161 4161 219 219 57 57 3 3

Table 6.2: q = 4, k = 3 and n = 9.

The largest orbit size is 1387 and it is obtained when the acting group has
order either 1387 or 4161. On the other hand, the maximum possible size
of an ODFC with these parameters is 4161. Hence, in order to achieve that
cardinality, we must consider the union of, at least, 3 different orbits.

The orbital constructions of ODFC provided in this section present a re-
striction on the type vector, coming from the condition of having a spread as a
projected code. However, there are two possible situations in which flag codes
of full type can be given by using Theorems 5.1 and 5.2. First, for even values
of n, taking the divisor k = n

2
leads to a construction of full type in which the

values k and n − k coincide. This particular case was first studied in [3], where
a construction using the action of a Singer subgroup of SL(2k, q) is presented.
On the other hand, for n = 3 and k = 1, the action of a Singer subgroup of
GL(3, q) on the Grassmannian of lines and hyperplanes gives us a construction
of type (1, 2), this construction is also known and the reader can find it in [17,
Prop. 2.5], where the author shows that it is the one with the biggest cardinality
among ODFC of full type when n = 3. In the following section, we consider the
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remaining situations, that is, we address the construction of orbit ODFCs of full
type vector on Fnq for odd values of n > 3.

5.2 Orbit ODFC of full type vector

Throughout this section, we work with full flags on F2k+1
q , for some k > 1. In this

case, by virtue of Theorem 4.8, the construction of ODFCs can be done by giving
appropriate constant dimension codes for dimensions k and k+1 (see (6.16)). To
this end, we present the next subgroup of GL(2k+1, q). LetMk+1 ∈ GL(k+1, q)
be the companion matrix of a primitive polynomial of degree k+1 in Fq[x]. Recall
that, as pointed out in Section 2.2, Mk+1 is a Singer cycle of GL(k + 1, q) and
Fq[Mk+1] = 〈Mk+1〉 ∪ {0(k+1)×(k+1)} is a matrix representation of the finite field
of qk+1 elements. Let us write

g =

(
Ik 0k×(k+1)

0(k+1)×k Mk+1

)
∈ GL(2k + 1, q)

and consider the cyclic group

G = 〈g〉 =
{
gi | 0 6 i 6 qk+1 − 2

}
. (6.19)

Clearly, G is a subgroup of order qk+1 − 1 of GL(2k + 1, q), isomorphic to the
Singer subgroup 〈Mk+1〉 of GL(k + 1, q). In the rest of this section, the orbit
codes considered will be always generated by the action of this particular group
G.

We start by characterizing the subspaces of dimensions k and k + 1 of F2k+1
q

whose orbits under the action of G are constant dimension codes of maximum
distance. Given arbitrary subspaces U = rowsp(U) ∈ Gq(k, 2k + 1) and V =
rowsp(V ) ∈ Gq(k + 1, 2k + 1), the respective full-rank generator matrices U ∈
Fk×(2k+1)
q and V ∈ F(k+1)×(2k+1)

q can split into two blocks as

U = (U1 | U2) and V = (V1 | V2), (6.20)

where U1 (resp. V1) denotes the first k columns of U (resp. V ). Therefore,
U1 ∈ Fk×kq , U2 ∈ Fk×(k+1)

q , V1 ∈ F(k+1)×k
q and V2 ∈ F(k+1)×(k+1)

q . Using this
notation, we can write

OrbG(U) = {U · gi | 0 6 i 6 qk+1 − 2}
= {rowsp(U1 | U2M

i
k+1) | 0 6 i 6 qk+1 − 2} (6.21)

and

OrbG(V) = {V · gi | 0 6 i 6 qk+1 − 2}
= {rowsp(V1 | V2M

i
k+1) | 0 6 i 6 qk+1 − 2}. (6.22)

89



New insights into the study of flag codes

With this notation, the following results hold. To make this section easier to
read, their proofs, and all the ones concerning subspace codes, are included in
the final Appendix of the article, so that only proofs concerning results on flag
codes appear here.

Proposition 5.5. The orbit code OrbG(U) defined in (6.21) is a partial spread
of dimension k of F2k+1

q if, and only if, rk(U1) = rk(U2) = k. Its cardinality is
|OrbG(U)| = |G| = qk+1 − 1.

Proposition 5.6. The orbit code OrbG(V) defined in (6.22) attains the maximum
possible distance if, and only if, rk(V1) = k and rk(V2) = k + 1. Its size is
|OrbG(V)| = |G| = qk+1 − 1.

Here below, we use the previous characterizations for constant dimension
codes of maximum distance in order to provide orbit ODFCs of full type on F2k+1

q .
To do so, we need to consider nested subspaces U ( V of dimensions k and k+ 1,
respectively. Using the notation of (6.20), we can formulate the problem in a
matrix approach: given a full-rank generator matrix U = (U1 | U2) ∈ Fk×(2k+1)

q of
U , we consider a subspace V spanned by the rows of a matrix V ∈ F(k+1)×(2k+1)

q ,
obtained by adding an appropriate row to U . In other words, we choose vectors
v1 ∈ Fkq and v2 ∈ Fk+1

q such that the matrix

V = (V1 | V2) =

(
U1 U2

v1 v2

)
(6.23)

has rank equal to k+ 1. Using this notation, we present the next construction of
ODFCs arising from the action of the group G defined in (6.19).

Theorem 5.7. Let F = (F1, . . . ,F2k) be a full flag on F2k+1
q such that

Fk = U = rowsp(U1 | U2) and Fk+1 = V = rowsp(V1 | V2),

with generator matrix (V1 | V2) as in (6.23) and consider the group G defined in
(6.19). The following statements are equivalent:

(i) the flag code OrbG(F) is an ODFC.

(ii) U1 ∈ Fk×kq and V2 ∈ F(k+1)×(k+1)
q are invertible matrices.

In this situation, |OrbG(F)| = |G| = qk+1 − 1.

Proof. Assume that OrbG(F) is an ODFC. In particular, the projected codes
Orb(Fk) and OrbG(Fk+1) must attain the maximum distance. By means of
Propositions 5.5 and 5.6, it must hold rk(U1) = rk(U2) = rk(V1) = k and rk(V2) =
k + 1. Consequently, U1 and V2 are invertible matrices.

Conversely, assume now that rk(U1) = k and rk(V2) = k + 1. Since U2 is
composed by the first k rows of the invertible matrix V2, we clearly obtain that
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rk(U2) = k. On the other hand, observe that V1 ∈ F(k+1)×k
q contains U1 as a

submatrix. Hence, its rank is k as well. Now, by using Propositions 5.5 and
5.6, we conclude that both OrbG(Fk) and OrbG(Fk+1) are constant dimension
codes of maximum distance such that StabG(Fk) = StabG(Fk+1) = {I2k+1} ⊆
StabG(Fi), for every 1 6 i 6 2k. Hence, by application of Theorem 4.11, the
orbit flag code OrbG(F) is an ODFC of size |OrbG(F)| = |G| = qk+1 − 1.

The ODFC constructed in Theorem 5.7 contains qk+1−1 flags. It is the largest
size for orbits under the action of the group G. On the other hand, as proved
in [17, Prop. 2.4], the maximum possible cardinality for ODFCs of full type on
F2k+1
q is exactly qk+1 + 1. Consequently, our orbital construction is only two flags

away from reaching the mentioned bound.
We devote the rest of the section to complete the construction in Theorem

5.7 into an ODFC on F2k+1
q with the largest possible size, that is, qk+1 + 1.

Notice that this value coincides with the largest size of a partial spread of F2k+1
q

of dimension k or, equivalently, the largest size of a constant dimension code
of dimension k + 1 of F2k+1

q having maximum distance. Therefore, by virtue of
Theorem 4.8, the problem can be reduced to adding to OrbG(Fk) and OrbG(Fk+1)
two appropriate respective subspaces such that the resulting subspace codes of
dimensions k and k + 1 are still of maximum distance. We start tackling this
problem for dimension k. The following remark will help us in this research.

Remark 5.8. With the notation of (6.21), observe that, in the particular case
where U1 = Ik and U2 = (Ik+1)(k), i.e., the matrix given by the last k rows of
Ik+1, we obtain

OrbG(rowsp(Ik | (Ik+1)(k))) =
{

rowsp(Ik | (M i
k+1)(k)) | 0 6 i 6 qk+1 − 2

}
,

where (M i
k+1)(k) is the matrix composed by the last k rows of M i

k+1. Therefore,
in this case, OrbG(rowsp(Ik | (Ik+1)(k))) is a subset of the partial spread of F2k+1

q

of dimension k given in [10, Th. 13], which attains the maximum possible size,
that is, qk+1 + 1, and can be written as

OrbG(rowsp(Ik | (Ik+1)(k))) ∪ {rowsp(Ik | 0k×(k+1)), rowsp(0k×k | (Ik+1)(k))}.

Inspired by this fact, for any election of full-rank matrices U1 ∈ Fk×kq and
U2 ∈ Fk×(k+1)

q , we suggest the subspaces

U ′ = rowsp(U1 | 0k×(k+1)) and U ′′ = rowsp(0k×k | U2). (6.24)

as candidates to make OrbG(rowsp(U1 | U2)) ∪ {U ′,U ′′} be a partial spread of
F2k+1
q of dimension k. The proof of the following result appears in the final

Appendix of the paper.
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Proposition 5.9. Let U1 ∈ Fk×kq and U2 ∈ Fk×(k+1)
q matrices such that rk(U1) =

rk(U2) = k and form the k-dimensional subspaces U = rowsp(U1 | U2) and U ′,U ′′
as in (6.24). Then the code OrbG(U) ∪ {U ′,U ′′} is a partial spread of F2k+1

q of
dimension k with cardinality qk+1 + 1.

Now we address the same problem for dimension k+ 1. To do so, we consider
full-rank matrices U1 ∈ Fk×kq , U2 ∈ Fk×(k+1)

q and vectors v1 ∈ Fkq , v2 ∈ Fk+1
q such

that the matrix V = (V1 | V2) defined in (6.23) has rk(V ) = rk(V2) = k + 1 and
put V = rowsp(V ) ∈ Gq(k + 1, 2k + 1). In these conditions, by Proposition 5.6,
the code OrbG(V) attains the maximum possible distance and has size qk+1 − 1.
Hence, we wonder if it is possible to find two suitable subspaces V ′ and V ′′ such
that the code OrbG(V) ∪ {V ′,V ′′} still has the maximum distance and achieve
the best cardinality. Moreover, in order to use such a code, together with the
one given in Proposition 5.9, to construct ODFCs of full type vector on F2k+1

q , we
also require the condition U ′ ⊂ V ′ and U ′′ ⊂ V ′′. Taking into account the form
of the matrix V defined in (6.23), it seems quite natural to use subspaces V ′ and
V ′′, spanned by the rows of matrices

V ′ =

(
U1 0k×(k+1)

v1 v2

)
and V ′′ =

(
0k×k U2

v1 v2

)
, (6.25)

respectively. Observe that the vector space spanned by the first k rows of V ′ (resp.
V ′′) is precisely U ′ (resp. U ′′). The next result states that this pair of subspaces
works if, and only if, v1 = 0k. The corresponding proof is also postponed to the
final Appendix of the paper.

Proposition 5.10. Let V be the matrix defined in (6.23), taking rk(U1) =
rk(U2) = k and v2 /∈ rowsp(U2). Consider V = rowsp(V ) and subspaces V ′
and V ′′ as in (6.25). Then the code OrbG(V) ∪ {V ′,V ′′} has the maximum pos-
sible distance (i.e., 2k) if, and only if, v1 = 0k. In such a case, the code attains
the largest size, that is, qk+1 + 1.

Now, making use of Propositions 5.9 and 5.10, we are ready to present the
next construction of ODFC of full type on F2k+1

q having the maximum size.
Take matrices U1 ∈ Fk×kq , U2 ∈ Fk×(k+1)

q such that rk(U1) = rk(U2) = k and
vectors v1 ∈ Fkq , v2 ∈ Fk+1

q \ rowsp(U2) and form subspaces

U = rowsp(U1 | U2), V = rowsp

(
U1 U2

v1 v2

)
,

U ′ = rowsp(U1 | 0k×(k+1)), V ′ = rowsp

(
U1 0k×(k+1)

v1 v2

)
,

U ′′ = rowsp(0k×k | U2), V ′′ = rowsp

(
0k×k U2

v1 v2

)
.

(6.26)

With this notation, the next result holds.
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Theorem 5.11. Let F ,F ′,F ′′ be full flags on F2k+1
q such that

Fk = U , Fk+1 = V ,
F ′k = U ′, F ′k+1 = V ′,
F ′′k = U ′′, F ′′k+1 = V ′′.

defined as in (6.26). Then the flag code C = OrbG(F) ∪ {F ′,F ′′} is an ODFC
with the maximum possible cardinality, i.e., qk+1 + 1, if, and only if, v1 = 0k.

Proof. By means of Theorem 4.8, we just need to check that the projected codes
of dimensions k and k + 1 attain the maximum distance, which is 2k in both
cases, and |C| = |Ck| = |Ck+1|. As proved in Propositions 5.5 and 5.6, the orbits
OrbG(Fk) and OrbG(Fk+1) give us the maximum distance. Moreover, by using
Proposition 5.9, we obtain that Ck attains the maximum distance and size for
every choice of v1. On the other hand, for Ck+1 this happens if, and only if,
v1 = 0k, by Proposition 5.10. In this case, it follows that

|C| = |Ck| = |Ck+1| = qk+1 + 1,

as stated.

6 Conclusions and open problems

In this paper we have addressed the study of flag codes having maximum distance
(ODFCs). We have obtained a characterization of such codes in terms of, at most,
two of their projected codes. We have done this first in a general context and
then in an orbital scenario (Section 4.2). In particular, these results improve on
those obtained in [4] in this respect. Next, we have focused on the construction
of ODFCs with an orbital structure. To do this, we have used the action of
suitable Singer groups. We have provided two different systematic constructions,
both of them reaching the maximum possible cardinality. For the first one, we
have exploited the good relationship between Singer groups and Desarguesian
spreads to obtain ODFCs having a specific Desarguesian spread as a projected
code (Section 5.1). For the second construction, we have used the transitive
action of Singer groups on hyperplanes and worked with flags of full type vector,
thus covering the cases that cannot be considered in the previous construction
(Section 5.2).

Given that the theoretical results obtained in Section 4.2 do not in any case
require working with Desarguesian spreads, a possible research to be done along
these lines could include the specific construction of orbital ODFCs having a non-
Desarguesian spread among their projected codes. In a wider context, it would
be interesting to address the study of flag codes associated with a fixed distance,
as well as to provide systematic constructions of them.
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7 Appendix
Proof of Proposition 5.5: Assume that the code OrbG(U) = {U · gi | 0 6 i 6
qk+1 − 2} is a partial spread code of dimension k of F2k+1

q . In other words,
dS(OrbG(U)) = 2k and StabG(U) is a proper subgroup of G. In particular,
for every gj ∈ G \ StabG(U), it holds that dS(U ,U · gj) = 2k or, equivalently,
U ∩ U · gj = {0}. Let us see that this necessarily implies that rk(U1) = rk(U2) =
k. First, suppose that rk(U2) < k. Then at least one of the rows of U2 is a
linear combination of the other ones. Hence, there must exist a nonzero vector
a ∈ Fkq such that aU2 = 0k+1. Then, for every 0 6 i 6 qk+1 − 2, one has that
aU2M

i
k+1 = 0k+1 and

x = (aU1 | 0k+1) = a(U1 | U2) = a(U1 | U2M
i
k+1) ∈ U ∩ U · gi.

Moreover, since the k rows of U = (U1 | U2) are linearly independent and a 6= 0k,
it follows that x 6= 02k+1. That is a contradiction with U ∩ U · gj = {0}, for
those gj ∈ G \ StabG(U). Hence, it must hold that rk(U2) = k. Now, let us
prove that U1 has also rank k. If not, as before, there must exist a nonzero vector
a ∈ Fkq such that aU1 = 0k. Denote x2 = aU2, which is a nonzero vector of
U2 = rowsp(U2), since the rows of U2 are linearly independent. Besides, notice
that U2 is a hyperplane of Fk+1

q . Consider now, another hyperplane (different
from U2) containing x2 too. Since the Singer subgroup 〈Mk+1〉 acts transitively
on Gq(k, k + 1), we can write such a hyperplane as U2 · M i

k+1, for some not
scalar matrix M i

k+1. In particular, we have 0 6= M i
k+1 + Ik+1 = M j

k+1, for some
j ∈ {0, . . . , qk+1− 2}. This, in turn, implies that M j

k+1 neither is a scalar matrix.
Thus, by Theorem 2.1, necessarily U2 6= U2 ·M j

k+1. Since 0k+1 6= x2 ∈ U2 ·M i
k+1 =

rowsp(U2M
i
k+1), there must exist a nonzero vector b ∈ Fkq such that

x2 = bU2M
i
k+1 = bU2(M i

k+1 + Ik+1 − Ik+1) = bU2M
j
k+1 − bU2.

Now, consider the vector

(a + b)(U1 | U2) = (aU1 + bU1 | aU2 + bU2)

= (bU1 | x2 + bU2M
j
k+1 − x2) = b(U1 | U2M

j
k+1).

Finally, since b 6= 0k and the rows of (U1 | U2M
j
k+1) are linearly independent, we

have found a nonzero vector lying on U ∩ U · gj. Moreover, since U2 6= U2 ·M j
k+1,

we have that U 6= U · gj. This represents a contradiction with the fact that
OrbG(U) is a partial spread. As a result, we conclude that rk(U1) = k.

Conversely, assume that rk(U1) = rk(U2) = k. Let us see that OrbG(U) is a
partial spread with qk+1− 1 elements. To do so, given gi ∈ G \ {I2k+1}, consider
a vector x in U ∩ U · gi. Hence, we can find vectors a,b ∈ Fkq such that

x = a(U1 | U2) = b(U1 | U2M
i
k+1).
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In particular, it holds aU1 = bU1 or, equivalently, (a − b)U1 = 0k. Since the
matrix U1 is invertible, we conclude that a = b. In this case, we have that
aU2 = aU2M

i
k+1, i.e., aU2(M i

k+1 − Ik+1) = 0k+1. Notice that, since gi 6= I2k+1,
the matrixM i

k+1−Ik+1 is invertible and then, it must hold aU2 = 0k+1. Moreover,
as the k rows of U2 are linearly independent, it follows a = 0k. In other words,
the intersection subspace U ∩U ·gi is trivial and then dS(U ,U ·gi) = 2k, for every
gi 6= I2k+1. As a consequence StabG(U) = {I2k+1} and OrbG(U) is a partial
spread of cardinality qk+1 − 1.

Proof of Proposition 5.6: Assume that the code OrbG(V) attains the maximum
possible distance, i.e., 2k. Hence, StabG(V) is a proper subgroup of G and, for
every gi ∈ G \ StabG(V), it holds dim(V ∩ V · gi) = 1.

Let us start proving that V2 must be an invertible matrix. To do so, arguing
by contradiction, we assume that rk(V2) < k + 1. We proceed in two steps:

(1) If rk(V2) 6 k− 1 = (k+ 1)− 2, then we can find, at least, two independent
vectors a,b ∈ Fk+1

q such that bV2 = 0k+1 = aV2. In this case, both vectors

x = a(V1 | V2) = a(V1 | 0k+1) = a(V1 | V2M
i
k+1) and

y = b(V1 | V2) = b(V1 | 0k+1) = b(V1 | V2M
i
k+1)

lie on every subspace of OrbG(V). In particular, x,y ∈ V ∩V · gi, for every
gi ∈ G \ StabG(V). Since in this case we know that dim(V ∩ V · gi) = 1,
there must happen that x = λy for some λ ∈ Fq. Then, it holds

02k+1 = x− λy = (a− λb)(V1 | V2).

Moreover, since the rows of (V1 | V2) are linearly independent, we conclude
that a = λb, which is a contradiction with the independence of a and b.
Hence, it must hold k 6 rk(V2) 6 k + 1.

(2) If rk(V2) = k, then the subspace V2 = rowsp(V2) is a hyperplane of Fk+1
q .

On the other hand, since V1 ∈ F(k+1)×k
q , there must exist a nonzero vector

a ∈ Fk+1
q such that aV1 = 0k. Moreover, notice that the vector a(V1 | V2) is

not zero since rk(V1 | V2) = k + 1. Hence, x2 = aV2 is a nonzero vector in
the hyperplane V2 of Fk+1

q . Let us consider a different hyperplane of Fk+1
q

containing x2 as well. As the action of 〈Mk+1〉 is transitive on Gq(k, k+ 1),
such a hyperplane is of the form V2 ·M i

k+1, for some not scalar matrixM i
k+1.

Then we can write x2 = bV2M
i
k+1 for some vector b ∈ Fk+1

q . Observe that
M i

k+1 + Ik+1 is again a power of Mk+1, say M i
k+1 + Ik+1 = M j

k+1, which is
not a scalar matrix too. Thus, by Theorem 2.1, V2 6= V2 ·M j

k+1 and then
V 6= V · gj. Now, notice that x2 = bV2M

j
k+1 − bV2 = aV2 and

x = (a + b)(V1 | V2) = b(V1 | V2M
j
k+1) ∈ V ∩ V · gj
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Moreover, since x2 6= 0k+1, it follows that bV2 6= 0k+1 and then bV2M
j
k+1 6=

0k+1. On the other hand, since rk(V2) = k, there must exist a nonzero vector
c ∈ Fk+1

q such that cV2 = 0k+1. Observe that, given that rk(V1 | V2) = k+1,
then cV1 6= 0k. Hence, the nonzero vector

y = (cV1 |0k+1) = c(V1 | V2) = c(V1 | V2M
j
k+1)

lies as well on V ∩ V · gj. We conclude that, dim(V ∩ V · gj) > 2, which
contradicts the hypothesis of OrbG(V) attaining the maximum possible
distance.

Hence, assuming that dS(OrbG(V)) = 2k, then it must holds rk(V2) = k + 1.
We will see now that V1 needs to have rank equal to k. To do so, we assume
that rk(V1) 6 k − 1. First of all, notice that if V1 = 0(k+1)×k, since V2 is an
invertible matrix, one has that OrbG(V) = {V} and its distance is zero. Hence,
we can assume that 1 6 rk(V1) 6 k − 1. In this situation, there exist at least
two independent vectors a,b ∈ Fk+1

q such that aV1 = bV1 = 0k. Now, since
rk(V2) = k + 1, the rows of every matrix V2M

i
k+1 span the whole space Fk+1

q .
Take M i

k+1 6= −Ik+1, then the matrix M i
k+1 + Ik+1 is again a power of Mk+1, say

M i
k+1 + Ik+1 = M j

k+1, for some 0 6 j 6 qk+1− 2. Now we express both (nonzero)
vectors aV2 and bV2 as linear combinations of the rows of V2M

i
k+1 and obtain the

following equalities:

aV2 = cV2M
i
k+1 = cV2(M i

k+1 + Ik+1 − Ik+1) = cV2M
j
k+1 − cV2,

bV2 = dV2M
i
k+1 = dV2(M i

k+1 + Ik+1 − Ik+1) = dV2M
j
k+1 − dV2,

(6.27)
for some nonzero vectors c,d ∈ Fk+1

q . Hence, both vectors

x = (a + c)(V1 | V2) = (cV1 | aV2 + cV2) = c(V1 | V2M
j
k+1),

y = (b + d)(V1 | V2) = (dV1 | bV2 + dV2) = d(V1 | V2M
j
k+1),

lie on V ∩ V · gj. Let us see that they are independent. Otherwise, x = λy, for
some λ ∈ Fq and it must hold

0k+1 = (c− λd)V2M
j
k+1.

Since V2M
j
k+1 is invertible, we conclude that c = λd. As a result, by (6.27), we

obtain
aV2 = cV2M

i
k+1 = λdV2M

i
k+1 = λbV2

and, given that rk(V2) = k + 1, it follows a = λb, which is not possible. Hence,
dim(V∩V ·gj) > 2. Moreover, let us see that V 6= V ·gj. Note that dim(V+V ·gj)
is exactly the rank

rk

(
V1 V2

V1 V2M
j
k+1

)
= rk

(
V1 V2

0(k+1)×k V2M
i
k+1

)
> rk(V1) + rk(V2M

i
k+1) > k+ 2,
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which is greater than dim(V) = dim(V · gj) = k + 1. Hence, V 6= V · gj and we
obtain a contradiction with dS(OrbG(V)) = 2k. Then, it must happen rk(V1) = k
and rk(V2) = k + 1.

Now, let us prove that the converse is also true. Assume that rk(V1) = k and
rk(V2) = k + 1 and take gi ∈ G \ {I2k+1}. We show that dim(V ∩ V · gi) = 1. To
do so, consider two arbitrary vectors x,y ∈ V ∩ V · gi and write them as

x = a(V1 | V2) = c(V1 | V2M
i
k+1) and

y = b(V1 | V2) = d(V1 | V2M
i
k+1),

for some vectors a,b, c,d ∈ Fk+1
q . Observe that (a−c)V1 = (b−d)V1 = 0k. Since

V1 ∈ F(k+1)×k
q with rk(V1) = k, it follows that a−c and b−dmust be proportional

vectors. Let us write (a − c) = λ(b − d), for some λ ∈ Fq. Equivalently,
a − λb = c − λd. Moreover, since aV2 = cV2M

i
k+1 and bV2 = dV2M

i
k+1, we

obtain
(a− λb)V2 = (c− λd)V2M

i
k+1 = (a− λb)V2M

i
k+1,

or, equivalently, (a − λb)V2(M i
k+1 − Ik+1) = 0k+1. Last, since gi 6= I2k+1, then

V2(M i
k+1 − Ik+1) is an invertible matrix and it follows a = λb and x = λy. As

a result, for every gi ∈ G \ {I2k+1}, it occurs dim(V ∩ V · gi) = 1 or, equiva-
lently, dS(V ,V · gi) = 2k. Consequently, StabG(V) = {I2k+1} and OrbG(V) has
maximum distance and cardinality qk+1 − 1.

Proof of Proposition 5.9: Since rk(U1) = rk(U2) = k, Proposition 5.5 proves
that the orbit OrbG(U) is a k-partial spread of F2k+1

q . Hence, it suffices to see
that adding the two subspaces U ′ and U ′′ defined in (6.24) does not decrease the
distance. Observe that two k-dimensional subspaces in F2k+1

q attain the maximum
possible distance if, and only if, they intersect trivially or, equivalently, if their
sum subspace has dimension 2k. It is clear that

dim(U · gi + U ′) = rk

(
U1 U2M

i
k+1

U1 0k×(k+1)

)
= rk

(
0k×k U2M

i
k+1

U1 0k×(k+1)

)
= 2k,

2k > dim(U · gi + U ′′) = rk

(
U1 U2M

i
k+1

0k U2

)
> rk(U1) + rk(U2) = 2k

and
dim(U ′ + U ′′) = rk

(
U1 0k×(k+1)

0k U2

)
= rk(U1) + rk(U2) = 2k.

As a result, in these three situations we obtain distance equal to 2k and we
conclude that the code OrbG(U) ∪ {U ′,U ′′} is a partial spread with qk+1 + 1
elements.

Proof of Proposition 5.10: Notice that, by virtue of Proposition 5.6, we have that
dS(OrbG(V)) = 2k. Hence, in order to give the minimum distance of the code
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OrbG(V)∪{V ′,V ′′}, we just need to compute distances between pairs of different
subspaces not both in OrbG(V). Moreover, recall that two (k + 1)-dimensional
subspaces of F2k+1

q have the maximum possible distance if, and only if, their sum
is the whole vector space F2k+1

q .
Let us start proving that taking v1 = 0k leads to a construction of maximum

distance. To do so, just notice that

dim(V · gi + V ′) = rk


U1 U2M

i
k+1

0k v2M
i
k+1

U1 0k×(k+1)

0k v2

 = rk

 0k×k U2M
i
k+1

0k v2M
i
k+1

U1 0k×(k+1)


= rk(U1) + rk(V2M

i
k+1) = 2k + 1,

dim(V · gi + V ′′) = rk


U1 U2M

i
k+1

0k v2M
i
k+1

0(k+1)×k U2

0k v2

 > rk(U1) + rk(V2) = 2k + 1

and

dim(V ′ + V ′′) = rk


U1 0k×(k+1)

0k v2

0(k+1)×k U2

0k v2

 = rk(U1) + rk(V2) = 2k + 1.

Hence, we obtain that V · gi + V ′ = V · gi + V ′′ = V ′ + V ′′ = F2k+1
q , for every

0 6 i 6 qk+1−2. Consequently, the distance of the code is the maximum possible
one. In particular, V ′ and V ′′ are different and they do not lie in the orbit of V .
Thus, it follows |OrbG(V) ∪ {V ′,V ′′}| = qk+1 + 1, i.e., the largest size for its
distance.

Conversely, we show that taking v1 = 0k is the only possibility for OrbG(V)∪
{V ′,V ′′} to attain the maximum distance. To do so, assume that v1 is a nonzero
vector of Fkq . Hence, since rk(U1) = k, there exists a nonzero vector a ∈ Fkq such
that v1 = aU1. We will exhibit a explicit subspace V · gj ∈ OrbG(V) such that
dS(V · gj,V ′′) < 2k.

Since U2 ∈ Fk×(k+1)
q has rk(U2) = k, the subspace U2 = rowsp(U2) is a hyper-

plane of Fk+1
q and, as rk(V2) = k+1, it follows that v2 /∈ U2. In particular, v2 and

aU2 are linearly independent vectors and so they are v2 and v2−aU2. Consider a
hyperplane of Fk+1

q containing the vector v2− aU2 but not v2. Recall that, since
the Singer subgroup generated byMk+1 acts transitively on Gq(k, k+1) (see Theo-
rem 2.1), such a hyperplane is of the form U2 ·M i

k+1, for some i ∈ {0, . . . , qk+1−2}.
Observe that, for this choice of i, we have v2−aU2 ∈ U2 ·M i

k+1 and v2 /∈ U2 ·M i
k+1.

Thus, at this point, we have that

(v2 − aU2)M−i
k+1 ∈ U2 and v2, v2M

−i
k+1 /∈ U2.
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On the other hand, as V2 ∈ GL(k + 1, q), every vector in Fk+1
q can be written

as a linear combination of its rows, which are the ones of U2 together with v2. In
particular, there must exist λ ∈ Fq and b ∈ Fkq such that v2M

−i
k+1 = λv2 + bU2.

Moreover, since v2M
−i
k+1 /∈ U2, it follows λ 6= 0. Then the matrix λ−1M−i

k+1 ∈
Fq[Mk+1] is a power of Mk+1 and we can write λ−1M−i

k+1 = M j
k+1, for certain

exponent j ∈ {0, . . . , qk+1−2}. Observe that, for this matrixM j
k+1, we have that

v2M
j
k+1 − v2 ∈ U2 and also (v2 − aU2)M j

k+1 ∈ U2. As a result, their difference,
i.e., the vector v2 − aU2M

j
k+1 ∈ U2 as well. Now, consider the subspace V · gj.

Let us see that dS(V · gj,V ′′) is not the maximum one or, equivalently, that
V · gj + V ′′ 6= F2k+1

q . Observe that

dim(V · gj + V ′′) = rk


U1 U2M

j
k+1

v1 v2M
j
k+1

0(k+1)×k U2

v1 v2



= rk


U1 U2M

j
k+1

0k v2M
j
k+1 − aU2M

j
k+1

0(k+1)×k U2

0k v2 − aU2M
j
k+1


= rk

(
U1 U2M

j
k+1

0(k+1)×k U2

)
= dim(U · gj + U ′′) = 2k.

Since k > 1, it follows that 2k > k + 1. Consequently, for this precise value
of j, it holds that V · gj 6= V ′′ and dS(V · gj,V ′′) < 2k. We conclude that
OrbG(V) ∪ {V ′,V ′′} does not attain the maximum distance.
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Chapter 7: On generalized Galois cyclic orbit flag codes

Abstract:

Flag codes that are orbits of a cyclic subgroup of the general linear group acting
on flags of a vector space over a finite field, are called cyclic orbit flag codes.
In this paper we present a new contribution to the study of such codes started
in [3], by focusing this time on the generating flag. More precisely, we examine
those ones whose generating flag has at least one subfield among its subspaces.
In this situation, two important families arise: the already known Galois flag
codes, in case we have just fields, or the generalized Galois flag codes in other
case. We investigate the parameters and properties of the latter ones and explore
the relationship with their underlying Galois flag code.
Keywords: Network coding, flag codes, cyclic orbit flag codes.

1 Introduction

Network coding represents a procedure to data transfer within a network that is
a directed multigraph without cycles, where the information travels from one or
several senders to several receivers. In [1], it was proved that one can improve
the efficiency if the intermediate nodes can linearly combine the information vec-
tors. We speak about random network coding whenever the underlying network
topology is unknown. Due to the fact that vector subspaces are invariant under
linear combinations, they are proposed as suitable codewords in [13], giving raise
to the concept of subspace codes. When all the subspaces have a fixed dimension,
we get constant dimension codes. Research in this area has been very intense in
latter years (consult [26] and references inside).

One method devised in [25] to build subspace codes consists of making sub-
groups of the general linear group GL(n, q) act on the set of subspaces of Fnq and
thus, consider the corresponding orbits. This idea leads to the concept of orbit
codes. In particular, when the acting group is cyclic, we obtain the so-called
cyclic orbit codes, widely studied in the last times (see [8, 9, 10, 11, 20, 22, 24,
25, 27]CHAP7, for instance). Of special relevance for our purposes is the paper
[11], where the authors treat β-cyclic orbit codes as collections of Fq-vector sub-
spaces of Fqn that are orbits under the natural action of a subgroup 〈β〉 of F∗qn
on Fq-vector spaces (if β is primitive, the corresponding orbit is called just cyclic
orbit code). In that paper, it is introduced an interesting tool to analyze β-cyclic
orbit codes: the best friend of the code, that is, the largest subfield of Fqn over
which the generating subspace is a vector space.

Flag codes can be seen as a generalization of constant dimension codes. The
codewords of a flag code are flags, that is, sequences of chained subspaces of
prescribed dimensions. In the network coding context, they appeared for the first
time in the paper [15] where the multiplicative action of GL(n, q) is translated
from subspaces to flags to provide different constructions of orbit flag codes. This
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seminal work has sparked an incipient interest in flag codes reflected in the recent
works [2, 3, 4, 5, 6, 7, 14, 19].

In [3], the authors undertake the study of β-cyclic orbit flag codes inspired
by the ideas in [11]. More precisely, they consider flags on Fqn given by nested
Fq-subspaces of the field Fqn constructed as orbits of subgroups 〈β〉 ⊆ F∗qn , and
coin the concept of best friend of a cyclic flag code as the largest subfield of Fqn
over which every subspace in the generating flag is a vector space. The knowledge
of the best friend turns out to be extremely useful to determine the parameters
of the code as well as other features such as the necessary conditions on the type
vector to reach the maximum distance. It is also presented the particular family
of Galois flag codes, that consists of β-cyclic orbit flag codes generated by flags
given by nested fields. For that class of codes it is possible to precisely establish
a nice correspondence between the set of attainable distances and the subgroups
of F∗qn .

In the current paper we extend the study performed in [3] by focusing on
the generating flag. More precisely, we examine β-cyclic orbit flag codes whose
generating flag has at least one subfield among its subspaces. We distinguish two
situations: either all the subspaces are fields, then we have the already known
Galois flag codes, or there is also at least one subspace not being a field. The
last case entails the definition of a new kind of β-cyclic orbit flag codes called
generalized Galois flag codes. We discuss the properties of this new class of
codes by taking into account that a generalized Galois flag code has always an
underlying Galois flag code that influences on it to a greater or lesser extent.

The text is structured as follows. In section 2 we remember the basics on sub-
space codes as well as some notions and results related to cyclic orbit (subspace)
codes developed in [11]. In Section 3 we recall, on the one hand, some back-
ground on flag codes and the most important facts on cyclic orbit flag codes that
appear in [3]. On the other hand, we present some new results on the interplay
between type vectors, best friend and the flag distance parameter. The family of
generalized β-Galois flag codes is introduced here as an extension of the β-Galois
flag codes. We discuss in which way the properties of a generalized Galois flag
code are driven by its underlying Galois flag code and launch a related question.
Section 4 is devoted to provide a systematic construction of generalized β-Galois
flag codes with a prescribed underlying β-Galois flag code by using generating
flags written in a precise regular form. In Subsections 4.1, 4.2 and 4.3 we analyze
the particular properties of the previous construction in case β is primitive, and
propose a decoding algorithm over the erasure channel taking advantage of such
properties. In Subsection 4.4 we address the case when β is not primitive and
present some specific results. To finish, we show how our construction allows us
to give an answer to the question previously formulated.
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2 Preliminaries
Consider q a prime power and Fq the finite field with q elements. We denote
by Fnq the n-dimensional vector space over Fq for any natural number n > 1
and by Pq(n) the set of all the subspaces of Fnq . For every 0 6 k 6 n, the set
of k-dimensional subspaces of Fnq , that is, the Grassmannian, will be denoted
by Gq(k, n). The set Pq(n) can be equipped with a metric called the subspace
distance: for any pair U ,V ∈ Pq(n), we set

dS(U ,V) = dim(U + V)− dim(U ∩ V). (7.1)

In particular, the subspace distance between two subspaces U ,V ∈ Gq(k, n) be-
comes

dS(U ,V) = 2(k − dim(U ∩ V)). (7.2)

A constant dimension code C of dimension k and length n is a nonempty subset
of Gq(k, n) whose minimum subspace distance is given by

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V}.

If |C| = 1, we put dS(C) = 0. For further details on this family of codes, consult
[26] and the references inside.

It is clear that the minimum distance of a constant dimension code C ⊆
Gq(k, n) is attained when the intersection of every pair of codewords has the
minimum possible dimension. In this case, we have that

dS(C) 6
{

2k if 2k 6 n,
2(n− k) if 2k > n.

(7.3)

A constant dimension code with dimension k 6 bn
2
c attaining the previous bound

is called partial spread code. A partial spread code being also a partition of Fnq
into k-dimensional subspaces is known as a spread code or just a k-spread. In [23]
it is proved that k-spread exist if, and only if, k divides n. As a result, the size of
any k-spread is exactly qn−1

qk−1
. See [12, 16, 17, 26] for more information concerning

spread codes in the network coding setting.
Among all the special families of constant dimension codes, here we are inter-

ested in orbit codes, that is, those that arise as orbits of the action of subgroups of
the general linear group GL(n, q) on the Grassmannian. This family of codes was
introduced in [25]. More precisely, fixed a k-dimensional subspace U ⊂ Fnq and
a subgroup G ⊆ GL(n, q), the orbit of U under the action of G is the constant
dimension code given by OrbG(U) = {U ·A | A ∈ G}, where U ·A = rowsp(UA),
for any full-rank generator matrix U of U . The stabilizer of U under the action
of G is the subgroup StabG(U) = {A ∈ G | U · A = U}. As a consequence,

|OrbG(U)| = |G|
|StabG(U)|

(7.4)
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and the minimum distance can be computed as

dS(OrbG(U)) = min{ds(U ,U · A) | A ∈ G \ StabG(U)}.

Whenever the acting group G is cyclic, the orbit OrbG(U) is called cyclic orbit
code. The works [11, 18, 21, 24] are devoted to the study of this family of codes.
In the current paper we are especially interested in the viewpoint developed in [24]
and [11] where, taking advantage of the natural Fq-linear isomorphism between
Fnq and Fqn , cyclic orbit codes are seen as collections of subspaces in Fqn . More
precisely, in [11] the authors consider a nonzero element β and define β-cyclic orbit
codes as orbits of the group 〈β〉 on Fq-vector subspaces of Fqn . In particular, if
1 6 k < n and U ⊂ Fqn is a k-dimensional subspace over Fq, the β-cyclic orbit
code generated by U is the following set of Fq-subspaces of dimension k

Orbβ(U) = {Uβi | 0 6 i 6 |β| − 1},

where |β| denotes the multiplicative order of β. The stabilizer of the subspace
U under the action of 〈β〉 is the cyclic subgroup Stabβ(U) = {βi | Uβi = U}.
An important example of such kind of codes, already developed in [24], is the
following k-spread code, where k is a divisor of n and α is a primitive element of
Fqn :

Orb〈α〉(Fqk) = {Fqkαi | i = 0, . . . , qn − 2}. (7.5)

Remark 2.1. Following the notation used in [11], when the acting group is F∗qn ,
we simply denote the corresponding orbit by Orb(U) and call it just the cyclic
orbit code generated by U . In this situation, we also remove the subscript β and
write Stab(U) to denote the stabilizer of U .

Concerning the cardinality and distance of a β-cyclic orbit code, in [11] the
authors study these parameters with the aid of the best friend of the generating
subspace. This concept is closely linked to the stabilizer of the subspace. Let us
recall the definition.

Definition 2.2. A subfield Fqm of Fqn is said to be a friend of a subspace U ⊂ Fqn
if U is an Fqm-vector space. The largest friend of U is called its best friend.

The knowledge of the best friend of a subspace U provides straightforwardly
the cardinality of the cyclic orbit code as well as a lower bound for its distance.

Proposition 2.3. ([11, Prop. 3.3, 3.12, 3.13 and 4.1]) Let U be a subspace of
Fqn with the subfield Fqm as its best friend. Then

|Orb(U)| = qn − 1

qm − 1
.

Moreover, the value 2m divides the distance between every pair of subspaces in
Orb(U) and, hence, we have that dS(Orb(U)) > 2m.
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We finish this section recalling a construction of cyclic orbit codes with pre-
scribed distance and cardinality from the choice of a subspace U written in a
specific regular form.

Proposition 2.4. ([11, Prop. 4.3]) Consider the subspace U =
⊕t−1

i=0 Fqmαli for
some 1 6 l < qn−1

qm−1
such that Fqm is the best friend of U . Then dS(Orb(U)) = 2m.

It is clear that the subfield Fqm is a friend of a subspace U written as in
previous proposition, although it is not necessarily its best friend. In fact, there
are just two possibilities for the best friend of U .

Proposition 2.5. ([11, Proposition 4.4]) Given the subspace U =
⊕t−1

i=0 Fqmαli
for some 1 6 l < qn−1

qm−1
. If f(x) is the minimal polynomial of αl over Fqm, then

its degree is at least t and

U = Fqmt ⇔ deg(f) = t ⇔ αl ∈ Stab(U) ⇔ Fqm is not the best friend of U .

We will come back to this family of subspaces and to the β-cyclic orbit codes
generated by them in Section 4, where we provide a specific construction of gener-
alized Galois cyclic orbit flag codes by using subspaces written as in Proposition
2.4.

3 Cyclic orbit flag codes
Part of this section is dedicated to gather the basic background on flag codes
that already appears in [6, 7, 15], and to recall the main definitions and results
that pertain to the particular class of cyclic orbit flag codes introduced in [3]. In
Subsection 3.3, we present new results concerning the interdependence between
the minimum distance of a β-cyclic orbit flag code, its best friend and the set
of dimensions appearing in the type vector. In addition, the class of generalized
Galois flag codes is introduced in Subsection 3.4.

3.1 Flags and flag codes

A flag F = (F1, . . . ,Fr) on the extension field Fqn is a sequence of nested Fq-
vector subspaces

{0} ( F1 ( · · · ( Fr ( Fqn .

The subspace Fi is called the i-th subspace of F and the type of F is the vector
(dim(F1), . . . , dim(Fr)). When the type vector is (1, 2, . . . , n− 1), we say that F
is a full flag. Given two different flags F , F ′ on Fqn , we say that F ′ is a subflag
of F if each subspace of F ′ is a also subspace of F .

The flag variety of type (t1, . . . , tr) on Fqn is the set of flags of this type and
will be denoted by Fq((t1, . . . , tr), n). Note that Fq((t1, . . . , tr), n) embeds in the
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product of Grassmannians Gq(t1, n)× · · · × Gq(tr, n) and, hence, this variety can
be endowed with a metric that extends the subspace distance defined in (7.1).
Given two flags F = (F1, . . . ,Fr) and F ′ = (F ′1, . . . ,F ′r) in Fq((t1, . . . , tr), n),
their flag distance is

df (F ,F ′) =
r∑
i=1

dS(Fi,F ′i).

Definition 3.1. A flag code C of type (t1, . . . , tr) on Fqn is a nonempty subset
of Fq((t1, . . . , tr), n). The minimum distance of C is given by

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′}.

whenever C has more that two elements. In case |C| = 1, we put df (C) = 0. For
type (t1, . . . , tr), it always holds

df (C) 6 2

 ∑
ti6bn2 c

ti +
∑
ti>bn2 c

(n− ti)

 . (7.6)

There are constant dimension codes intrinsically correlated with a flag code
C that play an important role in the study of parameters and properties of C.

Definition 3.2. Given a flag code C of type (t1, . . . , tr), the i-projected code of
C is the set

Ci = {Fi | (F1, . . . ,Fi, . . . ,Fr) ∈ C} ⊆ G(ti, n).

Remark 3.3. Concerning the relationship between the size of a flag code and
the ones of its projected codes, it is clear that |Ci| 6 |C| for every i = 1, . . . , r.
In case |C1| = · · · = |Cr| = |C|, we say that C is disjoint. Under this condition,
it is possible to establish also a clear connection between the minimum distance
of a given flag code and the ones of its projected codes. More precisely, if C is a
disjoint flag code, then

df (C) >
r∑
i=1

dS(Ci).

In [2] the authors introduced a family of flag codes such that the distance and
size of the projected codes completely determine the ones of the corresponding
flag code.

Definition 3.4. A flag code C is consistent if the following conditions hold:

(1) C is disjoint.

(2) df (C) =
∑r

i=1 dS(Ci).
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In the same paper, the authors develop a decoding algorithm for consistent
flag codes over the erasure channel and provide important families of such a class
of codes. Among them, we can find the one of optimum distance flag codes. This
class of flag codes has been already studied in [4, 6, 7, 19]. In these works, the
reader can find specific constructions of them as well as the following characteri-
zation.

Theorem 3.5. [6, Th. 3.11] A flag code is an optimum distance flag code if,
and only if, it is disjoint and every projected code attains the maximum possible
distance for its dimension.

We will come back to this ideas in Subsection 4.3 in order to adapt the consis-
tent flag codes decoding algorithm designed in [2] to the constructions proposed
in the present paper.

3.2 Cyclic orbit flag codes

Let us recall the concept of cyclic orbit flag code as the orbit of the multiplicative
action of (cyclic) subgroups of F∗qn on flags on Fqn . This concept of cyclic orbit
flag code was first introduced in [3] following the approach of [11] for cyclic orbit
subspace codes.

The cyclic group F∗qn acts on flags on Fqn as follows: given β ∈ F∗qn and a flag
F = (F1, . . . ,Fr) of type (t1, . . . , tr), the flag Fβ is

Fβ = (F1β, . . . ,Frβ) (7.7)

and the orbit
Orbβ(F) = {Fβj | 0 6 j 6 |β| − 1} (7.8)

is called the β-cyclic orbit flag code generated by F . The stabilizer of F (w.r.t.
β) is the subgroup of 〈β〉 given by

Stabβ(F) = {βj | Fβj = F}. (7.9)

If β is primitive, that is, if the acting group is F∗qn , we simply write Orb(F)
to denote the cyclic orbit flag code generated by F . We also drop the subscript
in Stab(F). Observe that, for every β ∈ F∗qn , it holds Stabβ(F) = 〈β〉 ∩ Stab(F).

We can take advantage of the orbital structure to compute the code parame-
ters: the cardinality of Orbβ(F) is given by

|Orbβ(F)| = |β|
|Stabβ(F)|

=
|β|

|〈β〉 ∩ Stab(F)|
(7.10)

and its minimum distance can be calculated as

df (Orbβ(F)) = min{df (F ,Fβj) | βj /∈ Stabβ(F)}. (7.11)
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Remark 3.6. Concerning the projected codes associated to Orbβ(F), there are
important facts to point out. First of all, note that the projected codes of a
β-cyclic orbit flag codes are also β-cyclic orbit (subspace) codes. More precisely,
for every 1 6 i 6 r, we have

(Orbβ(F))i = Orbβ(Fi). (7.12)

Moreover, the straightforward stabilizers relationship

Stabβ(F) =
r⋂
i=1

Stabβ(Fi) (7.13)

leads to a nice rapport between cardinalities: for every 1 6 i 6 r, we have that
|Orbβ(Fi)| divides |Orbβ(F)| ([3, Prop. 3.6]).

Coming back to the computation of the values |Orbβ(F)| and df (Orbβ(F)), in
[3], it is showed that the knowledge of a specific subfield associated to F allows
us to obtain them directly. Let us recall the concept of best friend of a flag
introduced in [3] by generalization of the concept of a subspace best friend given
in [11].

Definition 3.7. A subfield Fqm of Fqn is said to be a friend of a flag F on Fqn
if all the subspaces of F are Fqm-vector spaces, that is, if it is a friend of all of
them. The best friend of the flag F is its biggest friend.

From this definition it clearly holds that the type vector of a flag has to satisfy
a necessary condition whenever the best friend is fixed. Furthermore, as it occurs
when we work with the stabilizer subgroup, there are important connections
between the best friend of a flag and the ones of its subspaces.

Proposition 3.8. [3, Lemma 3.14, Prop. 3.16, Cor. 3.18] Let F = (F1, . . . ,Fr)
be a flag of type (t1, . . . , tr) on Fqn. If Fqm is a friend of F , then m divides
gcd(t1, . . . , tr, n). Moreover, if Fqm is the best friend of F , then it is the in-
tersection of the ones of Fi, for every i = 1, . . . , r, and we also have that
Fqm = Stab(F) ∪ {0}.

Remark 3.9. Note that, if 1 ∈ F1, then every friend of the flag F is contained in
F1. Moreover, all the flags in Orbβ(F) have the same best friend, allowing us to
speak about the best friend of a β-cyclic orbit flag code. Now, if F = (F1, . . . ,Fr)
is a flag of type (t1, . . . , tr) on Fqn with Fqm as its best friend, Fqm must be a
friend of all its subspaces and we can write ti = msi for i = 1, . . . , r, where
1 6 s1 < · · · < sr < s = n

m
. Finally, we can find linearly independent elements

a1, . . . , asr ∈ Fqn (over Fqm) such that, for every 1 6 i 6 r, we have

Fi =

si⊕
j=1

Fqmaj. (7.14)
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In case m is a dimension in the type vector, then s1 = 1 and the cyclic orbit
code Orb(F1) is the m-spread of Fqn described in (7.5). Moreover, if 1 ∈ F1, this
subspace is exactly the subfield Fqm .

Let us recall how the knowledge of the best friend of a β-cyclic orbit flag code
provides relevant information about the code parameters.

Proposition 3.10. [3] Let F = (F1, . . . ,Fr) be a flag on Fqn and assume that
Fqm is its best friend. Then

|Orbβ(F)| = |β|
|〈β〉 ∩ F∗qm|

. (7.15)

Moreover, the value 2m divides df (Orbβ(F)) and, if the the type vector of F is
(ms1, . . . ,msr), then it holds

2m 6 df (Orb(F)) 6 2m

 ∑
si6b s2 c

si +
∑
si>b s2 c

(s− si)

 , (7.16)

whenever β /∈ F∗qm. On the other hand, if β ∈ F∗qm, then df (Orbβ(F)) = 0.

Remark 3.11. From (7.15) and (7.16), it is clear that both size and cardinality
depend on the generating flag (hence on its best friend), the acting subgroup and
the type vector. In particular, once we have fixed the best friend Fqm , we obtain
the maximum possible orbit size if β is a primitive element of Fqn . In this case,
it holds |Orb(F)| = qn−1

qm−1
. However, if we take β ∈ F∗qm , we obtain the minimum

possible cardinality since Orbβ(F) = {F}.

3.3 Flag distances, best friend and type vectors interplay

From the bounds provided in (7.16) we know that, fixed the subfield Fqm as best
friend of a flag code C of type (ms1, . . . ,msr), the possible values for the distance
between flags in C belong to the interval

[2m, 2m
∑
si6b s2 c

si +
∑
si>b s2 c

(s− si)]. (7.17)

Nevertheless, in the orbital flag codes setting it is very important to point out
that not every possible flag distance value is compatible with every type vector. In
general, the greater the flag distance, the more conditions over the corresponding
type vector we will have to impose. The simplest case comes from considering
cyclic flag codes of length one. In [11, Lemma 4.1], it was already shown that
a cyclic (subspace) code with best friend Fqm has, at least, distance 2m and
constructions attaining this extreme value of the distance were also provided in
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[11, Prop. 4.3]. However, when we work with flags of length r > 2, not even the
minimum value of the distance, which is 2m as well, can be obtained for every
type vector. This is a consequence of the link between flag distance values and
the number of subspaces of a flag F that share the best friend of F . Let us
explain this relationship in the following result.

Theorem 3.12. Let F be a flag on Fqn with the subfield Fqm as its best friend
and take β ∈ F∗qn \ F∗qm.

(1) If there are 1 6 j 6 r subspaces of F with Fqm as their best friend, then
df (Orbβ(F)) > 2mj.

(2) If df (Orbβ(F)) = 2m, then Fqm is the best friend of exactly one subspace
of F .

Proof. Let us prove (1). Assume that there exist j subspaces, say Fi1 , . . . ,Fij , of
F having Fqm as their best friend. Then it suffices to see that, if βl /∈ Stabβ(F) =
〈β〉 ∩ F∗qm , then βl does not stabilize the subspaces Fi1 , . . . ,Fij . Consequently,
we have

df (F ,Fβl) >
j∑

k=1

dS(Fik ,Fikβl) > 2mj.

To prove (2), let us start assuming that there are at least two different subspaces
Fi and Fj in F with Fqm as their best friend. By (1) we have that df (Orbβ(F)) >
4m > 2m. On the other hand, suppose that no subspace in F has Fqm as its
best friend. In this case, for every 1 6 i 6 r, we put Fqmi the best friend of Fi
and, since Fqm =

⋂r
i=1 Fqmi , we have that m is a proper divisor of every mi. In

particular, m < mi, for every 1 6 i 6 r. Now, for every βl /∈ Stabβ(F), we have
at least one index 1 6 i 6 r such that βl /∈ Stabβ(Fi). Hence,

df (F ,Fβl) > dS(Fi,Fiβl) > 2mi > 2m.

Thus, df (C) > 2m.

Remark 3.13. Note that the converses of statements (2) and (1) in the previous
result are not necessarily true. Take, for instance, F = (Fq2 ,Fq4 ,Fq8) on Fq16 ,
which has best friend Fq2 . Let us consider β = α5 where 〈α〉 = F∗q16 . Then we
have just one subspace of F with best friend Fq2 whereas df (Orbβ(F)) = 12 =
2 · 3 · 2 > 4. At the same time there are not three subspaces in F sharing its best
friend.

The previous theorem allows us to discard some type vectors if we work with
the minimum value of the distance when the best friend is Fqm .
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Corollary 3.14. Let F be a flag of type (ms1, . . . ,msr) on Fqn with best friend
Fqm and take β ∈ F∗qn \ F∗qm. If df (Orbβ(F)) = 2m, then gcd(sj,

n
m

) 6= 1 for, at
least r − 1 indices 1 6 j 6 r.

Proof. By means of Theorem 3.12, we know that there is exactly one subspace
of F having best friend Fqm , say Fi. Now, for each j 6= i, we put Fqmj the best
friend of Fj. In particular, we know that m is a proper divisor of every mj. Let
us write mj = maj, with aj > 1 for every j 6= i. In addition, mj = maj divides
both dim(Fj) = msj and n. Hence, 1 < aj divides both sj and n

m
. We conclude

that gcd(sj,
n
m

) > 1 for all 1 6 j 6 r, j 6= i.

Example 3.15. If n = 16 and we fix Fq2 as the best friend of our flags, the
minimum distance value 4 cannot be obtained for type (4, 6, 10) since gcd(3, 8) =
gcd(5, 8) = 1. In contrast, this value would be attainable for type (4, 6, 8), for
instance. Using the same argument, if we take n = 14, and consider a flag F on
Fq14 having the subfield Fq2 as its best friend, we can conclude that β-cyclic orbit
flag codes generated by F will never give distance 4, unless F is the flag of length
one F = (Fq2).

We have seen that, fixed the best friend Fqm , the minimum value of the
distance 2m can only be obtained by codes Orbβ(F) in which F has exactly
one subspace with Fqm as its best friend as well. On the other end, as said in
Theorem 3.5, a flag code C attains the maximum possible distance for its type if,
and only if, it is disjoint and all its projected codes attain the respective maximum
(subspace) distance. Recall that a flag code C of length r on Fqn is disjoint if it
holds

|C1| = · · · = |Cr| = |C|. (7.18)

In [3, Prop. 4.19] the authors prove that for cyclic orbit flag codes (β primitive)
this condition is equivalent to say that each subspace of F has the same best
friend (then the best friend of F). Summing up, we can also draw conditions
on the type vector in the case of cyclic orbit flag codes having Fqm as their best
friend and the largest possible distance, that is, the upper value of the range in
(7.17).

Proposition 3.16. [3, Cor. 4.23] Assume that the cyclic orbit code Orb(F) is
an optimum distance flag code on Fqn with the subfield Fqm as its best friend.
Then one of the following statements holds:

(1) Orb(F) is a constant dimension code of dimension either m or n−m.

(2) Orb(F) has type vector (m,n−m).

In any of the three cases above, the code Orb(F) has the largest possible size, that
is, qn−1

qm−1
.
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Using Theorem 3.12, we obtain the next construction of cyclic orbit flag codes
with the best possible distance for the above mentioned cases.

Proposition 3.17. Let F = (F1,F2) a flag of type (n, n−m) on Fqn. If F1 and
F2 have the subfield Fqm as their best friend, then the cyclic orbit codes Orb(F1),
Orb(F2) and Orb(F) have the maximum possible distance.

Proof. The result holds for Orb(F1) = Orb(Fqm) by means of (7.5). For Orb(F2),
it suffices to see that, if Fmq is the best friend of F2, then dS(Orb(F2)) = 2m,
which is the maximum possible distance for dimension n−m. Last, by means of
Theorem 3.12, we conclude that df (Orb(F)) = 4m, i.e., the maximum possible
distance for type (m,n−m).

Remark 3.18. In the case of β-cyclic orbit flag codes with β non primitive, in
[3, Prop. 4.19] it is proved that the code Orbβ(F) is disjoint if, and only if,

〈β〉 ∩ F∗qm = 〈β〉 ∩ F∗qm1 = · · · = 〈β〉 ∩ F∗qmr . (7.19)

Note that to have (7.19) it is not necessary that all the subspaces of F share
the same best friend, contrary to what happens if β primitive (see part (2) on
Example 3.19). Moreover, in [3, Thm. 4.21] the authors give also conditions on
the type vector of F of an optimum distance β-cyclic flag code with fixed best
friend if β is not primitive. Here we present some examples extracted from [3,
Table 3] where they determine the set of allowed dimensions in the type vector,
depending on the size of the acting subgroup 〈β〉 of F∗212 = 〈α〉, when the best
friend is F22 .

β |β| 〈β〉 ∩ F∗qm |Orbβ(F)| Allowed dimensions Max. distance
α 4095 F∗22 1365 2, 10 8
α5 819 F∗22 273 2, 4, 8, 10 24
α9 455 {1} 455 2, 10 8
α63 65 {1} 65 2, 4, 6, 8, 10 36

Table 7.1: Admissible dimensions for q = 2, n = 12, m = 2.

Concerning the explicit construction of such codes, in [4, 19], the authors
follow the approach of [24] to build optimum distance flag codes under the action
of (subgroups of) Singer groups of the special linear group and the general linear
group, respectively, by placing a suitable spread among the projected codes. In
our framework, this idea corresponds to the choice a generating flag that has
certain subfield among its subspaces. Let us exhibit some concrete examples.

Example 3.19. Let us work in F212 and fix Fq2 as best friend of all our flags.

(1) Take F = (F22 ,F2,F26 ,F4,F5) of type (2, 4, 6, 8, 10) and consider β = α63,
then the orbit Orbβ(F) is an optimum distance flag code of cardinality 65
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(see [4]), which is the maximum possible size for an optimum distance flag
code of this type. With the same notation, the orbit Orbβ((F22 ,F2,F4,F5))
is an optimum distance flag code, in this case of type (2, 4, 8, 10), of the
same size.

(2) On the other hand, following the ideas in [19], if we consider the flag F ′ =
(F22 ,F24 ,F ′3,F ′4) of type (2, 4, 8, 10) such that F24 is the best friend of F ′3,
and take β = α5, then the orbit Orbβ(F ′) is an optimum distance flag code
with cardinality 273. Note that in this example the subspaces F ′1 and F ′3 do
not share their best friend even thought Orbβ(F ′) is disjoint.

These examples lead us to study β-cyclic orbit codes when we place one or
more subfields in the generating flag.

3.4 Generating flags based on subfields

In this subsection we focus on β-cyclic orbit flag codes generated by flags having
at least one subfield among their subspaces. We distinguish two situations: either
every subspace in the generating flag is a subfield or there is also one subspace
that is not a subfield.

Galois flag codes

Let us start with β-cyclic orbit flag codes generated by flags having just subfields
of Fqn as subspaces, that is, generated by the so-called Galois flags. This par-
ticular class of β-cyclic orbit flag codes was introduced in [3]. Let us recall the
definition. Consider a sequence of integers 1 6 t1 < · · · < tr < n such that all of
them are divisors of n and ti divides ti+1, for 1 6 i 6 r − 1.

Definition 3.20. The Galois flag of type (t1, . . . , tr) on Fqn is the flag given by
the sequence of nested subfields (Fqt1 , . . . ,Fqtr ). Given β ∈ F∗qn , the β-cyclic orbit
flag code generated by this Galois flag is called the β-Galois cyclic orbit flag code,
or just β-Galois flag code, for short, of type (t1, . . . , tr).

In the Galois flag F of type vector (t1, . . . , tr), clearly the i-th subspace has
the subfield Fqti as best friend. Hence, the first subfield Fqt1 is the best friend of
any β-Galois flag code of type (t1, . . . , tr). For β primitive we have the following
straightforward result.

Proposition 3.21 [3]. Let C be the Galois flag code of type (t1, . . . , tr), then
the cardinality of this flag code is |C| = (qn − 1)/(qt1 − 1) and its distance is
df (C) = 2t1. Its i-th projected code Ci has size |Ci| = (qn − 1)/(qti − 1) and
distance 2ti.
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Remark 3.22. Note that, if we take the Galois flag F of type (t1, . . . , tr), the
distance df (Orb(F)) = 2t1 is the lowest possible one for cyclic orbit flag codes
with Fqt1 as best friend, according to (7.6) (in case |C| > 1). In fact, there
is a precise set of attainable distances for the different orbits Orbβ(F) when we
consider the action of subgroups 〈β〉 ⊆ F∗qn . Furthermore, as proved in [3], we can
always select β in a controlled manner such that the code Orbβ(F) reaches any
distance value in the set of possible distances. This choice is made by checking
the relationship between the subgroup 〈β〉 and the subfields Fqti . Let us recall
the precise result.

Theorem 3.23. [3, Thm. 4.14] Let F be the Galois flag of type (t1, . . . , tr) and
consider an element β ∈ F∗qn. Then

df (Orbβ(F)) ∈ {0, 2t1, 2(t1 + t2), . . . , 2(t1 + t2 + · · ·+ tr)}. (7.20)

Moreover,

(1) df (Orbβ(F)) = 0 if, and only if, Stabβ(F1) = Stabβ(Fr) = 〈β〉.

(2) df (Orbβ(F)) = 2
∑r

i=1 ti if, and only if, Stabβ(F1) = Stabβ(Fr) 6= 〈β〉.

(3) df (Orbβ(F)) = 2
∑j−1

i=1 ti if, and only if, Stabβ(F1) 6= Stabβ(Fr) and j ∈
{2, . . . , r} is the minimum index such that Stabβ(F1) ( Stabβ(Fj).

In view of the previous result, it is worth highlighting that, given a Galois
flag F , the range of attainable distances by the codes Orbβ(F) follows a concrete
pattern in terms of the dimensions in the type vector (see (7.20)). On the other
hand, we have the possibility to gradually improve the distance of Orb(F) by
selecting the orbit Orbβ(F) for an appropriate β, even if this choice could involve
a loss of size. This nice behaviour gives rise to think that Galois codes could
constitute an appropriate “skeleton” to support a more general family of β-cyclic
orbit flag codes whose properties, in turn, might be driven by them. To explore
this idea, in the following section we introduce a new family of codes.

Generalized Galois flag codes

Let us take now generating flags having at least one subspace that is a subfield
and at least another one that is not. This condition gives length at least two.
Note also that, all the fields in a flag F constitute a Galois subflag.

Definition 3.24. We say that a flag F = (F1, . . . ,Fk) of type (s1, . . . , sk) gen-
eralizes the Galois flag of type (t1, . . . , tr) if {t1, . . . , tr} ( {s1, . . . , sk} and the
following conditions are satisfied:

(1) The subflag of F of type (t1, . . . , tr) is the Galois flag of this type,

120



Chapter 7: On generalized Galois cyclic orbit flag codes

(2) there is at least one subspace of F that is not a field.

Remark 3.25. Observe that the second condition in Definition 3.24 excludes
Galois flags from our study of generalized Galois flags. Even more, according to
the previous definition, a generalized Galois flag is just a flag having at least one
field and one subspace that is not a field among its subspaces. Besides, in the
conditions of the previous definition, F clearly generalizes every subflag of the
Galois flag of type (t1, . . . , tr) as well. We pay special attention to the longest
Galois flag being a subflag of F .

Definition 3.26. Let F be a generalized Galois flag. Its longest Galois subflag
is called its underlying Galois subflag.

Observe that the underlying Galois subflag of a generalized Galois flag always
exists and, due to the nested structure of flags, it is unique.

Definition 3.27. Given F a generalized Galois flag and β ∈ F∗qn , the β-cyclic
orbit flag code generated by F is called a generalized β-Galois (cyclic orbit) flag
code. If F ′ is the underlying Galois subflag of F , then we say that Orbβ(F ′) is
the underlying β-Galois flag code of Orbβ(F).

Let us see some examples reflecting different situations related to this new
class of flag codes.

Example 3.28. Take n = 8 and primitive elements α ∈ Fq8, γ ∈ Fq4. The
sequences

F = (Fq2 ,Fq4 ,Fq4 ⊕ F2
qα) and F ′ = (Fq2 ,Fq2 ⊕ Fqγ,Fq4)

are generalized flags of type (2, 4, 6) and (2, 3, 4) on Fq8, respectively, with common
underlying Galois subflag (Fq2 ,Fq4). Now, for any β ∈ F∗qn, the best friend of the
β-Galois flag code Orbβ((Fq2 ,Fq4)) is the field Fq2 and this property also holds for
the generalized β-Galois flag code Orb(F). However, the best friend of Orb(F ′)
is Fq, which is a field not appearing in F ′.

Remark 3.29. Given a generalized β-Galois flag code C of type (s1, . . . , sk) with
underlying Galois subflag (Fqt1 , . . . ,Fqtr ), if the subfield Fqm is the best friend of
C, then it holds Fqm ⊆ Fqt1 .

Concerning the attainable distance values for this class of codes, contrary what
happens with Galois flag codes whose set of reachable distances is completely
determined by the type, different situations can arise.

Example 3.30. Take n = 4 and consider a generalized Galois flag F of type
(1, 2, 3) with underlying Galois subflag (Fq). In this case, the set of attainable
values for df (Orbβ(F)) is exactly the same as for general flag codes of this type
on Fq4, that is, any even integer between 0 and 8. However, for the same choice
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of the parameters, flags generalizing the Galois flag (Fq,Fq2), i.e., those of the
form

F ′ = (Fq,Fq2 ,F ′3),

for some subspace F ′3 of dimension 3 of Fq4, present a restriction on the set
of possible distances. Let us prove that the value df (Orbβ(F ′)) = 6 cannot be
obtained for any β ∈ F∗qn. Observe that the projected code Orbβ(Fq2) is a partial
spread of dimension 2 of Fq4. Hence, when computing the distance

df (F ′,F ′βi) = dS(Fq,Fqβi) + dS(Fq2 ,Fq2βi) + dS(F ′3,F ′3βi),

we have that

dS(Fq2 ,Fq2βi) =

{
0 if β ∈ F∗q2 ,
4 otherwise.

Moreover, if dS(Fq2 ,Fq2βi) = 0, then it holds df (F ′,F ′βi) 6 4. On the other
hand, if dS(Fq2 ,Fq2βi) = 4, we have dim(Fq2 ∩ Fq2βi) = 0 or, equivalently,
dim(Fq2 ⊕ Fq2βi) = 4. Hence, for this precise βi, we get

dim(Fq ∩ Fqβi) = 0 and dim(F ′3 + F ′3βi) = 4.

In both cases, we can conclude dS(Fq,Fqβi) = dS(F ′3,F ′3βi) = 2. As a conse-
quence, it holds df (F ′,F ′βi) = 8. Thus, the value d = 6 cannot be obtained if we
consider flags of type (1, 2, 3) on Fq4 generalizing (Fq,Fq2).

The situation exhibited in the last example is a direct consequence of the
presence of certain subfields of Fqn as subspaces of a generalized Galois flag F .
In other words, its underlying Galois subflag affects, in some sense, the value
df (Orbβ(F)). The next result establish some conditions on the minimum distance
of generalized β-Galois flag codes that allow us to discard some values of the
distance.

Theorem 3.31. Let F be a generalized Galois flag of type (s1, . . . , sk) on Fqn
with underlying Galois subflag (Fqt1 , . . . ,Fqtr ) and take β ∈ F∗qn. Consider i ∈
{1, . . . , r}. Then the following statements hold:

(1) If β ∈ F∗
qti
, then dS(Fl,Flβ) = 0, for all sl ∈ {ti, . . . , tr}.

(2) If β /∈ F∗
qti
, then dS(Fl,Flβ) = 2sl for all s1 6 sl 6 ti.

Proof. (1) Assume that β ∈ F∗
qti
. Hence, β ∈ F∗

qtj
, for every i 6 j 6 r. In other

words, we have Fqtjβ = Fqtj , i.e., dS(Fqtj ,Fqtjβ) = 0 for all i 6 j 6 r.

(2) Take now β /∈ F∗
qti

= Stab(Fqti ). In this case, Fqti and Fqtiβ are different
subspaces in the ti-spread Orb(Fqti ) and we have that dim(Fqti ∩Fqtiβ) = 0.
Thus, for every dimension sl 6 ti in the type vector, we have dim(Fl ∩
Flβ) = 0 and then dS(Fl,Flβ) = 2sl.
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According to this result, it is clear that some combinations of subspace dis-
tances are automatically discarded when we compute the minimum distance of a
generalized β-Galois flag code. Even thought we do not have a pattern to com-
pute the distance values as it occurs for Galois flag codes (see (7.20), by means
of Theorem 3.31, we can state some required conditions for potential distance
values between flags on a generalized β-Galois flag code.

Definition 3.32. Take a flag F of type (s1, . . . , sk) on Fqn generalizing the Galois
flag (Fqt1 , . . . ,Fqtr ) and an element β ∈ F∗qn . We say that an even integer d is
a potential value for df (Orbβ(F)) if it can be obtained as a sum of subspace
distances of dimensions s1, . . . , sk satisfying:

(1) For dimensions ti, only distances 0 or 2ti are considered.

(2) If we sum 2ti for dimension ti, then all the distances for lower dimensions
in the type vector are maximum as well.

(3) If for some dimension ti we have distance 0, then the same happens for
dimensions tj, with i 6 j 6 r.

Remark 3.33. Notice that, according to Definition 3.32, and as suggested in
Example 3.30, having the field Fq as the first subspace of a flag does not affect
to the set of potential distance values since every β-cyclic code of dimension 1
of Fqn (generated or not by Fq) has distance either 0 or 2. On the other hand,
as also mentioned in Example 3.30, some distances cannot be attained when we
have other fields among the subspaces of the generating flag. For instance, the
single value d = 6 is discarded for n = 4, type (1, 2, 3) and underlying Galois
subflag of type (1, 2).

The next example shows that, in general, many values of the flag distance are
not compatible with the underlying structure of nested fields.

Example 3.34. Fix n = 16 and the type vector (2, 4, 5, 6, 8). In general, every
even integer 0 6 d 6 50 is a possible value for the flag distance for this choice of
the parameters. Nevertheless, if F is a generalized Galois flag of type (2, 4, 5, 6, 8)
with underlying Galois subflag of type (2, 4, 8), then for every β ∈ F∗qn, the set of
potential values for Orbβ(F) is

{0, 2, 4, 6, 8, 10, 22, 50}.

In other words, no intermediate distances 12 6 d 6 20 or 24 6 d 6 48 can
be obtained when the starting flag contains fields as its subspaces of dimensions
2, 4 and 8 (for more details on the computation of the set of distance values, we
refer the reader to [5], where a deep study on the flag distance parameter and its
behaviour is presented).
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At this point, we can assert that the distance of a generalized Galois flag code
is strongly influenced by its underlying Galois code. Hence, it is quite natural to
wonder if generalized β-Galois flag codes behave as well as Galois flag codes in
the following sense:

(∗) Given a generalized Galois flag F and a potential value d for
the distance defined in 3.32, can we always find a suitable subgroup
〈β〉 ⊆ F∗qn such that df (Orbβ(F)) = d?

In the following section we prove that the answer to the previous question is
negative by exhibiting a specific family of generalized Galois flags.

4 A construction of generalized Galois flag codes
This section is devoted to build generalized Galois flags written in a regular
form that allows us to provide constructions of β-cyclic orbit flag codes with a
prescribed best friend. In Subsections 4.1, 4.2 and 4.3, we focus on the particular
case of β primitive due to the fact that the obtained cyclic orbit codes present
important properties that deserve to be underlined. Finally, Subsection 4.4 is
devoted to deal with the β-cyclic case and, in particular, to give an answer to the
question (∗) formulated in the previous section.

Recall that, according to the definition of best friend, we can express all the
subspaces of a given flag as vector spaces over its best friend (see (7.14)). In our
case, we will consider a specific family of flags, whose subspaces are written in
the regular form used in Proposition 2.4. Let us describe the form of such flags
and obtain the parameters of cyclic orbit flag codes generated by them.

Fix Fqm a subfield of Fqn and consider a primitive element α of Fqn . For
each positive integer l such that 1 6 l < qn−1

qm−1
, let L be the degree of the minimal

polynomial of αl over Fqm . Observe that L is also the degree of the field extension
FqmL/Fqm , that is, L = [FqmL : Fqm ]. Hence, L divides [Fqn : Fqm ] = n/m = s and,
we have that L 6 s. In addition, the set {1, αl, α2l, . . . , α(L−1)l} is a basis of the
field extension FqmL/Fqm . Thus, we can write

L−1⊕
j=0

Fqmαjl = Fqm [αl] ∼= FqmL . (7.21)

Now, for every i = 1, . . . , L, the vector space

Ui =
i−1⊕
j=0

Fqmαjl (7.22)

has dimension mi (over Fq) and, as stated in Section 2, it is a field if, and only
if, either i = 1 or i = L. Hence, the sequence (U1, . . . ,UL) forms a generalized
Galois flag of type (m, 2m, . . . ,mL) with underlying Galois subflag (Fqm ,FqmL).
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Remark 4.1. Observe that we cannot define a direct sum of this shape with more
than L terms, since every power of αl is always an element in UL = Fqm [αl] ∼=
FqmL . Hence, this regular form allows us to construct flag codes on Fqn of length
r 6 L. Moreover, in case L = s, as UL = Fqn , we just get r 6 L− 1 = s− 1.

The following two subsections (4.1 and 4.2) are devoted to describe a con-
struction of generalized Galois flag codes having Fqm as their best friend. We
perform it in two steps. First, we use flags in the regular form just described
above in order to obtain a “basic” construction of generalized Galois flag codes
where the underlying Galois flag code has, at most, length 2. Then, we pro-
pose a procedure to overcome this restriction and present another construction
of generalized Galois flag code having a prescribed underlying Galois flag code
by suitably “weaving” several basic generalized Galois flag codes.

4.1 Basic constructions

By means of Proposition 2.5, we can easily determine the best friend of the
subspaces Ui defined in (7.22): it is the subfield Fqm , for 1 6 i 6 L − 1 whereas
the subspace UL = FqmL is its own best friend. This fact implies that we will find
one or two fields among the subspaces Ui, according to Remark 4.1. Since the case
of length r = 1 corresponds to constant dimension codes (already studied in [11]),
from now on, we will assume r > 2. Now, we know that for every type vector given
by multiples of m, say (ms1, . . . ,msr), where 1 6 s1 < · · · < sr 6 L, we select
the subspaces defined in (7.22) corresponding respectively to these dimensions,
that is,

Fi = Usi =

si−1⊕
j=0

Fqmαlj, 1 6 i 6 r. (7.23)

With this notation, the next result holds.

Theorem 4.2. Let α be a primitive element of Fqn, l a positive integer with
1 6 l < qn−1

qm−1
and L the degree of the minimal polynomial of αl over Fqm. Consider

the flag F = (F1, . . . ,Fr) of type (ms1, . . . ,msr) on Fqn with subspaces defined
in (7.23). Hence, the code Orb(F) has best friend Fqm and, in particular, its
cardinality is (qn − 1)/(qm − 1). Moreover,

(1) If sr < L, the code Orb(F) is consistent with distance df (Orb(F)) = 2mr.

(2) If sr = L, we have that df (Orb(F)) = 2m(r − 1) and we can write

Orb(F) =
⋃̇c−1

i=0
Orbαc(Fαi),

with c = qn−1
qmL−1

.
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Proof. Recall that, by means of Proposition 2.5, the best friend of every subspace
in F is either Fqm or FqmL . Since r > 2, there is at least one subspace with Fqm as
best friend and, automatically, this subfield is the best friend of the flag F . As a
consequence, by Proposition 3.10, the cardinality of Orb(F) is (qn− 1)/(qm− 1).

Now, suppose that sr < L. In this case, every dimension in the type vector
is msi 6 msr < mL and every subspace in the flag F has the subfield Fqm
as its best friend. Hence, the code is disjoint and, by means of Theorem 3.12,
we have df (Orb(F)) > 2mr. Moreover, notice that, for every 1 6 i 6 r, the
subspace Fi ∩ Fiαl =

⊕si−1
j=1 Fqmαlj has dimension m(si − 1) over Fq and then

dS(Orb(Fi)) = dS(Fi,Fiαl) = 2m. Hence, it holds

df (C) 6 df (F ,Fαl) =
r∑
i=1

dS(Fi,Fiαl) = 2mr

and we conclude df (C) = 2mr. Moreover, the value coincides with the sum of the
ones of its r projected codes (each one of them with distance 2m). Hence, our
code is consistent (see Definition 3.4).

Assume now that sr = L. Then Orb(F) is not disjoint since the subspace
Fr = FqmL is its own best friend. However, since F1, . . . ,Fr−1 have the same best
friend Fqm , Theorem 3.12 ensures that df (Orb(F)) > 2m(r − 1). On the other
hand, observe that αl ∈ FmLq \ F∗qm stabilizes Fr but dS(Fi,Fiαl) = 2m for every
1 6 i < r. Hence, we have df (Orb(F)) = df (F ,Fαl) = 2m(r − 1).

Concerning the structure of this cyclic orbit flag code, it is clear that
c−1⋃
i=0

Orbαc(Fαi) ⊆ Orb(F).

Let us see that both sets have the same cardinality. To do so, observe that αc is
a primitive element of FqmL . Hence, for every 1 6 i 6 r, it holds

Stabαc(Fαi) = F∗qmL ∩ Stab(Fαi) = F∗qmL ∩ F∗qm = F∗qm .

As a consequence, we have |Orbαc(Fαi)| = qmL−1
qm−1

. Now, we prove that all these
orbits are different. To do so, for every choice 0 6 i 6 c − 1, observe that flags
in Orbαc(Fαi) have the same last subspace Frαi = FqmLαi since αc stabilizes
Fr = FqmL = {0} ∪ 〈αc〉. Moreover, the last projected code

Orb(Fr) = {FqmLαi | 0 6 i 6 c− 1}

of Orb(F) is precisely the mL-spread Orb(FqmL) of Fqn . Hence, for every choice
0 6 i < j 6 c− 1, subspaces FqmLαi and FqmLαj are different. Therefore, all the
orbits Orbαc(Fαi) are different and the cardinality of their union is exactly

c · q
mL − 1

qm − 1
=

qn − 1

qmL − 1
· q

mL − 1

qm − 1
=
qn − 1

qm − 1
= |C|.
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From Theorem 4.2, and making a suitable choice of the type vector, we derive
some constructions of our interest.

Corollary 4.3. Consider the flag F of type (ms1, . . . ,msr) with r > 2 defined
in (7.23). If L < s, then:

(1) the code Orb(F) is a Galois flag code if, and only if, the type vector is
(m,mL).

(2) Orb(F) is a generalized Galois flag code if, and only if,

∅ 6= {1, L} ∩ {s1, . . . , sr} 6= {1, L}.

Proof. In the first place, if L < s, it is clear that F is a Galois flag if it just have
subfields of Fqn as its subspaces. According to expression (7.23), just subspaces
of dimensions m and mL are fields. Moreover, since r > 2, the result follows.

Corollary 4.4. Take the flag F of type (ms1, . . . ,msr) defined in (7.23) and
assume r > 2 and L = s, then:

(1) Orb(F) is a generalized Galois flag code if, and only if, s1 = 1.

(2) In particular, if s1 = 1 and s2 = L−1, then Orb(F) is an optimum distance
generalized Galois flag code of type (m,n−m) with the largest possible size.

Proof. In this case, the only subfield of Fqn writen in the regular form (7.22) is Fqm
and the first statement follows straightforwardly. For the second one, it suffices
to notice that the subspaces F1 = U1 = Fqm and F2 = UL−1 are of dimensions m
and n −m and have Fqm as their best friend. Hence, the result holds by means
of Proposition 3.17.

At this point, we have all the ingredients to perfectly describe the structure
of any cyclic orbit flag code Orb(F) given in Theorem 4.2, in case its distance is
either the minimum or the maximum possible one. This result is closely related
with to discussion in Subsection 3.3 about the interdependence of distance values
and type vectors, for this particular family of codes.

Theorem 4.5. Let α be a primitive element of Fqn, l a positive integer such
that 1 6 l < qn−1

qm−1
, and L the degree of the minimal polynomial of αl over Fqm.

Consider F = (F1, . . . ,Fr) the flag of type (ms1,ms2, . . . ,msr) on Fqn of length
r > 2 with subspaces defined as in (7.23). If s = n/m, then:

(1) The code Orb(F) has distance equal to 2m if, and only if, its type vector is
(ms1,mL) for some 1 6 s1 < L < s. Moreover, if s1 = 1, then Orb(F) is
the Galois flag code of type (m,mL).
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(2) The code Orb(F) is an optimum distance flag code if, and only if, L = s
and its type vector is (m,m(L − 1)). In this case, Orb(F) is a generalized
Galois flag code that attains the largest possible size.

Proof. We divide the proof into two parts.

(1) By means of Theorem 3.12, if the orbit Orb(F) has distance 2m, then there
is exactly one subspace of F with Fqm as its best friend. Since subspaces
defined in (7.23) have the subfield Fqm as their best friend except if they
are fields, we conclude that the last subspace of the generating flag must
be the field FqmL = Fqm [αl]. Thus L cannot be s and it holds L < s. Its
first subspace can be any other subspace F1 of dimension ms1 < mL.

To prove the converse, just note that the distance between (F1,FqmL) and
(F1,FqmL)αl is 2m, which is the minimum distance for cyclic orbit flag codes
with Fqm as their best friend.

To finish, if s1 = 1, the only possibility for F is to be the Galois flag of type
(m,mL) and the result holds.

(2) On the other hand, if Orb(F) is an optimum distance cyclic orbit flag code
with Fqm as its best friend, by means of Proposition 3.16, and assuming
r > 2, its type vector must be (m,n − m). Hence, we need mL to be at
least n −m = m(s − 1). In other words, L must be greater or equal than
s − 1. However, L has to divide s. If L = s − 1, the only possibility is
s = 2 and the only type vector consisting of multiples of m is (m), which
has length one. Thus, it must hold L = s. The converse is also true by
application of Corollary 4.3.

Remark 4.6. Concerning the first statement of the previous result, it is impor-
tant to point out that if we consider a generating flag not necessarily written in
the regular form described in (7.23), it is possible to attain the distance 2m with
no other field among the subspaces of the generating flag than the best friend
of the flag. Recall that, for general flags, even if we fix the field Fqm as the first
subspace, there are three possibilities for the best friend of each one of its sub-
spaces: the field Fqm , the subspace itself (in case it is a field) or an intermediate
extension field over Fqm . The next example contemplates this situation.

Example 4.7. Fix n = 16 and consider a generalized Galois flag F = (F1,F2)
with type vector (2, 8) such that

F1 = Fq2 ,
F2 = Fq2 ⊕ Fq2β ⊕ Fq2α⊕ Fq2βα = Fq4 ⊕ Fq4α,

where α denotes a primitive element of Fq16 and β = α(q16−1)/(q4−1) is a primitive
element of the subfield Fq4. Observe that Fq4 is a friend of F2. Even more, it is its
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best friend by means of Proposition 2.5, since the degree of the minimal polynomial
of α over Fq4 is 16/4 = 4. According to this, Fq2 is the best friend of the cyclic
orbit flag code Orb(F). Moreover, we have that df (F ,Fβ) = dS(F1,F1β) = 4
is the minimum possible distance for cyclic orbit flag codes with Fq2 as its best
friend. However, Orb(F) is not the Galois flag code of type (2, 8), since F is the
only flag in the code with its first subspace containing the element 1 ∈ Fq16 but
F2 is not a field.

Observe now that, taking again the flag F = (F1,F2) as in the previous
example, we have the subfield Fq4 as an intermediate subspace. In other words,
the sequence

F ′ = (Fq2 ,Fq4 ,Fq4 ⊕ Fq4α)

forms a generalized Galois flag longer than F . Notice that the field Fq4 can be
written in regular form as a vector space over Fq2 as Fq2 ⊕ Fq2β. Moreover, the
subspace Fq4⊕Fq4α is, at the same time, written in regular form as a vector space
over Fq4 . Inspired by this idea, we will describe a general procedure that allows
us to obtain generalized Galois flags codes, written in regular form over suitably
chained subfields.

4.2 Weaving basic generalized Galois flag codes

The previous basic construction (Theorem 4.2) presents a limitation on the num-
ber of subfields that can appear as subspaces of the generating flag. In this
subsection, we focus on a systematic construction of generalized Galois flag codes
with a prescribed underlying Galois subflag. More precisely, if m1,m2, . . . ,mk

are divisors of n such that mi divides mi+1, for every 1 6 i 6 k, we work on the
construction of generalized Galois flag codes with (Fqm1 , . . . ,Fqmk ) as underlying
Galois subflag.

As a matter of notation, through this section we will write mk+1 = n. Let α
be a primitive element of Fqn and put ci = qn−1

qmi−1
, for 1 6 i 6 k + 1. It turns

out that each power αi = αci is a primitive element of the corresponding subfield
Fqmi . For every 2 6 i 6 k + 1, the degree of the minimal polynomial of αi over
Fqmi−1 is Li = mi

mi−1
. With this notation, we consider k flags F1, . . . ,Fk on Fqn ,

whose subspaces are given by

F ij =

j−1⊕
l=0

Fqmiαli+1, (7.24)

for 1 6 j 6 Li+1 − 1 and 1 6 i 6 k. Observe that, for every 1 6 i 6 k, we have
that F i1 = Fqmi and the dimension of F ij (as an Fq-vector space) is jmi. Hence,
the type vector of F i is given by all the multiples of mi smaller than mi+1, that
is, (mi, 2mi, . . . ,mi+1 −mi). As a consequence of Theorem 4.2, the next result
holds.
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Corollary 4.8. Let F i be the flag defined in (7.24) for every 1 6 i 6 k. Then
the generalized Galois flag code Orb(F i) is consistent with distance 2(mi+1−mi)
and has the field Fqmi as its best friend.

Proof. For every 1 6 i 6 k, we apply Theorem 4.2 (part (1)) to the generalized
Galois flag code Orb(F i) and conclude that it is a consistent flag code with
distance equal to 2mi(Li+1 − 1) = 2(mi+1 −mi).

Observe that we have constructed a collection of orbit flag codes with respec-
tive generating flags in regular form over their best friend. The first subspace
of each flag F i is precisely its best friend and contains the last subspace of the
previous flag, since

F iLi+1−1 ⊆ Fqmi [αi+1] = Fqmi+1 = F i+1
1 ,

for every value 1 6 i 6 k − 1. By means of this property, we can consider a
generating generalized Galois flag having all the subfields {Fqmi}ki=1 among its
subspaces just by taking

F = (F1
1 , . . . ,F1

L1−1,F2
1 , . . . ,F2

L2−1, . . . ,Fk1 , . . . ,FkLk−1), (7.25)

whose type vector is (m1, . . . ,m2 − m1,m2, . . . ,m3 − m2,m3, . . . ,mk, . . . , n −
mk). In this way, by weaving the independent basic constructions described in
Corollary 4.8, we get a generalized Galois flag code with the prescribed tower of
subfields (Fqm1 , . . . ,Fqmk ) as its underlying Galois subflag.

Proposition 4.9. Let F be the generalized Galois flag on Fqn given in (7.25).
Then the generalized Galois flag code Orb(F) generalizes the Galois flag of type
(m1, . . . ,mr). Its cardinality is qn−1

qm1−1
and its minimum distance, 2(m2 −m1).

Proof. By construction, it is clear that the subspace of dimension mi of F is the
field Fqmi , for every 1 6 i 6 k. Moreover, subspaces of dimensions mi, . . . ,mi+1−
mi have the subfield Fqmi as its best friend. As a result, the best friend of the
flag F coincides with its first subspace, that is, Fqm1 . This fact leads to the
statement about the cardinality. Let us compute now the minimum distance
of the code. First, by means of Theorem 3.12, since there are exactly L2 − 1
subspaces of F with Fqm1 as their best friend, we conclude that ds(Orb(F)) >
2m1(L2 − 1) = 2(m2 −m1). Moreover, observe that α2 stabilizes every subspace
of the flag F containing Fqm2 = {0} ∪ 〈α2〉. Hence, df (Orb(F)) 6 df (F ,Fα2) =
df (F1,F1α2) = 2m(L2 − 1) = 2(m2 −m1) since, for every 1 6 j 6 L2 − 1, the
subspace F1

j ∩ F1
j α =

⊕j−1
l=1 Fqmαl2 has dimension m(j − 1). We conclude that

df (Orb(F)) = 2(m2 −m1).

Remark 4.10. Note that weaving our basic constructions allows us to give gen-
eralized Galois flag codes with any given underlying Galois subflag in a systematic
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way. Another interesting fact to point out is that the best friends of the sub-
spaces in the generalized Galois flag F defined in (7.25) form a nested sequence
of subfields. This does not happen in general for arbitrary generalized Galois flag
codes and it helps us to easily determine the cardinality and distance of the code
Orb(F) as well as to give bounds for the distance when we consider its β-cyclic
subcodes, as we will see in Subsection 4.4. On the negative side, contrary to what
happens with the basic construction, the waved one is not consistent since it is
not even disjoint.

4.3 Decoding our constructions over the erasure channel

The use of flags in network coding was originally introduced by Liebhold et al. in
[15]. In that paper, a channel model for flags was presented and some construc-
tions, together with their decoding algorithms (over the erasure channel) were
provided. In [2], a decoding algorithm over the erasure channel for consistent flag
codes is presented. In particular, such an algorithm can be applied to the basic
construction given in Theorem 4.2, part (1). Although the rest of constructions
in this paper are not consistent, we can adapt the decoding process in [2] to them.
To do so, let us briefly recall some concepts related to the notion of correctability.

Assume that we have sent a flag F = (F1, . . . ,Fr) and hence, the receiver
gets a sequence of nested subspaces X = (X1, . . . ,Xr) that, when working over
an erasure channel, must satisfy Xi ⊆ Fi, for all 1 6 i 6 r. In this context, each
value ei = dS(Fi,Xi) = dim(Fi) − dim(Xi) is called number of erasures at the
i-th shot whereas e = df (F ,X ) =

∑r
i=1 ei is the total number of erasures. We

say that the total number of erasures e is correctable (by minimum distance) by
a flag code C whenever e 6 bdf (C)−1

2
c. Analogously, we also say that the value ei

is correctable by the projected code Ci if ei 6 bdS(Ci)−1
2
c.

Let us fix the flag code C as the one presented in Theorem 4.2, part (2). Recall
that such a code has distance 2m(r − 1) and r projected codes of distance 2m.
Following the ideas of [2, Proposition 8], we state the next result.

Proposition 4.11. If the total number of erasures e is correctable by the gener-
alized Galois flag code C, then there exists some 1 6 i 6 r− 1 such that the value
ei is also correctable by the corresponding projected code Ci.

Proof. Assume that no value ei is correctable for every 1 6 i 6 r−1. Equivalently,
we have that ei > m for every 1 6 i 6 r − 1. As a consequence, we have that

e =
r∑
i=1

ei > m(r − 1) + er > m(r − 1),

which is a contradiction, since C can correct up to m(r − 1)− 1 erasures.
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Now, if C ′ denotes the generalized Galois flag code obtained by the weaved
construction given in Proposition 4.9 and m1 = m, then we have df (C ′) = 2(m2−
m) = 2m(L2 − 1). Moreover, dS(C ′i) = 2m holds for the first L2 − 1 projected
codes. Hence, the same argument in the proof of Proposition 4.11 can be used to
show that a correctable total number of erasures can be detected and corrected
by one of the first L2 − 1 projected codes of C.

Proposition 4.12. If the total number of erasures e is correctable by C ′, then
there exists some 1 6 i 6 L2 − 1 such that ei is correctable by the projected code
C ′i.

Moreover, in both situations, every projected code has the same distance,
which is 2m. Hence, the number of erasures at any shot is correctable whenever
it holds ei 6 m − 1. We can easily identify if an erasure is correctable just by
checking the dimension of every received subspace Xi. The next proposition is
valid for both a generalized Galois flag codes C and C ′.

Proposition 4.13. The number of erasures ei is correctable by the constant di-
mension code Ci (resp. C ′i) if, and only if, dim(Xi) > dim(Fi)−m+ 1.

Proof. Assume that we send a flag F ∈ C (resp. in C ′) and a stuttering flag X is
received. Then ei is correctable by Ci (resp. C ′i) if, and only if, it holds

dim(Fi)− dim(Xi) = dS(Fi,Xi) = ei 6 m− 1

or equivalently, if dim(Xi) > dim(Fi)−m+ 1.

Remark 4.14. Observe that neither C nor C ′ are disjoint flag codes. However,
Proposition 4.11 (resp. 4.12) allows us to decode at least one of the received
subspaces Xi into the sent one Fi for an index i satisfying |Ci| = |C| (resp.
|C ′i| = |C ′|). Hence, after having recovered Fi, one can easily obtain the sent flag
F as the unique flag in C (resp. C ′) having Fi as its i-th subspace.

4.4 The β-cyclic case

In this part of the paper, we consider orbits under the action of proper sub-
groups of F∗qn generated by the flag F given in (7.25), which has underlying
Galois subflag (Fqm1 ,Fqm2 , . . . ,Fqmk ). In other words, for every β ∈ F∗qn , we
study the generalized β-Galois flag code Orbβ(F). Recall that this code has type
(m1, . . . ,m2 −m1,m2, . . . ,m3 −m2,m3, . . . ,mk, . . . , n −mk) and it has the fol-
lowing particularity: the best friends of the subspaces of F are nested. More
precisely, the subfield Fqmi is the best friend of the subspaces of dimensions
mi, . . . ,mi+1 − mi in the flag, for every 1 6 i 6 k, where mk+1 = n. This
property makes our flag F be closer to the Galois flag of type (m1, . . . ,mk) than
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other flags that also generalize it. As a result, we can give lower and upper
bounds for the distance of Orbβ(F) by studying the sequence of subgroups

〈β〉 ∩ F∗qm1 ⊆ 〈β〉 ∩ F∗qm2 ⊆ · · · ⊆ 〈β〉 ∩ F∗qmk .

In particular, we consider two possibilities: either all these subgroups coincide or
some inclusion is strict. In the latest case, we are especially interested in the first
index 1 < i 6 k such that 〈β〉 ∩ F∗qm1 6= 〈β〉 ∩ F∗qmi . Moreover, we exclude those
elements β ∈ F∗qm1 since they provide trivial orbit flag codes with distance equal
to zero.

Theorem 4.15. Let F be the generalized Galois flag given in (7.25) and β ∈
F∗qn \ F∗qm1 . For every 1 6 i 6 k, we write Mi =

∑i−1
j=1mj+1(Lj+1 − 1).

(1) If 〈β〉 ∩ F∗qm1 = 〈β〉 ∩ F∗qmk , then

2mk(Lk+1 − 1) +Mk 6 df (Orbβ(F)) 6 mk

⌊
L2
k+1

2

⌋
+Mk.

(2) Otherwise, consider the minimum 1 < i 6 k such that 〈β〉 ∩ F∗qm1 ( 〈β〉 ∩
F∗qmi . Then it holds:

2mi−1(Li − 1) +Mi−1 6 df (Orbβ(F)) 6 mi−1

⌊
L2
i

2

⌋
+Mi−1.

Proof. Assume that 〈β〉 ∩ F∗qm1 = 〈β〉 ∩ F∗qmk . Let us compute the distance
df (F ,Fβl), for every element βl /∈ Stabβ(F) = 〈β〉 ∩ F∗qm1 . Since 〈β〉 ∩ F∗qm1 =
〈β〉 ∩ F∗qmk , this power βl does not stabilize any subspace in the flag F . In
particular, observe that Fqmk and Fqmkβl are different subspaces in the spread
Orb(Fqmk ). In other words, it holds dS(Fqmk ,Fqmkβl) = 2mk and, by means
of Theorem 3.31, every subspace distance between subspaces of F and Fβl of
dimensions lower than mk is maximum as well, i.e., twice the corresponding
dimension. Hence, for dimensions up to mk −mk−1 = mk−1(Lk − 1), we obtain
the sum of subspace distances:∑k−1

j=1

(
2mj + · · ·+ 2mj(Lj+1 − 1)

))
=

∑k−1
j=1 2mj

(
1 + · · ·+ (Lj+1 − 1)

)
=

∑k−1
j=1 mjLj+1(Lj+1 − 1)

=
∑k−1

j=1 mj+1(Lj+1 − 1) = Mk.

Moreover, since subspaces of dimensions mk, . . . , n − mk = mk(Lk+1 − 1) have
Fqmk as their best friend, if d represents the flag distance between the subflags of
type mk(1, . . . , Lk+1 − 1) of F and Fβl and, by means of (7.16), we have:

2mk(Lk+1 − 1) 6 d 6 mk

⌊
L2
k+1

2

⌋
.
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Combining these two facts, we get the desired lower and upper bounds for
df (F ,Fβl), if βl /∈ Stabβ(F). In particular, these bounds are also valid for
df (Orbβ(F)).

To prove (2), suppose that 〈β〉∩Fqm1 6= 〈β〉∩Fqmk and then take the minimum
1 < i 6 k such that 〈β〉 ∩ Fqm1 ( 〈β〉 ∩ Fqmi . In this case, we can always find an
element βl ∈ F∗qmi \ F∗qm1 . This power βl stabilizes every subspace in F having
the subfield Fqmi as a friend, i.e., all those of dimensions at least mi. This means
that these dimensions do not contribute to the computation of df (F ,Fβl). On
the other hand, since 〈β〉 ∩Fqm1 = · · · = 〈β〉 ∩Fqmi−1 , then Fqmi−1 6= Fqmi−1βl are
different spread elements and the distance between them is 2mi−1. As before, by
means of Theorem 3.31, all the subspace distances are maximum for dimensions
up to mi. In particular, the distance between the subflags of type (m1, . . . ,mi −
mi−1) of F and Fβl is exactly

i−2∑
j=1

mj+1(Lj+1 − 1) = Mi−1.

Besides, observe that the subspaces of dimensions mi−1, . . . ,mi −mi−1 of F and
Fβl are Fqmi−1 -subspaces of Fqmi . Hence, if d denotes the distance between the
corresponding subflags of F and Fβl, by (7.16), we have

2mi−1(Li − 1) 6 d 6 mi−1

⌊
L2
i

2

⌋
.

As a result, we conclude

2mi−1(Li − 1) +Mi−1 6 df (F ,Fβl) 6 mi−1

⌊
L2
i

2

⌋
+Mi−1 (7.26)

for every βl ∈ F∗qmi \F∗qm1 . Arguing as above, if we take another power of β not in
F∗qmi , say βh, we obtain maximum subspace distances up to, at least, dimensions
mi and then

df (F ,Fβh) > df (F ,Fβl).
As a consequence, the minimum distance of the code is attained when we consider
powers βl ∈ F∗qmi \ F∗qm1 and we have the result.

Observe that the upper bound for the distance in the first part of Theorem 4.15
is exactly the maximum possible distance for general flags of the corresponding
type. Here below, we go a step further and give a sufficient condition for our
construction to provide optimum distance flag codes, i.e., flag codes with the
maximum possible distance for their type on Fqn .

Corollary 4.16. Consider the generalized Galois flag F given in (7.25) and take
β ∈ F∗qn such that 〈β〉 ∩ F∗qm1 = 〈β〉 ∩ F∗qmk . If Lk+1 6 3, then Orbβ(F) is an
optimum distance flag code.
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Proof. Notice that, under these assumptions, by means of Theorem 4.15 (part
(1)), we have

2mk(Lk+1 − 1) +Mk 6 df (Orbβ(F)) 6 mk

⌊
L2
k+1

2

⌋
+Mk.

Moreover, if the degree of the extension Fqn/Fqmk , that is, the positive integer
Lk+1 = [Fqn : Fqmk ] = n/mk+1, satisfies 1 < Lk+1 6 3, then we have

2(Lk+1 − 1) =

⌊
L2
k+1

2

⌋
.

Hence, both lower and upper bounds for df (Orbβ(F)) coincide and the code
Orbβ(F) attains the maximum possible distance for its type vector.

To finish this subsection we address the question (∗) launched in Subsection
3.4. Recall that the potential distance values of generalized Galois flag code
follow the rules stated in Theorem 3.31 and Definition 3.32. These conditions
arise naturally from the presence of certain subfields among the subspaces of a
generalized Galois flag. Concerning question (∗), we wonder if, given a generalized
Galois flag F , every potential value of the distance can be truly obtained by a
cyclic (or β-cyclic) orbit flag code generated by F . We answer this question by
using the β-cyclic construction presented in Subsection 4.4

Example 4.17. Consider the following parameters choice: q = 2, n = 10. More-
over, we take nested subfields F2 ⊂ F25 of the field F210, which correspond to the
election of divisors m1 = 1 and m2 = 5 of n = 10. In this case, we have L2 = 5
and L3 = 2. Let us use the generalized Galois flag F = (F2,F2,F3,F4,F25) of
type (1, 2, 3, 4, 5) with subspaces:

F2 = F2⊕F2γ, F3 = F2⊕F2γ⊕F2γ
2, and F4 = F2⊕F2γ⊕F2γ

2⊕F2γ
3,

where γ is a primitive element of F25.
The set of potential values of the distance in this case is given by:

{0, 8, 10, 12, 30}.

In this case, we know how to choose β ∈ F∗210 so that the orbit Orbβ(F) attains
some of these distances. More precisely:

• Distance d = 0 is obtained if, and only if, β ∈ F∗2 = {1} = Stab(F).

• For distance d = 8, it suffices to take the cyclic orbit code Orb(F) that, by
means of Theorem 4.2, has distance df (Orb(F)) = 8.
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• Last, since L3 = 2 6 3, by application of Corollary 4.16, we know that
every β ∈ F∗210 such that 〈β〉 ∩ F25 = {1} makes Orbβ(F) be an optimum
distance flag code. For instance, it suffices to consider subgroups 〈β〉 of F∗210
of orders {3, 11, 33} to attain the maximum distance, i.e., the value d = 30.

Moreover, for this specific example, we have obtained the parameters of the code
Orbβ(F), for every subgroup 〈β〉 of F∗210 by using GAP. First of all, since Stab(F) =
F∗2 = {1}, we have |Orbβ(F)| = |β|. The next table collects the set of distances
for the generating flag F :

|β| df (Orbβ(F))
1 0
3 30
11 30
31 8
33 30
93 8
341 8
1023 8

Table 7.2: Distance of all the β-cyclic orbit flag code generated by F .

Using this example, one can see that not all the potential values of the distance
can be obtained by taking a suitable subgroup of F∗210. It suffices to observe that
neither distances d = 10 nor d = 12 appear in Table 7.2. Even more, despite the
fact that df (Orbβ(F)) 6= 12 for any β ∈ F∗210, this value still can be the distance
between a couple of flags; for instance, we have

df (F ,Fγ2) = 2 + 4 + 4 + 2 + 0 = 12.

However, this is not even true for distance d = 10. In other words, for every
β ∈ F∗210 and any power 1 6 l 6 |β|, the distance df (F ,Fβl) 6= 10.

5 Conclusions and future work

In this work we present new contributions to the study of β-cyclic orbit flag
codes started in [3], also following the viewpoint of [11]. The best friend of a flag
code still has a crucial role throughout the paper. In particular, we discuss the
rich interplay among flag distances, best friend and type vector for this family of
codes.

Nevertheless, whereas in [3] the accent was put precisely on the best friend of
the flag code, this time we turn our attention to the generating flag of the orbit.
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We focus especially on those ones having at least one field among their subspaces,
by distinguishing the case of having just fields on the generating flag from the
case where also at least one subspace not being a field appears. This dichotomy
leads, on one side, to the known β-Galois flag codes and, on the other one, to the
generalized β-Galois flag codes, which properties we describe.

Every generalized β-Galois flag code has an underlying β-Galois flag code.
Thus, we have addressed the question of determine if the parameters and the
behaviour of Galois flag codes drives, in some sense, the ones of the generalized
ones. To do this, we provide a systematic construction of generalized Galois flag
codes with a prescribed underlying Galois flag code that presents remarkable
properties and helps to us to shed some light on the raised questions.

To future work, we want to deepen the study of β-cyclic orbit codes by deter-
mining suitable generating flags that allow us to obtain a prefixed distance value
and code sizes as large as possible, even when it is necessary to take unions or
orbits.
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Chapter 8: Flag codes: distance vectors and cardinality bounds

Abstract:

Given Fq the finite field with q elements and an integer n > 2, a flag is a sequence
of nested subspaces of Fnq and a flag code is a nonempty set of flags. In this
context, the distance between flags is the sum of the corresponding subspace
distances. Hence, a given flag distance value might be obtained by many different
combinations. To capture such a variability, in the paper at hand, we introduce
the notion of distance vector as an algebraic object intrinsically associated to a
flag code that encloses much more information than the distance parameter itself.
Our study of the flag distance by using this new tool allows us to provide a fine
description of the structure of flag codes as well as to derive bounds for their
maximum possible size once the minimum distance and dimensions are fixed.
Keywords: Network coding, flag codes, flag distance, bounds.

1 Introduction

Network coding was introduced in [1] as a new method for sending information
within networks modelled as acyclic multigraphs with possibly several senders
and receivers, where intermediate nodes are allowed to send linear combinations
of the received vectors, instead of simply routing them. In [14], the reader can find
the first algebraic approach to network coding through non-coherent networks,
i.e., those which their topology does not need to be known. In the same paper,
Kötter and Kschischang present subspace codes as the most appropriate codes
to this situation. To be precise, if Fq is the finite field of q elements (with q
a prime power) and we consider a positive integer n > 2, a subspace code is a
nonempty collection of Fq-vector subspaces of Fnq . When every codeword has the
same dimension, say 1 6 k < n, we speak about constant dimension codes. In
this context, we use the subspace distance, denoted by dS (see [14]). Constant
dimension codes have been widely studied in the last decade. See, for instance,
[23] and the references therein.

Size and minimum distance are the most important parameters associated to
an error-correcting code. The first one gives us the number of different messages
that can be encoded. The second one is related with the error-correction capabil-
ity of the code. According to this, there are two central problems when working
with constant dimension codes. On the one hand, the study and construction
of codes having the maximum possible distance for their dimension (see, for in-
stance, [7, 8, 12, 18]). On the other hand, determining (or giving bounds for) the
value Aq(n, d, k), that is, the maximum possible size of a constant dimension code
in Gq(k, n) with minimum distance equal to d, is an interesting question that has
led to many research works (see [10, 13, 16, 24], for instance).

In [17], the authors propose the use of flag codes in network coding for the first
time. This class of codes generalizes constant dimension codes and represents a
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possible alternative to obtain codes with good parameters in case that neither
n nor q could be increased. Flags are objects coming from classic linear algebra
defined as follows. Given integers 1 6 t1 < · · · < tr < n, a flag of type t =
(t1, . . . , tr) on Fnq is a sequence F = (F1, . . . ,Fr) of nested subspaces Fi of Fnq
such that dim(Fi) = ti, for every 1 6 i 6 r. In this setting, codewords are
flags of the prescribed type vector t. As for constant dimension codes, describing
the family of flag codes attaining the maximum possible distance for their type
(optimum distance flag codes) is a central question that has been addressed in
[3, 4, 5, 19]. On the other hand, obtaining bounds for the value Afq (n, d, t), i.e.,
the maximum possible size of flag codes of type t on Fnq and minimum distance
equal to d, is also an important problem that, up to now, has only been addressed
in the work [15], where the author focuses on the full type vector (1, . . . , n− 1).
The current paper represents a contribution in this direction.

Given two flags F ,F ′ of type t on Fnq , their flag distance is defined as
df (F ,F ′) =

∑r
i=1 dS(Fi,F ′i). This definition implies that a flag distance value

might be obtained as different combinations of subspace distances and it sug-
gests that the way we obtain the flag distance is relevant information to take into
account beyond the proper numerical value. We deal with this question by in-
troducing the concept of distance vector d(F ,F) = (dS(F1,F ′1), . . . , dS(Fr,F ′r))
associated to the pair of flags F and F ′. This is an algebraic object strongly
related not only to the value of the distance df (F ,F ′) but also to the nested
linear structure of these flags. With its help, we develop techniques that allow
us to study both the cardinality and the minimum distance of flag codes. First,
the study of distance vectors will allow us to determine how the flag distance
fluctuates when we consider flags sharing a given number of subspaces. Hence,
we investigate the structure of flag codes in which different flags do not share
simultaneously their subspaces of a prescribed set of dimensions. This approach
leads us both to derive some structural properties of the flag code and to obtain
upper bounds for the value Afq (n, d, t), strongly based on the maximum number
of subspaces that different flags in a flag code of type t and distance d can share.

The paper is organized as follows. In Section 2, we recall some definitions and
known facts related with constant dimension codes and flag codes. In Section
3, the notion of distance vector and a characterization of them are presented.
Section 4 is devoted to study the flag distance between flags of the same type
that share certain subspaces. In Section 5, we generalize the notion of disjointness
introduced in [4] and use the results obtained in the previous section in order to
deduce structural properties of a code by simply looking at its minimum distance.
In Section 6, we apply the concepts and results in Sections 4 and 5 to extract
bounds for the values Afq (n, d, t). Last, Section 7 is dedicated to developing a very
complete example that illustrates in detail the techniques previously discussed.
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2 Preliminaries

In this section we recall some known facts on subspace and flag codes that we
need in this paper. We start fixing some notation. Let q be a prime power and
consider the finite field Fq with q elements. For every positive integer n > 2,
we write Fnq to denote the n-dimensional vector space over the field Fq. Given a
positive integer k 6 n, the Grassmann variety, or simply the Grassmannian, of
dimension k is the set Gq(k, n) of k-dimensional vector subspaces of Fnq . It is well
known (see [14]) that

|Gq(k, n)| =
[
n
k

]
q

:=
(qn − 1) . . . (qn−k+1 − 1)

(qk − 1) . . . (q − 1)
. (8.1)

The Grassmannian can be seen as a metric space endowed with the subspace
distance defined as

dS(U ,V) = dim(U + V)− dim(U ∩ V) = 2(k − dim(U ∩ V)). (8.2)

for all U ,V ∈ Gq(k, n). A constant dimension code C in Gq(k, n) is a nonempty
collection of k-dimensional vector subspaces of Fnq . These codes were introduced
in [14] and studied many papers (see [23] and references therein for further infor-
mation). The minimum distance of C is the value

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V},

whenever |C| > 2. If |C| = 1, we put dS(C) = 0. In any case, the subspace
distance is an even integer such that

0 6 dS(C) 6
{

2k if 2k 6 n,
2(n− k) if 2k > n.

(8.3)

The study and construction of constant dimension codes attaining this upper
bound for the distance has been addressed in several papers (see [8, 18], for
instance). Another important problem is the one of determining (or giving bounds
for) the value Aq(n, d, k), which denotes the maximum possible size for constant
dimension codes in Gq(k, n) having prescribed minimum distance d. The reader
can find constructions of constant dimension codes as well as lower and upper
bounds for Aq(n, d, k) in [6, 10, 12, 13, 16, 20, 21, 22, 23, 24]. As a generalization
of constant dimension codes, in [17], the authors introduced the use of flag codes
in network Coding. Let us recall some basic definitions in this matter.

Given integers 1 6 t1 < · · · < tr < n, a flag of type t = (t1, . . . , tr) on Fnq is a
sequence F = (F1, . . . ,Fr) of nested subspaces Fi of Fnq such that dim(Fi) = ti,
for every 1 6 i 6 r. The vector (1, . . . , n − 1) is called the full type vector and
flags of this type are known as full flags.
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Throughout the rest of the paper, we will write t to denote an arbitrary but
fixed type vector t = (t1, . . . , tr). The flag variety Fq(t, n) is the set of all the
flags of type t on Fnq . This variety contains exactly

|Fq(t, n)| =
[
n
t1

]
q

[
n− t1
t2 − t1

]
q

· · ·
[
n− tr−1

n− tr

]
q

(8.4)

elements (see [15]) and it can be equipped with the flag distance, computed as

df (F ,F ′) =
r∑
i=1

dS(Fi,F ′i), (8.5)

for every pair of flags F ,F ′ ∈ Fq(t, n).
A flag code C of type t on Fnq is a nonempty subset of Fq(t, n). We can

naturally associate to it a family of r constant dimension codes by projection.
For every 1 6 i 6 r, consider the map

pi : Fq(t, n) −→ Gq(ti, n) (8.6)

defined as pi((F1, . . . ,Fr)) = Fi, for every (F1, . . . ,Fr) ∈ Fq(t, n). With this
notation, the i-th projected code Ci of the flag code C is the constant dimension
code Ci = pi(C) ⊆ Gq(ti, n), consisting of all the i-th subspaces of flags in C.

If C ⊆ Fq(t, n) is a flag code with |C| > 2, its minimum distance is defined as

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′}

and, if |C| = 1, we put df (C) = 0. Notice that, by means of (8.3), we can easily
deduce that df (C) is an even integer such that

0 6 df (C) 6 2

 ∑
ti6bn2 c

ti +
∑

ti>bn2 c
(n− ti)

 . (8.7)

When working with full flag codes, the previous bound becomes

0 6 df (C) 6

{
n2

2
if n is even,

n2−1
2

if n is odd.
(8.8)

In the flag codes setting, we write Afq (n, d, t) to denote the maximum attain-
able size for a flag code in Fq(t, n) with minimum distance equal to d. In case
of working with full flags, we drop the type vector and simply write Afq (n, d).
This notation was recently introduced by Kurz in [15]. In that work, the author
provided techniques to upper and lower bound these values in the full type case.
Moreover, an exhaustive list of exact values of Afq (n, d) is also given for small
values of n.
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3 Flag distance versus distance vectors
As seen in Section 2, the flag distance extends, in some sense, the subspace
distance. However, since it is defined as a sum, a particular flag distance value
might be attained by adding different combinations of subspace distances. This
makes that the minimum distance of a flag code will have associated some of the
possible combinations (maybe all of them). In order to clarify this fact, in this
section, we introduce the concept of distance vector to better represent how the
distance between different flags is distributed among their subspaces.

Definition 3.1. Given two different flags F ,F ′ of type t on Fnq , their associated
distance vector is

d(F ,F ′) = (dS(F1,F ′1), . . . , dS(Fr,F ′r)) ∈ 2Zr.

Notice that the sum of the components of d(F ,F ′) is the flag distance df (F ,F ′)
defined in (8.5). Given a positive integer n > 2 and a type vector t, we denote
by D(t,n) the maximum possible value of the flag distance in Fq(t, n) that, as a
consequence of (8.7), is

D(t,n) = 2

 ∑
ti6bn2 c

ti +
∑

ti>bn2 c
(n− ti)

 . (8.9)

In particular, when working with the full type vector, we simply write

Dn =

{
n2

2
if n is even,

n2−1
2

if n is odd
(8.10)

to denote the maximum possible distance between full flags on Fnq (see (8.8)). For
technical reasons, even if we work with n > 2, we extend this definition to the
case n = 1 and put D1 = 0.

From now on, we write d to denote an even integer such that 0 6 d 6 D(t,n).
Observe that, under these conditions, we can always find flags F ,F ′ ∈ Fq(t, n)
such that df (F ,F ′) = d. Hence, such a value d represents the possible values for
the flag distance in Fq(t, n). Let us study in which ways this distance value d
can be obtained.

Definition 3.2. Let d be an even integer such that 0 6 d 6 D(t,n). We define
the set of distance vectors associated to d for the flag variety Fq(t, n) as

D(d, t, n) = {d(F ,F ′) | F ,F ′ ∈ Fq(t, n), df (F ,F ′) = d} ⊆ 2Zr.

On the other hand, the set of distance vectors for the flag variety Fq(t, n) is

D(t, n) = {d(F ,F ′) | F ,F ′ ∈ Fq(t, n)} ⊆ 2Zr.
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and it holds
D(t, n) =

⋃
d

D(d, t, n),

where d takes all the even integers between 0 6 d 6 D(t,n). When working with
the full flag variety, we drop the type vector and simply write D(d, n) and D(n),
respectively.

The next result reflects that, for every choice of the type vector, the set D(t, n)
can be obtained from D(n) by using the projection

πt : Zn−1 −→ Zr
(v1, . . . , vn−1) 7−→ (vt1 , . . . , vtr).

(8.11)

Proposition 3.3. Consider a type vector t and the projection map πt defined in
(8.11). It holds

πt(D(n)) = D(t, n),

i.e., distance vectors for an arbitrary flag variety can be obtained by projection
from (possibly several) distance vectors for the full flag variety.

Proof. Take a distance vector d(F ,F ′) ∈ D(n), for a pair of full flags F =
(F1, . . . ,Fn−1) and F ′ = (F ′1, . . . ,F ′n−1). It suffices to see that πt(d(F ,F ′))
is the distance vector associated to the pair of flags F̄ = (Ft1 , . . . ,Ftr) and
F̄ ′ = (F ′t1 , . . . ,F

′
tr) in Fq(t, n).

Conversely, given two flags F̄ = (F̄1, . . . , F̄r) and F̄ ′ = (F̄ ′1, . . . , F̄ ′r) in
Fq(t, n), we can consider full flags F = (F1, . . . ,Fn−1) and F ′ = (F ′1, . . . ,F ′n−1)
such that Fti = F̄i and F ′ti = F̄ ′i , for all 1 6 i 6 r. In this case, it holds
πt(d(F ,F ′)) = d(F̄ , F̄ ′).

Remark 3.4. Notice that, for every even integer d such that 0 6 d 6 D(t,n), the
set D(d, t, n) is nonempty. Moreover, for some values of d, the set D(d, t, n) is
reduced to just one element. For instance, if we take d = 0, it holds D(0, t, n) =
{0}. If d = D(t,n), there is also a unique distance vector, that we denote by D(t,n).
For every 1 6 i 6 r, its i-th component D(t,n)

i is exactly

D
(t,n)
i = min{2ti, 2(n− ti)}, (8.12)

i.e., the maximum possible distance between ti-dimensional subspaces of Fnq .
Observe that, in particular, the distance vector D(t,n) does not have any zero
component. As before, when working with the full type vector, we simply
write Dn = (Dn

1 , . . . , D
n
n−1) to denote the unique distance vector associated to

the maximum possible flag distance Dn, given in (8.10). Its components are
Dn
i = min{2i, 2(n− i)}, for 1 6 i 6 n−1. In other cases, the set D(d, t, n) might

contain more than one element, as we can see in Example 3.8.
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Using the projection defined in (8.11), and arguing as in Proposition 3.3, the
next result follows straightforwardly.

Corollary 3.5. Consider a positive integer n and fix a type vector t for Fnq . It
holds

πt(D
n) = D(t,n).

In the following definition we collect the subset of distance vectors of D(t, n)
that are significant for a flag code in Fq(t, n).

Definition 3.6. Given a flag code C ⊆ Fq(t, n), its set of distance vectors is

D(C) = {d(F ,F ′) | F ,F ′ ∈ C, df (F ,F ′) = df (C)}.

Remark 3.7. In general, given a flag code C ⊆ Fq(t, n) and a pair of flags
F ,F ′ ∈ C such that df (C) = df (F ,F ′), it holds

d(F ,F ′) ∈ D(C) ⊆ D(df (C), t, n) ⊆ D(t, n).

Example 3.8. Let {e1, e2, e3, e4} be the standard Fq-basis of F4
q and consider the

following full flags on F4
q.

F1 = (〈e1〉 , 〈e1, e2〉 , 〈e1, e2, e4〉),
F2 = (〈e2〉 , 〈e1, e2〉 , 〈e1, e2, e3〉),
F3 = (〈e1〉 , 〈e1, e3〉 , 〈e1, e2, e3〉),
F4 = (〈e2〉 , 〈e2, e3〉 , 〈e1, e2, e3〉).

Notice that D4 = 16/2 = 8. Thus, the possible values of the flag distance for full
flags on F4

q are all the even integers d ∈ [0, 8]. In particular, for d = 4, vectors
(2, 0, 2), (0, 2, 2), (2, 2, 0) are elements in D(4, 4) since

d(F1,F2) = (2, 0, 2), d(F1,F3) = (0, 2, 2) and d(F2,F3) = (2, 2, 0).

On the other hand, if we take the full flag code C = {F1,F2,F4}, it holds

df (F1,F3) = 0 + 2 + 2 = 4,
df (F1,F4) = 2 + 2 + 2 = 6,
df (F3,F4) = 2 + 2 + 0 = 4.

Hence, the distance of the code is df (C) = 4 and D(C) = {(0, 2, 2), (2, 2, 0)} (
D(4, 4).

Up to now, to show that a given vector v ∈ 2Zr is a distance vector in D(t, n),
we need to exhibit a pair of flags F ,F ′ ∈ Fq(t, n) such that v = d(F ,F ′). We
finish the section with the next result that characterizes distance vectors in terms
of some properties satisfied by their components.
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Theorem 3.9. Let d be an even integer such 0 6 d 6 D(t,n). A vector v =
(v1, . . . , vr) is a distance vector in D(d, t, n) if, and only if, the following state-
ments hold:

(i)
∑r

i=1 vi = d,

(ii) vi ∈ 2Z, for all 1 6 i 6 r,

(iii) 0 6 vi 6 min{2ti, 2(n− ti)}, for every 1 6 i 6 r, and

(iv) |vi+1 − vi| 6 2(ti+1 − ti), for 1 6 i 6 r − 1.

Proof. We start assuming that v ∈ D(d, t, n). Statements (i), (ii) and (iii) follow
from the definition of D(d, t, n). Let us prove (iv). Since v ∈ D(d, t, n), there
must exist flags F ,F ′ ∈ Fq(t, n) such that d = df (F ,F ′) and v = d(F ,F ′), i.e.,
vi = dS(Fi,F ′i) = 2(ti−dim(Fi∩F ′i)), for every 1 6 i 6 r. Notice that, for every
1 6 i 6 r − 1, it holds

2ti−dim(Fi∩F ′i) = dim(Fi+F ′i) 6 dim(Fi+1 +F ′i+1) = 2ti+1−dim(Fi+1∩F ′i+1)

and, as a consequence,

dim(Fi ∩ F ′i) 6 dim(Fi+1 ∩ F ′i+1) 6 dim(Fi ∩ F ′i) + 2(ti+1 − ti). (8.13)

Moreover, we have that

vi+1 − vi = 2(ti+1 − ti)− 2(dim(Fi+1 ∩ F ′i+1)− dim(Fi ∩ F ′i)). (8.14)

Hence, by using the first inequality of (8.13), we clearly obtain vi+1−vi 6 2(ti+1−
ti). On the other hand, combining the second inequality of (8.13) and (8.14), we
get

vi+1 − vi > 2(ti+1 − ti)− 4(ti+1 − ti) = −2(ti+1 − ti)

and (iv) holds.
Let us prove the converse. To do so, assume that v = (v1, . . . , vr) is a vector

satisfying conditions (i)-(iv). We want to show that v ∈ D(d, t, n) or, equiva-
lently, to find a pair of flags in Fq(t, n) such that v = d(F ,F ′) and df (F ,F ′) = d.

First, by means of (ii) and (iii), every vi is an even integer such that 0 6
vi 6 min{2ti, 2(n − ti)}. Hence, each vi is an admissible distance value between
ti-dimensional subspaces of Fnq . Moreover, we can write every vi = 2wi for some
integer wi.

Notice that finding subspaces Fi,F ′i ∈ Gq(ti, n) with distance dS(Fi,F ′i) = vi
is equivalent to choose them satisfying dim(Fi∩F ′i) = ti−wi. This can be clearly
done for every 1 6 i 6 r. However, we need that the chosen subspaces form flags
F = (F1, . . . ,Fr) and F ′ = (F ′1, . . . ,F ′r). We use an inductive process in order
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to construct such flags. We start taking subspaces F1,F ′1 ∈ Gq(t1, n) such that
dim(F1 ∩ F ′1) = t1 − w1. Assume now that, for some 1 6 i < r, we have found
subspaces Fj,F ′j ∈ Gq(tj, n), for all 1 6 j 6 i, such that

F1 ( . . . ( Fi−1 ( Fi,
F ′1 ( . . . ( F ′i−1 ( F ′i ,

and dS(Fj,F ′j) = vj = 2wj. Let us see that we can find suitable subspaces Fi+1

and F ′i+1. To do this, notice that, by using (iv) and (iii), in this order, we obtain

dim(Fi + F ′i) = ti + wi 6 ti+1 + wi+1 6 n.

Thus, we can consider a subspace U ∈ Gq(ti+1 + wi+1, n) such that Fi + F ′i ⊆ U .
It holds

dim(U)− dim(Fi + F ′i) = ti+1 + wi+1 − (ti + wi) > wi+1 − wi.

We distinguish two possible situations in terms of the value li := wi+1 − wi.
• If li > 0, then we put mi := (ti+1 − ti)− li. Observe that, by means of (iv), we
have that mi > 0. Moreover, we have

dim(Fi + F ′i) + 2li +mi = (ti + wi) + 2li +mi

= (ti + wi) + (wi+1 − wi) + (ti+1 − ti)
= ti+1 + wi+1

= dim(U).

Hence, we can find linearly independent vectors a1, . . . , ali ,b1, . . . ,bli , c1, . . . , cmi
in U such that this subspace can be expressed as the direct sum

U = (Fi + F ′i)⊕ 〈a1, . . . , ali〉 ⊕ 〈b1, . . . ,bli〉 ⊕ 〈c1, . . . , cmi〉.

Now, consider the subspaces

Fi+1 := Fi ⊕ 〈a1, . . . ali〉 ⊕ 〈c1, . . . , cmi〉,
F ′i+1 := F ′i ⊕ 〈b1, . . . ,bli〉 ⊕ 〈c1, . . . , cmi〉,

which have dimension

dim(Fi+1) = dim(F ′i+1) = ti + li +mi = ti+1.

It is clear that Fi ( Fi+1 and F ′i ( F ′i+1. Moreover, observe that Fi+1+F ′i+1 = U .
Hence, dim(Fi+1 + F ′i+1) = dim(U) = ti+1 + wi+1 and, consequently, it holds
dim(Fi+1 ∩ F ′i+1) = ti+1 − wi+1. As a result, we obtain dS(Fi+1,F ′i+1) = vi+1, as
desired.
• If li < 0, then it holds ti < ti − li 6 ti + wi = dim(Fi + F ′i). Thus, we can
consider (ti − li)-dimensional subspaces V and V ′ such that

Fi ( V ⊆ Fi + F ′i ⊆ U ,
F ′i ( V ′ ⊆ Fi + F ′i ⊆ U .
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Notice that V + V ′ = Fi + F ′i . Besides, recall that

dim(U)− dim(Fi + F ′i) = (ti+1 + wi+1)− (ti + wi) = (ti+1 − ti) + li > 0

since v satisfies condition (iv). Hence, there exists a subspace W ⊆ U of dimen-
sion (ti+1 − ti) + li such that

U = (Fi + F ′i)⊕W = (V + V ′)⊕W .

Let us consider the subspaces

Fi+1 = V ⊕W and F ′i+1 = V ′ ⊕W ,

which have dimension

dim(V) + dim(W) = dim(V ′) + dim(W) = (ti − li) + (ti+1 − ti + li) = ti+1

and clearly contain Fi and F ′i , respectively. Moreover, since Fi+1 + F ′i+1 = U ,
we conclude that dim(Fi+1 ∩ F ′i+1) = 2ti+1 − dim(U) = 2ti+1 − (ti+1 + wi+1) =
ti+1 − wi+1. This is equivalent to say that dS(Fi+1,F ′i+1) = 2wi = vi, as we
wanted to prove.

In both cases, we conclude the existence of F ,F ′ ∈ Fq(t, n) such that v =
d(F ,F ′), which finishes the proof.

Example 3.10. Consider the full flag variety on F7
q. In this case, D7 = 24 and

we can consider the possible value of the distance d = 20. According to Theorem
3.9, the set of distance vectors associated to d = 20 is given by

D(20, 7) = {(2, 4, 4, 4, 4, 2), (2, 4, 6, 4, 2, 2), (2, 2, 4, 6, 4, 2)}.

Observe that, even though all the components of the vector (2,2,6, 4, 4, 2) are
allowed distances between subspaces of the corresponding dimensions and they
sum d = 20, such a vector is not a distance vector in D(20, 7). This is due
to the fact that the sequence (2,6) violates condition (iv) in Theorem 3.9, since
6− 2 = 4 > 2 = 2(3− 2).

For n = 7 and t = (1, 3, 5, 6), we have D(t,7) = 14. Observe that the distance
d = 12 can only be attained by distance vectors

D(12, t, 7) = {(2, 4, 4, 2), (2, 6, 2, 2)}.

In this case consecutive components (2,6) in the vector(2,6, 2, 2) are allowed,
since they represent distance between nested subspaces of dimensions t1 = 1 and
t2 = 3. Hence, the difference 6− 2 = 4 = 2(t2 − t1) respects the condition (iv) in
Theorem 3.9.
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4 Distance between flags sharing subspaces
This section is devoted to the study of the flag distance between flags in Fq(t, n)
that share subspaces. To do this, we start by analyzing the distance associated
to distance vectors with a prescribed component, in particular, the ones having a
component equal to zero. Then, we extend our study to distance vectors having
several zeros among their components. This study will be used in Sections 5 and
6 to obtain some information about the structure of flag codes as well as bounds
for their cardinality depending on their minimum distance.

4.1 Distance vectors with a fixed component

We start by describing the interval of attainable distances by distance vectors in
D(t, n) with their i-th component fixed, for some 1 6 i 6 r. Throughout the rest
of the section, we will write v to denote an even integer 0 6 v 6 min{2ti, 2(n−ti)}.
In other words, the integer v represents a possible value for the distance between
ti-dimensional subspaces of Fnq . We focus on the set of distance vectors v =
(v1, . . . , vr) ∈ D(t, n) with v as their i-th component, paying special attention to
those associated to the maximum and minimum distances.

Notice that, if we require a distance vector v to satisfy vi = v, then, by using
condition (iv) in Theorem 3.9, we obtain |vj − v| 6 2|ti − tj| for all 1 6 j 6
r. Moreover, by means of (ii)-(iv) in Theorem 3.9, for every 1 6 j 6 r, the
component vj must hold

max{0, v − 2|ti − tj|} 6 vj 6 min{2tj, 2(n− tj), v + 2|ti − tj|}. (8.15)

Definition 4.1. Given v as above, we write d(i; v)(t,n) (resp. D(i; v)(t,n)) to de-
note the minimum (resp. maximum) distance that can be attained by distance
vectors in D(t, n) having its i-th component equal to v. According to (8.15), there
exists a unique distance vector, that we denote by d(i; v)(t,n) (resp. D(i; v)(t,n)),
giving the distance d(i; v)(t,n) (resp. D(i; v)(t,n)) and having v as its i-th com-
ponent. For every 1 6 j 6 r, the j-th components of these vectors are given
by

d(i; v)
(t,n)
j = max{0, v − 2|ti − tj|},

D(i; v)
(t,n)
j = min{2tj, 2(n− tj), v + 2|ti − tj|}.

(8.16)

Consequently, the value d(i; v)(t,n) (resp. D(i; v)(t,n)) is obtained as the sum of
the components of d(i; v)(t,n) (resp. D(i; v)(t,n)), given in (8.16). Notice that, by
construction, these values satisfy 0 6 d(i; v)(t,n) 6 D(i; v)(t,n) 6 D(t;n). When
working with the full type variety, we simply write d(i; v)n, D(i; v)n, d(i; v)n and
D(i; v)n.

Example 4.2. For the full flag variety on F7
q, take i = 3 and v = 4, we have

d(3; 4)7 = (0, 2,4, 2, 0, 0) and D(3; 4)7 = (2, 4,4, 6, 4, 2)
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and their associated distances are the values d(3; 4)7 = 8 and D(3; 4)7 = 22.
Consider now the type vector t = (1, 3, 5, 6) on F7

q. For the same choice of
i = 3 and v = 4, we have

d(3; 4)(t,7) = (0, 0,4, 2) and D(3; 4)(t,7) = (2, 6,4, 2).

Hence, in this case, we have d(3; 4)(t,7) = 6 and D(3; 4)(t,7) = 14 = D(t,7).

According to the definition of d(i; v)(t,n) and D(i; v)(t,n), it is clear that if
v ∈ D(t, n) such that vi = v, then its associated distance d is an even integer
such that d(i; v)(t,n) 6 d 6 D(i; v)(t,n). The next result allows us to ensure that
the converse is also true.

Proposition 4.3. Consider the type vector t on Fnq , take an index 1 6 i 6 r and
an even integer 0 6 v 6 min{2ti, 2(n − ti)}. If d is an even integer such that
d(i; v)(t,n) 6 d 6 D(i; v)(t,n), then there exist distance vectors in D(d, t, n) with v
as its i-th component.

Proof. We prove the result by induction on d. For d = d(i; v)(t,n), the result
holds since the vector d(i; v)(t,n) satisfies the required condition. Now, assume
that, for some even integer d such that d(i; v)(t,n) 6 d < D(i; v)(t,n), we have
found a distance vector v = (v1, . . . , vr) ∈ D(d, t, n) such that vi = v. Let us use
v to construct a suitable distance vector in D(d + 2, t, n). Observe that, since
d < D(i; v)(t,n), clearly the set

{vj | vj < D(i; v)
(t,n)
j }

is nonempty. Hence, we can consider the minimum 1 6 k 6 r such that vk =
min{vj | vj < D(i; v)

(t,n)
j }. According to this, we have that vk < D(i; v)

(t,n)
k and

then vk + 2 6 D(i; v)
(t,n)
k is a possible distance between tk-dimensional subspaces

of Fnq . Consider now the k-th canonical vector ek ∈ Zr, i.e., the vector with k-th
component equal to 1 and zeros elsewhere. Since vi = v = D(i; v)

(t,n)
i , it clearly

holds k 6= i and thus, the vector v+ 2ek still has v as its i-th component. Hence,
we just need to prove that v+ 2ek is a distance vector in D(d+ 2, t, n). To so so,
it only remains to check condition (iv) of Theorem 3.9 for the k-th component
and the adjacent ones. In other words, we must show that the relations

|(vk + 2)− vk−1| 6 2(tk − tk−1) if 1 < k 6 r and (8.17)
|vk+1 − (vk + 2)| 6 2(tk+1 − tk) if 1 6 k < r. (8.18)

hold. We start by proving (8.17) in case 1 < k 6 r. To do so, we distinguish two
cases. First, if vk < vk−1, then we have

|(vk +2)−vk−1| = vk−1−vk−2 = |vk−vk−1|−2 6 2(tk− tk−1)−2 < 2(tk− tk−1).
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On the other hand, if vk > vk−1, by the minimality in the choice of k, we have
that vk−1 = D(i; v)

(t,n)
k−1 . Hence, since D(i; v)(t,n) is a distance vector, it holds

|(vk + 2)− vk−1| = (vk + 2)− vk−1 6 D(i; v)
(t,n)
k −D(i; v)

(t,n)
k−1 6 2(tk − tk−1).

The proof of (8.18), in case that 1 6 k < r, is completely analogous and we omit
it.

To our purposes, it will be important, in turn, to look at the behaviour of the
components of distance vectors associated to a given value for the flag distance.
Hence, given an even integer 0 6 d 6 D(t,n), we consider the values

d̄i = min{vi | v ∈ D(d, t, n)} and D̄i = max{vi | v ∈ D(d, t, n)}. (8.19)

The value d̄i (resp. D̄i) represents the minimum (resp. maximum) value that can
be placed in the i-th component of a distance vector in D(d, t, n).

Remark 4.4. Notice that, the values d̄i and D̄i defined in (8.19) satisfy the chain
of inequalities

d(i; d̄i)
(t,n) 6 d(i; D̄i)

(t,n) 6 d 6 D(i; d̄i)
(t,n) 6 D(i; D̄i)

(t,n). (8.20)

Example 4.6 illustrates this fact.

With this notation, the next result holds.

Proposition 4.5. Let d be an even integer such that 0 6 d 6 D(t,n). Consider
an index 1 6 i 6 r and take an even integer v with 0 6 v 6 min{2ti, 2(n− ti)}.
The following statements hold:

(1) If v < d̄i, then we have D(i; v)(t,n) < d.

(2) If v > D̄i, then d(i; v)(t,n) > d.

Proof. Suppose that v < d̄i, then, by means of (8.20), it holds

d(i; v)(t,n) 6 d(i; d̄i)
(t,n) 6 d.

Suppose now that d 6 D(i; v)(t,n). In this case, by means of Proposition 4.3, there
must exist a distance vector in D(d, t, n) with v as its i-th component. This leads
to d̄i 6 v, which is a contradiction. Hence, it holds d > D(i; v)(t,n).

On the other hand, if v > D̄i, by using (8.20), we clearly have that

d 6 D(i; D̄i)
(t,n) 6 D(i; v)(t,n).

If we assume that d > d(i; v)(t,n), by using Proposition 4.3, we can find a distance
vector in D(d, t, n) with v as its i-th component. This contradicts the fact that
v > D̄i. As a result, we conclude that d < d(i; v)(t,n).
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The previous result points out the impossibility of attaining the flag distance
value d when we consider subspaces distances v out of the interval [d̄i, D̄i] at the
i-th summand. This fact will be useful in Section 6 and it is reflected in the next
example.

Example 4.6. As said in Example 3.10, the set of distance vectors associated to
d = 20 for the full flag variety on F7

q is

D(20, 7) = {(2, 4,4, 4, 4, 2), (2, 4,6, 4, 2, 2), (2, 2,4, 6, 4, 2)}.

Hence, for d = 20, it is clear that d̄3 = 4 and D̄3 = 6. Moreover, in this case
expression (8.20) becomes

d(3; 4)7 = 8 < d(3; 6)7 = 18 < 20 < D(3; 4)7 = 22 < D(3; 6)7 = 24.

Besides, by means of Proposition 4.5, the maximum distance that can be obtained
by distance vectors with third component v3 < 4 is lower than 20. Indeed, that
maximum distance is attained with the vector

D(3; 2)7 = (2, 4,2, 4, 4, 2),

whose associated distance is D(3; 2)7 = 18 < 20.

4.2 Distance vectors with prescribed zero components

In this subsection we study the set of attainable values of the flag distance by
distance vectors having prescribed zero components, i.e., distance vectors associ-
ated to pairs of flags that share certain subspaces. For the sake of simplicity, we
will present partial results for the full flag variety, followed by the natural general
version for Fq(t, n), deduced by using the projection map defined in (8.11).

Remark 4.7. Recall that, as pointed out in Remark 3.4, in case of working with
distance vectors with no zero components, the maximum possible distance is the
value D(t,n), which is attained by the vector D(t,n).

Let us start our study with distance vectors with just one zero among their
components by taking advantage of the results provided in Subsection 4.1. Later
on, we generalize this and analyze the properties of distance vectors with several
null components. Given the type vector t and a position 1 6 i 6 r, by means of
(8.16), it clearly holds d(i; 0)(t,n) = 0. On the other hand, now we study the value
D(i; 0)(t,n) and its associated distance vector D(i; 0)(t,n). Observe that, in this
case, we do not need to specify the fixed component since is always zero. Hence,
we will just write D(i)(t,n) and D(i)(t,n). Moreover, by means of (8.16), the j-th
component D(i)(t,n) is given by

D(i)
(t,n)
j = min{2tj, 2(n− tj), 2|ti − tj|} (8.21)
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for every 1 6 j 6 r. When working with full flags, we also drop the type vector
and simply write D(i)n and D(i)n. In this case, expression (8.21) becomes

D(i)nj = min{2j, 2(n− j), 2|i− j|}, (8.22)

for 1 6 j 6 n − 1. Using both (8.21) and (8.22) and the map defined in (8.11),
the next result follows.

Proposition 4.8. Given a type vector t on Fnq and an index 1 6 i 6 r, it holds

D(i)(t,n) = πt(D(ti)
n).

This fact allows us to restrict our study to the full type case. At the end of
the section we will come back to the general flag variety Fq(t, n).

The full type case

We start giving some properties of the value D(i)n.

Proposition 4.9. For every 1 6 i 6 n− 1, we have that

D(i)nj = D(n− i)nn−j, ∀j = 1, . . . , n− 1.

In other words, to obtain D(n−i)n, it suffices to read backwards the vector D(i)n.
As a consequence, it holds D(i)n = D(n− i)n.

Proof. Take an integer 1 6 i 6 n−1. According to (8.22), for every 1 6 j 6 n−1,
it clearly holds

D(n− i)nn−j = min{2(n− j), 2(n− (n− j)), 2|(n− i)− (n− j)|}
= min{2(n− j), 2j, 2|j − i|} = D(i)nj ,

which gives the result straightforwardly.

In light of this result, we just need to study the values D(i)n for 1 6 i 6 bn
2
c.

We can also give the following nice description of D(i)n in terms of the values Dj

defined in (8.10).

Proposition 4.10. For every 1 6 i 6 n− 1, it holds

D(i)n = Di +Dn−i.

Proof. Regarding equation (8.22), we can compute the value D(i)n as

D(i)n =
n−1∑
j=1

min{2j, 2(n− j), 2|i− j|}.
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Observe that, in case i = 1, we have

D(1)n =
∑n−1

j=2 min{2j, 2(n− j), 2(j − 1)}
=

∑n−1
j=2 min{2(j − 1), 2(n− j)}

=
∑n−2

k=1 min{2k, 2((n− 1)− k)}
= Dn−1 = D1 +Dn−1.

Besides, by means of Proposition 4.9, the result also holds if i = n − 1. Let us
now consider the case 1 < i < n− 1. In this case, the i-th component is zero and
we have

D(i)n =
i−1∑
j=1

min{2j, 2(n−j), 2|i−j|}+0+
n−1∑
j=i+1

min{2j, 2(n−j), 2|i−j|}. (8.23)

Moreover, for values of j < i, one have that 2|i − j| = 2(i − j) < 2(n − j). On
the other hand, if i < j, it is clear that 2|i − j| = 2(j − i) < 2j. Hence, (8.23)
becomes

D(i)n =
∑i−1

j=1 min{2j, 2(i− j)}+
∑n−1

j=i+1 min{2(n− j), 2(j − i)}
=

∑i−1
j=1 min{2j, 2(i− j)}+

∑n−i−1
k=1 min{2(n− i− k), 2k}

= Di +Dn−i,

where the second equality comes from writing k = j − i.

This result confirms again the fact that D(i)n = D(n − i)n. Next, we use
the previous proposition together with expression (8.10) to provide an explicit
formula for every D(i)n.

Corollary 4.11. For every 1 6 i 6 n− 1, it holds

D(i)n =



i2 + (n− i)2

2
if both n and i are even,

i2 + (n− i)2 − 2

2
if n is even and i is odd,

i2 + (n− i)2 − 1

2
if n is odd.

This expression allows us to establish an order on the set {D(i)n | 1 6 i 6
bn

2
c}.

Proposition 4.12. For every n it holds

Dn > D(1)n > D(2)n > · · · > D(bn
2
c − 1)n > D(bn

2
c)n,

and the last equality holds if, and only if, 4 divides n.
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Proof. Consider any 1 6 i < bn
2
c. We will use the expression in Corollary 4.11 in

order to compare D(i)n and D(i+ 1)n. We do so by dividing the proof into two
parts, depending on the parity of n. First of all, assume that n is odd. In this
case, it follows i+ 1 6 bn

2
c = n−1

2
. Then 2i+ 1 < 2i+ 3 6 n and

D(i+ 1)n = (i+1)2+(n−(i+1))2−1
2

= i2+2i+1+(n−i)2−2(n−i)+1−1
2

= i2+(n−i)2−1
2

+ 2(2i+1−n)
2

= D(i)n − (n− (2i+ 1)) < D(i)n.

Now, suppose that n is an even integer and 1 6 i < bn
2
c = n

2
. Equivalently,

2(i+ 1) 6 n. We distinguish two cases:

• if i is even, then i+ 1 is odd and we have

D(i+ 1)n = (i+1)2+(n−(i+1))2−2
2

= i2+2i+1+(n−i)2−2(n−i)+1−2
2

= i2+(n−i)2
2

+ 2(2i−n)
2

= D(i)n − (n− 2i) < D(i)n.

• On the other hand, if i is odd, then i+ 1 is even and:

D(i+ 1)n = (i+1)2+(n−(i+1))2

2

= i2+2i+1+(n−i)2−2(n−i)+1
2

= i2+(n−i)2−2
2

+ 2(2(i+1)−n)
2

= D(i)n − (n− 2(i+ 1)) 6 D(i)n

and the last equality holds if, and only if, n = 2(i + 1) and then 4 divides
n.

The next example reflects the information given in the previous results for a
specific value of n.

Example 4.13. For n = 7, we have D7 = 24. In this example, we compute all
the values D(i)7 and respective vectors D(i)7.

i D(i)7 D(i)7 i D(i)7 D(i)7

1 (0, 2, 4, 6, 4, 2) 18 6 (2, 4, 6, 4, 2, 0) 18
2 (2, 0, 2, 4, 4, 2) 14 5 (2, 4, 4, 2, 0, 2) 14
3 (2, 2, 0, 2, 4, 2) 12 4 (2, 4, 2, 0, 2, 2) 12
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Notice that, as stated in Proposition 4.9, for every 1 6 i 6 6, it holds D(i)7 =
D(7 − i)7. Moreover, the reader can see that every vector D(i)7 has the same
components than D(n − i)7 but written backwards. Moreover, it is also shown
that

D7 > D(1)7 > D(2)7 > D(3)7.

We will come back to this example in Section 7.

Recall that the flag distance between full flags on Fnq is an even integer in
the interval [0, Dn]. Moreover, in light of Proposition 4.12, we can partition this
interval into intervals of the form ]D(i+ 1)n, D(i)n] that will be used in Sections
5 and 6 to obtain useful information about full flag codes.

0 DnD(bn/2c)n · · · D(1)n

Figure 8.1: Distribution of the values D(i)n.

In order to give a partition of the left interval [0, D(bn/2c)n], let us introduce
another set of relevant distances that correspond to the maximum possible flag
distances associated to distance vectors with more that one zero among their
components.

Definition 4.14. Consider an integer value 0 6 M 6 n − 1 and fix dimensions
1 6 i1 < i2 < · · · < iM 6 n−1. We write D(i1, . . . , iM)n to denote the maximum
possible distance attainable by distance vectors in D(n) with M zeros in the
positions i1, . . . , iM . This situation corresponds uniquely to the distance vector
D(i1, . . . , iM)n, whose j-th component is given by

D(i1, . . . , iM)nj = min{2j, 2(n− j), 2|j − i1|, . . . , 2|j − iM |}, (8.24)

for all 1 6 j 6 n− 1.

Notice that, in case M = 0, we have the distance vector Dn given in Remark
3.4. The case M = 1 corresponds to the distance vector D(i)n defined in (8.22).
On the other hand, if M = n− 1, then D(i1, . . . , iM)n = 0 and D(i1, . . . , iM)n is
the null vector.

Proposition 4.15. Given indices 1 6 i1 < · · · < iM 6 n− 1, we have

D(i1, . . . , iM)n = Di1 +Di2−i1 + · · ·+DiM−iM−1 +Dn−iM .

Proof. We prove the result by induction on the number of zeros 1 6M 6 n− 1.
Observe that, by means of Proposition 4.10, the result holds for every n and
M = 1. Now, assume that M > 1 and, by induction hypothesis, that the result
is true for all n and distance vectors having up to M − 1 zeros. Let us study the
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case of having M zeros in the positions i1, . . . , iM . We start by considering the
case where i1 = 1. In this situation, according to (8.24),

D(1, i2, . . . , iM )n =
n−1∑
j=1

min{2j, 2(n− j), 2|j − 1|, 2|j − i2|, . . . , 2|j − iM |}

= 0 +
n−1∑
j=2

min{2j, 2(n− j), 2|j − 1|, 2|j − i2|, . . . , 2|j − iM |}

= 0 +
n−2∑
k=1

min{2((n− 1)− k), 2k, 2|k − (i2 − 1)|, . . . , 2|k − (iM − 1)|}

= D1 +D(i2 − 1, . . . , iM − 1)n−1,

where the third equality comes from taking k = j − 1. Hence, the induction
hypothesis leads to

D(1, i2, . . . , iM)n = D1 +Di2−1 +Di3−i2 + · · ·+DiM−iM−1 +Dn−iM ,

as stated. Assume now that i1 > 1, then we obtain

D(i1, . . . , iM)n =
∑n−1

j=1 min{2j, 2(n− j), 2|j − i1|, . . . , 2|j − iM |}
=

∑i1−1
j=1 min{2j, 2(n− j), 2|j − i1|, . . . , 2|j − iM |}+ 0

+
∑n−1

j=i1+1 min{2j, 2(n− j), 2|j − i1|, . . . , 2|j − iM |}.

Observe that, when 1 6 j 6 i1 − 1, it holds j < i1 < i2 < · · · < iM < n and then
n − j > |j − il| = il − j > j − i1 for all 1 6 l 6 M . Hence, the first part of the
last sum can be substituted by

i1−1∑
j=1

min{2j, 2(i1 − j)} = Di1 .

On the other hand, if i1 + 1 6 j 6 n− 1, clearly |j − i1| = j − i1 6 j and then

D(i1, . . . , iM )n = Di1 +
n−1∑

j=i1+1
min{2(n− j), 2(j − i1), 2|j − i2|, . . . , 2|j − iM |}

= Di1 +
n−i1−1∑
k=1

min{2(n− i1 − k), 2k, 2|k − (i2 − i1)|, . . . , 2|k − (iM − i1)|}

= Di1 +D(i2 − i1, . . . , iM − i1)n−i1 .

Hence, by applying the induction hypothesis to D(i2− i1, . . . , iM − i1)n−i1 , we
obtain

D(i1, . . . , iM)n = Di1 +Di2−i1 + · · ·+D(iM−i1)−(iM−1−i1) +D(n−i1)−(iM−i1)

= Di1 +Di2−i1 + · · ·+DiM−iM−1 +Dn−iM ,

as we wanted to prove.
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Proposition 4.15 along with expression (8.10) allows us to compute every value
D(i1, . . . , iM)n depending on the parity of the positive integers i1, i2− i1, . . . , n−
iM , as we see in the following example.

Example 4.16. For n = 7, M = 3 and indices i1 = 1, i2 = 3 and i3 = 4, by
means of Proposition 4.15, we have

D(1, 3, 4)7 = D1 +D3−1 +D4−3 +D7−4

= D1 +D2 +D1 +D3

= 0 + 22

2
+ 0 + 32−1

2
= 6.

Remark 4.17. A multiset is a collection whose elements can appear more than
once. The number of times that each element appears in the multiset is its
multiplicity. We represent multisets by using double braces {{. . .}}. Notice that,
for any two families of M indices 1 6 i1 < · · · < iM 6 n− 1 and 1 6 j1 < · · · <
jM 6 n− 1 satisfying the equality of multisets

{{i1, i2 − i1, . . . , n− iM}} = {{j1, j2 − j1, . . . , n− jM}},

by means of Proposition 4.15, we have the equalityD(i1, . . . , iM)n = D(j1, . . . , jM)n.
Hence, in order to compute all the values D(i1, . . . , iM)n, we can restrict ourselves
to choices ofM ordered indices 1 6 i1 < · · · < iM 6 n−1 such that the differences

1 6 i1 6 i2 − i1 6 . . . 6 iM − iM−1 6 n−M

are also ordered. In general, the converse is not true: there are different families
of multisets as above providing the same values of the distance. It suffices to
see that, with M = 1 and n = 8, it holds D(3)8 = 16 = D(4)8. However, the
multisets of differences associated to indices i = 3 and i = 4 are {{3, 5}} and
{{4, 4}}, respectively.

The next result establishes that the maximum distance attainable by distance
vectors in D(n) withM zero components is always obtained when these zeros are
placed in the first M positions.

Proposition 4.18. Given 1 6 M 6 n − 1 and any election of indices 1 6 i1 <
· · · < iM 6 n− 1, it holds

D(i1, . . . , iM)n 6 D(1, . . . ,M)n = Dn−M .

Proof. Notice that D(1, . . . ,M)n = Dn−M holds by application of Proposition
4.15. Hence, we just need to prove the first inequality. To do so, we proceed
by induction on M . We start with the case M = 1, in which, by means of
Proposition 4.12, it is clear that D(n − i)n = D(i)n 6 D(1)n, for every value of
n and 1 6 i 6 n− 1.
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Assume now that M > 1 and that the result holds for any value of n and
distance vectors in D(n) having up to M − 1 ceros. Let us prove that it is also
true for M zeros. To do so, consider M indices 1 6 i1 < · · · < iM 6 n − 1.
Notice that M 6 iM . Moreover, if M = iM , then it holds ij = j, for every
j ∈ {1, . . . ,M} and therefore D(i1, . . . , iM)n = D(1, . . . ,M)n. Assume now that
M < iM . By means of Proposition 4.15 , we have

D(i1, . . . , iM)n = Di1 +Di2−i1 + · · ·+DiM−iM−1 +Dn−iM

= D(i1, . . . , iM−1)iM +Dn−iM .

Moreover, since M − 1 < iM − 1, we can apply the induction hypothesis to the
case of having M − 1 zeros in the positions i1 < · · · < iM−1 on FiMq . We obtain
D(i1, . . . , iM−1)iM 6 DiM−(M−1) and Proposition 4.10 along with Proposition 4.12
gives that

D(i1, . . . , iM)n 6 DiM−(M−1) +Dn−iM

= D(iM −M + 1)iM−M+1+n−iM

= D(iM −M + 1)n−M+1

6 D(1)n−M+1 = D1 +Dn−M+1−1 = Dn−M ,

as we wanted to prove.

The general case

We finish this section by generalizing the previous concepts to the general flag
variety Fq(t, n) as follows. As done for the full type case in Definition 4.14,
we can consider distance vectors D(t, n) with a prescribed number of zeros, say
0 6M 6 r, in the positions 1 6 i1 < · · · < iM 6 r. We denote the corresponding
maximum distance by

D(i1, . . . , iM)(t,n).

This number represents the maximum possible distance between flags in Fq(t, n)
that share simultaneously their subspaces of dimensions ti1 , . . . , tiM . The only
distance vector giving this distance and having zeros in its components i1, . . . , iM
is denoted by D(i1, . . . , iM)(t,n) and its j-th component is given by

D(i1, . . . , iM)
(t,n)
j = min{2tj, 2(n− tj), 2|tj − ti1|, . . . , 2|tj − tiM |}, (8.25)

for 1 6 j 6 r.
Using the projection map πt defined in (8.11), we can give the following

description of the distance vector with components as in (8.25), in terms of the
vector D(ti1 , . . . , tiM )n introduced in Definition 4.14. The next result generalizes
Proposition 4.8.
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Proposition 4.19. Given a type vector t and 1 6M 6 r indices 1 6 i1 < · · · <
iM 6 r, it holds

D(i1, . . . , iM)(t,n) = πt(D(ti1 , . . . , tiM )n).

Proof. Consider the type vector t and take 1 6 M 6 r indices 1 6 i1 <
· · · < iM 6 r. Notice that, for every 1 6 j 6 r, the j-th component of
πt(D(ti1 , . . . , tiM )n) is exactly the tj-th one of D(ti1 , . . . , tiM )n that, by (8.24),
is:

min{2tj, 2(n− tj), 2|tj − ti1|, . . . , 2|tj − tiM |}.
This value corresponds to the j-th component of D(i1, . . . , iM)(t,n), as we wanted
to prove.

Next, we give a generalization of Proposition 4.15 for any arbitrary type
vector t = (t1, . . . , tr). To do so, consider 1 6 M 6 r zeros in the positions
1 6 i1 < · · · < iM 6 r. These positions allow us to split t into M + 1 new type
vectors, that we denote by t1, . . . , tM+1, given by

t1 = (t1, . . . , ti1−1),
tj+1 = (tij+1 − tij , . . . , tij+1−1 − tij), for 1 6 j 6M − 1,
tM+1 = (tiM+1 − tiM , . . . , tr − tiM ).

(8.26)

Using this notation, the next result holds.

Proposition 4.20. Given a type vector t and a choice of 1 6 M 6 r ordered
indices 1 6 i1 < · · · < iM 6 r, then the value D(i1, . . . , iM)(t,n) satisfies:

D(i1, . . . , iM)(t,n) = D(t1,ti1 ) +D(t2,ti2−ti1 ) + · · ·+D(tM+1,n−tiM ).

The next example reflects this fact.

Example 4.21. Take n = 12 and consider the type vector t = (1, 3, 5, 6, 8, 10, 11)
of length r = 7. Assume that we place M = 2 zeros in the positions i1 = 3 and
i2 = 5, i.e., the ones corresponding to the dimensions t3 = 5 and t5 = 8. In this
case, by means of (8.26), we have

t1 = (1, 3), t2 = (6− 5) = (1) and t3 = (10− 8, 11− 8) = (2, 3).

Moreover, by (8.25), it holds

D(3, 5)(t,12) = (2, 4,0, 2,0, 4, 2).

Observe that the zero components of D(3, 5)(t,12) allow us to split this vector into
three new ones, which are precisely

D(t1,5) = (2, 4), D(t2,8−5) = (2) and D(t3,12−8) = (4, 2).

Hence, we have

D(3, 5)(t,12) = 2 + 4 + 0 + 2 + 0 + 4 + 2 = D(t1,5) +D(t2,8−5) +D(t3,12−8),

as stated in Proposition 4.20.
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Remark 4.22. Notice that the computation of the distance D(i1, . . . , iM)(t,n)

only depends on the flag variety Fq(t, n) and on the choice of the indices i1, . . . , iM .
As a result, these values can be computed in advance, before considering any par-
ticular flag code, as we will see in Section 7.

In the following sections we will take advantage of this study of the values
D(i1, . . . , iM)(t,n) in order to derive some properties related to the structure and
cardinality of flag codes.

5 Disjointness in flag codes
Recall that, given a flag code C ⊆ Fq(t, n), for every 1 6 i 6 r, its i-th projected
code is the constant dimension code

Ci = pi(C) ⊆ Gq(ti, n),

where pi is the projection map defined in (8.6). As a consequence, for every
1 6 i 6 r, we have

|Ci| = |pi(C)| 6 |C|
and the equality holds if, and only if, the projection pi is injective when restricted
to C. If we have the equality for all 1 6 i 6 r, i.e., if |C| = |C1| = · · · = |Cr|,
the flag code C is said to be disjoint (see [4]). Under the disjointness property,
the code cardinality is completely determined by its projected codes and different
flags never share a subspace. Moreover, observe that every flag code C ⊆ Fq(t, n)
with |C| = 1 is trivially disjoint and it holds df (C) =

∑r
i=1 dS(Ci) = dS(Ci) = 0,

for every 1 6 i 6 r. On the other hand, if C is a disjoint flag code with |C| > 2,
then

df (C) >
r∑
i=1

dS(Ci) (8.27)

and dS(Ci) > 0, for every 1 6 i 6 r. In particular, we obtain df (C) > 2r.

Remark 5.1. Disjoint flag codes in Fq(t, n) in which expression (8.27) holds
with equality are called consistent (see [2]). It is quite easy to see that this
family of disjoint flag codes is also characterized by the property of having as
a unique distance vector (dS(C1), . . . , dS(Cr)). Optimum distance flag codes in
Fq(t, n) are a particular class of consistent flag codes whose associated distance
vector is D(t,n) defined in (8.12).

The simple structure of disjoint flag codes leads us to seek a generalization of
this concept. We do so by using the next family of projections. Consider the flag
variety Fq(t, n) and take 1 6 M 6 r indices 1 6 i1 < i1 < · · · < iM 6 r. The
(i1, . . . , iM)-projection map is given as

p(i1,...,iM ) : Fq(t, n) −→ Fq((ti1 , . . . , tiM ), n)
(F1, . . . ,Fr) 7−→ (Fi1 , . . . ,FiM )

(8.28)
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and the valueM will be called the length of the projection. Now, given a flag code
C in Fq(t, n), we can define a set of flag codes of length M , naturally associated
to C, by using these projection maps.

Definition 5.2. Let C ⊂ Fq(t, n) be a flag code and fix 1 6 M 6 r indices
1 6 i1 < · · · < iM 6 r. The set p(i1,...,iM )(C) is called the (i1, . . . , iM)-projected
code of C. The images of C by all the projections of length M constitute the set
of the so-called projected codes of length M of C.

Observe that in caseM = 1, both projections pi1 and p(i1), defined in (8.6) and
(8.28) respectively, coincide. Hence, the (i)-projected code is just the i-projected
(subspace) code defined in Section 2, seen now as a flag code of length one.

Next, we use these new projected codes and we introduce two wider notions
of disjointness.

Definition 5.3. Let C ⊆ Fq(t, n) be a flag code and take 1 6 M 6 r specific
indices 1 6 i1 < · · · < iM 6 r. The code C is said to be (i1, . . . , iM)-disjoint if
the projection p(i1,...,iM ) is injective when restricted to C. If this condition holds
for every choice of M indices 1 6 i1 < · · · < iM 6 r, we say that C is M-disjoint.

According to this definition, we provide the next geometric interpretation of
(i1, . . . , iM)-disjoint flag codes.

Remark 5.4. Consider the type vector t and 1 6 M 6 r indices 1 6 i1 <
· · · < iM 6 r. A code C ⊆ Fq(t, n) is (i1, . . . , iM)-disjoint if, and only if, different
flags in C never share simultaneously their subspaces of dimensions ti1 , . . . , tiM .
Similarly, C is M -disjoint if different flags C never have M equal subspaces.

Example 5.5. Let {e1, e2, e3, e4, e5} be the standard Fq-basis of F5
q. We consider

the full flag code C on F5
q given by the flags

F1 = (〈e1〉 , 〈e1, e2〉 , 〈e1, e2, e3〉 , 〈e1, e2, e3, e4〉),
F2 = (〈e1〉 , 〈e1, e3〉 , 〈e1, e2, e3〉 , 〈e1, e2, e3, e4〉),
F1 = (〈e1〉 , 〈e1, e3〉 , 〈e1, e3, e5〉 , 〈e1, e3, e4, e5〉).

On the one hand, observe that no pair of flags in C share their second and third
subspaces at the same time, i.e., C is a (2, 3)-disjoint flag code. On the other
hand, it is not (i1, i2)-disjoint for any other choice of indices 1 6 i1 < i2 6 4. As
a result, the code C is not 2-disjoint.

Proposition 5.6. Let C ⊆ Fq(t, n) be an (i1, . . . , iM)-disjoint flag code for some
choice of 1 6 M 6 r indices 1 6 i1 < · · · < iM 6 r. Then, for every choice of
M 6 N 6 r integers 1 6 j1 < · · · < jN 6 r such that {i1, . . . , iM} ⊆ {j1, . . . , jN},
the code C is (j1, . . . , jN)-disjoint. In particular, if C is M-disjoint, then it is N-
disjoint as well.
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Proof. Assume that C is not a (j1, . . . , jN)-disjoint flag code. Hence, there ex-
ist different flags F ,F ∈ C such that (Fj1 , . . . ,FjN ) = (F ′j1 , . . . ,F

′
jN

). Since
{i1, . . . , iM} ⊆ {j1, . . . , jN}, then we have (Fi1 , . . . ,FiM ) = (F ′i1 , . . . ,F

′
iM

), which
is a contradiction with the fact that C is an (i1, . . . , iM)-disjoint flag code. Sim-
ilarly, assume now that C is not N -disjoint. The previous argument leads to
different flags sharing N > M subspaces at the same time. In other words, the
code C cannot be M -disjoint.

At this point, we relate the M -disjointness property of a flag code with its
minimum distance. These relationships will help us to establish bounds for flag
codes in Section 6. We start giving a lower bound for the distance of M -disjoint
flag codes in terms of the distances of some of their projected codes of length 1.

Proposition 5.7. Let C ⊆ Fq(t, n) be a flag code and consider an integer 1 6
M 6 r. If C is M-disjoint, then there exist r − (M − 1) indices 1 6 i1 < · · · <
ir−M+1 6 r such that dS(Cij) 6= 0 and

df (C) >
r−M+1∑
j=1

dS(Cij).

Proof. Let C ⊂ Fq(t, n) be an M -disjoint flag code for some integer 1 6 M 6 r
and consider a pair of different flags F ,F ′ ∈ C giving the minimum distance. The
M -disjointness condition makes that F and F ′ cannot share more than M − 1
subspaces. Hence, their associated distance vector, i.e., the vector

d(F ,F ′) = (dS(F1,F ′1), . . . , dS(Fr,F ′r))

does not contain more than M − 1 zeros. As a result, at least, r − (M − 1) of
its r components are nonzero. Thus, there exist different indices 1 6 i1 < · · · <
ir−M+1 6 r such that dS(Fij ,F ′ij) 6= 0. Consequently, we have dS(Fij ,F ′ij) >
dS(Cij) > 0 and then

df (C) = df (F ,F ′) >
r−(M−1)∑

j=1

dS(Fij ,F ′ij) >
r−(M−1)∑

j=1

dS(Cij).

In other words, the distance of C is lower bounded by the sum of nonzero distances
of r − (M − 1) specific projected codes of length 1.

Observe that, in the previous proof, the choice of the r − (M − 1) indices
1 6 i1 < · · · < ir−M+1 6 r strongly depends on the election of the pair of
flags F ,F ′ ∈ C giving the minimum distance of the code. On the other hand,
if df (C) = df (F̄ , F̄ ′), for another pair of flags F̄ , F̄ ′ ∈ C, following the proof of
Proposition 5.7, one might obtain another lower bound for df (C) as the sum of
the (positive) distances of r − (M − 1) different projected codes of C.
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Corollary 5.8. Let C ⊆ Fq(t, n) be an M-disjoint flag code for some 1 6M 6 r.
Then it holds

df (C) > min


r−(M−1)∑

j=1

dS(Cij)
∣∣ 1 6 i1 < · · · < ir−(M−1) 6 r with dS(Cij) 6= 0

 .

In particular, we have that df (C) > 2(r − (M − 1)).

Observe that, if C ⊂ Fq(t, n) is a disjoint flag code, i.e, 1-disjoint in our new
notation, the previous bound coincides with the one given in (8.27). On the other
hand, by using the notation introduced in Section 4, we provide the following suf-
ficient condition on the distance of a flag code to ensure some type of disjointness.
More precisely, we can conclude that a given flag code is (i1, . . . , iM)-disjoint just
by checking if its minimum distance is greater than the value D(i1, . . . , iM)(t,n).
Recall that, as said in Remark 4.22, fixed the flag variety Fq(t, n), these values
only depend on the choice of the indices 1 6 i1 < · · · < iM 6 r. Hence they
are independent from any specific flag code and can be computed and stored as
parameters associated to Fq(t, n). We use these remarkable distances as follows.

Theorem 5.9. Let C ⊆ Fq(t, n) be a flag code such that df (C) > D(i1, . . . , iM)(t,n),
for some choice of 1 6 M 6 r indices 1 6 i1 < · · · < iM 6 r. Then C is
(i1, . . . , iM)-disjoint.

Proof. Assume that C is not (i1, . . . , iM)-disjoint for this particular choice of in-
dices 1 6 i1 < · · · < iM 6 r. Then we can find different flags F ,F ′ ∈ C such that
Fij = F ′ij for every 1 6 j 6 M . As a result, the distance vector associated to
the pair of flags F and F ′ has, at least, M zeros in the positions i1, . . . , iM . As
a result, and according to the definition of D(i1, . . . , iM)(t,n), we have

df (C) 6 df (F ,F ′) 6 D(i1, . . . , iM)(t,n),

which is a contradiction.

The previous result leads to a sufficient condition for flag codes to be M -
disjoint in terms of their minimum distance.

Corollary 5.10. Let C ⊆ Fq(t, n) be a flag code and consider an integer 1 6
M 6 r. If

df (C) > max
{
D(i1, . . . , iM)(t,n)

∣∣ 1 6 i1 < · · · < iM 6 r
}
,

then C is M-disjoint.

Remark 5.11. Observe that comparing the distance of a code with the maximum
of the values D(i1, . . . , iM)(t,n) is not a big deal since, as said in Remark 4.22,
for each choice of indices and type vector, this maximum value can be computed
in advance. Moreover, in case of working with full flags on Fnq , this maximum
value is explicitly computed in Proposition 4.18. Hence, we can give an easier
condition to guarantee that a given full flag code is M -disjoint as follows.
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Corollary 5.12. Let C be a full flag code on Fnq . If df (C) > D(n−M) for some
1 6M 6 n− 1, then C is M-disjoint.

Theorem 5.9 and Corollary 5.10 state sufficient conditions to deduce some
degree of disjointness in terms of the minimum distance of a flag code. The
concept of disjointness and, in particular, these two results will be crucial to
establish bounds for the cardinality of flag codes in Fq(t, n) with a prescribed
minimum distance.

6 Bounds for the cardinality of flag codes
This section is devoted to give upper bounds for the cardinality of flag codes
from arguments introduced in both Sections 4 and 5. As said in Section 2, the
value Afq (n, d, t) denotes the maximum possible size for flag codes in Fq(t, n)
with distance d. In the particular case of full flags on Fnq , we just write Afq (n, d).
Up to the moment, bounds for Afq (n, d) have only been studied in [15]. In that
paper, the author develops techniques to determine upper bounds for the size of
full flag codes and gives an exhaustive list of them for small values of n. Out
of the full type case, the author also exhibits some concrete examples. The
bounds in the present paper are valid for any type vector and arise from different
techniques. More precisely, for each value of the distance, we apply Theorem 5.9
and Corollaries 5.10 and 5.12, in order to ensure certain degree of disjointness and
derive upper bounds for Afq (n, d, t), related to the size of a suitable flag variety.

From now on, we will write d to denote a possible distance between flags
in Fq(t, n), that is, an even integer d ∈ [0, D(t,n)]. Next we will use the values
D(i1, . . . , iM)(t,n) defined in Section 4, along with the condition of (i1, . . . , iM)-
disjointness introduced in Section 5, to derive upper bounds for Afq (n, d, t).

Theorem 6.1. If d > D(i1, . . . , iM)(t,n), for a particular choice of 1 6 M 6 r
indices 1 6 i1 < · · · < iM 6 r, then

Afq (n, d, t) 6 |Fq((ti1 , . . . , tiM ), n)| =
[
n
t1

]
q

[
n− t1
t2 − t1

]
q

· · ·
[
n− tr−1

n− tr

]
q

.

Proof. By application of Theorem 5.9, we know that every flag code C ⊆ Fq(t, n)
with distance d > D(i1, . . . , iM)(t,n) must be (i1, . . . , iM)-disjoint. Hence, it holds

|C| = |p(i1,...,iM )(C)| 6 |Fq((ti1 , . . . , tiM ), n)|.

Consequently, every flag code in Fq(t, n) with minimum distance d > D(i1, . . . , iM)(t,n)

cannot contain more flags than the flag variety Fq((ti1 , . . . , tiM ), n). The last
equality follows from (8.4).

Comparing the distance d with all the possible values of D(i1, . . . , iM)(t,n)

leads to the next result, which is a direct consequence of Theorem 6.1.
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Corollary 6.2. If d > D(i1, . . . , iM)(t,n) for every election of 1 6M 6 r indices
1 6 i1 < · · · < iM 6 r, then

Afq (n, d, t) 6 min{|Fq((ti1 , . . . , tiM ), n)| | 1 6 i1 < · · · < iM 6 r}.

Notice that, in the case that M = 1, Theorem 6.1 entails a bound for
Afq (n, d, t) in terms of the size of certain Grassmann varieties.

Corollary 6.3. Assume that d > D(i)(t,n) for some 1 6 i 6 r. It holds

Afq (n, d, t) 6 |Gq(ti, n)|.

Here below, we provide a potentially tighter bound than the one in Corollary
6.3 in terms of the maximum possible size for constant dimension codes in Gq(ti, n)
with a suitable value of the subspace distance. Notice that, if d > D(i)(t,n), by
the definition of D(i)(t,n), no distance vector in D(d, t, n) can have a zero as its
i-th component. Therefore, the value d̄i defined in (8.19) satisfies d̄i > 2. As a
consequence, it makes sense to consider the next upper bound.

Theorem 6.4. If d > D(i)(t,n) for some 1 6 i 6 r, then

Afq (n, d, t) 6 Aq(n, d̄i, i).

Proof. Let C be a flag code in Fq(t, n) such that d = df (C) > D(i)(t,n) and
assume that |C| > Aq(n, d̄i, i). By means of Theorem 5.9, we know that C is (i)-
disjoint, i.e., |C| = |Ci|. Hence Ci is a code in Gq(ti, n) with more than Aq(n, d̄i, i)
subspaces. As a result, we have that dS(Ci) < d̄i. Consequently, there must exist
different flags F ,F ′ ∈ C such that dS(Fi,F ′i) = dS(Ci) < d̄i. Proposition 4.5
leads to

d = df (C) 6 df (F ,F ′) 6 D(i, dS(Fi,F ′i)) < d,

which is a contradiction.

Remark 6.5. Notice that, since d̄i > 2, we clearly have

Aq(n, d̄i, i) 6 Aq(n, 2, i) = |Gq(i, n)|

and the equality holds if, and only if, d̄i = 2. Consequently, the upper bound for
Afq (n, d, t) given in Theorem 6.4 is as good as the one provided in Corollary 6.3
and it is even tighter in case d̄i > 4.

Let us consider now the full flag variety. To do so, from now on, we will
write d to denote a feasible distance between full flags on Fnq , i.e., an even integer
with 0 6 d 6 Dn. In this case, all the results in this section still hold true.
However, since we have a better description of the values D(i1, . . . , iM)n when
we consider the full flag variety, we can give more information for this specific
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case. For instance, fixed 1 6 M 6 n − 1, instead of checking the condition
d > D(i1, . . . , iM)n for every choice of indices as in Corollary 6.2, by means of
Proposition 4.18, one just need to ascertain if d > Dn−M holds. Moreover, when
restricting to the case M = 1, by means of Proposition 4.9, we can restrict
ourselves to indices 1 6 i 6 bn

2
c.

The next result follows straightforwardly from the definition of the valueD(i)n

(see (8.22)) along with Propositions 4.9 and 4.12.

Lemma 6.6. If d > D(i)n for some 1 6 i 6 bn
2
c, then the values d̄j defined in

(8.19) satisfy
d̄j > 2, for every i 6 j 6 n− i.

By means of the previous lemma, and arguing as in Theorem 6.4, whenever
d > D(i)n holds, we obtain the next upper bound for Afq (n, d).

Theorem 6.7. If d > D(i)n for a given 1 6 i 6 bn
2
c, then

Afq (n, d) 6 min{Aq(n, d̄j, j) | i 6 j 6 n− i}.

Using this last result when working with full flags gives us a bound as good
as the one given in Theorem 6.4, formulated for the general type. Moreover, in
some cases, it even improves it, as we can see in the following example.

Example 6.8. For n = 6 and the full type vector, consider the flag distance
d = 16, which satisfies d = 16 > D(1)6 = 12. Moreover, taking into account
that D(16, 6) = {(2, 4, 4, 4, 2)}, it is clear that d̄i = 2 for i = 1, 5 and d̄j = 4 for
j = 2, 3, 4. Hence, Theorem 6.4, leads to

Afq (6, 16) 6 Aq(6, 2, 1) = |Gq(6, 1)| = q5 + q4 + q3 + q2 + q + 1

(see (8.1)). On the other hand, by using Theorem 6.7, we obtain

Afq (6, 16) 6 Aq(6, 4, 2) = q4 + q2 + 1,

which improves the previous bound. Notice that the last equality just gives the
cardinality of any 2-spread code in F6

q, i.e., optimal constant dimension codes (of
dimension 2) having the maximum distance. These codes were introduced in [18].

7 A complete example

In this section we illustrate how to combine all the elements introduced in this
paper in order to exhibit relevant information about a flag code with a prescribed
minimum distance d. To do so, we compute all the values D(i1, . . . , iM)(t,n),
defined in Section 4 for a specific choice of n and t.
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Let us fix n = 7 and consider both the full type vector (1, 2, 3, 4, 5, 6) and the
type vector t = (t1, t2, t3, t4) = (1, 3, 5, 6). We start working with full flags and
computing all the values D(i1, . . . , iM)7, for every possible choice 1 6M 6 6 and
indices 1 6 i1 < · · · < iM 6 6. As pointed out in Section 4, these values are
not only useful for the full type case but also serve to extract conclusions for any
other flag variety on F7

q (see Proposition 4.19).
The following table shows all these distancesD(i1, . . . , iM)7, separated accord-

ing to the number of zeros 1 6 M 6 6. We also exhibit the associated distance
vector D(i1, . . . , iM)7, the choice of ordered indices 1 6 i1 < · · · < iM 6 6 and
the multiset of differences {{i1, i2− i1, . . . , 7− iM}}. Recall that, as stated in Re-
mark 4.17, we can restrict ourselves to families of indices such that the differences
1 6 i1 6 i2 − i1 6 . . . 6 7− iM are also ordered.

M = 1
i1 Differences D(i1)7 D(i1)7

1 {{1, 6}} (0, 2, 4, 6, 4, 2) 18
2 {{2, 5}} (2, 0, 2, 4, 4, 2) 14
3 {{3, 4}} (2, 2, 0, 2, 4, 2) 12

M = 2
(i1, i2) Differences D(i1, i2)7 D(i1, i2)7

(1, 2) {{1, 1, 5}} (0, 0, 2, 4, 4, 2) 12
(1, 3) {{1, 2, 4}} (0, 2, 0, 2, 4, 2) 10
(1, 4) {{1, 3, 3}} (0, 2, 2, 0, 2, 2) 8
(2, 4) {{2, 2, 3}} (2, 0, 2, 0, 2, 2) 8

M = 3
(i1, i2, i3) Differences D(i1, i2, i3)7 D(i1, i2, i3)7

(1, 2, 3) {{1, 1, 1, 4}} (0, 0, 0, 2, 4, 2) 8
(1, 2, 4) {{1, 1, 2, 3}} (0, 0, 2, 0, 2, 2) 6
(1, 3, 5) {{1, 2, 2, 2}} (0, 2, 0, 2, 0, 2) 6

M = 4
(i1, . . . , i4) Differences D(i1, . . . , i4)7 D(i1, . . . , i4)7

(1, 2, 3, 4) {{1, 1, 1, 1, 3}} (0, 0, 0, 0, 2, 2) 4
(1, 2, 3, 5) {{1, 1, 1, 2, 2}} (0, 0, 0, 2, 0, 2) 4

M = 5
(i1, . . . , i5) Differences D(i1, . . . , i5)7 D(i1, . . . , i5)7

(1, 2, 3, 4, 5) {{1, 1, 1, 1, 1, 2}} (0, 0, 0, 0, 0, 2) 2
M = 6

(i1, . . . , i6) Differences D(i1, . . . , i6)7 D(i1, . . . , i6)7

(1, . . . , 6) {{1, 1, 1, 1, 1, 1, 1}} (0, 0, 0, 0, 0, 0, 0) 0

Table 8.1: Possible values of D(i1, . . . , iM)7 for every 1 6M 6 6.
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Any other choice of indices 1 6 i1 < · · · < iM 6 6 has an associated multiset
of differences {{i1, i2− i1, . . . , 7− iM}} that already appears in these tables. For
instance, to compute the value D(1, 3, 6)7, we just need to consider the multiset

{{1, 3− 1, 6− 3, 7− 6}} = {{1, 2, 3, 1}}

and order its elements as an increasing sequence {{1, 1, 2, 3}}. This multiset
already appears in Table 8.1, associated to the choice of indices (1, 2, 4). Hence,

D(1, 3, 6)7 = D(1, 2, 4)7 = 6.

The next table contains upper bounds for Afq (7, d), for every value of 2 6 d 6
D7 = 24 and every prime power q. To compute them, we compare d with specific
values D(i1, . . . , iM)7 provided in Table 8.1, for some 1 6 M 6 6. Notice that
applying Theorem 6.1 to different elections either of the integer M or of indices
i1 < · · · < iM provides, in general, different bounds. We proceed as in Corollary
6.2 and give the tightest bound for each case.

d D(i1, . . . , iM)7 Upper bound for Afq (7, d)

2 D(1, 2, 3, 4, 5, 6)7 = 0 |Fq((1, 2, 3, 4, 5, 6), 7)| = (q7 − 1) · · · (q2 − 1)

(q − 1)6

4 D(1, 2, 3, 4, 5)7 = 2 |Fq((1, 2, 3, 4, 5), 7)| = (q7 − 1) · · · (q3 − 1)

(q − 1)5

6 D(1, 2, 3, 4)7 = 4 |Fq((1, 2, 3, 4), 7)| = (q7 − 1) · · · (q4 − 1)

(q − 1)4

8 D(1, 2, 4)7 = 6 |Fq((1, 2, 4), 7)| = (q7 − 1)(q6 − 1)(q5 − 1)(q2 + 1)

(q − 1)3

10 D(1, 4)7 = 8 |Fq((1, 4), 7)| = (q7 − 1)(q5 − 1)(q3 + 1)(q2 + 1)

(q − 1)2

12 D(1, 3)7 = 10 |Fq((1, 3), 7)| = (q7 − 1)(q5 − 1)(q4 + q2 + 1)

(q − 1)2

14 D(1, 2)7 = 12 |Fq((1, 2), 7)| = (q7 − 1)(q6 − 1)

(q − 1)2

16− 18 D(2)7 = 14 |Gq(2, 7)| = (q7 − 1)(q4 + q2 + 1)

(q − 1)

20− 24 D(1)7 = 18 |Gq(1, 7)| = (q7 − 1)

(q − 1)

Table 8.2: Bounds for Afq (7, d) obtained by using Theorem 6.1.
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Moreover, observe that the restriction to the families of ordered indices in Ta-
ble 8.1 is not a problem since any choice ofM indices {i1, . . . , iM} and {j1, . . . , jM}
giving equal multisets

{{i1, i2 − i1, . . . , n− iM}} = {{j1, j2 − j1, . . . , n− jM}}

also provide the same bound

Afq (n, d) 6 |Fq((i1, . . . , iM), n)| = |Fq((j1, . . . , jM), n)|

because the cardinality of the flag variety

|Fq((i1, . . . , iM), n)| =
[
n
i1

]
q

[
n− i1
i2 − i1

]
q

· · ·
[
n− iM−1

n− iM

]
q

=
(qn − 1) . . . (q − 1)(

(qi1 − 1) . . . (q − 1)
)(∏M

l=1

(
(qil−il−1 − 1) . . . (q − 1)

))(
(qn−iM − 1) . . . (q − 1)

)
just depends on the values i1, i2 − i1, . . . , n− iM .

Notice that the bounds for Afq (7, d) in Table 8.2 do not change for distances
16 6 d 6 18 or 20 6 d 6 24. In Table 8.3, for each flag distance value 16 6 d 6
24, we indicate the specific choice of 1 6 i 6 6 and the corresponding value d̄i
(see (8.19)) that provide the best upper bound for Afq (7, d) that can be obtained
by means of Theorem 6.7.

d i d̄i Upper bound for Afq (7, d)

16 2 2 Aq(7, 2, 2) = |Gq(2, 7)| = (q7 − 1)(q4 + q2 + 1)

(q − 1)

18 2 2 Aq(7, 2, 2) = |Gq(2, 7)| = (q7 − 1)(q4 + q2 + 1)

(q − 1)

20 1 2 Aq(7, 2, 1) = |Gq(1, 7)| = (q7 − 1)

(q − 1)

22 4 4 Aq(7, 4, 2) 6 q(q4 + q2 + 1)

24 3 6 Aq(7, 6, 3) = q4 + 1

Table 8.3: Bounds for Afq (7, d) obtained by using Theorem 6.7.

Notice that, as said in Remark 6.5, for those cases in which d̄i = 2, bounds in
Tables 8.2 and 8.3 coincide. On the other hand, whenever d̄i > 2, Table 8.3 gives
better bounds. The next example illustrates how bounds in this table have been
computed.
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Example 7.1. For d = 20 and the full flag variety on F7
q, we have

D(20, 7) = {(2, 4, 4, 4, 4, 2), (2, 2, 4, 6, 4, 2), (2, 4, 6, 4, 2, 2)}.

As a consequence, it holds d̄i = 2 for i = 1, 2, 5, 6 and d̄j = 4 for j = 3, 4. Hence,
Theorem 6.7 leads to three possible upper bounds for Afq (7, 20):

Afq (7, 20) 6 Aq(7, 2, 1) = Aq(7, 2, 6) = |Gq(1, 7)| = q7−1
q−1

,

Afq (7, 20) 6 Aq(7, 2, 2) = Aq(7, 2, 5) = |Gq(2, 7)| = (q7−1)(q4+q2+1)
(q−1)

,

Afq (7, 20) 6 Aq(7, 4, 3) = Aq(7, 4, 4).

Clearly the first bound is tighter than the second one. Moreover, by means of [10,
Th. 3.20], we know that

Aq(7, 4, 3) > q8 + q5 + q4 − q − 1 > q6 + · · ·+ q + 1 =
q7 − 1

q − 1
= |Gq(1, 7)|.

Thus, Theorem 6.7 leads to Afq (7, 20) 6 |Gq(1, 7)|, as we see in Table 8.3.

Using similar arguments we arrive to give some upper bounds for Afq (n, d)
that coincide with the already presented in [15]. See, for instance, Propositions
2.5, 2.6, 2.7, 4.4, 4.5, 4.6, 6.1, 6.2, 6.3 and 6.4 in that paper.

Now, also for n = 7 but for type vector t = (1, 3, 5, 6), we apply the re-
sults presented in this paper with the goal of exhibiting upper bounds for the
cardinality of flag codes of this specific type vector. We start computing the
values D(i1, . . . , iM)(t,7), for 1 6 M 6 4, by applying Proposition 4.19 to the al-
ready computed values D(ti1 , . . . , tiM )7 in Table 8.1 and their associated vectors
D(ti1 , . . . , tiM )7.

M = 1

i1 D(ti1)
7 D(ti1)

(t,7) D(ti1)
(t,7)

1 (0, 2, 4, 6, 4, 2) (0, 4, 4, 2) 10
2 (2, 2, 0, 2, 4, 2) (2, 0, 4, 2) 8
3 (2, 4, 4, 2, 0, 2) (2, 4, 0, 2) 8
4 (2, 4, 6, 4, 2, 0) (2, 6, 2, 0) 10

M = 2

(i1, i2) D(ti1 , ti2)
7 D(i1, i2)(t,7) D(i1, i2)(t,7)

(1, 2) (0, 2, 0, 2, 4, 2) (0, 0, 4, 2) 6
(1, 3) (0, 2, 4, 2, 0, 2) (0, 4, 0, 2) 6
(1, 4) (0, 2, 4, 4, 2, 0) (0, 4, 2, 0) 6
(2, 3) (2, 2, 0, 2, 0, 2) (2, 0, 0, 2) 4
(2, 4) (2, 2, 0, 2, 2, 0) (2, 0, 2, 0) 4
(3, 4) (2, 4, 4, 2, 0, 0) (2, 4, 0, 0) 6
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M = 3

(i1, i2, i3) D(ti1 , ti2 , ti3)
7 D(i1, i2, i3)(t,7) D(i1, i2, i3)(t,7)

(1, 2, 3) (0, 2, 0, 2, 0, 2) (0, 0, 0, 2) 2
(1, 2, 4) (0, 2, 0, 2, 2, 0) (0, 0, 2, 0) 2
(1, 3, 4) (0, 2, 4, 2, 0, 0) (0, 4, 0, 0) 4
(2, 3, 4) (2, 2, 0, 2, 0, 0) (2, 0, 0, 0) 2

M = 4

(i1, i2, i3, i4) D(ti1 , ti2 , ti3 , ti4)
7 D(i1, i2, i3, i4)(t,7) D(i1, i2, i3, i4)(t,7)

(1, 2, 3, 4) (0, 2, 0, 2, 0, 0) (0, 0, 0, 0) 0

Table 8.4: Possible values of D(i1, . . . , iM)(t,7).

Using this table and applying Corollary 6.3, we obtain the next list of bounds
for Afq (7, d, t). As before, we provide the tightest possible upper bound for each
value d. We do so by making a suitable choice of 1 6 M 6 4 and indices
1 6 i1 < · · · < iM 6 4. This information is collected in the next table.

d D(i1, . . . , iM)(t,7) Upper bound for Afq (7, d, t)

2 D(1, 2, 3, 4)(t,7) = 0 |Fq(t, 7)| = (q7 − 1)(q6 − 1)(q5 − 1)(q3 − 1)(q2 + 1)

(q − 1)4

4 D(1, 2, 4)(t,7) = 2 |Fq((1, 3, 6), 7)| = (q7 − 1)(q6 − 1)(q5 − 1)(q2 + 1)

(q − 1)3

6 D(2, 4)(t,7) = 4 |Fq((3, 6), 7)| = (q7 − 1)(q5 − 1)(q3 + 1)(q2 + 1)

(q − 1)2

8 D(3, 4)(t,7) = 6 |Fq((5, 6), 7)| = (q7 − 1)(q6 − 1)

(q − 1)2

10 D(3)(t,7) = 8 |Gq(5, 7)| = (q7 − 1)(q4 + q2 + 1)

(q − 1)

12− 14 D(1)(t,7) = 10 |Gq(1, 7)| = q7 − 1

q − 1

Table 8.5: Bounds for Afq (7, d, t) obtained by using Theorem 6.1.

Last, for distance d = 14 = D(t,7), we can improve the previous bound.
Observe that

D(14, t, 7) = {D(t,7)} = {(2, 6, 4, 2)}.
Thus, taking into account that d̄2 = 6, by using Theorem 6.4, we obtain

Afq (7, 14, t) 6 Aq(7, 6, t2) = Aq(7, 6, 3) = q4 + 1,
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(see [10, Th. 3.43] for the last equality) which is a better bound than the one
given in Table 8.5.

8 Conclusions
In this paper we have addressed an exhaustive study of the flag distance param-
eter. To do so, we have introduced the concept of distance vector as a tool to
represent how a flag distance value can be obtained from different combinations
of subspace distances. Besides, we have characterized distance vectors in terms
of certain conditions satisfied by their components.

We have presented the class of (i1, . . . , iM)-disjoint flag codes, as a general-
ization of the notion of disjointness given in [4] and also established a connection
between the property of being (i1, . . . , iM)-disjoint and the impossibility of hav-
ing distance vectors with M zeros, placed in the positions i1, . . . , iM . This allows
us to read some structural properties of flag codes in terms of their minimum
distance and their sets of distance vectors. As a consequence of our study, we
deduce upper bounds for the value Afq (n, d, t) for every choice of the parameters.
These bounds strongly depend on the number of subspaces that can be shared
by different flags of a code in Fq(t, n) with minimum distance d. We finish our
work by explicitly computing our bounds for Afq (7, d, t) and two particular type
vectors when we sweep all the possible distance values in each case.
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Abstract:

In network coding, a flag code is a collection of flags, that is, sequences of nested
subspaces of a vector space over a finite field. Due to its definition as the sum
of the corresponding subspace distances, the flag distance parameter encloses a
hidden combinatorial structure. To bring it to light, in this paper, we interpret
flag distances by means of distance paths drawn in a convenient distance support.
The shape of such a support allows us to create an ad hoc associated Ferrers
diagram frame where we develop a combinatorial approach to flag codes by re-
lating the possible realizations of their minimum distance to different partitions
of appropriate integers. This novel viewpoint permits to establish noteworthy
connections between the flag code parameters and the ones of its projected codes
in terms of well known concepts coming from the classical partitions theory.
Keywords: Network coding, flag codes, flag codistance, Ferrers diagrams, inte-
ger partitions, Durfee squares.

1 Introduction
Random network coding, firstly introduced in [1], has proven to be the most
efficient way to send data across a non-coherent network with multiple sources
and sinks. Despite its efficiency, it is very susceptible to error propagation and
erasures. In order to overwhelm this weakness, in [12] the authors propose an alge-
braic approach by simply considering subspaces of Fnq as codewords and subspace
codes as collections of subspaces. Since this pioneering paper, much research has
been made in constructing large subspace codes, and also in determining their
properties. In case all the subspaces in the code have the same dimension, we
speak about constant dimension codes. To have an overview of the most impor-
tant works in this subject, consult [16] and the references therein.

In [14] the authors developed techniques for using flags of constant type, that
is, sequences of nested subspaces of prescribed dimensions, in network coding. In
this context, collections of flags are denominated flag codes and they appear as
a generalization of constant dimension codes. The recent works [2, 4, 5, 6, 13]
among others, show a growing interest in this topic.

If we consider all the subspaces of a given dimension of all the flags in a flag
code, we obtain a constant dimension code called projected code. In the study of
flag codes, a central problem is the one of unraveling to what extent is it possible
to get the parameters of a flag code from the ones of its projected codes and
conversely. In [3, 5, 6, 15] this problem has been addressed for the family of flag
codes attaining the maximum distance (optimum distance flag codes) whereas
in [2], the authors define consistent flag codes as precisely those ones whose
projected codes completely determine their parameters. In the paper at hand, we
deal with this question for general full flag codes from an innovative combinatorial
perspective.
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When investigating the parameters of a flag code, one of the main difficulties
lies in the definition of the distance between flags: it is obtained as the sum
of their subspaces distances, which causes that many different combinations of
them can give the same flag distance value. To succinctly represent these possible
fluctuations, in [4], the authors introduce the notion of distance vector (associated
to a given distance value). Here, we draw distance vectors in the distance support
to obtain the so-called distance paths. This simple geometrical idea allows us to
focus on the codistance of the flag code (the complement of the distance) and
hence, naturally associate to a flag code different combinatorial objects coming
from the classical theory of partitions that result very convenient for our purposes.

The remain of the paper is organized as follows. In Section 2 we remember
some basics on partitions and Ferrers diagrams. We also recall some background
on subspace codes and flag codes. In Section 3 we address a deep study on the
flag distance parameter by defining the distance support of the full flag variety
which allows us to graphically represent the distance path of a couple of flags. We
analyze the properties of such paths and we define the new concept of codistance
of a flag code. In Section 4 we translate the information that can be read in
the distance support into information encoded in a combinatorial scenario. To
this end, we enrich the distance support to create a Ferrers diagram frame where
each distance path will be read as a set of Ferrers subdiagrams, that is, as a set
of integer partitions. At the same time, we associate to each of such partitions
its underlying distribution that gives a particular splitting of the corresponding
codistance. In this way, we establish a one-to-one correspondence between the
set of distance paths associated to a distance value and the set of splittings
associated to the corresponding codistance value. Finally, in Section 5, we take
advantage of the dictionary established in the previous section and, with the
help of specific objects coming from the partitions world, as Durfee rectangles,
we exhibit different results that precisely relate the parameters of a flag code to
the ones of its projected codes. We finish the paper with some representative
examples that illustrate our results, one of them giving rise to a combinatorial
characterization of full flag codes of the maximum distance.

2 Preliminaries

In this section we briefly recall the main definitions and results on partitions,
Ferrers diagrams, subspace codes and flag codes that will be needed along the
paper.

2.1 Partitions and Ferrers diagrams

Let us first fix some notation on integer partitions and their representation by
Ferrers diagrams. Our basic reference related to this subject is [8].
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Definition 2.1. Given a positive integer s, a partition of s is a sequence of non-
increasing positive integers λ = (λ1, . . . , λm) such that λ1 + · · · + λm = s. Each
value λi is called a part of λ and we say that m is the length of λ.

The number of partitions, usually denoted by p(s), was determined asymp-
totically by Hardy and Ramanujan [11]. A remarkable expansion by Rademacher
that permits calculate p(s) more accurately can be found in [9, Chapter 5].

Example 2.2. Here we give the possible seven partitions of s = 5:

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

(9.1)

The Ferrers diagram of an integer partition provides a very useful tool for
geometrically visualizing partitions and to extract relevant properties about them
in some cases.

Definition 2.3. Given a partition λ = (λ1, . . . , λm), its associated Ferrers dia-
gram Fλ is constructed by stacking right-justified m rows of dots, where the
number of dots in each row corresponds to the size λi of the corresponding part.
The dot at the top right position is called the corner of the Ferrers diagram.

Example 2.4. The next picture shows the Ferrers diagrams associated to the
partitions of s = 5 given in Example 2.2.

Figure 9.1: Ferrers diagrams with 5 dots.

There are other important elements naturally associated to the Ferrers dia-
gram of a partition, as their Durfee rectangles and squares, that will be helpful
for our purposes as we will see in Section 5. Let us briefly recall the precise
definition.

Definition 2.5. Given the Ferrers diagram Fλ of a partition λ, we call the Durfee
k-rectangle associated to Fλ, and denote it by Dk(λ), the largest-sized rectangle
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within Fλ with top right vertex at the corner of Fλ and such that its number of
columns exceeds its number of rows by k. In particular, if k = 0, the Durfee
k-rectangle will be just called the Durfee square associated to Fλ and simply
denoted by D(λ).

Figure 9.2: Durfee square and 2-Durfee rectangle D2(λ) for λ = (5, 4, 3, 1).

In [7, 10], the reader can find more information on these objects.

2.2 Subspace codes and flag codes

Throughout the paper q will denote a fixed prime power and k, n two integers
with 1 6 k < n. Consider Fq the finite field with q elements and denote by
Gq(k, n) the Grassmannian, that is, the set of k-dimensional subspaces of Fnq .
The set of vector subspaces of Fnq can be equipped with different metrics but, in
the current paper, we will use the so-called injection distance.

Definition 2.6. The injection distance between two subspaces U ,V ⊆ Fnq is
defined as

dI(U ,V) = max{dim(U), dim(V)} − dim(U ∩ V). (9.2)

In particular, if U ,V ∈ Gq(k, n), then we have

dI(U ,V) = k − dim(U ∩ V). (9.3)

Using this distance, we can define error-correcting codes in the Grassmannian
as follows.

Definition 2.7. A constant dimension code C of length n and dimension k is a
nonempty subset of Gq(k, n). The minimum distance of C is defined as

dI(C) = min{dI(U ,V) | U ,V ∈ C, U 6= V}

whenever |C| > 2. In case |C| = 1, we put dI(C) = 0.

Remark 2.8. Another frequent metric used when working with codes whose
codewords are subspaces of Fnq is the subspace distance. It is given by

dS(U ,V) = dim(U + V)− dim(U ∩ V). (9.4)
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Observe that, if U ,V ∈ Gq(k, n), then

dS(U ,V) = 2(k − dim(U ∩ V)) = 2dI(U ,V).

Hence, in the context of constant dimension codes, the injection distance and the
subspace distance are equivalent metrics. Consult [16] and the references therein
for more information on this class of codes.

The concept of constant dimension code can be extended when considering
flags of constant type on Fnq , that is, sequences of nested subspaces of Fnq where
the list of corresponding dimensions is fixed. The use of flags in network coding
as a generalization of constant dimension codes was first proposed in [14]. Let us
recall some basic background on flag codes.

Definition 2.9. A flag F = (F1, . . . ,Fr) on Fnq is a sequence of nested Fq-vector
subspaces

{0} ( F1 ( · · · ( Fr ( Fnq
of Fnq . The type of F is the vector (dim(F1), . . . , dim(Fr)). In particular, if the
type vector is (1, 2, . . . , n − 1), we say that F is a full flag. The subspace Fi is
called the i-th subspace of F .

The set of all the flags on Fnq of a fixed type vector (t1, . . . , tr) is said to
be the flag variety Fq((t1, . . . , tr), n) ⊆ Gq(t1, n) × · · · × Gq(tr, n) and, for every
i = 1, . . . , r, we define the i-projection as the map

pi : Fq((t1, . . . , tr), n) −→ Gq(ti, n)

F = (F1, . . . ,Fr) 7−→ pi(F) = Fi.
(9.5)

The flag variety Fq((t1, . . . , tr), n) can be endowed with a metric by a natural
extension of the injection distance defined in (9.2). More precisely, given two flags
F = (F1, . . . ,Fr) and F ′ = (F ′1, . . . ,F ′r) in Fq((t1, . . . , tr), n), the (injection) flag
distance between them is the value

df (F ,F ′) =
r∑
i=1

dI(Fi,F ′i). (9.6)

Remark 2.10. Observe that the subspace distance dS defined in (9.4) can also
be extended to the flag variety. Given F and F ′ as above, the sum of subspace
distances

r∑
i=1

dS(Fi,F ′i) = 2df (F ,F ′)

is an equivalent distance to df . Due to the approach followed in this paper, it is
more convenient for us to choose the injection flag distance.
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Definition 2.11. A flag code of type (t1, . . . , tr) on Fnq is a non-empty subset
C ⊆ Fq((t1, . . . , tr), n). Its minimum distance is given by

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′}.

when |C| > 2. If |C| = 1, we put df (C) = 0. The i-projected code of C is the set

Ci = {pi(F) | F ∈ C} ⊆ Gq(ti, n).

Example 2.12. Let {e1, e2, e3, e4, e5, e6} be the canonical Fq-basis of F6
q and con-

sider the flag code C of type (1, 3, 5) on F6
q given by the set of flags:

F1 = (〈e1〉, 〈e1, e2, e3〉, 〈e1, e2, e3, e4, e5〉),
F2 = (〈e4〉, 〈e4, e5, e6〉, 〈e1, e2, e4, e5, e6〉),
F3 = (〈e5〉, 〈e4, e5, e6〉, 〈e2, e3, e4, e5, e6〉).

Its projected codes are

C1 = {〈e1〉, 〈e4〉, 〈e5〉} ,
C2 = {〈e1, e2, e3〉, 〈e4, e5, e6〉} ,
C3 = {〈e1, e2, e3, e4, e5〉, 〈e1, e2, e4, e5, e6〉, 〈e2, e3, e4, e5, e6〉} ,

with minimum distances dI(C1) = dI(C3) = 1 and dI(C2) = 3. Moreover, it holds

df (C) = df (F2,F3) = 1 + 0 + 1 = 2.

Remark 2.13. Note that the i-projected code Ci of C is a constant dimension
code in the Grassmannian Gq(ti, n). At this point it is important to underline
that, albeit the projected codes are constant dimension codes closely related to
a flag code, they do not determine it at all; different flag codes can share the
same set of projected codes. On the other hand, the cardinality of |Ci| always
satisfies |Ci| 6 |C|, whereas concerning the distance, we can have df (C) > dI(Ci),
df (C) = dI(Ci) or even df (C) < dI(Ci). It suffices to see that, if C is the flag
code given in Example 2.12, we have df (C) = 2 > 1 = dI(Ci) for i = 1, 3, but
df (C) = 2 < 3 = dI(C2). This range of possibilities in the distance parameter
behaviour comes from the flag distance definition itself; a fixed distance value can
be obtained by adding different configurations of the subspaces distances. For
instance, if we take flags F2,F3 as in Example 2.12 and consider

F4 = (〈e3〉, 〈e3, e5, e6〉, 〈e2, e3, e4, e5, e6〉),

then we have

df (F2,F3) = 1 + 0 + 1 = 2 = 1 + 1 + 0 = df (F3,F4).

In [4] the authors deal algebraically with this question by capturing such a vari-
ability with the so-called distance vectors. The distance paths defined in Section
3 are a geometrical version of such distance vectors.
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In light of the previous remark, it naturally arises the problem of obtaining
the parameters of a flag code from the ones of its projected codes and conversely.
In Section 5 we tackle this problem with the help of new techniques based on the
combinatorial objects that we will describe along Sections 3 and 4.

3 Flag distance and distance paths
In this section we deepen the study of the flag distance parameter describing its
particular quirks from a brand-new combinatorial viewpoint. In the remain of
the paper we will always work with full flags.

As said in Section 2, the flag distance defined in (9.6) extends the subspace
distance given in (9.2) in the following way: the flag distance between two given
flags on a vector space is exactly the sum of the distances between their subspaces.
This fact implies that, contrary to what happens with subspaces distances, flag
distances conceal certain complexity in the sense that a fixed value for the flag dis-
tance can be attained from different combinations of the corresponding subspace
distances.

Remark 3.1. Observe that every full flag F = (F1, . . . ,Fn−1) of length n − 1
can be “enlarged” to the sequence of n+ 1 nested subspaces of Fnq given by

F̄ = ({0},F1, . . . ,Fn−1,Fnq ) (9.7)

just by adding F0 = {0} and Fn = Fnq . Now, for every pair of full flags F ,F ′, it
clearly holds

df (F ,F ′) =
n−1∑
i=1

dI(Fi,F ′i) =
n∑
i=0

dI(Fi,F ′i) = df (F̄ , F̄ ′).

So that the distance between two full flags F , F ′ does not change if we extend
them respectively to F̄ , F̄ ′. Taking this fact into account, and for technical
reasons, our study of the flag distance parameter will be undertaken by using
extended full flags as in (9.7). However, observe that, when we consider an
“extended” full flag code C, two new and trivial projected codes arise: C0 = {0}
and Cn = {Fnq }. These codes do not give any relevant information about C.
Consequently, in our study, we will just take into account the projected codes Ci
with 1 6 i 6 n− 1, as usual.

The injection flag distance between two (extended) full flags F ,F ′ on Fnq is
an integer that satisfies 0 6 df (F ,F ′) 6 Dn, where

Dn =

⌊
n2

4

⌋
=

{
n2

4
if n is even,

n2−1
4

if n is odd.
(9.8)
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This expression is a direct consequence of the possible values that the injection
distance between i-dimensional subspaces of Fnq can reach. For every 0 6 i 6 n,
let us write R(i, n) to denote the set of attainable injection subspace distances
by subspaces in Gq(i, n). It is clear that R(0, n) = R(n, n) = {0} and

R(i, n) = {0, 1, . . . ,min{i, (n− i)}}, for i ∈ {1, 2, . . . , n− 1}. (9.9)

Hence, we deduce straightforwardly the next lemma.

Lemma 3.2. The following statements hold:

(1) R(i, n) = R(n− i, n) for every 0 6 i 6 n.

(2) R(0, n) ⊂ R(1, n) ⊂ R(2, n) ⊂ · · · ⊂ R(bn
2
c, n).

Using this notation, for every value of 0 6 i 6 n, we consider the set of points
S(i, n) of Z2 given by

S(i, n) = {i} ×R(i, n) = {(i, δ) ∈ Z2 | δ ∈ R(i, n)}. (9.10)

Definition 3.3. For every dimension 0 6 i 6 n, the set S(i, n) defined in (9.10)
is called the distance support of the Grassmannian Gq(i, n).

This geometrical representation can be generalized to the full flag variety as
follows.

Definition 3.4. The distance support of the full flag variety on Fnq is the set

S(n) =
n⋃
i=0

S(i, n) ⊂ Z2. (9.11)

Graphically, the distance support S(n) has the following representation.

1 2 3 4 5 6 7

1
2
3
4

1 2 3 4 5 6 7 8

1
2
3
4

Figure 9.3: Distance supports S(7) and S(8).

Remark 3.5. The reader can appreciate that two different node styles have been
used in Figure 9.3. This is due to the fact that not every point contributes equally
when we use the support to represent flag distances. On one side, crossed dots
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denote null distances. On the other side, there are exactly Dn circle dots repre-
senting positive distances. This dichotomy will be very useful when representing
distances between pairs of flags in S(n).

It is clear that the i-th column of the distance support S(n) is just the distance
support S(i, n) of Gq(i, n). Hence, as a consequence of Lemma 3.2, the support
S(n) is symmetric with respect to the vertical line x = n

2
and the columns heights

grow as the dimension gets closer to n
2
. Observe that there is a remarkable

difference in the distance support shape depending on the parity of n: when n is
even, the value n

2
is a dimension on the type vector. In this case, S(n) has a peak in

this central dimension. In contrast, when n is odd, S(n) presents a plateau on its
top. The higher attainable distances in this latter case are placed at dimensions
bn

2
c and dn

2
e, i.e., the closest integers (from left and right, respectively) to the

value n
2
.

Remark 3.6. Concerning also the distance support shape, notice that the dis-
tance support S(n − 1) can be obtained from S(n) just by removing the set of
points with coordinates (i, (n − i)) whenever 2i > n. These points are the ones
in the “right-roof” as in the next figure.

1 2 3 4 5 6 7 8
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1 2 3 4 5 6 7 8
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3
4

Figure 9.4: Getting S(7) (right) from S(8) (left).

At this point, if we consider two full flags on Fnq , their flag distance can be
geometrically represented by means of a collection of n+ 1 points in the distance
support S(n), each one of them in a different column S(i, n) as follows.

Definition 3.7. Given a pair of full flags F and F ′ on Fnq , we define their
distance path Γ(F ,F ′) as the directed polygonal path whose vertices are the
points (i, dI(Fi,F ′i)) for every 0 6 i 6 n.

1 2 3 4 5 6 7

1
2
3

Figure 9.5: Examples of distance paths in S(7).

195



New insights into the study of flag codes

Similarly, given a full flag code, we can consider a collection of distance paths
associated to it.

Definition 3.8. Let C be a full flag code on Fnq . The set of distance paths of C
is the set

Γ(C) = {Γ(F ,F ′) | F ,F ′ ∈ C, F 6= F ′}.

Notice that every distance path in S(n) starts at the point (0, 0) and arrives
to (n, 0). Nevertheless, it is important to point out that not every polygonal path
with vertices in the support S(n) satisfying this condition represents a potential
distance path of a pair of flags. In order to characterize the polygonal paths in
S(n) also being distance paths between a couple of flags in Fnq , in the following
result we see that, for a given pair of full flags F ,F ′ on Fnq , the value of dI(Fi,F ′i)
completely determines the range of possibilities for dI(Fi+1,F ′i+1).

Theorem 3.9. Consider F ,F ′ full flags on Fnq and denote δi = dI(Fi,F ′i) where
i ∈ {0, 1, . . . , n}. Then, for any 0 6 i < n, it holds

δi+1 ∈ {δi − 1, δi, δi + 1}.

Proof. The proof is based on the flags nested structure. Consider full flags F and
F ′ on Fnq . For every 1 6 i < n− 1, we have

Fi ∩ F ′i ⊆ Fi+1 ∩ F ′i+1 and Fi + F ′i ⊆ Fi+1 + F ′i+1.

The second inclusion leads to the next inequality

2i− dim(Fi ∩ F ′i) 6 2(i+ 1)− dim(Fi+1 ∩ F ′i+1)

or, equivalently,
dim(Fi+1 ∩ F ′i+1) 6 dim(Fi ∩ F ′i) + 2.

Using this fact, and taking into account that dI(Fj,F ′j) = j − dim(Fj ∩ F ′j) for
every 1 6 j 6 n− 1, it follows that

i+ 1− dim(Fi ∩ F ′i)− 2 6 dI(Fi+1,F ′i+1) 6 i+ 1− dim(Fi ∩ F ′i),

which is equivalent to

i− dim(Fi ∩ F ′i)− 1 6 dI(Fi+1,F ′i+1) 6 i− dim(Fi ∩ F ′i) + 1.

Hence,
dI(Fi,F ′i)− 1 6 dI(Fi+1,F ′i+1) 6 dI(Fi,F ′i) + 1.

In other words, we have that the value δi+1 = dI(Fi+1,F ′i+1) is an element in
{δi − 1, δi, δi + 1} as we wanted to prove.
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Example 3.10. In view of Theorem 3.9, the next figure illustrates how a distance
path is allowed to continue once we have fixed one of its points. From some points,
for instance (3, 1), we have three options to continue. On the other hand, there
are just two possibilities if we fix either the point (0, 0) or the point (5, 1). Last,
paths passing through (4, 3) must contain the point (5, 2).

1 2 3 4 5 6 7

1
2
3

Figure 9.6: Allowed movements from some points in S(7).

In general, given the point (i, δi) in S(i, n), distance paths passing through it
can only come from a point (i− 1, δi−1) ∈ S(i− 1, n) with

δi−1 ∈ {δi − 1, δi, δi + 1}. (9.12)

At the same time, these paths can only continue through points (i + 1, δi+1) ∈
S(i+ 1, n)

δi+1 ∈ {δi − 1, δi, δi + 1}. (9.13)

All in all, distance paths are, graphically, oriented polygonal paths passing through
points

(0, 0)→ (1, δ1)→ (2, δ2)→ · · · → (n− 1, δn−1)→ (n, 0) (9.14)

such that consecutive vertices (i, δi) and (i+ 1, δi+1) are related according to the
trident rules given by (9.12) and (9.13).

Remark 3.11. Observe that distance paths defined as above are the graphic
representation of the notion of the distance vector associated to a couple flags
introduced in [4]. Moreover, our Theorem 3.9 is a geometric version of Theorem
3.9 in [4], for the special case of full flags. In particular, as a consequence of that
result, we can assure that, given a path Γ in S(n) satisfying (9.12), (9.13) and
(9.14), there is always a couple of full flags F ,F ′ on Fnq such that Γ = Γ(F ,F ′).

In view of the previous remark, from now on, a path Γ in S(n) described by
(9.12), (9.13) and (9.14) will be said a distance path given that it represents the
flag distance value dΓ =

∑n
i=0 δi, attained by a couple of full flags F and F ′ on

Fnq such that dI(Fi,F ′i) = δi. Conversely, this tool allows us to geometrically
determine how an arbitrary distance flag value d can suitably split into the n− 1
terms that are not trivially zero (recall that δ0 = δn = 0). For instance, looking
again at paths Γ and Γ′ in S(7) in Figure 9.5, we can say that

6 = 0 + 1 + 2 + 1 + 1 + 1 + 0 + 0 = 0 + 1 + 1 + 0 + 1 + 2 + 1 + 0
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are permitted subspace distance combinations for the distance dΓ = dΓ′ = 6. In
terms of the language used in [4], these two paths correspond, respectively, to the
distance vectors (0, 1, 2, 1, 1, 1, 0, 0) and (0, 1, 1, 0, 1, 2, 1, 0).

Note that any distance path Γ in S(n) consists of n segments of lines with
slope equal to −1, 0 or 1. Moreover, recall that every distance path starts at the
origin and ends at the point (n, 0), both with null height. Hence, the number of
edges with positive slope in a distance path must coincide with the one of edges
with negative slope. As a result, the number of horizontal segments appearing in
Γ has the same parity than n. These latter edges will play an important role in
the following section. Let us define them more precisely.

Definition 3.12. A plateau of height δ in a distance path Γ is a sequence of
two consecutive vertices (i, δ), (i+ 1, δ) on it. In other words, if we consider two
full flags F ,F ′ on Fnq with Γ = Γ(F ,F ′), a plateau appears when dI(Fi,F ′i) =
dI(Fi+1,F ′i+1) for some 0 6 i 6 n − 1. We denote by pΓ the number of plateaus
on a given distance path Γ.

Example 3.13. The distance path in red represented in Figure 9.5 has two
plateaus of height 1. As said before, if n is an even (resp. odd) positive inte-
ger, then every distance path Γ in S(n) contains an even (resp. odd) number of
plateaus. In particular, for odd values of n, distance paths must contain at least
one plateau.

Remark 3.14. Let us briefly come back to the support S(n). In the following
sections it will be important to compute the number of dots associated to a given
distance path. Notice that in S(i, n), a point (i, δi) leaves exactly δi circle dots
and one crossed dot bellow it (including the point (i, δi) itself). Using this idea,
we can compute the associated distance of a given distance path Γ by simply
counting the number of circle dots on Γ or bellow Γ. Moreover, we can relate the
value dΓ to the area of the polygons determined by Γ together with the abscissa
axis. In Figure 9.5, the red path on S(7) determines a single polygon having the
points (0, 0) and (6, 0) as vertices whereas the path in blue determines two of
them. On the other hand, the path in Figure 9.7 forms a unique polygon in S(7)
with vertices on the points (0, 0) and (7, 0).

Theorem 3.15. Let Γ be a distance path in S(n) such that Γ determines a unique
polygon PΓ with the abscissa axis. Then the flag distance dΓ is exactly the area
of PΓ.

Proof. It is enough to point out that PΓ is a reticulated polygon with vertices
in the integer lattice Z2. We start assuming that the points (0, 0) and (n, 0) are
vertices of PΓ. In this case, if we write I and B to denote the set of lattice points
in the interior and the boundary of PΓ, respectively, then we have that I is a
set of circle dots. However, B contains n− 1 circle dots and n+ 1 crossed ones.
Consequently, according to Remark 3.14, it holds dΓ = |I|+ n− 1.
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By means of Pick’s Theorem, the area of PΓ can be computed in terms of I
and B as

A(PΓ) = |I|+ |B|
2
− 1 = |I|+ n− 1 = dΓ.

On the other hand, if Γ determines a unique polygon PΓ with vertices (i, 0) and
(j, 0), for some 0 6 i < j 6 n, then the result follows by interpreting PΓ as a
polygon in a smaller distance support S(j− i) with the points (0, 0) and (j− i, 0)
as its vertices and arguing as above.

The following corollary follows then straightforwardly:

Corollary 3.16. Let Γ be a distance path in S(n) such that Γ determines the
polygons P 1

Γ,. . . , P k
Γ with the abscissa axis. Then the flag distance dΓ is exactly

the sum of the areas of P 1
Γ , . . . , P

k
Γ .

By means of Proposition 3.9 and Theorem 3.15, we can remove the coordinate
axes when representing flag distances in the support S(n). In fact, we just need
to study paths constructed by chaining the trident moves represented in Figure
3.10, and to count how many circle dots remain in or under such paths. Of course,
different distance paths can provide the same flag distance, i.e., they leave the
same amount of circle dots below them or, equivalently, above them. Next we
introduce the notion of (flag) codistance as a complementary value associated to
a flag distance which will be crucial in the remain of the paper.

Definition 3.17. Given a flag distance value d, i.e., an integer such that 0 6 d 6
Dn, we define its (injection flag) codistance as the value d̄ = Dn − d. Similarly,
given a full flag code C on Fnq , we define its associated codistance as the value
d̄f (C) = Dn − df (C).

Notice that both d and d̄ provide exactly the same information since every
flag distance value determines a unique codistance value and conversely. Arguing
as in Remark 3.14, the codistance can be read in the distance support as follows.

Corollary 3.18. The number of dots over a distance path Γ in S(n) is equal to
the codistance d̄Γ = Dn − dΓ associated to it.

Example 3.19. Take n = 7 and consider the next distance path Γ in S(7)

Γ : (0, 0)→ (1, 1)→ (2, 2)→ (3, 1)→ (4, 1)→ (5, 2)→ (6, 1)→ (7, 0). (9.15)

There are D7 = 12 circle dots in the distance support S(7). The distance path
passes exactly through 6 of them (in black) and the associated polygon PΓ con-
tains 2 black circle dots in its interior. The area of such a polygon is exactly 8
(see the picture below). Hence, the distance path in (9.15) represents a possible
distribution to obtain the flag distance d = 8. Indeed, 8 = 1 + 2 + 1 + 1 + 2 + 1.
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The corresponding codistance is 12 − 8 = 4, which is, as said in Corollary 3.18,
is the number of points over the path (white circle dots).

Figure 9.7: A distance path Γ with associated distance and codistance.

4 Combinatorial perspective
In this section, we introduce some combinatorial objects closely related to the
distance support. To do so, we need to enrich it with an auxiliary collection of
(red) points that will allow us to obtain a Ferrers diagram. With the help of such
a diagram we will establish a round trip dictionary that will allows us to obtain
information, in Section 5, about the distance of a flag code in terms of classical
concepts related to partitions of integers.

Let us start describing the enriched version of the distance support S(n). We
complete it by adding suitable auxiliary red points as in the next picture. The
resultant two-colored set of points is called enriched flag distance support or just
enriched support for short. We denote it by Ŝ(n).

1 2 3 4 5 6 7

1
2
3
4

1 2 3 4 5 6 7 8

1
2
3
4

Figure 9.8: Enriched flag distance diagrams Ŝ(7) and Ŝ(8).

Recall that the silhouette of the distance support S(n) depends on the parity
of n. By contrast, the enriched version Ŝ(n) has always the same triangular shape.
However, the position of black/red points changes depending on the parity of n.
For instance, the top vertex, which has coordinates (n/2, n), is black (resp. red)
when n is even (resp. odd).

Remark 4.1. As stated in Remark 3.6, the distance support S(n − 1) can be
obtained from S(n) by deleting the set of points in the right-roof. Similarly, the
two-colored diagram Ŝ(7) can be constructed from Ŝ(8) by performing the same
operation.
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In order to give a systematic and convenient construction of the two-colored
enriched support Ŝ(n), we proceed as follows. First, we fix the set of points in
S(n) and plot them in black. Next, we consider the distance support S(n − 1)
whose points we plot in red, and translate it with the vector

(
1
2
, 1

2

)
. We obtain

the set

S(n− 1) +

(
1

2
,
1

2

)
=

{(
i+

1

2
, δ +

1

2

) ∣∣∣ (i, δ) ∈ S(n− 1)

}
.
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Figure 9.9: The distance support S(8) (left) and the set S(7) + (1/2, 1/2) (right).

The overlap of S(8) (left) and S(7) + (1/2, 1/2) leads to the two-colored en-
riched support Ŝ(8) given in Figure 9.8 (right). Let us give a precise definition.

Definition 4.2. For every n > 2, the enriched distance support Ŝ(n) is given by
the set of points in

S(n)∪̇
(

S(n− 1) +

(
1

2
,
1

2

))
.

Remark 4.3. One can easily compute the number of dots (both black and red)
included in the enriched support Ŝ(n). By Proposition 4.2 along with Remark
3.5, it is clear that Ŝ(n) contains Dn circle black points and Dn−1 red ones.
Hence, using the explicit value of Dn given in formula (9.8), we conclude that for
every n > 2, the enriched support Ŝ(n) contains n(n−1)

2
circle dots. It also clearly

contains 2n+ 1 crossed dots.

As done with distance supports in the previous part, we can remove the
axis and work with the two-colored enriched support Ŝ(n) without specifying the
coordinates of each point.

4.1 Associated Ferrers diagrams

This subsection is devoted to describe the flag distance between full flags on Fnq
through the concept of distance path, by using suitable Ferrers diagrams. To do
so, fixed a positive integer n, we consider the enriched distance support Ŝ(n) just
introduced and rotate it around the point (n, 0) it as in the next figure.
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Figure 9.10: Rotated enriched supports Ŝ(8) and Ŝ(7).

Note that after rotation of Ŝ(n) it arises a Ferrers diagram.

Definition 4.4. Given n > 2, the primary Ferrers diagram frame associated
to the full flag variety on Fnq is the diagram FF(n) obtained from the enriched
support Ŝ(n) after a rotation with center (n, 0) and angle −π

4
. The set of circle

dots (both black and red) in FF(n) is called Ferrers diagram frame and denoted
by FF(n).

Remark 4.5. Once again, the reason to distinguish these two Ferrers diagrams
is the null contribution of crossed dots to the flag distance. On the other hand,
observe that FF(n) is a Ferrers diagram associated to the partition (n − 1, n −
2, . . . , 1) of the integer n(n − 1)/2 that, as said in Remark 4.3, is the exactly
number of circle points in Ŝ(n).

There are some partitions of positive integers r 6 n(n − 1)/2 that can be
represented by Ferrers diagrams contained in the Ferrers diagram frame (then in
the primary one). The following definition precises this idea.

Definition 4.6. Every Ferrers diagram contained in FF(n) is said to be a Ferrers
subdiagram of FF(n). We also say that the partition λ = (λ1, . . . , λm) of the
integer

∑m
i=1 λi is an embedded partition on FF(n) if

(1) 1 6 m 6 n− 1 and,

(2) for every 1 6 i 6 m, it holds λi 6 n− i.

Due to technical reasons, we also consider the empty Ferrers subdiagram F0,
associated to the null embedded partition λ = (0) (see the second diagram in
Figure 9.11).

Observe that these embedded partitions are exactly those ones whose associ-
ated Ferrers diagram fits in FF(n). With this notation, we conclude directly the
next result.

Proposition 4.7. Let Fλ be a Ferrers diagram associated to the partition λ =
(λ1, . . . , λm). Then the following statements are equivalent.
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(1) Fλ is a Ferrers subdiagram of FF(n).

(2) The partition λ = (λ1, . . . , λm) is an embedded partition on FF(n).

At this point, and with the purpose of connecting these combinatorial ob-
jects with our study on the flag distance, we define a special class of polygonal
paths in the primary Ferrers diagram FF(n), closely related to the set of Ferrers
subdiagrams in FF(n).

Definition 4.8. A staircase path Σ on FF(n) is just a polygonal directed path
whose vertices are dots of FF(n) (crossed or circle ones) such that:

• it starts (resp. ends) at the highest (resp. lowest) crossed black point and

• its directed edges are either vertical segments straight down or horizontal
segments from left to right.

Remark 4.9. Observe that, since black and red dots are interspersed in FF(n),
staircase paths travel along the diagram alternating black and red points. Even
more, every staircase path contains exactly n + 1 black dots and n red ones.
Moreover, since staircase paths cannot go neither up nor to the left, the collection
of points that remains at right of any staircase path satisfy the next property:
the number of dots at a given row is always upper bounded by the number of
dots at the previous one, that is, any staircase path is the “silhouette” of a Ferrers
diagram.

Figure 9.11: Staircase paths and corresponding Ferrers subdiagrams.

Proposition 4.10. Given Σ a staircase path in FF(n), the set of points to the
right of Σ forms a set F(Σ) that is a Ferrers subdiagram of FF(n). Conversely,
a Ferrers subdiagram F of FF(n) determines a unique staircase path Σ(F) in
FF(n). In this situation we say that Σ (resp. Σ(F)) is the silhouette of the
Ferrers subdiagram F(Σ) (resp. F).

Proof. Consider a staircase path Σ in FF(n). Giving this path is equivalent to
provide a sequence of integers λ = (λ1, . . . , λn−1) such that, for every 1 6 i 6
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n− 1, the value 0 6 λi 6 n− i counts the number of circle dots in the i-th row of
FF(n) that remain to the right of Σ. As said in Remark 4.9, these values satisfy
λi > λi+1 > 0, for every 1 6 i 6 n− 2. If the sequence λ does not contain zeros,
or equivalently λn−1 6= 0, then it is a partition and we have that F(Σ) = Fλ. On
the other hand, if λ1 = 0, then F(Σ) = F0. This case corresponds to the staircase
that flows horizontally up to the corner of FF(n) and then comes down vertically
as in the second diagram in Figure 9.11. Last, if λ = (λ1, . . . , λi, 0, . . . , 0), with
λi 6= 0, then F(Σ) = Fλ′ with λ′ = (λ1, . . . , λi).

Conversely, given a Ferrers subdiagram F with associated embedded partition
λ′ = (λ′1, . . . , λ

′
m), then m 6 n − 1. If m = n − 1, the partition λ′ is the one

corresponding to Σ(F). Otherwise, it is enough to complete λ′ with n − 1 −m
extra zero components to obtain (λ′1, . . . , λ

′
m, 0, . . . , 0) as the sequence of length

n− 1 that characterizes the silhouette Σ(F).

Corollary 4.11. The set of staircase paths in FF(n) is in one-to-one correspon-
dence with the set of embedded partitions in FF(n), that is, for any staircase path
Σ there is a unique embedded partition λ(Σ) such that F(Σ) = Fλ(Σ).

4.2 Coming back to the flag distance

In the previous subsection, we associated a couple of Ferrers diagrams to the
distance support by adding a suitable collection of auxiliary red points. In that
scenario, the set of staircase paths are characterized by using embedded parti-
tions of integers. Once established these combinatorial tools, to re-connect them
with our distance paths, we need to remove the auxiliary red structure some-
how. This removing process will allows us describe distance paths associated
to a flag distance value d in terms of appropriate summand distributions of the
corresponding codistance value d̄. Let us explain this in more detail.

Our first objective is to consistently retrieve distance paths from staircase
paths. Recall that, as stated in Remark 4.9, black and red dots alternate in a
staircase path. Hence, in order to study distance paths obtained by removing red
dots, it is important to observe how two consecutive black dots can be connected
when the intermediate red point that appears between them in a staircase path
is eliminated. There are four admissible local movements for this operation:

→

→

→

→

Figure 9.12: Movements to locally recover a distance path by removing a red dot.
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Remark 4.12. The four motion patterns described in Figure 9.12 are also valid
when they involve crossed points.

With these four movements in mind, we do the following. We consider all
the possible sequences of black-red-black points that are parts of staircase paths
passing through a given black dot. We remove the red intermediate point and
apply the corresponding movement in Figure 9.12 and get just three possibilities,
labelled as 1, 2 and 3 in Figure 9.13, starting from the given black dot. Observe
that this figure corresponds to the rotation of the trident pattern exposed in
Figure 3.10 and obtained in Proposition 3.9.

1

3

2

1

3

2

1

3

2

Figure 9.13: Recovering the trident pattern after deletion of red points.

As a consequence, we have straightforwardly the next result.

Proposition 4.13. The polygonal path Γ(Σ) obtained after removing the red dots
of any staircase path Σ in FF(n) by applying the movements in Figure 9.12 is a
distance path in the distance support S(n) (after rotation). We call it the skeleton
distance path associated to the staircase path Σ.

It is clear that different staircase paths in FF(n) can share the same asso-
ciated skeleton distance path in S(n) (after rotation). Hence, we can define an
equivalence relation on the set of staircase paths.

Definition 4.14. We say that two staircase paths Σ and Σ′ in FF(n) are distance-
equivalent if they have the same associated skeleton distance path, i.e., Γ(Σ) =
Γ(Σ′). Given a distance path Γ in S(n), we denote the set of distance-equivalent
staircase paths with Γ as their skeleton distance path as Σ(Γ).

Example 4.15. In Figure 9.14, we can see a distance path Γ in S(8) and the
same path represented in the enriched support Ŝ(8). Below, in Figure 9.15, we
represent in red the four possible staircase paths in Σ(Γ), i.e., those staircase
paths having Γ as their associated skeleton distance path.
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Figure 9.14: A distance path Γ in Ŝ(8) (left) seen also in FF(8) (right).

Figure 9.15: The four elements in Σ(Γ).

The next result gives the exact number of different staircase paths that lie in
a given coset of the distance-equivalence relationship, in terms of the number of
plateaus of their associated skeleton distance path (recall Definition 3.12).

Proposition 4.16. Consider a distance path Γ in the distance support S(n) with
p plateaus of positive height. Then the number of staircase paths in Σ(Γ) is exactly
2p.

Proof. Let Γ a the distance path in the distance support S(n). Consider an
arbitrary edge e of Γ, connecting two consecutive vertices (i, δi) and (i+ 1, δi+1),
for some 0 6 i 6 n − 1, and assume that Σ is a staircase path passing through
these two black points too. Let us study the possibilities for the red point in
Σ connecting these two black ones. By virtue of Proposition 3.9, we know that
e has slope either −1, 0 or 1. If it has slope equal to −1 (resp. 1), then after
rotation we obtain a vertical (resp. horizontal) segment that already determines
the unique red point connecting the starting vertices, as we can see in the next
figure.
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→

Figure 9.16: Segments of slope 1 (in black) and −1 (in green) in S(n) (left). The
same segments seen in FF(n) (right).

On the other hand, if e has slope equal to 0, i.e., it is a plateau, then it is
transformed (after rotation) into a segment with slope −1 in FF(n). It can be
replaced by two sequences of movements in Σ: either right-down or down-right,
marked in red and green, respectively in the picture below. These sequences
correspond to use the middle red point with coordinates (i + 1

2
, δi + 1

2
) or (i +

1
2
, δi − 1

2
), respectively. Hence, there are two possibilities for replacing e, unless

δi = δi+1 = 0. In this case, only the crossed red point (i + 1
2
, 1

2
) can be used. As

a result, if p counts the number of plateaus of Γ with positive height, then there
are exactly 2p different staircase paths with Γ as their skeleton.

→

Figure 9.17: A plateau in S(n) (left) and its associated staircase paths in FF(n)
(right).

Notice that, since distance-equivalent staircase paths have the same associated
skeleton distance path, in particular, they are associated to the same flag distance
value, which becomes a numerical invariant that can be assigned to staircase
paths. On the other hand, a staircase path always contains n+ 1 black dots and
n red ones. Using these facts along with Remark 3.14, we obtain the next result.

Corollary 4.17. Given a staircase path Σ, the number of circle black dots in
Σ or to its left is constant for all staircase paths distance-equivalent to Σ. This
value is exactly dΓ(Σ).

The same idea can be applied to the set of points to the right of Σ, i.e., the
points in F(Σ), the Ferrers subdiagram of FF(n) having Σ as their silhouette.

Definition 4.18. Let F be a Ferrers subdiagram in FF(n). The underlying black
diagram of F is the set of black points UF obtained after removing the set of red
points on it.
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Remark 4.19. Observe that the the underlying black diagram UF of the Ferrers
subdiagram F might be empty. This happens if, and only if F does not contain
any circle black point. This happens if either F = F0 (for every value of n) or
F = F(1) and n is odd.

Definition 4.20. Two Ferrers subdiagrams of FF(n) are said to be distance-
equivalent if they have the same underlying black diagram. Analogously, two
embedded partitions λ and λ′ are said to be distance-equivalent if their associated
Ferrers subdiagrams Fλ and Fλ′ are.

Figure 9.18: Two distance-equivalent Ferrers subdiagrams in FF(8) and their
common underlying black diagram.

It is also possible to determine algebraically whether two different subdia-
grams in FF(n) are distance-equivalent. To do so, we make use of the corre-
sponding embedded partitions.

Remark 4.21. Observe that, given λ = (λ1, . . . , λm) an embedded partition in
FF(n), in order to compute the number of black (or red) dots in the i-th row of
the corresponding Ferrers subdiagram Fλ, there are two possibilities depending
on the parity of both i and n:

(1) In case i is even, the number of black dots in the i-th row is⌊
λi
2

⌋
for n even, and

⌈
λi
2

⌉
for n odd.

(2) In case i is odd, the number of black dots in the i-th row is⌈
λi
2

⌉
for n even, and

⌊
λi
2

⌋
for n odd.

Clearly, the number of red points at each row is just λi minus the corresponding
number of black points given above.
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Definition 4.22. Given λ = (λ1, . . . , λm) an embedded partition in FF(n), we
define its underlying distribution as the vector

Uλ =

{ (⌈
λ1
2

⌉
,
⌊
λ2
2

⌋
,
⌈
λ3
2

⌉
, . . .

)
if n is even,(⌊

λ1
2

⌋
,
⌈
λ2
2

⌉
,
⌊
λ3
2

⌋
, . . .

)
if n is odd.

Notice that the i-th component of the underlying distribution Uλ represents
the number of black points in the i-th row of the underlying black diagram UFλ .
Nevertheless, the underlying distribution Uλ of a partition λ is not necessarily a
partition itself as we can see in the following example.

Example 4.23. In FF(7), for the embedded partition λ = (6, 3, 2), we have
Uλ = (3, 2, 1), which is, in turn, a partition of 6. Nevertheless, λ′ = (6, 5, 2, 1, 1)
gives us Uλ′ = (3, 2, 1, 0, 1, 0), which is not a partition. On the other side, we can
have partitions with distance-equivalent Ferrers subdiagrams but with different
underlying distributions. Just look Figure 9.18, where we have λ = (5, 5, 1, 1, 1, 1)
and λ′ = (6, 5, 2, 1, 1), both partitions of 14, such that UFλ = UFλ′

whereas Uλ =
(3, 2, 1, 0, 1, 0) 6= Uλ′ = (3, 2, 1, 0, 1).

In the next result we present a criterion to characterize those distance-equivalent
embedded partitions also in terms of their (maybe different) associated underlying
distributions.

Theorem 4.24. Let λ = (λ1, . . . , λm) and λ′ = (λ′1, . . . , λ
′
m′) be two embedded

partitions in FF(n) and assume m 6 m′. Then λ and λ′ are distance-equivalent
if, and only if, we have the following:

(1) One of these two conditions hold:

(a) m = m′.

(b) m+ n is odd, m′ = m+ 1 and λ′m′ = 1.

(2) In any of the cases above,
⌈
λi
2

⌉
=
⌈
λ′i
2

⌉
if n+ i is odd;⌊

λi
2

⌋
=
⌊
λ′i
2

⌋
if n+ i is even.

for every 1 6 i 6 m.

Proof. Assume that λ and λ′ are distance-equivalent, i.e., their associated Ferrers
subdiagrams Fλ and Fλ′ are distance-equivalent. Hence, their underlying black
diagrams must coincide, that is, UFλ = UFλ′

. Since one out of two rows in
FF(n) starts with a black point, the number of rows of distance-equivalent Ferrers
subdiagrams can differ by, at most, one unit. Moreover, the extra row can only
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contain a red point. In terms of the partitions λ and λ′, we conclude that m′ ∈
{m,m + 1}. Moreover, in case m′ = m + 1, the first dot (from the right) in the
(m + 1)-th row of Fλ′ must be red. That happens if, and only if, m + n is odd
and the part λ′m′ = 1. In addition, for the first m rows, the number of black dots
in both diagrams have to coincide. Equivalently, for every 1 6 i 6 m, it must
satisfy 

⌈
λi
2

⌉
=
⌈
λ′i
2

⌉
if n+ i is odd;⌊

λi
2

⌋
=
⌊
λ′i
2

⌋
if n+ i is even.

The converse holds immediately by using the same arguments.

At this point we are able to establish in a consistent way the necessary link
between embedded partitions in FF(n) and flag codistance values which will
permit us to study properties of flag codes in terms of suitable partitions. The
next result follows straightforwardly:

Proposition 4.25. Let Σ be a staircase path with associated flag distance d =
dΓ(Σ) and Ferrers subdiagram F(Σ). Take λ = (λ1, . . . , λm) an embedded partition
such that F(Σ) = Fλ. Then the codistance d̄ = Dn − d coincides with the value
uλ where

uλ =

{ ⌈
λ1
2

⌉
+
⌊
λ2
2

⌋
+
⌈
λ3
2

⌉
+ . . . if n is even;⌊

λ1
2

⌋
+
⌈
λ2
2

⌉
+
⌊
λ3
2

⌋
+ . . . if n is odd.

(9.16)

Due to the previous proposition, we can introduce a new concept that relates
embedded partitions and codistance.

Definition 4.26. Given λ = (λ1, . . . , λm) an embedded partition in FF(n), we
say that its underlying distribution Uλ splits the value uλ defined in (9.16), or
that it is an splitting of uλ. This value uλ is common for Fλ and all its distance-
equivalent Ferrers subdiagrams.

Remark 4.27. By extension, if we are in the conditions of Proposition 4.25, we
have that uλ = d̄, and we say that Uλ is an splitting of the codistance d̄. Notice
that these splittings are not codistance vectors. Given full flags F ,F ′ on Fnq ,
their codistance vector is the sequence of (subspace) codistances between their
subspaces. More precisely, the i-th component of this vector is

min{i, n− i} − dI(Fi,F ′i),

for every 0 6 i 6 n. Moreover, if d = df (F ,F ′), then d̄ is also obtained as the
sum of the previous values. However, the notions of splitting and codistance
vector (associated to d̄) represent different ideas.

Finally, the next result provides the bridge to translate the information given
by distance paths to the embedded partitions level and conversely.
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Theorem 4.28. Let n > 2 be an integer and 0 6 d 6 Dn a flag distance value.
Then there is a bijection between the set of distance paths of distance d in S(n)
and the set of splittings of the codistance d̄ = Dn − d.

Proof. It suffices to summarize all the results provided along this section. We
start from a distance path Γ and consider the flag distance value d = dΓ. This
value is an invariant of all the distance-equivalent staircase paths in Σ(Γ) by
Corollary 4.17. Take now all the Ferrers subdiagrams FF(n) whose silhouettes
are in Σ(Γ), i.e., those ones of the form FΣ for any Σ ∈ Σ(Γ). Each FΣ is also
associated to the corresponding partition λ(Σ). Notice that all these Ferrers
diagrams are distance-equivalent since they have the set of black points that
remains at right of Γ as their common underlying black diagram U , which has
exactly d̄ black points. Hence, all the partitions {λ(Σ) | Σ ∈ Σ(Γ)} are distance-
equivalent and their common underlying distribution is, by means of Proposition
4.25, a splitting of the codistance d̄.

On the other hand, consider a splitting Uλ of the codistance d̄, induced by
an embedded partition λ (or any other distance-equivalent partition). The dis-
tribution Uλ determines the underlying black diagram UFλ of Fλ (and of all its
distance-equivalent Ferrers subdiagrams). The silhouette Σ = Σ(Fλ) has a skele-
ton Γ = Γ(Σ) that is a distance path associated to the distance d. This skeleton Γ
is common for all the staircase paths that are silhouettes of subdiagrams distance-
equivalent to Fλ. Hence, every partition providing the distribution Uλ leads to
the same distance path Γ.

5 Applications and examples

In this section we show how this new dictionary between flag distance values
and underlying distributions of certain partitions can be applied to establish
connections between the parameters of a given full flag code and the ones of its
projected codes. To this end, we start with a lemma that counts the number of
circle black dots of a rectangular Ferrers subdiagram.

Lemma 5.1. Let R be a Ferrers subdiagram in FF(n) with rectangular shape. If
R has a rows and b columns, then the number of circle black dots in R is{ ⌈ab

2

⌉
if n is even,⌊

ab
2

⌋
if n is odd.

Proof. Note that, as R has a rows and b columns, it is the Ferrers subdiagram
associated to the partition λ = (b, (a). . ., b) where λ = ab. Then, the number of
black points in R is the value uλ (see (9.16)), given as the sum of the components
of the underlying distribution Uλ. According to Definition 4.22, the expression
of Uλ is
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Uλ =

{ ( ⌈
b
2

⌉
,
⌊
b
2

⌋
,
⌈
b
2

⌉
,
⌊
b
2

⌋
, . . .

)
if n is even and( ⌊

b
2

⌋
,
⌈
b
2

⌉
,
⌊
b
2

⌋
,
⌈
b
2

⌉
, . . .

)
if n is odd.

Hence, for even values of n, we have:

uλ =
⌈a

2

⌉
·
⌈
b

2

⌉
+
⌊a

2

⌋
·
⌊
b

2

⌋
. (9.17)

In general, note that for every positive integer c, we have c =
⌊
c
2

⌋
+
⌈
c
2

⌉
. Thus,

in case that either a or b is even, it holds uλ = ab
2

=
⌈
ab
2

⌉
. On the other hand, if

both a and b are odd, then expression (9.17) becomes

uλ =
a+ 1

2
· b+ 1

2
+
a− 1

2
· b− 1

2
=
ab+ 1

2
=

⌈
ab

2

⌉
and the result is true for n even. If n is odd, the result follows by using the same
arguments and taking into account that

uλ =
⌊a

2

⌋
·
⌈
b

2

⌉
+
⌈a

2

⌉
·
⌊
b

2

⌋
. (9.18)

Next we apply this lemma in order to relate the cardinality of a given flag
code to the ones of its projected codes, by counting circle black dots in specific
rectangles in the Ferrers diagram frame.

Theorem 5.2. Consider a full flag code C on Fnq with codistance d̄f (C) and take
a dimension 1 6 i 6

⌊
n
2

⌋
. If the codistance satisfies

d̄f (C) <
⌈
i(n− i)

2

⌉
, (9.19)

then |C| = |Ci| = · · · = |Cn−i|.

Proof. Assume that |C| 6= |Ci| and that d̄f (C) satisfies (9.19). In this case, there
exist different flags F ,F ′ in C with Fi = F ′i . Equivalently, the distance path
Γ(F ,F ′) ∈ Γ(C) passes through the crossed point (i, 0) of S(n), which determines,
in turn, a rectangle with i rows and n− i columns over it in the enriched distance
support Ŝ(n). By means of Lemma 5.1, this rectangle contains exactly

p =


⌈
i(n−i)

2

⌉
if n is even,⌊

i(n−i)
2

⌋
if n is odd,
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circle black dots. Moreorver, notice that, if n is odd, then i(n− i) is even and we
can simply write

p =

⌈
i(n− i)

2

⌉
,

for every value of n. Notice that, at least all these p circle black points remain over
the distance path Γ(F ,F ′), and then they do not contribute to the computation
of df (F ,F ′). Hence, we have

df (C) 6 df (F ,F) 6 Dn − p.

Consequently, we obtain d̄f (C) = Dn − df (C) > p, which is a contradiction, and
it must hold |C| = |Ci|. The same arguments, but considering a rectangle with
n − i rows and i columns, lead to |C| = |Cn−i|. On the other hand, if we take a
dimension i 6 j 6

⌊
n
2

⌋
, and we write j = i + k for some integer k > 0, then it

holds

j(n−j) = (i+k)(n−i−k) = i(n−i)+k(n−2i−k) > i(n−i)+k(n−2j) > i(n−i).

Hence, if d̄f (C) satisfies the stated condition, in particular, we also have

d̄f (C) <
⌈
j(n− j)

2

⌉
and, arguing as above, we get |C| = |Cj| = |Cn−j|, for every i 6 j 6

⌊
n
2

⌋
.

On the other hand, the connection between distance paths and Ferrers subdi-
agrams established in the previous section, enables us to associate the following
combinatorial objects to a flag code C.

Definition 5.3. Let C be a full flag code on Fnq . The set of Ferrers subdiagrams
of C is

F(C) = {F subdiagram of FF(n) | Γ(Σ(F)) ∈ Γ(C)}.

In other words, subdiagrams in F(C) are those ones whose silhouettes have a
distance path in Γ(C) as their distance skeleton.

Associated to this set of Ferrers subdiagrams, we can consider, in turn, their
sets of Durfee rectangles as follows.

Definition 5.4. Let C be a full flag code on Fnq . For every 0 6 k 6 n − 2, the
set of Durfee k-rectangles of C is given by

Dk(C) = {Dk(F) | F ∈ F(C)}.

In particular, for k = 0, we simply write D(C) = D0(C) and speak about the set
of Durfee squares of C.
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Notice that, given an embedded partition λ = (λ1, . . . , λm) and an integer
0 6 k 6 n − 2, the Durfee k-rectangle Dk(Fλ) has, at least one row if, and only
if, it holds λ1 > k + 1. On the other hand, for those Ferrers diagrams F having
no more than k points in their first row, we put Dk(F) as the “empty” Durfee
k-rectangle, which has zero rows (see Figure 9.19). Considering this special case
makes the set Dk(C) contain at least one element, for every 0 6 k 6 n− 2.

Remark 5.5. Observe that the set Dk(C) can be encoded as a set of integers as
follows. Assume that

Dk(C) = {Rk
1, . . . ,R

k
mk
},

where each Rk
j is a Durfee k-rectangle having 0 6 rkj 6

⌊
n−k

2

⌋
rows, thus rkj ×

(rkj + k) points. Then, to know Dk(C), we just need to store the list of integers
{rk1 , . . . , rkmk}. Moreover, without loss of generality, we can assume that rk1 > rk2 >
· · · > rkmk > 0 so that Rk

1 is the biggest Durfee k-rectangle in Dk(C). As said
before, we are also contemplating the possibility of having Durfee k-rectangles
with 0 rows. Hence, in any case, the value rk1 associated to C always exists.

Let us finally see how can we use Durfee rectangles to relate the parameters
of C to the ones of its projected codes.

5.1 From the flag distance to subspace distances

By construction, a Durfee k-rectangle in FF(n) having r rows (and then r + k
columns) has its left down vertex at the point with coordinates(

n− k
2

,
n− k

2
− (r − 1)

)
.

in the enriched distance support Ŝ(n). This vertex will help us to obtain infor-
mation about the projected codes of a given flag code whenever it is a point in
the distance support S(n), i.e., if it is a circle black point. Observe also that this
happens if, and only if, n−k

2
is an integer or, equivalently, when n and k have the

same parity. In this case, k-rectangles give information about the projected code
of dimension n−k

2
. The following picture illustrates this fact.

Figure 9.19: Possible Durfee 4-rectangles in FF(8) and 1-rectangles in FF(7),
included those ones with zero rows (in dashed lines).
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At left, for n = 8, we have three Durfee 4-rectangles with 0, 1 and 2 rows,
respectively. Their left down vertices, after rotating back the diagram, are in
the column corresponding to the dimension 8−4

2
= 2. At right, different Durfee

1-rectangles on FF(7) are shown. All of them have their left down vertices in
the column related to the dimension 7−1

2
= 3. Having this in mind, we start

from our full flag code C on Fnq and take 0 6 k 6 n − 2 with the same parity
than n. We use the set of k-rectangles Dk(C) in order to derive information
about the cardinality and minimum distance of the projected code of dimension
i = n−k

2
with i ∈ {1, . . . ,

⌊
n
2

⌋
}. Conversely, if we are specifically interested in the

projected code Ci, where 1 6 i 6
⌊
n
2

⌋
, then we just need to consider the set of

(n− 2i)-rectangles of C.

Theorem 5.6. Let C be a full flag code on Fnq and consider a dimension 1 6 i 6⌊
n
2

⌋
. They are equivalent:

(i) There are Durfee (n − 2i)-rectangles in Dn−2i(C) with r rows, where 0 6
r 6 i.

(ii) There exist flags F ,F ′ ∈ C such that dI(Fi,F ′i) = i− r.

Proof. Notice that any (n − 2i)-Durfee rectangle in the Ferrers diagram frame
has its lower left vertex in a circle black dot, corresponding to the dimension i
in the distance support. Moreover, the number of rows of the rectangle coincides
with the number of dots being simultaneously in the rectangle and in S(i, n), i.e.,
in the i-th column of the distance support S(n) (recall (9.10) and (9.11)).

Hence, a Durfee (n− 2i)-rectangle in Dn−2i(C) with r rows is determined by
the existence of Ferrers subdiagrams in F(C) whose silhouettes pass through the
black circle point (i, i − r). This happens if, and only if, the skeleton of each of
these staircase paths is a distance path in Γ(C) passing through the vertex (i, i−r)
as well. Equivalently, there must exist flags F ,F ′ ∈ C with dI(Fi,F ′i) = i− r.

Now, we focus on the biggest Durfee (n−2i)-rectangle of C, denoted in Remark
5.5 as Rn−2i

1 , and that contains 0 6 rn−2i
1 6 i rows. In addition, since we will

always work with rectangles in Dn−2i(C), we drop the superscripts and simply
write R1 and r1, respectively. In light of the previous theorem, we analyze two
possible situations concluding the following results.

Theorem 5.7. Assume that C is a full flag code on Fnq . Consider a dimension
1 6 i 6

⌊
n
2

⌋
and the biggest rectangle R1 in Dn−2i(C). The following statements

are equivalent:

(1) The number of rows of R1, that is r1, satisfies 0 6 r1 < i.

(2) It holds |C| = |Ci| and dI(Ci) = i− r1.
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Proof. By application of Theorem 5.6 and the maximality of r1, we know that
the existence of Durfee (n − 2i)-rectangles with 0 6 r1 < i rows in Dn−2i(C) is
equivalent to say that, for any choice of different flags F ,F ′ ∈ C, we have

dI(Fi,F ′i) > i− r1 > 0

and the equality holds for some pair of flags in the code. In other words, |Ci| =
|C| because a couple of flags in C never share their i-th subspaces and, clearly,
dI(Ci) = i− r1.

Now we study the remaining case, in which r1 attains its maximum possible
value, that is, r1 = i. In that situation, we obtain valuable information about
the projected code Ci in terms of the second largest rectangle R2 in Dn−2i(C),
whenever it exists. More precisely:

Theorem 5.8. Let C be a full flag code on Fnq . Fix a dimension 1 6 i 6
⌊
n
2

⌋
and assume that the largest rectangle R1 ∈ Dn−2i(C) has r1 = i rows. Hence, the
following statements hold:

(1) Dn−2i(C) = {R1} if, and only if, |Ci| = 1 or, equivalently, dI(Ci) = 0.

(2) Dn−2i(C) 6= {R1} if, and only if, |C| > |Ck| > 1 and dI(Ck) = k − r2 > 0,
where 0 6 r2 < r1 = i is the number of rows of R2.

Proof. By means of Theorem 5.6, the condition r1 = i is equivalent to say that
dI(Fi,F ′i) = 0 for a pair of different flags F ,F ′ ∈ C. This happens if, and only
if, Fi = F ′i , i.e, if |Ci| < |C|. Let us distinguish two cases:

(1) If R1 is the only (n − 2i)-rectangle of the code, by Theorem 5.6, we have
that dI(Fi,F ′i) = 0 for every pair of different flags F ,F ′ ∈ C. In other
words, all the flags in C share their common i-th subspace. Equivalently,
the projected code Ci consists of a single subspace and dI(Ci) = 0.

(2) On the other hand, if Dn−2i(C) 6= {R1}, we can consider the second largest
(n−2i)-rectangle R2 of C, which has 0 6 r2 < r1 = i rows. Hence, for every
pair of different flags F ,F ′ ∈ C it holds either dI(Fi,F ′i) = 0 or dI(Fi,F ′i) >
i− r2, and the last inequality becomes an equality for some choice of flags
in C by means of Theorem 5.6. Equivalently, dI(Ci) = i− r2 > i− r1 = 0.

Remark 5.9. Observe that Theorems 5.7 and 5.8 give us information about the
parameters of all the projected codes of dimensions up to

⌊
n
2

⌋
. For the remaining

dimensions, it suffices to reason in the same way by simply considering maximal
k-rectangles with c columns and c + k rows. Moreover, it is important to point
out that we do not even need to know all the rectangles in Dn−2i(C); it suffices
to know the largest one and, in the worst case, also the second one.
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From the results stated along this subsection, and applying Lemma 5.1, we
derive bounds for the minimum distance of the projected codes of C in terms of
its codistance d̄f (C).

Corollary 5.10. Let C be a full flag code on Fnq with associated codistance d̄f (C).
Take a dimension 1 6 i 6 bn

2
c and consider an integer 0 6 r 6 i. Hence,

whenever

d̄f (C) <
⌈
r(r + n− 2i)

2

⌉
, (9.20)

then |Ci| = |C| and dI(Ci) > i− r.

Proof. It suffices to see that, by means of Lemma 5.1, the number of circle black
points in a rectangle with r rows and r + n− 2i columns is exactly

⌈
r(r+n−2i)

2

⌉
if n is even,⌊

r(r+n−2i)
2

⌋
if n is odd.

Morover, notice that, for odd values of n, the product r(r+n−2i) is always even
and then ⌊

r(r + n− 2i)

2

⌋
=
r(r + n− 2i)

2
=

⌈
r(r + n− 2i)

2

⌉
.

Hence, under condition (9.20), the number of rows of any Durfee (n−2i)-rectangle
in Dn−2i(C) is upper bounded by r1 < r 6 i and we conclude, by means of
Theorem 5.7, that |Ci| = |C| and dI(Ci) = i− r1 > i− r.

5.2 From subspace distances to the flag distance

In this subsection we deal with the converse problem: given a full flag code on
Fnq , we obtain information of its parameters from the ones of its projected codes.
As before we restrict our study to dimensions 1 6 i 6

⌊
n
2

⌋
since, for higher

dimensions, it suffices to consider rectangles with more rows than columns.

Theorem 5.11. Let C be a full flag code on Fnq and take 1 6 i 6
⌊
n
2

⌋
.

(1) If |Ci| = |C|, then

dI(Ci)2 6 df (C) 6 Dn −
⌈

(i− dI(Ci))(n− i− dI(Ci))
2

⌉
.

(2) If |Ci| < |C|, then

0 6 df (C) 6 Dn −
⌈
i(n− i)

2

⌉
.
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Proof. Let us start assuming that |Ci| = |C|. If we write dI(Ci) = i− r for some
0 6 r 6 i, then Corollary 5.10 leads to

d̄f (C) >
⌈
r(r + n− 2i)

2

⌉
=

⌈
(i− dI(Ci))(n− i− dI(Ci))

2

⌉
.

As a consequence, it holds df (C) = Dn− d̄f (C) 6 Dn−
⌈

(i−dI(Ci))(n−i−dI(Ci))
2

⌉
. On

the other hand, given arbitrary different flags F ,F ′ ∈ C, we have that Fi 6= F ′i
and then dI(Fi,F ′i) > dI(Ci). Hence, every distance path in Γ(C) passes either
through the vertex (i, dI(Ci)) (green vertex in the next figure) or above it. As
a result, such a vertex determines a set of circle black dots that always remain
under distance paths in Γ(C). This set is exactly the triangle in red in the picture
below, which top vertex is the point (i, dI(Ci)) and edges with slope 1 (left) and
−1 (right).

Figure 9.20: Vertex (i, dI(Ci)) (in green) and the triangle “under” it (in red).

The number of circle black points in such a triangle coincides with the number of
circle dots in the distance support S(2dI(Ci)), which is dI(Ci)2. Hence, Remark
3.14 leads to df (C) > dI(Ci)2. Now, if we suppose that |Ci| < |C|, the result
follows straightforwardly by Theorem 5.2.

5.3 Some examples

We finish this section by applying the previous results to three representative
situations.

Example 5.12. For n = 8, the full flag distance takes values in the interval
[0, 16]. Consider an arbitrary full flag code C with minimum distance df (C) = 12
or, equivalently, codistance d̄f (C) = 16− 12 = 4. For this value of the codistance,
and by application of Theorem 5.2, we can derive that |C| = |C2| = · · · = |C6|,
since d̄f (C) = 4 < 2(8−2)

2
= 6. Concerning the projected codes distances, for

dimension 4, we look at the number of points in Durfee squares (0-rectangles).
Since a Ferrers subdiagram with a Durfee square with 3 rows contains, at least
d9/2e = 5 > 4 circle black points, by means of Corollary 5.10, we can ensure that
dI(C4) > 2.

218



Chapter 9: A combinatorial approach to flag codes

Figure 9.21: Largest k-rectangles with at most 4 black points for k = 0, 2, 4.

Similarly, for dimensions 2 and 3, we consider 4-rectangles and 2-rectangles,
respectively and obtain dI(C2) > 1 and dI(C3) > 1. These properties are trans-
ferred to the projected codes of dimensions 5 and 6 by symmetry of the Ferrers
diagram frame. On the other hand, the knowledge of just the code codistance does
not give any information about the projected codes C1 and C7. To extract more in-
formation in these last cases it is also necessary to know if D6(C) contains either
one or two elements. There are three possible situations:

D6(C) =


{R1} and r1 = 0,
{R1} and r1 = 1,
{R1,R2} and r1 = 1 > r2 = 0.

In the first case, by means of Theorem 5.7, we know that |C1| = |C| and dI(C1) = 1.
In the remaining cases, we have |C1| < |C|. Moreover, Theorem 5.8 leads to
dI(C1) = 0 in the second situation and to dI(C1) = 1 in the third one.

Example 5.13. Also for n = 8, now we consider a full flag code C ′ and assume
that the projected code C ′4 satisfies |C ′4| = |C ′| and dI(C ′4) = 2. In this case, by
application of Theorem 5.11, we know that 4 6 df (C ′) 6 14. Moreover, if, in
addition, |C ′3| = |C| and dI(C ′3) = 1, then Theorem 5.11 leads also to 1 6 df (C ′) 6
12 and we conclude that 4 6 df (C ′) 6 12.

In general, the more conditions on the projected codes, the more information
on the flag code. However, at times we obtain redundant information. For in-
stance, if we require the projected code C ′2 to fulfill |C ′2| = |C ′| and dI(C ′2) = 1,
we obtain 1 6 df (C ′) 6 13, which does not provide any new data. Nevertheless,
if |C ′2| < |C ′|, we improve our knowledge about df (C ′) since, by virtue of Theorem
5.11, it must hold 4 6 df (C ′) 6 10.

Remark 5.14. As pointed out in Remark 2.13, determining the exact value of
df (C ′) from just the list of distances {dI(Ci)}7

i=1, and conversely, is not always
possible. Nevertheless, we have seen that just with the data of at most two
Durfee (n − 2i)-rectangles for any dimension i, which is considerably less than
knowing the whole set of distance paths of C, we are able to establish interesting
connections between flag codes and their projected codes.
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Example 5.15. We finish this subsection by looking at the special case of full
flag codes with the maximum possible distance. These codes were characterized in
[5, Th. 3.11] in terms of their projected codes, which must attain the maximum
possible distance for their dimensions and have the same cardinality than the flag
code. Here below, we translate that result to the setting introduced in this work to
state an alternative combinatorial characterization of optimum distance full flag
codes.

Theorem 5.16. Let C be a full flag code on Fnq . They are equivalent:

(1) df (C) = Dn (or d̄f (C) = 0).

(2) The set Γ(C) consists of the only distance path passing either through the
point (n

2
, n

2
), if n is even, or through the points (

⌊
n
2

⌋
,
⌊
n
2

⌋
) and (

⌈
n
2

⌉
,
⌊
n
2

⌋
),

if n is odd.

(3) The set of Ferrers subdiagrams associated to C is

F(C) =

{
{F0} if n is even or
{F0,F(1)} if n is odd.

Proof. Observe that, by means of Corollary 3.18, the condition d̄f (C) = 0 holds
if, and only if, distance paths in Γ(C) leave no point above them. In other words,
C has a unique distance path: the one that passes trough the points of S(n)
having coordinates (i,min{i, n − i}), for all 0 6 i 6 n (see the picture below).
By means of the trident rules (9.12) and (9.13), this is exactly the only distance
path passing through (n

2
, n

2
), if n is even, or through (

⌊
n
2

⌋
,
⌊
n
2

⌋
) and (

⌈
n
2

⌉
,
⌊
n
2

⌋
),

if n is odd.

Figure 9.22: Maximum distance paths with n even (left) and n odd (right).

As a result, statements (1) and (2) are equivalent. Moreover, assuming (2),
and according to Definition 5.3, we conclude that only Ferrers diagrams F0 and
F(1) (if n is odd) appear in F(C). On the other hand, if condition (3) holds, the
underlying black diagrams associated to the flag code C are empty and then, the
associated value of the codistance d̄f (C) is zero, which finishes the proof.

Remark 5.17. The result given in [5, Th. 3.11] can also be proved in our
new combinatorial terms. Observe that condition (3) in the previous theorem
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is equivalent to say that, for every 1 6 i 6 bn
2
c, the set Dn−2i(C) contains just

one element: the Durfee (n − 2i)-rectangle with zero rows. Hence, by means
of Theorem 5.7, we conclude that every projected code of dimension up to bn

2
c

attains the maximum possible distance, i.e., dI(Ci) = i, and has size |Ci| = |C|.
For those projected codes of higher dimensions, as stated in Remark 5.9, it suffices
to consider rectangles with more columns than rows.

6 Conclusions and future work
In this paper, we have undertaken a detailed study of the flag distance in terms
of different combinatorial objects. To this end, we have first devised a nice way
to graphically represent this numerical parameter through distance paths drawn
in a distance support whose particular shape has led us to design an associated
Ferrers diagram frame. Hence, we have established a one-to-one correspondence
between the set of distance paths (associated to a precise distance value d) and
the set of underlying distributions of Ferrers subdiagrams having exactly d̄ (the
corresponding codistance value) black points. This fact allows us to perfectly
translate properties related to the flag distance into the language of integer par-
titions. Moreover, we take advantage of this dictionary to suitably associate a
family of Ferrers subdiagrams (and their corresponding Durfee rectangles) to a
given full flag code. Finally, we show how these objects result very useful to
make connections between the parameters of the flag code (minimum distance
and cardinality) and the ones of the corresponding projected codes.

In future research, we want apply the dictionary established in this paper to
derive new results concerning specific families of full flag codes. Moreover, we
would also like to adapt the ideas in the current work to the flag variety of general
type vector, where the distance support loses its triangular shape.
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(English version on page 231)

Para la elaboración de esta tesis, nos hemos sumergido en la teoría de códigos
flag en codificación de red. A lo largo de nuestro camino, hemos abordado dis-
tintos problemas desde diferentes puntos de vista, utilizando herramientas prove-
nientes de distintas áreas de las Matemáticas, como el Álgebra Lineal, la Geo-
metría Finita, la Teoría de Grafos, la Teoría de Grupos o la Combinatoria. Estos
enfoques han dado lugar a los distintos trabajos presentados en los Capítulos 1-9
de esta memoria. En la mayoría de ellos, hemos puesto el acento en la relación
entre los códigos flag y sus códigos proyectados. Este hecho nos ha permitido
obtener información muy valiosa acerca de los códigos flag en términos de ciertos
códigos de dimension constante. A continuación, recapitulamos las contribu-
ciones más relevantes recogidas en esta tesis, presentada como el compendio de
los trabajos anteriormente mencionados.

Gran parte de nuestra investigación se centra en el estudio de códigos flag
de distancia óptima. En el Capítulo 1, presentamos esta familia de códigos y
los caracterizamos como aquellos códigos flag disjuntos con códigos proyectados
de distancia máxima (Capítulo 1, Teorema 3.11). Más tarde, obtenemos un
resultado similar, pero que solo involucra, a lo sumo, a dos códigos proyectados
(Capítulo 6, Teorema 4.8). De entre todos los códigos flag de distancia óptima,
probamos que aquellos con un spread como código proyectado alcanzan el mejor
cardinal para su vector tipo que, por contra, queda restringido por la presencia
del spread. Para todas las posibles elecciones de los parámetros, hemos dado
construcciones sistemáticas de códigos flag de distancia óptima con un spread
como proyectado en los Capítulos 1 y 2. Además, la construcción del primer
capítulo va acompañada de un algoritmo de decodificación sobre el canal de
borrado que puede ser fácilmente adaptado a la construcción del Capítulo 2,
donde empleamos argumentos combinatorios relacionados con problemas clásicos
de emparejamientos en grafos.

Inspirados por el estudio de códigos (de subespacio) orbitales, y siguiendo el
enfoque orbital urilizado por Liebhold et al. para el estudio de códigos flag, tam-
bién nos hemos interesado en aquellos códigos flag obtenidos como órbitas bajo
la acción (de subgrupos) del grupo general lineal. En los Capítulos 3 y 6, el lector
puede encontrar construcciones orbitales de códigos flag de distancia óptima con
un spread entre sus códigos proyectados. Además, en el Capítulo 6 presentamos
una construcción de tipo completo con distancia y cardinal óptimos, partiendo
de un spread parcial. Todas estas construcciones han sido obtenidas utilizando
la acción de un subgrupo de Singer adecuado sobre la variedad de flags. Por
otra parte, y en virtud del isomorfismo Fq-lineal entre el espacio vectorial Fnq y el
cuerpo Fqn , sabemos que la acción de los grupos de Singer del grupo general lineal
puede traducirse como la acción multiplicativa de F∗qn . Este es el planteamiento
adoptado en los Capítulos 4 y 7. En el primero de ellos, introducimos el concepto
de código flag orbital (β-)cíclico (generado por cierto flag F en el cuerpo Fqn)
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y estudiamos propiedades generales de esta familia de códigos flag en función
del mejor amigo del flag generador. También dedicamos parte de este trabajo al
estudio de los códigos flag de Galois, esto es, aquellos generados por una sucesión
de subcuerpos de Fqn encajados, y probamos que la distancia mínima de estos
códigos solo puede tomar unos valores muy concretos. Más aún, damos una co-
rrespondencia entre este conjunto de distancias admisibles y los subgrupos de F∗qn
para los que se alcanzan (Capítulo 4, Teorema 4.14).

En el Capítulo 7, generalizamos este estudio a la familia de códigos orbitales
cíclicos generados por flags con algún subcuerpo entre sus subespacios (pero
no todos ellos) a los que llamamos flags de Galois generalizados. En este tra-
bajo, probamos que la presencia de determinados subcuerpos en el flag generador
descarta ciertos valores de la distancia de los códigos cíclicos que este genera. Sin
embargo, nos planteamos si, tal y como ocurre para los códigos flag de Galois,
todos aquellos valores de la distancia compatibles con la estructura encajada de
subcuerpos –o, equivalentemente, con la cadena de spread (parciales) entre los
códigos proyectados– son realmente alcanzables. En la segunda parte de este capí-
tulo, presentamos una construcción concreta de códigos de Galois generalizados
que nos permite responder negativamente a nuestra conjetura.

Volviendo sobre la relación entre los códigos flag y sus códigos proyectados,
en el Capítulo 5, nos centramos en una familia de códigos flag cuyos paráme-
tros quedan perfectamente determinados por los de sus códigos proyectados: los
códigos flag consistentes, caracterizados como códigos flag disjuntos con distan-
cia mínima igual a la suma de las de sus proyectados (Capítulo 5, Teorema 1).
Además de esta relación entre los parámetros, probamos que algunas propiedades
estructurales, como la de ser equidistante o un girasol, se transfieren perfecta-
mente del código flag a sus proyectados y viceversa. Por último, explotamos la
condición de consistencia para elaborar un algoritmo de decodificación sobre el
canal de borrado.

Otra peculiaridad que observamos al trabajar con códigos flag consistentes
es que la distancia mínima se obtiene siempre utilizando la misma combinación
de distancias de subespacio: las distancias de sus proyectados. Sin embargo, en
general, cada valor de la distancia de flags puede alcanzarse de varias formas.
Es por ello que la distancia mínima de un código flag no siempre proporciona
suficiente información. Por esta razón, en los Capítulos 8 y 9 profundizamos en
el estudio de la distancia de flags. En el primero de ellos, utilizamos un punto de
vista algebraico e introducimos el concepto de vector distancia. Caracterizamos
este nuevo objeto y determinamos una serie de valores señalados de la distancia
para la variedad de flags de cualquier tipo. Al comparar la distancia mínima de un
código flag con dichas distancias, obtenemos información sobre el máximo número
de subespacios que pueden compartir dos flags distintos del código. Razonando
de esta forma, acotamos el cardinal de cualquier código flag con una distancia
prefijada, para cualquier elección del vector tipo.

Por otra parte, en el Capítulo 9 utilizamos un enfoque combinatorio en el que
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relacionamos la distancia entre flags completos con elementos relacionados con
particiones de enteros y diagramas de Ferrers. Más concretamente, establecemos
una biyección entre los caminos de distancia y el conjunto de distribuciones sub-
yacentes de ciertas particiones que asociamos a la variedad de flags completos.
Este prisma nos permite exhibir la relación entre los parámetros de un código flag
completo y los de sus proyectados, a través del conteo de puntos en subdiagramas
de Ferrers adecuados.
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Conclusions

For the preparation of this thesis, we have dived deep into the theory of flag
codes in network coding. In our way, we have undertaken diverse problems related
to this class of codes and we have addressed them by using concepts coming from
distinct areas in Mathematics, such as Linear Algebra, Finite Geometry, Graph
Theory, Group Theory or Combinatorics. These different approaches have led to
the list of works provided in Chapters 1-9. Throughout the vast majority of them,
the accent has been put on the connection of flag codes with their corresponding
projected codes. This fact has allowed us to obtain valuable information about
flag codes in terms of a list of constant dimension codes. Here below we summarize
the most relevant contributions in this thesis, presented as the compendium of
the mentioned works.

Big part of our investigation is devoted to the study of optimum distance flag
codes. In Chapter 1, we introduced this class of flag codes and characterized them
as disjoint flag codes with projected codes with maximum distance (Chapter 1,
Theorem 3.11). A similar result, but just involving, at most, two projected codes
can be found in Chapter 6 (Theorem 4.8). Among flag codes with maximum
distance, we have shown that those having a spread as a projected code attain
the maximum possible size for their type vector that, on the negative side, must
satisfy a restriction. For all the admissible choices of the parameters, we have
provided systematic constructions of optimum distance flag codes with a spread
as a projected code in Chapters 1 and 2. In addition, the construction in Chapter
1 is accompanied by a decoding algorithm over the erasure channel that can be
easily adapted to the construction given in Chapter 2, based on combinatorial
arguments related to matching problems on graphs.

Inspired by the class of orbit (subspace) codes, and following the orbital ap-
proach for flag codes introduced by Liebhold et al., we have also studied those
flag codes arising as orbits of subgroups of the general linear group. Using this
viewpoint, in Chapters 3 and 6, we have also tackled the challenge of obtaining
optimum distance flag codes with a spread among the projected codes as orbits
of certain groups. Moreover, in Chapter 6, we have come up with a construction
of full flag codes with both maximum distance and optimal size, starting from
a partial spread. All these orbit constructions have been achieved by using the
action of suitable Singer subgroups on the corresponding flag variety. On the
other hand, and by virtue of the Fq-linear isomorphism between the vector space
Fnq and the extension field F∗qn , the action of Singer subgroups of the general lin-
ear group can be appropriately translated into the multiplicative action of F∗qn
on flags. This is the approach used in Chapters 4 and 7. In the first one, we
introduce the notion of (β-)cyclic orbit flag code generated by certain flag F on
the subfield Fqn and study general properties of this new family of flag codes in
terms of the best friend of the flag. Moreover, we dedicate part of the paper
to the study of Galois flag codes, i.e., those generated by sequences of nested
subfields of Fqn . For these codes, we show that only a limited set of distances can
be attained and, in addition, we establish a correspondence between them and
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the set of subgroups of F∗qn (Chapter 4, Theorem 4.14). In Chapter 7, we study
those cyclic orbit flag codes generated by flags containing subfields among their
subspaces (but not only subfields). We call them generalized Galois flags and
show that the presence of certain subfields in the generating flag (its underlying
Galois subflag) is not compatible with many values of the distance, which are
automatically discarded of our study. However, we wonder if those values of the
distance that are compatible with having certain subfields among the subspaces
of the generating flag –or, equivalently, with having a prescribed list of (partial)
spreads among the projected codes– can actually be obtained as the minimum
distance of a generalized Galois flag code. We use a specific construction of
generalized Galois flag code in order to answer negatively to our conjecture.

Concerning the link between a flag code and its projected codes, in Chapter
5, we focus on a special family of flag codes in which the parameters of the flag
code are completely determined by the ones of its projected codes: the class of
consistent flag codes. More precisely, we characterize them as disjoint flag codes
with minimum distance equal to the sum of the ones of their projected codes
(Chapter 5, Theorem 1). Apart from this nice relations of the parameters, we
see that when we consider consistent flag codes, some properties (such as being
equidistant or a sunflower) are perfectly transferred from the flag code to its
projected codes and vice versa. In addition, the consistency condition is also
exploited in order to obtain a decoding algorithm over the erasure channel.

Another particularity of consistent flag codes is that the minimum distance of
any is always obtained as the sum of the minimum distances of the corresponding
projected codes. However, in general, a given value of the flag distance (which
is defined as a sum of subspace distances) might be obtained by many different
combinations of subspace distances. Due to this fact, the minimum distance of a
flag code does not always give enough information. For this reason, in Chapters
8 and 9 we deepen the study on the flag distance parameter. In the first one,
we use an algebraic approach and introduce the notion of distance vector. We
characterize distance vectors and use them to determine a list of remarkable
values of the distance for the corresponding flag variety. Comparing the minimum
distance of a flag code with the ones in the mentioned list gives us information
about the maximum number of common subspaces that different flags in the code
can have. This study entails new bounds for the cardinality of flag codes with
prescribed distance, for every type vector. On the other hand, in Chapter 9 we
address the study on the flag distance by using combinatorial elements related to
partitions of integers and Ferrers diagrams. More precisely, we work with full flags
and establish a one-to-one correspondence between distance paths (the graphic
representation of distance vectors) and the set of underlying distributions of a list
of partitions associated to the full flag variety. This research enables us to obtain
information about the parameters of a given full flag code from the ones of its
projected codes and vice versa, by counting points in a suitable Ferrers diagram.

Here below, we attach the general list of references of the thesis.
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