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Abstract

The problem of building optimal block codes, such as MDS codes,
over small fields has been an active area of research that led to several
interesting conjectures. In the context of convolutional codes, optimal
constructions, such as MDS or MDP, are very rare and all require very
large finite fields. In this work, we focus on the problem of constructing
optimal convolutional codes with respect to the rank distance, i.e., we
study the construction of Maximum Rank Distance (MRD) convolutional
codes. Considering convolutional codes within a very general framework,
we present concrete novel classes of MRD convolutional codes for a large
set of given parameters.

Keywords— Coding theory, polynomial matrices, finite fields, convolutional codes,
Rank metric codes

1 Introduction

Maximum Distance Separable (MDS) codes are one of the most fascinating notions
in the area of coding theory [14, Chapter 11]. The name comes from the fact that
such a class of codes has the maximum possible free Hamming distance for a given set
of parameters. In the context of block codes, these parameters are [n, k], the length
and dimension of the code. Block codes that achieve free Hamming distance equal to
n − k + 1 are called MDS codes. Convolutional codes are more involved than block
codes and an additional parameter needs to be introduced: the degree of the code.
MDS convolutional codes were introduced in [21] and thoroughly studied by many re-
searchers in the last two decades [18, 23]. These codes were mainly investigated in the
context of q-ary symmetric channels and hence the Hamming distance was considered.
However, the seminal paper of Koetter and Kschischang [12] introduced novel coding
concepts for errors and erasures in a random network coding setting. The mathemat-
ical foundations of Random Linear Network Coding (RLNC) were presented for the
case where the topology of the network is unknown and the nodes perform a random
linear combination of the packets received and forward this random combination to
adjacent nodes. From a mathematical point of view, one can consider a packet as a row

∗University of Alicante, Spain, diego.napp@ua.es
†CIDMA – Center for Research and Development in Mathematics and Applications, De-

partment of Mathematics, University of Aveiro, Portugal

1

This is a previous version of the article published in Linear and Multilinear Algebra. 2024. https://doi.org/10.1080/03081087.2023.2300673



of a matrix with entries in a finite field and then the linear combinations performed
in the nodes are row operations on this matrix. At each shot, several packets are sent
via the network and this data can be represented with a matrix. In order to be able
to correct errors occurring during the transmission, this set of matrices are equipped
with a metric to measure the discrepancy between transmitted matrices, namely, the
rank distance. The analogues of MDS codes in the context of rank metric codes are
called Maximum Rank Distance (MRD) codes. Rank metric codes have been extens-
ively applied to random network coding and Gabidulin or MRD codes are known to
be able to protect packets in such a scenario [10]. We call these codes one-shot codes,
as they use the (network) channel only once.

However, in a context where several uses of the network are needed to transmit
the data, one can create dependencies among the transmitted codewords (matrices)
of different shots in order to improve the error-correction capability of the code. This
idea gave rise to the so-called multi-shot network coding [3, 19, 22]. In the multi-shot
setting, an extension of the rank metric was proposed to provide a suitable measure
for the number of errors that a code can tolerate. This new metric, called sum rank
distance, was first proposed in [19] and later, in [3, 22], it was shown to be a suitable
metric to deal with errors, erasures and deviations.

A very natural way for building multi-shot codes is to use rank metric convolutional
codes (see [20] for different approaches). The work in [22] was pioneer in this direction
by presenting the first class of unit-memory rank metric convolutional codes. Later,
more properties and applications were investigated in [2, 3, 15], showing the potential
of such a framework to spread redundancy across the codewords. However, there
exist very few algebraic constructions of multi-shot network codes in comparison to
the literature on one-shot network rank metric codes. To the best of our knowledge,
only one class of maximum rank distance convolutional codes in this setting has been
presented in [3, 15] based on the construction derived in [1].

In [16] a more general theoretical framework to rank metric convolutional codes
was presented. Let Fq be a finite field and let Fqm be an extension field. Linear rank
metric codes have been defined in the literature as images of homomorphisms over
Fqm . In contrast, the work presented in [16, 17] introduces linear rank metric codes as
being images of a homomorphism that is the composition of a monomorphism and an
isomorphism over Fq. Extending this notion, the authors defined rank metric convolu-
tional codes as images of a homomorphism that is a composition of a monomorphism
and an isomorphism over Fq[D]. One of the advantages of this approach is that it
allows one to deal with rank metric codes of any rate and over any finite field.

In this work, we continue this thread of research within this general framework and
present several results that extend the preliminary ones presented in [16, 17]. We focus
on the important class of codes called Maximum Rank Distance (MRD) convolutional
codes which are rank metric convolutional codes that are optimal (have the largest
possible sum rank distance) for a given set of parameters. This class is the analogue
of MDS (convolutional) codes when considering the sum rank metric instead of the
Hamming metric. In particular, we present novel and more general algebraic construc-
tions of MRD convolutional codes. Although the framework developed in [17] is very
general, the constructions presented were very restricted to a small set of parameters.
Here, we present a nontrivial extension of these algebraic constructions that are valid
for convolutional codes of higher degree and therefore expanding significantly the set
of MRD convolutional codes. As mentioned above, preliminary versions of this work
were presented in the conferences [16, 17].
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2 Preliminaries

Block MDS codes are codes that have the maximum possible value for the minimum
Hamming distance between different codewords for a given length n and dimension k.
Convolutional codes require an additional parameter: the degree of the code, denoted
by δ. The degree of the code is directly related to the memory of the code, i.e., the
amount of information an encoder of the code can store when encoding the information
vectors, see [8] for more details. In this work, we focus on the codes that matches
with MDS codes in the context of rank metric codes, MRD, and study convolutional
codes that achieve the maximum possible rank distance between codewords taking into
account also the degree δ of the code. We begin this section by recalling some notions
and results on matrices over Fq[D], the ring of polynomials in D with coefficients in
Fq, that will be needed when defining the degree δ of a convolutional code in the next
section.

Definition 2.1. A matrix U(D) ∈ Fq[D]k×k is said to be unimodular if it has a
polynomial inverse, i.e., if there exists V (D) ∈ Fq[D]k×k such that U(D)V (D) =
V (D)U(D) = I.

A matrix U(D) ∈ Fq[D]k×k is unimodular if and only if its determinant belongs
to Fq\{0}, [7, 11].

Polynomial matrices that differ by left multiplication by unimodular matrices are
said to be (left) equivalent. Among equivalent polynomial matrices, we will consider
the ones that have least sum of its row degrees. The degree of a row of a polynomial
matrix is defined as the maximum degree of the row entries.

Definition 2.2. Let A(D) ∈ Fq[D]k×n.

1. The internal degree of A(D) is the maximum degree of all k×k minors of A(D)
and it is represented by intdeg(A(D));

2. The external degree of A(D) is the sum of the row degrees of A(D), and it is
represented by extdeg(A(D)).

It is clear that the internal degree of a polynomial matrix is smaller or equal than
its external degree.

Definition 2.3. Let A(D) ∈ Fq[D]k×n be a full row rank matrix. A(D) is said to be
row reduced if intdeg(A(D)) = extdeg(A(D)).

If A(D) ∈ Fq[D]k×n we denote by [A]hc ∈ Fk×nq the coefficient matrix of the
highest-order terms in each row, i.e., the matrix with the i-th row constituted by the
coefficients of Dνi , where νi is the row degree of the i-th row of A(D). The following
theorem gives an efficient way to check if a matrix is row reduced.

Theorem 2.1. [11, page 385] Let A(D) ∈ Fq[D]k×n and the corresponding [A]hc ∈
Fk×nq . Then A(D) is row reduced if and only if [A]hc is a full row rank matrix.

The next theorems present some results about row reduced matrices.

Theorem 2.2. [11, page 386] Let A(D) ∈ Fq[D]k×n be a full row rank matrix. Then
there exists a unimodular matrix U(D) ∈ Fq[D]k×k such that U(D)A(D) is row re-
duced.
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Theorem 2.3. [11, Lema 6.3, page 388] Let A(D), B(D) ∈ Fq[D]k×n be two row
reduced matrices such that

A(D) = U(D)B(D),

for some unimodular matrix U(D) ∈ Fq[D]k×k. Then A(D) and B(D) have the same
row degrees, up to a permutation of the rows.

It follows then that in a class of equivalent matrices, row reduced matrices are the
ones with minimal external degree.

3 Rank metric convolutional codes

In this work, we consider a very general class of rank metric convolutional codes that
allows to work with convolutional codes of any rate and over any finite field. For the
sake of clarity we first present this general framework in the context of rank metric
block codes and then generalize it to the convolutional setting.

3.1 Rank metric block codes

Let A,B ∈ Fn×mq . Gabidulin [6] defines rank distance between A and B as

drank(A,B) = rank(A−B).

Any subset C of Fn×mq equipped with this distance is a rank metric code.

Although linear rank metric codes in Fn×mq are usually constructed as block codes
of length n over the extension field Fqm (see Remark 3.1 below), in this work we
consider a more general definition, first introduced in [17]. An (n×m, k) linear rank
metric code C ⊂ Fn×mq of rate k/nm < 1 is the image of a monomorphism φ : Fkq →
Fn×mq that is a composition φ = ψ ◦ γ of an isomorphism ψ and a monomorphism γ:

φ : Fkq
γ−→ Fnmq

ψ−→ Fn×mq

u 7−→ v = uG 7−→ V = ψ(v),

where G ∈ Fk×nmq is full row rank. A codeword V = ψ(v) is simply the n consecutive
blocks of v with m elements. The n rows of the codeword V can be interpreted as the
n packets of length m that are transmitted through the network at one shot.

The rank distance of C, drank(C), is defined as

drank(C) = min
U,V ∈C

drank
(
U − V

)
= min
V ∈C,V ̸=0

drank
(
V
)
,

or simply the minimum rank distance between two different codewords. In the fol-
lowing, for the sake of simplicity, we will assume that n ≤ m (but analogous results
can be given for the other case). Linear rank metric codes also have a Singleton-like
bound which provides a limit for the value of the code distance.

Theorem 3.1. [17, Theorem 1] The rank distance of an (n×m, k) linear rank metric
code satisfies

drank(C) ≤ n−
⌊
k − 1

m

⌋
= n−

⌈
k

m

⌉
+ 1.
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A block code C that attains such an upper-bound is calledMaximum Rank Distance
(MRD) code. The first MRD codes over a finite field Fq were derived by Delsarte and
Gabidulin [5, 6]. In the literature these codes are often called (generalized) Gabidulin
codes.

Remark 3.1. As mentioned above, linear rank metric codes are typically defined over
the extension field Fqm using an isomorphism ϕ between Fnqm and Fn×mq . More con-
cretely, a linear rank metric code is typically defined via

C = ImFqmG =
{
uG : u ∈ Fkqm

}
⊂ Fnqm ,

with G ∈ Fk×nqm . Then, the rank metric code is ϕ(C), where ϕ is an isomorphism between

Fnqm and Fn×mq . MRD codes, including Gabidulin codes, and most of the existing rank
metric codes are defined within this framework [9, 4]. Note that in this setting the rate
is km/nm and the finite field is Fqm whereas in the more general framework described
above the rate is k/mn and is defined over any finite field Fq and k does not need to
be multiple of m.

3.2 A general framework for rank metric convolutional
codes

Again, rank metric convolutional codes are typically defined over Fqm [D] (see [1, 2, 3,
15, 22]) as finitely generated Fqm [D]-submodules of Fqm [D]n described by

C = ImFqm [D]G =
{
u(D)G(D) : u(D) ∈ Fqm [D]k

}
⊂ Fqm [D]n,

or equivalently by ϕ(C), where ϕ is a fixed isomorphism between Fqm [D]n and Fq[D]n×m.

However, in this paper, we follow the more general approach first introduced in
[16, 17] and define a rank metric convolutional code C ⊂ Fq[D]n×m as the image of an
homomorphism φ : Fq[D]k → Fq[D]n×m, such that φ = ψ ◦ γ is a composition of a
monomorphism γ and an isomorphism ψ:

φ :Fq[D]k
γ−→ Fq[D]nm

ψ−→ Fq[D]n×m

u(D) 7→v(D)=u(D)G(D) 7→ V (D),
(1)

where G(D) ∈ Fk×nmq is a full row rank polynomial matrix, called encoder of C. For
simplicity, we will consider that the isomorphism ψ is such that Vi,j(D) = vmi+j(D),
i.e., the rows of V (D) are the n consecutive blocks of v(D), each one with m elements.

Two encoders of C differ by left multiplication by a unimodular matrix and there-
fore C always admits row reduced encoders.

The degree δ of a rank metric convolutional code C is the sum of the row degrees
of a row reduced encoder of C , i.e., the minimum value of the sum of the row degrees
of its encoders. A rank metric convolutional code C is said to be delay-free if it has
an encoder G(D) with constant term G(0) having full row rank. Note that since any
other encoder of C, G̃(D), is such that G̃(D) = U(D)G(D) for some unimodular matrix
U(D), it follows that all encoders of C have constant term full row rank.

A rank metric convolutional code C of degree δ, defined as in (1), is called an
(n×m, k, δ)-rank metric convolutional code.
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When dealing with rank metric codes, a different measure of distance must be
considered. The rank weight of a polynomial matrix A(D) =

∑
i∈NAiD

i ∈ Fq[D]n×m,
is given by

rwt
(
A(D)

)
=

∑
i∈N

rank(Ai).

If B(D) =
∑
i∈NBiD

i ∈ Fq[D]n×m, the sum rank distance between A(D) and
B(D) is defined as

dSR
(
A(D), B(D)

)
= rwt

(
A(D)−B(D)

)
=

∑
i∈N

rank(Ai −Bi).

Lemma 3.1. [16, Lemma 2] The sum rank distance dSR is a distance in Fq[D]n×m.

The sum rank distance of a rank metric convolutional code C is defined as

dSR(C) = min
V (D),U(D)∈C,V (D)̸=U(D)

dSR(V (D), U(D)).

As C is linear, V (D)−U(D) ∈ C for any V (D), U(D) ∈ C, and therefore it follows
that

dSR(C) = min
0 ̸=V (D)∈C

rwt
(
V (D)

)
.

The next theorem establishes an upper-bound on the sum rank distance of a rank
metric convolutional code. Analogously, as for the free Hamming distance of a convo-
lutional code [8], this bound is referred to as the generalized Singleton bound for rank
metric convolutional codes. For simplicity, we will assume that n ≤ m , but similar
results can be given for the case in which n > m.

Theorem 3.2. [16, Theorem 3] Let C be an (n ×m, k, δ) rank metric convolutional
code. Then, the sum rank distance of C is upper bounded by

dSR(C) ≤ n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k(
⌊
δ
k

⌋
+ 1)− δ

m

⌉
+ 1. (2)

An (n×m, k, δ) rank metric convolutional code whose sum rank distance attains the
generalized Singleton bound is called Maximum Rank Distance (MRD) convolutional
code. The row reduced encoders of MRD convolutional codes have a well-established
set of row degrees as stated in the following lemma.

Corollary 3.1. [16, Corollary 4]. Let C be an (n × m, k, δ) rank metric convolu-
tional code and G(D) ∈ Fq[D]k×n be a row reduced encoder of C. Then G(D) has
k
(⌊

δ
k

⌋
+ 1

)
− δ rows of degree

⌊
δ
k

⌋
and δ − k

⌊
δ
k

⌋
rows of degree

⌊
δ
k

⌋
+ 1.

It is not known the existence of MRD (n ×m, k, δ) convolutional codes for every
choice of parameters n,m, k, δ ∈ N. Napp, Pinto, Rosenthal and Vettori [17] proposed
the first construction of (n×m, k, δ) MRD convolutional codes for m ≥ δ+ k. For the
sake of clarity and completeness, we recall these constructions and present the proof
that they are indeed MRD codes.
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Theorem 3.3. [17, Theorem 6] Let n,m, k, δ be integers such that k < nm, n > m,
δ < m − k and A ∈ Fm×m

q be a matrix with irreducible characteristic polynomial and
a full row rank matrix X ∈ Fn×mq . Let

G(D) =

⌊ δ
k ⌋+1∑
i=0

GiD
i ∈ Fq[D]k×mm, (3)

with

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤
⌊
δ

k

⌋

and

G⌊ δ
k ⌋+1 =



0 if k divides δ

ψ−1(XAk⌊
δ
k ⌋+k)

...

ψ−1(XAk+δ−1)
0
...
0


otherwise,

then G(D) is an encoder of an MRD (n×m, k, δ) convolutional code.

Remark 3.2. Since A ∈ Fm×m
q is a matrix with irreducible characteristic polynomial,

then the matrices Ai, 0 ≤ i < m, are linearly independent over Fq and

Fq[A] = {
m−1∑
i=0

uiA
i : i = 0, 1, . . . ,m− 1} ≃ Fmq

is a field [13]. Thus, any nontrivial linear combination of Ai, 0 ≤ i < m is a full rank
matrix.

Remark 3.3. Theorem 3.3 is valid for any field Fq since it depends on the existence
of a matrix with an irreducible characteristic polynomial of a certain degree. There
exist irreducible polynomials of every degree over any finite field and the correspondent
companion matrices can be considered as the A in the theorem. Note however that the
parameters n, k, δ and m are restricted.

4 Constructions of MRD convolutional codes

Although the constructions presented above are MRD convolutional codes over finite
fields relatively small number of elements (compare for instance with [3, Theorem 4] or
[1, Section 4]) they are intrinsically restricted to very small parameters and there is no
obvious way to extend them to larger set of parameters. In this section, we will present
novel constructions of MRD convolutional codes that overcome these limitations. The
idea we present in this work, in order to increase the degree of these codes, is to build
new encoders similar to the ones presented above, but carefully adding new terms of
higher degree to come up with new polynomial matrices (encoders) of larger degrees.
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These new terms are obtained from coefficients of terms with lower degree reversing
the rows order, in such a way that the resulting codes are again MRD convolutional
codes.

Recall that n,m and k are integers such that n ≤ m, k < nm. We divide this
section into two separate parts where we address the cases in which k | m and k ∤ m.

4.1 Construction for the case k | m
The constructions presented in [16] allowed to obtain (n×m, k, δ) MRD convolutional
codes, with δ ≤ m − k. In this section, we will present a nontrivial generalization
of this construction in order to allow much larger degrees. In particular, we build a
concrete class of (n×m, k, δ) MRD convolutional codes for δ ≤ 2m− k where k | m.

Let us consider δ = m − k. Note that k | δ since k | m. Define the polynomial
matrix

G(D) =

2 δ
k
+1∑

i=0

GiD
i ∈ Fq[D]k×nm, (4)

with

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤ δ

k
,

where A ∈ Fm×m
q is a matrix with irreducible characteristic polynomial and X ∈ Fn×mq

a full row rank matrix, and

Gi =

0 1

...

1 0

G2 δ
k
+1−i,

for δ
k
+1 ≤ i ≤ 2 δ

k
+1 and where the matrix

0 1

...

1 0

 is the one with ones on the

main reversed diagonal and zeros everywhere else.
Let C be the rank metric convolutional code with encoder G(D). The next lemma

shows that C has degree 2δ + k.

Lemma 4.1. Let m,n, k and δ be integers with n ≤ m, k < nm, δ = m − k and
such that k | m. Let A ∈ Fm×m

q be a matrix with irreducible characteristic polynomial
and X ∈ Fn×mq a full row rank matrix. Let C be the rank metric convolutional code
with encoder G(D) as defined in (4). Then C is an (n × m, k, 2δ + k) rank metric
convolutional code.

Proof. Note that

[G]hc = G2 δ
k
+1 =

0 1

...

1 0

G0.

Since G0 has full row rank (by a similar reasoning as in Theorem 3.3), then [G]hc =
G2 δ

k
+1 is also a full row rank matrix. This means that G(D) is row reduced. Thus the

degree of C is equal to the external degree of G(D) which is k
(
2 δ
k
+ 1

)
= 2δ + k.
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The next theorem shows that C is an (n×m, k, 2δ + k) MRD convolutional code.

Theorem 4.1. Let m,n, k, δ, A,X,G(D) and C be as defined in Lemma 4.1. Then C
is an (n×m, k, 2δ + k) MRD convolutional code.

Proof. From Theorem 3.2 it follows that we need to show that

dSR(C) = 2n

(
δ

k
+ 1

)
.

To this end, we will show that rwt(V (D)) ≥ 2n
(
δ
k
+ 1

)
for any nonzero V (D) ∈ C. Let

u(D) =
∑ℓ
i=0 uiD

i ∈ Fq[D]k, with uℓ ̸= 0, be a nonzero vector v(D) = u(D)G(D) ∈
Fq[D]nm and V (D) = ψ(v(D)) =

∑
i∈N0

ViD
i ∈ C. We can assume, without loss of

generality, that u0 ̸= 0. Let us represent ui =
[
u0
i u1

i · · · uk−1
i

]
, i ∈ N0.

The first δ
k
+ 1 coefficients of v(D) are of the form

vi =

i∑
j=0

ui−jGj , 0 ≤ i ≤ δ

k

and the correspondent
δ

k
+ 1 coefficients of V (D) are

Vi = XBi, 0 ≤ i ≤ δ

k
,

where

Bi =

i∑
j=0

(u0
i−jA

ki + u1
i−jA

kj+1 + · · ·+ uk−1
i−i A

kj−k+1)

which is a nontrivial linear combination of I, A, . . . , Aδ+k−1 since us0 ̸= 0 for some
s ∈ {0, 1, . . . , k − 1}. This means that Bi, i = 0, 1, . . . , δ

k
have full row rank and con-

sequently also the first δ
k
+1 coefficients of V (D) have full row rank, and consequently

δ
k∑
i=0

rank(Vi) = n

(
δ

k
+ 1

)
.

The next δ
k
+ 1 vector coefficients of v(D) are defined as

v δ
k
+i =

δ
k
+i∑

j=0

u δ
k
+i−jGj

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

uj+i− δ
k
−1

 0 1

...

1 0

Gj

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

i−1∑
j=0

ui+jG δ
k
−j +

i−1∑
j=0

ui−j+1

 0 1

...

1 0

G δ
k
−j

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

i−1∑
j=0

(ui+j + ûi−j+1)G δ
k
−j ,
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where ûi−j+1 = ui−j+1

 0 1

...

1 0

 =
[
uk−1
i−j+1 uk−2

i−j+1 · · · u0
i−j+1

]
, j = 0, 1, . . . , i−

1 and i = 1, . . . , δ
k
+ 1. Thus,

V δ
k
+i = XB δ

k
+i, (5)

where

B δ
k
+i =

δ
k
−i∑

j=0

(
u0

δ
k
+i−jA

kj + u1
δ
k
+i−jA

kj+1 + · · ·+ uk−1
δ
k
+i−jA

kj+k−1
)
+

+

i−1∑
j=0

[
(u0
i+j + uk−1

i−j−1)A
δ−kj + (u1

i+j + uk−2
i−j−1)A

δ−kj+1 + · · ·+

+ (uk−1
i+j + u0

i−j−1)A
δ−kj+k−1

]
.

If B δ
k
+i ̸= 0, for all i = 1, 2, . . . , δ

k
+ 1, then B δ

k
+i has full row rank because

it is an element of Fq[A], and therefore V δ
k
+i = XB δ

k
+i has full row rank and∑2 δ

k
+1

i= δ
k
+1

rank(Vi) = n( δ
k
+ 1). So, we have that

rwt(V (D)) ≥
2 δ
k
+1∑

i=0

rank(Vi) = 2n

(
δ

k
+ 1

)
.

Let us now assume that there exists a set of integers 1 ≤ i1 < i2 < · · · < iR ≤ δ
k
+ 1

such that

V δ
k
+i1

= V δ
k
+i2

= · · · = V δ
k
+iR

= 0.

and V δ
k
+j ̸= 0 for j ∈ {1, 2, . . . , δ

k
+1}\{i1, i2, . . . , iR}. Note that R ≤ δ

k
+1 Therefore

we have that
2 δ
k
+1∑

j= δ
k
+1

rank(Vj) = n

(
δ

k
+ 1−R

)
.

Note that when we assume that V δ
k
+iz

= 0 for some z ∈ {1, 2, . . . , R}, then we have

that

u2iz = u2iz+1 = · · · = u δ
k
+z−1 = u δ

k
+z = 0, (6)

and for j = 0, 1, . . . , iz − 1,

u2iz−1−j = −ûj where ûj = uj

 0 1

...

1 0

 . (7)

More precisely we have that

u0
iz+j + uk−1

iz−j−1 = u1
iz+j + uk−2

iz−j−1 = · · · = uk−1
iz+j

+ u0
iz−j−1 = 0.

10



In particular,

u2iR−1 = −u0,

 0 1

...

1 0

 ⇒ u2iR−1 + û0 = 0,

and u2iR−1 ̸= 0. Thus is easy to see that the degree of u(D) is such that ℓ ≥ 2iR−1 ≥
2R− 1. Note that the degree of V (D) = ψ(u(D)G(D)) is 2 δ

k
+ 1 + ℓ ≥ 2 δ

k
+ 2R.

Since uℓ ̸= 0 is easy to see that the last R coefficients of V (D) have full row rank
since B2 δ

k
+ℓ−R+2, . . . , B2 δ

k
+ℓ+1 are nonzero due to the same reasons as the first δ

k
+1

(they are linear combinations of the elements of the matrices I, A, . . . , Aδ+k−1 with at
least one coefficient different from zero). Then, to conclude, we obtain that

rwt(V (D)) ≥ 2n

(
δ

k
+ 1

)
.

So, we proved that C is MRD.

The next example illustrates the above theorem.

Example 4.1. Consider the companion matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 ∈ F4×4
2 .

of the irreducible polynomial χ(λ) = λ4 + λ+ 1 ∈ F2[λ]. and the full row rank matrix

X =

1 0 0 0
0 1 0 0
0 0 1 0

 ∈ F3×4
2 .

Let δ = 2 and k = 2 (note that δ = m− k and k | m).

The rank metric convolutional code with encoder G(D) = G0+G1D+G2D
2+G3D

3

with

G0 =

[
ψ−1(X)
ψ−1(XA)

]
=

[
1 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1

]
,

G1 =

[
ψ−1(XA2)
ψ−1(XA3)

]
=

[
0 0 1 0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 1 1 0

]
,

G2 =

0 1

...

1 0

G1

=

[
ψ−1(XA3)
ψ−1(XA2)

]
=

[
0 0 0 1 1 1 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1 1 0 0

]

11



and

G3 =

0 1

...

1 0

G0

=

[
ψ−1(XA)
ψ−1(X)

]
=

[
0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0

]
,

is a (3× 4, 2, 6) MRD convolutional code.

The construction presented in this subsection allows to obtain an (n × m, k, δ)
MRD convolutional code for δ ≤ 2m−k. To build an encoder of an (n×m, k, δ) MRD
convolutional code for δ < 2m− k it is enough to consider an encoder

G(D) =

⌊ δ
k
⌋∑

i=0

GiD
i + G̃⌊ δ

k
⌋+1D

⌊ δ
k
⌋+1,

where Gi, i = 0, 1, . . . , ⌊ δ
k
⌋, are the first ⌊ δ

k
⌋ + 1 matrix coefficients of the matrix

defined in (4) and the matrix G̃⌊ δ
k
⌋+1 has the first δ − ⌊ δ

k
⌋k rows equal to the first

δ − ⌊ δ
k
⌋k rows of Gδ−(⌊ δ

k
⌋k+1) as defined in (4) and the remaining rows equal to zero.

4.2 Construction for the case k ∤ m
Next we address the case in which n,m and k be integers with n ≤ m, k < nm such
that k ∤ m and δ = m − k (note that k ∤ δ). In this subsection, we will construct an
(n×m, k, k

(
2⌊ δ

k
⌋+ 3

)
) MRD convolutional codes.

Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial and X ∈

Fn×mq a full row rank matrix.
Let

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤
⌊
δ

k

⌋

G⌊ δ
k ⌋+1 =



ψ−1(XAk⌊
δ
k ⌋+k)

...

ψ−1(XAk+δ−1)
ψ−1(XI)

...

ψ−1(XAk−1−(δ−k⌊ δ
k ⌋))


,

and

Gi =

0 1

...

1 0

G2⌊ δ
k ⌋+3−i,

for
⌊
δ
k

⌋
+ 2 ≤ i ≤ 2

⌊
δ
k

⌋
+ 3.

12



Let C be the rank metric convolutional code with encoder

G(D) =

2⌊ δ
k ⌋+3∑
i=0

GiD
i ∈ F[D]k×nm. (8)

The next lemma states that C has degree k
(
2
⌊
δ
k

⌋
+ 3

)
.

Lemma 4.2. Let m,n, k be integers with n ≤ m, k < nm, such that k ∤ m, and
δ = m− k. Let A ∈ Fm×m

q be a matrix with irreducible characteristic polynomial and
X ∈ Fn×mq a full row rank matrix. Let C be the rank metric convolutional code with
encoder G(D) as defined in (8). Then C is an

(
n×m, k, k

(
2
⌊
δ
k

⌋
+ 3

))
rank metric

convolutional code.

Proof. By a similar reasoning to the proof of Lemma 4.1 we show that [G]hc =0 1

...

1 0

G0 has full row rank and so we conclude that G(D) is row reduced.

Therefore, the degree of the code is equal to extdeg(G(D)) = k
(
2
⌊
δ
k

⌋
+ 3

)
.

The next theorem shows that C is an
(
n×m, k, k

(
2
⌊
δ
k

⌋
+ 3

))
MRD convolutional

code.

Theorem 4.2. Let m,n, k, δ, A,X,G(D) and C be as defined in Lemma 4.2. Then C
is an

(
n×m, k, k

(
2
⌊
δ
k

⌋
+ 3

))
MRD convolutional code.

Proof. From Theorem 3.2 it follows that we need to show that

dSR(C) = 2n

(⌊
δ

k

⌋
+ 2

)
.

To this end, we will see that rwt(V (D)) ≥ 2n
(⌊

δ
k

⌋
+ 2

)
for any nonzero V (D) ∈ C. Let

u(D) =
∑ℓ
i=0 uiD

i ∈ Fq[D]k, with uℓ ̸= 0, be a nonzero vector v(D) = u(D)G(D) ∈
Fq[D]nm and V (D) = ψ(v(D)) =

∑
i∈N0

ViD
i ∈ C. We can assume, without loss of

generality, that u0 ̸= 0. Let us represent ui =
[
u0
i u1

i · · · uk−1
i

]
, i ∈ N0.

Using the same reasoning of Theorem 4.1 we conclude that the first
⌊
δ
k

⌋
+ 1 coef-

ficients of V (D) are full row rank, hence

⌊ δ
k ⌋∑
i=0

rank(Vi) = n

(⌊
δ

k

⌋
+ 1

)
.

The coefficient of v(D) of degree
⌊
δ
k

⌋
+ 1 is given by

v⌊ δ
k ⌋+1 = u0G⌊ δ

k ⌋+1 + u1G⌊ δ
k ⌋ + · · ·+ u⌊ δ

k ⌋G1 + u⌊ δ
k ⌋+1G0

=

⌊ δ
k ⌋∑
j=1

u⌊ δ
k ⌋+1−jGj

+ u0G⌊ δ
k ⌋ + u⌊ δ

k ⌋+1G0

13



and therefore, V⌊ δ
k ⌋+1 = XB⌊ δ

k ⌋+1 with

B⌊ δ
k ⌋+1 =

δ−k⌊ δ
k ⌋−1∑

j=0

uj0A
k⌊ δ

k ⌋+k+j +
⌊ δ

k ⌋∑
j=1

[
k−1∑
h=1

uh⌊ δ
k ⌋+1−jA

kj+h

]

+

(k−1)−(δ−k⌊ δ
k ⌋)∑

j=0

[
u
δ−k⌊ δ

k ⌋+j
0 + uj⌊ δ

k ⌋+1

]
Aj

+

+

k−1∑
j=(k−1)−(δ−k⌊ δ

k ⌋)+1

uj⌊ δ
k ⌋+1

Aj . (9)

The next
⌊
δ
k

⌋
+ 2 coefficients of v(D) are given by

v⌊ δ
k ⌋+1+i = u⌊ δ

k ⌋+1+iG0 + · · ·+ u2iG⌊ δ
k ⌋+1−i + u2i−1G⌊ δ

k ⌋+2−i + · · ·+ uiG⌊ δ
k ⌋+1

+ ui−1

 0 1

...

1 0

G⌊ δ
k ⌋+1 + · · ·+ u0

 0 1

...

1 0

G⌊ δ
k ⌋+2−i (10)

for 1 ≤ i ≤
⌊
δ
k

⌋
+ 2. Then, for 1 ≤ i ≤

⌊
δ
k

⌋
+ 2, V⌊ δ

k ⌋+1+i = XB⌊ δ
k ⌋+1+i where

B⌊ δ
k ⌋+1+i =

k−1−(δ−k⌊ δ
k ⌋)∑

j=0

(
uj⌊ δ

k ⌋+1+i
+ u

δ−k⌊ δ
k ⌋+j

i + u
k−1−(δ−k⌊ δ

k ⌋)−j
i−1

)
Aj

+

⌊ δ
k ⌋+1−i∑
j=1

[
k−1∑
h=0

uh⌊ δ
k ⌋+1+i−jA

kj+h

]

+

i−2∑
h=0

k−1∑
j=0

(
uj2i−1−h + uk−1−j

h

)
Ak(⌊

δ
k ⌋+2−i+h)+j

+

δ−k⌊ δ
k ⌋−1∑

j=0

(
uji + uk−1−j

i−1

)
Ak⌊

δ
k ⌋+k+j

+

k−1∑
j=k−(δ−k⌊ δ

k ⌋)
uj⌊ δ

k ⌋+i+1
Aj .

Let us consider the following cases.

Case 1: If B⌊ δ
k ⌋+i ̸= 0, for all i = 1, 2, . . . ,

⌊
δ
k

⌋
+ 3, then B⌊ δ

k ⌋+i is full row rank and

V⌊ δ
k ⌋+i is full row rank. Consequently,

∑2⌊ δ
k ⌋+3

i=⌊ δ
k ⌋+1

rank(Vi) = n(
⌊
δ
k

⌋
+ 2) and

therefore

rwt(V (D)) ≥
2⌊ δ

k ⌋+3∑
i=0

rank(Vi) = 2n

(⌊
δ

k

⌋
+ 2

)
.

Case 2: Let us now assume that V⌊ δ
k ⌋+1 = 0. Then

u1 = u2 = · · · = u⌊ δ
k ⌋ = 0,
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u0
0 = · · · = u

δ−k⌊ δ
k ⌋−1

0 = u
k−(δ−k⌊ δ

k ⌋)
⌊ δ

k ⌋+1
= · · · = uk−1

⌊ δ
k ⌋+1

= 0 (11)

and [
u0

⌊ δ
k ⌋+1

· · · u
k−1−(δ−k⌊ δ

k ⌋)
⌊ δ

k ⌋+1

]
= −

[
u
δ−k⌊ δ

k ⌋
0 · · · uk−1

0

]
.

Since u0 ̸= 0 and considering equation (11) it follows that[
u
δ−k⌊ δ

k ⌋
0 · · · uk−1

0

]
̸= 0

as well as [
u0

⌊ δ
k ⌋+1

· · · u
k−1−(δ−k⌊ δ

k ⌋)
⌊ δ

k ⌋+1

]
̸= 0. (12)

Thus V⌊ δ
k ⌋+2 = XB⌊ δ

k ⌋+2 and V⌊ δ
k ⌋+3 = XB⌊ δ

k ⌋+3 with

B⌊ δ
k ⌋+2 =

k−1∑
j=0

uj⌊ δ
k ⌋+2

Aj+

k−1−(δ−k⌊ δ
k ⌋)∑

j=0

uj⌊ δ
k ⌋+1

Ak+j+

δ−k⌊ δ
k ⌋−1∑

j=0

uk−1−j
0 Ak⌊

δ
k ⌋+k+j

and

B⌊ δ
k ⌋+3 =

k−1∑
j=0

uj⌊ δ
k ⌋+3

Aj +

k−1∑
j=0

uj⌊ δ
k ⌋+2

Ak+j +

+

k−1−(δ−k⌊ δ
k ⌋)∑

j=0

uj⌊ δ
k ⌋+1

A2k+j +

δ−k⌊ δ
k ⌋−1∑

j=0

uk−1−j
0 Ak⌊

δ
k ⌋+j .

Both B⌊ δ
k ⌋+2 and B⌊ δ

k ⌋+3 are a nontrivial linear combination of the matrices

I, A, . . . , Aδ+k−1, because (12). This means that V⌊ δ
k ⌋+2 and V⌊ δ

k ⌋+3 are full

row rank and therefore

⌊ δ
k ⌋+3∑
i=0

rank(Vi) = n

(⌊
δ

k

⌋
+ 3

)
.

Moreover, since the degree ℓ of u(D) is greater or equal than
⌊
δ
k

⌋
+1, the degree

of V (D) is greater or equal than 3
⌊
δ
k

⌋
+ 4. Then the last

⌊
δ
k

⌋
+ 1 coefficients

of V (D), V⌊ δ
k ⌋+3+ℓ, . . . , V2⌊ δ

k ⌋+ℓ+3 are full row rank due to the same reasons as

the first
⌊
δ
k

⌋
+ 1 coefficients, and we have that

rwt(V (D)) ≥ 2n(

⌊
δ

k

⌋
+ 2).

Case 3: Let us consider that V⌊ δ
k ⌋+1 ̸= 0 and that V⌊ δ

k ⌋+2 = 0.

By following the same reasoning as in the previous case we have that

u2 = u3 = · · · = u⌊ δ
k ⌋+1 = 0,

u
k−(δ−k⌊ δ

k ⌋)
⌊ δ

k ⌋+2
= · · · = uk−1

⌊ δ
k ⌋+2

= 0 (13)
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and

k−1−(δ−k⌊ δ
k ⌋)∑

j=0

(
uj⌊ δ

k ⌋+2
+ u

δ−k⌊ δ
k ⌋+j

1 + u
k−1−(δ−k⌊ δ

k ⌋)−j
0

)
Aj+

+

δ−k⌊ δ
k ⌋−1∑

j=0

(
uj1 + uk−1−j

0

)
Ak⌊

δ
k ⌋+k+j = 0. (14)

Therefore,

B⌊ δ
k ⌋+3 =

k−1−(δ−k⌊ δ
k ⌋)∑

j=0

(
uj⌊ δ

k ⌋+3
+ u

k−1−(δ−k⌊ δ
k ⌋)−j

1

)
Aj

+

k−1∑
j=0

uj⌊ δ
k ⌋+2

Ak+j +

k−1∑
j=0

uk−1−j
0 Ak⌊

δ
k ⌋+j

+

δ−k⌊ δ
k ⌋−1∑

j=0

uk−1−j
1 Ak⌊

δ
k ⌋+k+j +

k−1∑
j=k−(δ−k⌊ δ

k ⌋)
uj⌊ δ

k ⌋+3
Aj (15)

which, again is full row rank since u0 ̸= 0, hence V⌊ δ
k ⌋+3 is full row rank.

Analogously to the preceding case, if the degree of u(D) is greater or equal than⌊
δ
k

⌋
+ 2 we have that V2⌊ δ

k ⌋+3, . . . , V2⌊ δ
k ⌋+ℓ+3 are full row rank, and

rwt(V (D)) ≥ 2n

(⌊
δ

k

⌋
+ 2

)
.

If the degree of u(D) is smaller than
⌊
δ
k

⌋
+2, then by (14) we have that u(D) =

u0 + u1D with u0 ̸= 0 and u1 ̸= 0. In this case V⌊ δ
k ⌋+3+i = XB⌊ δ

k ⌋+3+i with

B⌊ δ
k ⌋+3+i =

k−1∑
j=0

uk−1−j
0 Ak(⌊

δ
k ⌋−i)+j +

k−1∑
j=0

uk−1−j
1 Ak(⌊

δ
k ⌋+1−i)+j

for i = 1, 2, . . . ,
⌊
δ
k

⌋
, which are full row rank. We also have that V2⌊ δ

k ⌋+4 =

XB2⌊ δ
k ⌋+4 with

B2⌊ δ
k ⌋+4 =

k−1∑
j=0

uk−1−j
1 Aj

which is also full rank. Consequently,

rwt(V (D)) =

2⌊ δ
k ⌋+4∑
i=0

= 2n

(⌊
δ

k

⌋
+ 2

)
.

Case 4: Finally, let us assume thatV⌊ δ
k ⌋+1 ̸= 0, V⌊ δ

k ⌋+2 ̸= 0 and that there exists a set

of integers 1 ≤ i1 < i2 < · · · < iR ≤
⌊
δ
k

⌋
+ 1 such that

V⌊ δ
k ⌋+2+i1

= V⌊ δ
k ⌋+2+i2

= · · · = V⌊ δ
k ⌋+2+iR

= 0.
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and V⌊ δ
k ⌋+2+j ̸= 0 for j ∈ {1, 2, . . . ,

⌊
δ
k

⌋
+ 1} \ {i1, i2, . . . , iR}.

Note that R ≤
⌊
δ
k

⌋
+ 1, therefore we have that

2⌊ δ
k ⌋+3∑

j=⌊ δ
k ⌋+3

rank(Vj) = n

(⌊
δ

k

⌋
+ 1−R

)
.

When we assume that V⌊ δ
k ⌋+2+iR

= 0, as a consequence of (10) we have that

u2iR+1 = −û0 ̸= 0 where û0 = u0

 0 1

...

1 0

 .
Thus it is easy to see that the degree ℓ of u(D) is such that ℓ ≥ 2iR+1 ≥ 2R+1
and therefore, the degree of V (D) = ψ(u(D)G(D)) is 2

⌊
δ
k

⌋
+ 3 + ℓ ≥ 2

⌊
δ
k

⌋
+

2R+4. Then the last R coefficients of V (D) are nonzero due to the same reasons
as in Theorem 4.1, and we obtain that

rwt(V (D)) ≥ 2n

(⌊
δ

k

⌋
+ 2

)
.

By proving these four cases we finally have that C is MRD.

The next example presents an MRD convolutional code that it is possible to build
using the construction proposed in Section 4.2.

Example 4.2. Consider the companion matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 ∈ F4×4
2

of the irreducible polynomial χ(λ) = λ4 + λ+ 1 ∈ F2[λ] and the full row rank matrix

X =

1 0 0 0
0 1 0 0
0 0 1 0

 ∈ F3×4
2 .

Let δ = 1 and k = 3 (note that δ = m− k and that k ∤ m).

The rank metric convolutional code with encoder G(D) = G0+G1D+G2D
2+G3D

3

with

G0 =

 ψ−1(X)
ψ−1(XA)
ψ−1(XA2)

 =

 1 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 1 1 0 0

 ,
17



G1 =

ψ−1(XA3)
ψ−1(X)
ψ−1(XA)

 =

 0 0 0 1 1 1 0 0 0 1 1 0
1 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1

 ,

G2 =

0 1

...

1 0

G1

=

 ψ−1(XA)
ψ−1(X)
ψ−1(XA3)

 =

 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 1 1 0

 ,
and

G3 =

0 1

...

1 0

G0 =

ψ−1(XA2)
ψ−1(XA)
ψ−1(X)



=

 0 0 1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0

 ,
is a (3× 4, 1, 9) MRD convolutional code.

In the case that k ∤ m, the construction presented in this subsection allows one
to obtain an (n×m, k, δ) MRD convolutional code for δ ≤

(
2
⌊
m
k

⌋
+ 1

)
k. The case

when k | m was presented in the previous subsection.
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