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Abstract: The control problem for the multivariable and nonlinear dynamics of robotic manipulators and
autonomous vehicles is solved with the use of a flatness-based control approach which is implemented in
successive loops. The state-space model of these robotic systems is separated into two subsystems, which
are connected between them in cascading loops. Each one of these subsystems can be viewed independently
as a differentially flat system and control about it can be performed with inversion of its dynamics as in the
case of input-output linearized flat systems. The state variables of the second subsystem become virtual
control inputs for the first subsystem. In turn exogenous control inputs are applied to the first subsystem.
The whole control method is implemented in two successive loops and its global stability properties are
also proven through Lyapunov stability analysis. The validity of the control method is confirmed in two
case studies: (a) control of a 3-DOF industrial rigid-link robotic manipulator, (ii) control of a 3-DOF
autonomous underwater vessel.

Keywords: robotic manipulators, autonomous underwater vessels, multivariable control, differential flat-
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1 Introduction

Differential flatness theory is currently a main direction in nonlinear control systems analysis and synthesis
[1-6]. A system is considered to be differentially flat if all its state variables and its control inputs can be
expressed as functions of one single algebraic variable which is the so-called flat output, and also as func-
tions of the flat-output’s derivatives [7-10]. The differential flatness property enables the transformation of
the nonlinear system’s dynamics in the linear canonical form [11-15]. The latter description is controllable
and observable thus allowing to treat effectively control and estimation problems [16-19]. In this paper, a
successive loops approach is developed for controller design in nonlinear dynamical systems which exhibit
the differential flatness property. The method makes use of the initial nonlinear model of the system and of
its decomposition into a set of nonlinear subsystems for which the differential flatness property holds [20-24].

The proposed control method is directly applicable to nonlinear systems of the so-called triangular form,
or to system’s which can be transformed into such a form [1],[2]. The state-space model of the nonlinear
system is decomposed into subsystems, which satisfy differential flatness properties. For each subsystem of
the state-space model a virtual control input is computed, capable of inverting the subsystem’s dynamics
and of eliminating the subsystem’s tracking error. The control input that is actually applied to the nonlin-
ear system is found from the last row of the state-space description. This control input incorporates in a
recursive manner all virtual control inputs which were computed for the individual subsystems associated

1

This is a previous version of the article published in International Journal of Systems Science. 2024, 55(5): 954-979. https://doi.org/10.1080/00207721.2023.2301040

https://doi.org/10.1080/00207721.2023.2301040


with the initial state-space equation. The control input that should be applied to the nonlinear system so
as to assure that all its state vector elements will converge to the desirable setpoints, is obtained at each
iteration of the control algorithm, by tracing the subsystems of the state-space model backwards.

The proposed method of flatness-based control in successive loops is applied to the control problem of
the multivariable and nonlinear dynamics of robotic manipulators and autonomous vehicles [1],[2]. The
state-space model of these robotic systems is separated into two subsystems, which are connected between
them in cascading loops. Each one of these subsystems can be viewed independently as a differentially
flat system and control about it can be performed with inversion of its dynamics as in the case of input-
output linearized flat systems. The state variables of the second subsystem become virtual control inputs
for the first subsystem. In turn exogenous control inputs are applied to the first subsystem. The whole
control method is implemented in two successive loops and its global stability properties are also proven
through Lyapunov stability analysis. The following application examples have confirmed the method’s fine
performance: (a) control of a 3-DOF industrial rigid-link robotic manipulator, (ii) control of a 3-DOF
autonomous underwater vessel.

The structure of the paper is as follows: in Section 2 the concept of flatness-based control in successive
loops and its use in nonlinear dynamical systems is analyzed. The method’s stability properties are an-
alyzed. In Section 3 the flatness-based control method is successive loops is applied to the model of the
3-DOF redundant planar robotic manipulator. In Section 4 the flatness-based control method in successive
loops is applied to the model of the 3-DOF autonomous underwater vessel. In Section 5 the performance
of the control method when used in the above noted nonlinear robotic systems is evaluated through simu-
lation experiments. Finally, in Section 6 concluding remarks are stated. Moreover, in an Appendix which
appears in the end of the manuscript a comparison between flatness-based control in successive loops and
backstepping control is provided.

2 Flatness-based control in successive loops for nonlinear dynamical systems

2.1 Decomposition of the state-space model into cascading differentially flat sub-
systems

The following nonlinear dynamical system is now examined:

ẋ = f(x) + g(x)u x∈Rm u∈Rq

y = h(x)
(1)

Moreover, it is considered that the system can be decomposed into n subsystems which have the so-called
triangular form :

ẋ1 = f1(x1) + g1(x1)x2
ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4
· · ·

ẋi = fi(x1, x2, · · · , xi) + gi(x1, x2, · · · , xi)xi+1

· · ·
ẋn−1 = fn−1(x1, x2, · · · , xn−1) + gn−1(x1, x2, · · · , xn−1)xn

ẋn = fn(x1, x2, · · · , xn) + gn(x1, x2, · · · , xn)u

(2)

The following virtual control inputs αi = xi+1 are defined for the i=th subsystem of the state-space model
of Eq. (2)
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ẋ1 = f1(x1) + g1(x1)α1

ẋ2 = f2(x1, x2) + g2(x1, x2)α2

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)α3

· · ·
ẋi = fi(x1, x2, · · · , xi) + gi(x1, x2, · · · , xi)αi

· · ·
ẋn−1 = fn−1(x1, x2, · · · , xn−1) + gn−1(x1, x2, · · · , xn−1)αn−1

ẋn = fn(x1, x2, · · · , xn) + gn(x1, x2, · · · , xn)u

(3)

The system of Eq. (3) is a differentially flat one. It is considered that y = x1 is the flat output of system.
It can be easily shown that each virtual control input αi = xi+1, i = 1, 2, · · · can be expressed as a function
of the flat output and its derivatives, since it holds

αi =
1

gi(x1,x2,··· ,xi)
(ẋi − f(x1, x2, · · · , xi)) (4)

For i = 1 one has

α1 = 1
g1(x1

(ẋ1 − f(x1) (5)

which means that α1 is a function of the flat output and its derivative. For i = 2 one has

α2 = 1
g2(x1,x2)

(ẋ2 − f2(x1, x2) (6)

which means that α2 = x3 is a function of the flat output y = x1 and its derivatives. Continuing in a
similar manner one has that αn−1 = xn and consequently αn = u is also a function of the flat output
y = x1 and its derivatives. According to the above, one has a nonlinear dynamical system in which, all
its state variables and the control input can be written as functions of the flat output and its derivatives.
Therefore, such a system is differentially flat.

Additionally, by considering each subsystem of the model of Eq. (3), one has a set of n subsystems of the
form

ẋi = fi(x1, x2, · · · , xi) + gi(x1, x2, · · · , xi)αi (7)

where each subsystem describes the dynamics of the single state variable xi. For each one of these sub-
systems one can consider the state variable xi as the flat output. Obviously, the virtual control input αi

is a function of this flat output and its derivatives. Therefore, each local subsystem is also differentially flat.

Next, one can compute the virtual inputs which are applied to each subsystem. For the first subsystem,
which is associated with the first row of Eq. (2), and by defining zi = xi − x∗i = x1 − αi−1, the virtual
control input is given by

α1 = x∗2 = 1
g1(x1)

(ẋ∗1 − f(x1)−K1
1 (x1 − x∗1)) ⇒

α1 = x∗2 = 1
g1(x1)

(ẋ∗1 − f(x1)−K1
1z1)

(8)

From the second row of Eq. (2), and using that z2 = x2 − x∗2 = x2 − α1 one has

α2 = x∗3 = 1
g2(x1,x2)

(ẋ∗2 − f2(x1, x2)−K2
1 (x2 − x∗2)) ⇒

α2 = x∗3 = 1
g2(x1,x2)

(α̇1 − f2(x1, x2)−K2
1z2)

(9)

From the third row of Eq. (2), and using that z3 = x3 − x∗3 = x3 − α2 one has
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α3 = x∗4 = 1
g3(x1,x2,x3)

(ẋ∗3 − f3(x1, x2, x3)−K3
1 (x3 − x∗3)) ⇒

α3 = x∗4 = 1
g3(x1,x2,x3)

(α̇2 − f3(x1, x2, x3)−K3
1z3)

(10)

Continuing in a similar manner and from the i-th row of the state-space description of the system given in
Eq. (2), and while also using that zi = xi − x∗i = xi − αi−1 one obtains

αi = x∗i+1 = 1
gi(x1,x2,··· ,xi)

(ẋ∗i − fi(x1, x2, · · · , xi)−Ki
1(xi − x∗i )) ⇒

αi = x∗i+1 = 1
gi(x1,x2,··· ,xi)

(α̇i−1 − fi(x1, x2, · · · , x3)−Ki
1zi)

(11)

Equivalently, from the n−1-th row of the state-space model of Eq. (2) and using that zn−1 = xn−1−x
∗

n−1 =
xn−1 − αn−2 one has

αn−1 = x∗n = 1
gn−1(x1,x2,··· ,xn−1)

(ẋ∗n−1 − fn−1(x1, x2, · · · , xn−1)−Kn−1
1 (xn−1 − x∗n−1)) ⇒

αn−1 = x∗n = 1
gn−1(x1,x2,··· ,xn−1)

(α̇n−2 − fn−1(x1, x2, · · · , xn−1)−Kn−1
1 zn−1)

(12)

Finally, from the n-th row of the state-space model of Eq. (2) and using that zn = xn − x∗n = xn − αn−1

one has

αn = u = 1
gn(x1,x2,··· ,xn)

(ẋ∗n − fn(x1, x2, · · · , xn)−Kn
1 (xn − x∗n)) ⇒

αn = u = 1
gn(x1,x2,··· ,xn)

(α̇n−1 − fn(x1, x2, · · · , xn)−Kn
1 zn)

(13)

The computation of the control input u that should be actually applied to the nonlinear system is per-
formed in a recursive manner by processing backwards the virtual control inputs described in Eq. (8) to
Eq. (13).

Thus, from the last subsystem of the state-space description the control input that is actually applied to
the nonlinear system is found. This control input contains recursively all virtual control inputs which were
computed for the individual subsystems associated with the state-space equation. Thus, by tracing the
rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain
the control input that should be applied to the nonlinear system so as to assure that all its state vector
elements will converge to the desirable setpoints.

2.2 Tracking error dynamics for flatness-based control in successive loops

By substituting Eq. (13) into the last row of the state space model of Eq. (2), and using the definition
xn − an−1 = zn, one obtains:

ẋn = ȧn−1 −Kn
1 (xn − αn−1)⇒

(ẋn − ȧn−1) +Kn
1 (xn − αn−1) = 0⇒

żn +Kn
1 zn = 0

(14)

By substituting Eq. (12) into the last row of the state space model of Eq. (2), and using the definition
xn−1 − an−2 = zn−1, one obtains:
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ẋn−1 = ȧn−2 −Kn−1
1 (xn−1 − αn−2)⇒

(ẋn−1 − ȧn−2) +Kn−1
1 (xn−1 − αn−2) = 0⇒

żn−1 +Kn−1
1 zn−1 = 0

(15)

By substituting Eq. (11) into the last row of the state space model of Eq. (2), and using the definition
xi − ai−1 = zi, one obtains:

ẋi = ȧi−1 −Kn−1
1 (xi − αi−1)⇒

(ẋi − ȧi−1) +Ki
1(xi − αi−1) = 0⇒

żi +Ki
1zi = 0

(16)

while continuing backwards and by substituting Eq. (9) into the second row of the state space model of
Eq. (2), and using the definition x2 − a1 = z2, one gets:

ẋ2 = ȧ1 −K2
1 (x2 − α1)⇒

(ẋ2 − ȧ1) +K2
1(x2 − α1) = 0⇒

ż2 +K2
1z2 = 0

(17)

Finally, by substituting Eq. (8) into the first row of the state space model of Eq. (2), one has:

ẋ1 = ẋ1 −K1
1 (x1 − xd1)⇒

(ẋ1 − ẋd1) +K1
1 (x1 − xd1) = 0⇒

ż1 +K1
1z1 = 0

(18)

Therefore, after the application of the feedback control law, the closed-loop dynamics becomes ż1+K
1
1z1 =

0, ż2 +K2
1z2 = 0, ż3 +K3

1z3 = 0, · · · , żi +Ki
1zi = 0, · · · , żn−1 +Kn−1

1 zn−1 = 0, żn +Kn
1 zn = 0.

In matrix form, the closed-loop dynamics is written as

























ż1
ż2
ż3
· · ·
żi
· · ·
żn−1

żn

























=

























−K1
1 0 0 · · · 0 · · · 0 0

0 −K2
1 0 · · · 0 · · · 0 0

0 0 −K3
1 · · · 0 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 0 · · · −Ki

1 · · · 0 0
· · · · · · · · · · · · · · ·

0 0 0 · · · 0 · · · −Kn−1
1 0

0 0 0 · · · 0 · · · 0 −Kn
1

















































z1
z2
z3
· · ·
zi
· · ·
zn−1

zn

























(19)

or equivalently

Ż = KZ (20)

By selecting the eigenvalues of matrix K to be in the left complex semiplane, one has that

limt→∞Z = 0n×1 (21)

which also implies that limt→∞x1 = xd1, limt→∞x2 = α1 = xd2 , limt→∞x3 = α2 = xd3, · · · , limt→∞xi =
αi−1 = xdi , · · · , limt→∞xn−1 = αn−2 = xdn−1, and limt→∞xn = αn−1 = xdn.

To prove asymptotic stability for the proposed control scheme the following Lyapunov function can be
defined

V =
∑N

i=1
1
2z

2
i

(22)

The time derivative of the aforementioned Lyapunov function is
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V̇ =
∑N

i=1ziżi⇒V̇ = −
∑N

i=1K
i
1z

2
i⇒V̇ < 0 (23)

By selecting the feedback control gains Ki
1, i = 1, · · · , n to be Ki

1 > 0, the asymptotic stability of the
control loop is assured.

3 Flatness-based control in successive loops for 3-DOF robotic manipulators

3.1 Dynamic model of the 3-DOF redundant robotic manipulators

The first test-case for the flatness-based control method in successive loops is concerned with redundant
planar robotic manipulators. Control of robotic manipulators with an end-effector that moves in a tasks
space with lower dimension than the robot’s degrees of freedom comes against the problem of redundancy
[25],[26]. Kinematic redundancy occurs when a manipulator has more degrees of freedom than the minimum
number required to execute a task. When a manipulator is redundant, it is anticipated that the inverse
kinematic problem admits multiple solutions. This means that for a constant position of the end-effector,
several configurations of the arm’s joints can be obtained [27-28]. Redundant robots achieve a versatile
motion in the joints space and dexterity in tasks execution [29]. They can find use in robotic surgery as
well as on several industrial tasks, because of offering multiple joints configurations that allow the end
effector to reach easier the targeted position in the tasks’ space [30].

Generally, redundancy specifies a robot’s internal movement without affecting the trajectory of the robot’s
end effector and permits the robot to react in a better way to the environment that surrounds. This in turn
signifies that the robot can achieve obstacles’ avoidance and can keep moderate the torques developed by
its actuators [31-33]. Control of redundant manipulators, which is also known as redundancy resolution,
is to find a control action in the joints’ space of a redundant robotic arm that leads to a desired motion
of the end-effector in the tasks’ space [34-36]. Several approaches have been proposed for the control of
redundant robots [38]. The primary objective is to achieve stability properties for the redundant manipu-
lator A related objective is the avoidance of singularities in the robot’s inverse kinematic problem [40]. So
far the nonlinear optimal control problem for redundant manipulators has been little studied.

The diagram of the 3-DOF redundant planar robotic manipulator is given in Fig. 1 The dynamic model
of the 3-DOF redundant robotic manipulator is given by [3]

M(θ)θ̈ + C(θ, θ̇) +G(θ) = τ (24)

where the robot’s inertia matrix is given by

M(θ) =





m11 m12 m13

m21 m22 m23

m31 m32 m33



 (25)

with m11 = 11 + a2 + a4 + 2a3cos(θ3) + 2a5cos(θ2 + θ3) + 2a6cos(θ3), m12 = m21 = a2 + a4cos(θ2) +
a5cos(θ2 + θ3) + 2a6cos(θ3), m13 = m31 = a4 + a5cos(θ2 + θ3) + 2a6cos(θ3), m22 = a2 + a4 + a6cos(θ3),
m23 = m32 = a4 + a6cos(θ3), m33 = a4.

where a1 = m1l
2
1 + I1+(m1+m2)l

2
1, a2 = I2+m2l

2
2, a3 = (m2l2+m3L2)L1, a4 = I3+m3l

2
3, a5 = m3l3L1,

a6 = m3L2l3.

with mi, i = 1, 2, 3 to be the masses of the links, Ii, i = 1, 2, 3 to be the moments of inertia of the links,
L,i = 1, 2, 3 to be the lengths of the links, and li, i = 1, 2, 3 to be the distances between the centers of the
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Figure 1: Diagram of the 3-DOF redundant planar robotic manipulator

links and their centers of gravity.

About the Coriolis and centrifugal forces matrix one has

C(θ, θ̇) =



























−a3(2θ̇1 + θ̇2)θ̇2sin(θ)2
−a5(2θ̇1 + θ̇2 + θ̇3)(θ̇2 + θ̇3)sin(θ2 + θ3)

−a6(2θ̇1 + 2θ̇2 + θ̇3)θ̇3sin(θ)3

−a3θ̇
2
1sin(θ2) + a5θ̇

2
1sin(θ2 + θ3)−

−a6(2θ̇1 + 2θ̇2 + θ̇3)θ̇3sin(θ)3

a5θ̇
2
1sin(θ2 + θ3) + a6(θ̇1 + θ̇2)

2sin(θ3)



























(26)

The gravitational forces matrix is taken to have zero elements because the manipulator is planar

G(θ) =





0
0
0



 (27)

Considering next the sub-determinants of the inertia matrix M , the inverse matrix of M is given by

M−1(θ) = 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33



 (28)

Thus, about the dynamic model of the redundant robotic manipulator one has:
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



θ̈1
θ̈2

θ̈3



 = 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33













C1

c2
C5



+





G1

G2

G3







+ 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33









τ1
τ2
τ3





(29)
After intermediate operations, the dynamic model of the redundant robotic manipulator is written as













θ̈1

θ̈2

θ̈3













=















−M11(C1+G1)+M21(C2+G2)−M31(C3+G3)
detM

M12(C1+G1)−M22(C2+G2)+M32(C3+G3)
detM

−M13(C1+G1)+M23(C2+G2)−M33(C3+G3)
detM















+













M11

detM
− M21

detM
M31

detM

− M12

detM
M22

detM
− M32

detM

M13

detM
− M23

detM
M33

detM

























τ1

τ2

τ3













(30)

Next, by defining the state vector x = [x1, x2, x3, x4, x5, x6]
T = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]

T one obtains the
following state-space description

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = −M11(C1+G1)+M21(C2+G2)−M31(C3+G3)
detM

+ M11

detM
τ1 −

M21

setM
τ2 +

M31

detM
τ3

ẋ5 = M12(C1+G1)−M22(C2+G2)+M33(C3+G3)
detM

− M12

detM
τ1 +

M22

detM
τ2 −

M32

detM
τ3

ẋ6 = −M13(C1+G1)+M23(C2+G2)−M33(C3+G3)
detM

+ M13

detM
τ1 −

M23

setM
τ2 +

M33

detM
τ3

(31)

Equivalently, one has the following state-space description in matrix form





































ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6





































=































x2
x4
x6

−M11(C1+G1)+M21(C2+G2)−M31(C3+G3)
detM

M12(C1+G1)−M22(C2+G2)+M33(C3+G3)
detM

−M13(C1+G1)+M23(C2+G2)−M33(C3+G3)
detM































+





































0 0 0

0 0 0

0 0 0

M11

detM
− M21

setM
M31

detM

− M12

detM
M22

detM
− M32

detM

M13

detM
− M23

setM
M33

detM









































u1
u2
u3



 (32)

and equivalently one has the state-space description

















ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

















=

















x2
x4
x6
f4(x)
f6(x)
f6(x)

















+

















0 0 0
0 0 0
0 0 0

g41(x) g42(x) g43(x)
g51(x) g52(x) g53(x)
g61(x) g62(x) g63(x)





















u1
u2
u3



 (33)
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Next, by denoting the state vectors x13 = [x1, x2, x3]
T , x46 = [x4, x5, x6]

T , as well as the vectors f33 =
[x4, x5, x6]

T , f46 = [f4(x), f5(x), f6(x)]
T and the matrices g13 = 03×3

g46 =





g41(x) g42(x) g43(x)
g51(x) g52(x) g53(x)
g61(x) g62(x) g63(x)



 (34)

the state-space description of the system comes into the following concise (and also triangular) form

(

ẋ13
ẋ46

)

=

(

x46
f46(x)

)

=

(

x46
f46(x)

)

+

(

03×3

g46(x46)

)

u (35)

Equivalently, one has that the dynamics of the redundant robotic manipulator consists of two sub-systems

ẋ13 = x46 (36)

ẋ46 = f46(x) + g46(x)u (37)

It can be proven that the redundant robotic manipulator is a differentially flat system with flat output
y = x13. Indeed, from Eq. (36) it holds that

x46 = ẋ13⇒x46 = ẏ (38)

Thus x46 is a differential function of the flat output y = x13. Moreover, from Eq. (37), and using that
f46(x) and g46(x), are functions of x31, x46 that is of y, ẏ one has

u = g46(x)
−1[ẋ46 − f46(x)]⇒u = g46(y, ẏ)

−1[ÿ − f46(y, ẏ)] (39)

Consequently, the control input u is also a differential function of the flat output y = x13. As a result of the
above, the redundant robotic manipulator which consists of the subsystems of Eq. (36) and Eq. (37) is a
differentially flat system. As a result of the above, the 3-DOF redundant robotic manipulator manipulator
is a differentially flat system.

3.2 Flatness-based controller in successive loops for redundant robotic manipulators

One can also demonstrated that the previously noted subsystems of Eq. (36) and Eq. (37) stand indepen-
dently for differentially flat systems.

For the subsystem of Eq. (36) x13 is the flat output and x46 is a virtual control input. As shown before,
x46 is a differential function of the flat output x13 and thus the subsystem of Eq. (36) is differentially flat.

For the subsystem of Eq. (37) x46 is the flat output. Besides, the state vectors elements of x13 are viewed
as coefficients and thus functions f46(x) and g46(x) depend only on the flat output x46. Furthermore, using
again Eq. (39) one has also that the control input u is also a differential function of the flat output x46.
Consequently, the subsystem of Eq. (37) is also differentially flat.

The control of the subsystems of Eq. (36) and Eq. (37) can be carried out following the design process of
controllers for input-output linearized differentially flat systems.

For the subsystem of Eq. (36), the setpoint is denoted as xd13 and the value of the virtual control input x46
which stabilizes the system’s dynamics is

x∗46 = ẋd13 −K1(x13 − xd13) (40)
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Matrix K1∈R
3×3 is a diagonal matrix, where its diagonal elements ki1 > 0, i = 1, 2, 3. For the subsystem

of Eq. (37), the control inputs vector u is selected so as to ensure that x46 will converge to the targeted
value x∗46 which makes the state vector of the subsystem of Eq. (36) converge to the associated setpoint.
Thus the setpoint for the subsystem of Eq. (37) is xd46 = x∗46 and control input u is given by

u = g46(x)
−1[ẋd46 − f46(x) −K2(x46 − xd46)] (41)

Matrix K2∈R
3×3 is a diagonal matrix, where its diagonal elements ki1 > 0, i = 1, 2, 3. By substituting Eq.

(40) into Eq. (36), as well as by substituting Eq. (41) into Eq. (37) one obtains the following closed-loop
system dynamics

(ẋ13 − ẋd13) +K1(x13 − xd13) = 0 (42)

(ẋ46 − ẋd46) +K2(x46 − xd46) = 0 (43)

Next, by defining the tracking error variables e13 = x13 − xd13 and e46 = x46 − xd46 one has that

ė13 +K1e13 = 0⇒limt→∞e13 = 0⇒limt→∞x13(t) = xd13(t)
ė46 +K2e46 = 0⇒limt→∞e46 = 0⇒limt→∞x46(t) = xd46(t)

(44)

Consequently, all state variables of the redundant robotic manipulator converge to the associated setpoints,
or limt→∞xi(t) = xdi (t), for i = 1, 2, · · · , 6.

The global stability properties of the control scheme can be also proven through Lyapunov analysis. The
following Lyapunov function is defined

V = 1
2 [e

T
13e13 + eT46e46] (45)

By differentiating the above Lyapunov function in time

V̇ = eT13ė13 + eT46ė46⇒V̇ = eT13(−K1e13 + eT46(−K2e46)

⇒V̇ = −K1e
T
13e13 −K2e

T
46e46⇒V̇ < 0

(46)

Thus it holds that V̇ is strictly negative ∀ e13 6=0, e46 6=0 while it becomes 0 only when e13 = 0, e46 = 0.
Consequently, the above given Lyapunov function V is a positive and strictly diminishing function which,
no matter what its initial value is, approaches asymptotically the equilibrium (eT13, e

T
46) = (01×3, 01×3). As

a result of the above, flatness-based control in successive loops for the 3-DOF redundant robotic manipu-
lator, ensures global asymptotic stability.

4 Flatness-based control in successive loops for 3-DOF autonomous underwa-

ter vessels

4.1 Dynamic model of the 3-DOF autonomous underwater vessel

The second test case for the flatness-based control approach in successive loops is concerned with Au-
tonomous Underwater Vessels (AUVs). The use of Autonomous Underwater Vessels (AUVs) is widely met
in defense and security tasks, in missions for seabed exploration and exploitation, in the construction of
underwater pipelines and in the birthing of underwater cables, as well in scientific exploration missions
[2]. The kinematic and dynamic model of these robotic systems is a strongly nonlinear one and receives
multiple control inputs in the form of thrust forces from the AUVs’ propulsion system [41-45]. Depending
on whether the number of degrees of freedom of such AUVs exceeds the number of their control inputs or
not, AUVs can be classified into underactuated and fully actuated ones [46 -49]. The control problem of
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AUVs is a non-trivial one and several nonlinear control methods have been proposed for it so far [50-54].
Precise path following under model uncertainty and external perturbations is the main objectives of these
control schemes [55-59]. Besides, minimization in energy consumption by the electric actuators of AUVs
is another significant research target. To this end, MPC and NMPC control methods can be considered
[60-63].

The diagram of the 3-DOF autonomous underwater vessel is shown in Fig. 2. The joint kinematic and
dynamic model of the 3-DOF autonomous underwater vessel is [3]

Figure 2: Diagram of the 3-DOF autonomous underwater vessel and of the associated body-fixed and
inertial reference frames

ẋ = ucos(ψ)− vsin(ψ)
ẏ = usin(ψ) + vcos(ψ)

ψ̇ = r

u̇ = Mv̇

Mu̇
v·r − Xu

Mu̇
u− Du

Mu̇
u|u|+ 1

Mu̇
Fu

v̇ = −Mu̇

Mv̇
u·r − Yu

Mv̇
v − Dv

Mv̇
v|v|+ 1

Mv̇
Fv

ṙ = Mu̇−Mv̇

Mṙ
u·v − Nr

Mr
r − Dr

Mr
r|r| + 1

Mr
Fr

(47)

By defining the state vector x = [x1, x2, x3, x4, x5, x6]
T = [x, y, ψ, u, v, r]T the kinematic-dynamic model of

the AUV can be written in the following matrix form:

















ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

















=



















x4cos(x3)− x5sin(x3)
x4sin(x3) + x5cos(x3)

x6
Mẋ5

Mu̇
x5·x6 −

Xu

Mu̇
x4 −

Du

Mu̇
x6|x6|

−Mu̇

Mv̇
u·r − Yu

Mv̇
x5 −

Dv

Mv̇
x5|x5|

Mu̇−Mv̇

Mṙ
x4·x5 −

Nr

Mr
x6 −

Dr

Mr
x6|x6|



















+

















0 0 0
0 0 0
0 0 0
1

Mu̇
0 0

0 1
Mv̇

0

0 0 1
Mṙ





















u1
u2
u3



 (48)

The following state variables are defined: x13 = [x1, x2, x3]
T , x46 = [x4, x5, x6]

T . The following vectors
and matrices are also defined
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f13 =





x4cos(x3)− x5sin(x3)
x4sin(x3) + x5cos(x3)

x6



 f46 =







Mẋ5

Mu̇
x5·x6 −

Xu

Mu̇
x4 −

Du

Mu̇
x6|x6|

−Mu̇

Mv̇
u·r − Yu

Mv̇
x5 −

Dv

Mv̇
x5|x5|

Mu̇−Mv̇

Mṙ
x4·x5 −

Nr

Mr
x6 −

Dr

Mr
x6|x6|






(49)

R13 =





cos(x3) −sin(x3) 0
sin(x3) cos(x3) 0

0 0 1



 g46 =





1
Mu̇

0 0

0 1
Mv̇

0

0 0 1
Mṙ



 (50)

Consequently, the kinematic-dynamic model of the AUV can be decomposed into two subsystems

ẋ13 = R13x46 (51)

ẋ46 = f46(x) + g46(x)u (52)

It can be proven that y = x13 is a flat output for the AUV’s model defined in the subsystems of Eq. (51)
and Eq. (52). From Eq. (51) one has

ẋ13 = R13x46⇒x46 = R−1
13 ẋ13

Rightarrowx46 = R−1
13 (y)ẏ

(53)

where R13 is a function of only x13, thus x46 is a differential function of the flat output y. From Eq. (52),
using that f46(x) and g46(x) are functions of x46 and finally of the flat output y and also that

u = g46(x)
−1[ẋ46 − f46(x)] (54)

this signifies that u is a differential function of the flat output y. Consequently, the system of Eq. (51) and
Eq. (52) is differentially flat.

4.2 Flatness-based controller in successive loops for 3-DOF AUVs

Besides, it can be demonstrated that each one of the independent subsystems of Eq. (51) and Eq. (52) is
differentially flat. In Eq. (51) x46 is considered to be a virtual control input and x13 is taken to be the flat
output of this subsystem. Thus,

x46 = R−1
13 ẋ13 (55)

which signifies that the virtual control input x46 is a differential function of the flat output x13. Thus the
subsystem of Eq. (51) is differentially flat.

In Eq. (52) x46 is considered to be a flat output and f46(x), g46(x) are functions of x46. By considering
that that f46(x) and g46(x) are functions of x46 and solving for control input u as in Eq. (54) it is demon-
strated again that u is a differential function of the flat output x46. Thus, the subsystem of Eq. (52) is
also differentially flat.

Next, one can solve the control problem for the individual subsystems of Eq. (51) and Eq. (52) using the
stages of controller for input-output linearized differentially flat systems. For, the subsystem of Eq. (51),
the value of the virtual control input x46 which stabilizes the system’s dynamics is

x∗46 = R−1
13 [ẋ

d
13 −K1(x13 − xd13)] (56)

where K1∈R
3×3 is a diagonal matrix with diagonal elements ki1 > 0, i = 1, 2, 3. For the subsystem of Eq.

(52), the targeted setpoint is the one that assures the stabilization and elimination of tracking error for
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the first subsystem, that is xd46 = x∗46. The value of the control input u which assures convergence of x46
to xd46 is

u = g−1
46 [ẋ

d
46 − f46(x)−K2(x46 − xd46)] (57)

By substituting Eq. (56) into Eq. (51), as well as Eq. (57) into Eq. (52) the following closed-loop system
dynamics is obtained for the above-noted subsystems

(ẋ13 − ẋd13) +K1(x13 − xd13) = 0
(ẋ46 − ẋd46) +K2(x46 − xd46) = 0

(58)

Moreover, by defining the tracking error variables e13 = x13 − xd13 and e46 = x46 − xd46 one has that

ė13 +K1e13 = 0⇒limt→∞e13 = 0⇒limt→∞x13(t) = xd13(t)
ė46 +K2e46 = 0⇒limt→∞e46 = 0⇒limt→∞x46(t) = xd46(t)

(59)

Consequently, all state variables of the 3-DOF AUV converge to the associated setpoints, or limt→∞xi(t) =
xdi (t), for i = 1, 2, · · · , 6.

The global stability properties of the control scheme can be also proven through Lyapunov analysis. The
following Lyapunov function is defined

V = 1
2 [e

T
13e13 + eT46e46] (60)

By differentiating the above Lyapunov function in time

V̇ = eT13ė13 + eT46ė46⇒V̇ = eT13(−K1e13 + eT46(−K2e46)

⇒V̇ = −K1e
T
13e13 −K2e

T
46e46⇒V̇ < 0

(61)

Thus it holds that V̇ is strictly negative ∀ e13 6=0, e46 6=0 while it becomes 0 only when e13 = 0, e46. Con-
sequently, the above given Lyapunov function V is a positive and strictly diminishing function which, no
matter what its initial value is, approaches asymptotically the equilibrium (eT13, e

T
46) = (01×3, 01×3). As a

result of the above, flatness-based control in successive loops for the 3-DOF AUV, ensures global asymp-
totic stability.

5 Simulation tests

5.1 Control of the 3-DOF redundant robotic manipulator

Results about the tracking accuracy and the speed of convergence to setpoints of the successive-loops
flatness-based control method, in the case of the 3-DOF redundant robotic manipulator, are shown in Fig.
3 to Fig. 10. It can be noticed, that under this control scheme one achieves fast and precise tracking of
reference setpoints for all state variables of the robotic system. It is noteworthy, that through the stages of
this method one solves also the setpoints definition problem for all state variables of the redundant robotic
manipulator. Actually, the selection of setpoints for state variables x1, x2 and x3 is unconstrained. On the
other side by defining state variables x4, x5 and x4 as virtual control inputs for the subsystem of x1, x2 and
x3 one can find the setpoints for x4, x5, x6 as functions of the setpoints for x1, x2, x3. The speed of conver-
gence of the state variables of the robotic system under flatness-based control implemented in successive
loops is dependent on the selection of values for the diagonal gain matricesK1, K2 of Eq. (40) and Eq. (41).
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Figure 3: Tracking of trajectory 1 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line)
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Figure 4: Tracking of trajectory 2 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line) (red line)
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Figure 5: Tracking of trajectory 3 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line) (red line)
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Figure 6: Tracking of trajectory 4 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and and Lyapunov function V (red line) (red line)
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Figure 7: Tracking of trajectory 5 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line) (red line)
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Figure 8: Tracking of trajectory 6 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line) (red line)
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Figure 9: Tracking of trajectory 7 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line) (red line)
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Figure 10: Tracking of trajectory 8 by the 3-DOF redundant robotic manipulator (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and Lyapunov function V (red line) (red line)
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5.2 Control of the 3-DOF autonomous underwater vessel

Results about the tracking accuracy and the speed of convergence to setpoints of the successive-loops
flatness-based control method, in the case of the 3-DOF autonomous underwater vessel, are shown in Fig.
11 to Fig. 18. It can be noticed again, that under this control scheme one achieves fast and precise tracking
of reference setpoints for all state variables of the autonomous underwater vessel. It is noteworthy, that
through the stages of this method one solves also the setpoints definition problem for all state variables of
the AUV. Actually, the selection of setpoints for state variables x1, x2 and x3 is unconstrained. On the
other side by defining state variables x4, x5 and x4 as virtual control inputs for the subsystem of x1, x2
and x3 one can find the setpoints for x4, x5, x6 as functions of the setpoints for x1, x2, x3. The speed
of convergence of the state variables of the autonomous underwater vessel under flatness-based control
implemented in successive loops is dependent on the selection of values for the diagonal gain matrices K1,
K2 of Eq. (56) and Eq. (57).

6 Conclusions

The paper has introduced and analyzed a new approach for the control of nonlinear dynamical systems,
based on differential flatness theory. The method is directly applicable to systems with a state-space model
in the so-called triangular form, or can be used in systems which can be transformed to the triangular form
after a change of variables. In the proposed controller design method each subsystem of the state-space
model of the nonlinear system is shown to be differentially flat, while the associated state variable is taken
to be the flat output. Next, a virtual control input is computed for each subsystem of the state-space
model. The virtual control input can invert the subsystem’s dynamics while also eliminating the subsys-
tem’s tracking error. The control input that is actually applied to the nonlinear system is computed from
the last subsystem of the state-space description. This control input contains recursively all virtual control
inputs which were found for the individual subsystems of the state-space equation. Thus, at each iteration
of the control algorithm and by tracing the subsystems of the state-space model backwards, one can finally
obtain the control input that should be applied to the nonlinear system so as to assure that all its state
vector elements will converge to the desirable setpoints.

As a case study, the control problem for the multivariable and nonlinear dynamics of robotic manipulators
and autonomous vehicles has been solved with the use of the flatness-based control approach which is
implemented in successive loops. The state-space model of these robotic systems is separated into two
subsystems, which are connected between them in cascading loops. Each one of these subsystems can be
viewed independently as a differentially flat system and control about it can be performed with inversion
of its dynamics as in the case of input-output linearized flat systems. The state variables of the second
subsystem become virtual control inputs for the first subsystem. In turn exogenous control inputs are
applied to the first subsystem. The whole control method is implemented in two successive loops and its
global stability properties are also proven through Lyapunov stability analysis. The fine performance of
the control method is confirmed in two case studies: (a) control of a 3-DOF redundant rigid-link robotic
manipulator, (ii) control of a 3-DOF autonomous underwater vessel.
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Figure 12: Tracking of trajectory 2 by the 3-DOF autonomous underwater vessel (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
control inputs u1 to u3 (blue lines) and position (xp, yp) of the AUV on the xy plane (blue line) vs desirable
position (red line)

19



0 20 40 60 80
−40

−20

0

20

40

time 

x
1

0 20 40 60 80
−40

−20

0

20

40

time 

x
2

0 20 40 60 80

−10

0

10

time 

x
3

0 20 40 60 80
−5

0

5

time 

x
4

0 20 40 60 80
−5

0

5

time 

x
5

0 20 40 60 80
−0.5

0

0.5

time 

x
6

0 20 40 60 80

−5000

0

5000

time (sec)

u
1

0 20 40 60 80

−5000

0

5000

time (sec)

u
2

0 20 40 60 80

−5000

0

5000

time (sec)

u
3

−40 −20 0 20 40
−40

−20

0

20

40

x

y

(a) (b)

Figure 13: Tracking of trajectory 3 by the 3-DOF autonomous underwater vessel (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
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Figure 14: Tracking of trajectory 4 by the 3-DOF autonomous underwater vessel (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
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Figure 15: Tracking of trajectory 5 by the 3-DOF autonomous underwater vessel (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
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Figure 16: Tracking of trajectory 6 by the 3-DOF autonomous underwater vessel (a) convergence of state
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Figure 17: Tracking of trajectory 7 by the 3-DOF autonomous underwater vessel (a) convergence of state
variables x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) variation of
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Figure 18: Tracking of trajectory 8 by the 3-DOF autonomous underwater vessel (a) convergence of state
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Appendix: Comparison between flatness-based control in successive loops and backstepping
control

Backstepping control can be applied to nonlinear dynamical systems in the triangular form. A backstepping
control law can be derived for systems of the form [1],[16]:

ẋ = f(x) + g(x)u
y = h(x)

(62)

for which holds

ẏ =
∂h(x)

∂x
ẋ =

∂h(x)

∂x
[f(x) + g(x)u] = Lfh(x) + Lgh(x)u (63)

where the Lie derivatives are defined as

Lfh(x) =
∂

∂x
h(x)f(x), Lgh(x) =

∂

∂x
h(x)g(x) (64)

The system of Eq. (62) can be written in cascading form

ẋ1 = f1(x1) + g1(x1)x2
ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4
· · · · · ·
· · · · · ·

˙xn1
= fn−1(x1, x2, · · · , xn−1) + gn−1(x1, x2, · · · , xn−1)xn
ẋn = fn(x1, x2, · · · , xn) + gn−1(x1, x2, · · · , xn)u

y = h(x1)

(65)

Then, the n-th order backstepping SISO controller is given by the recursive relation

α1 = 1
Lg1

h(x1)
[ẏd − Lf1h(x1)− k1z1 − n1(z1)z1]

α2 = 1
Lg2

h(x1,x2)
[α̇1 − f2(x1, x2)− Lg1h(x1)z1 − k2z2 − n2(z2)z2]

· · ·
αi =

1
Lgi

h(x1,x2,··· ,xi)
[α̇i−1 − fi(x1, · · · , xi)− gi−1(x1, x2, · · · , xi−1)zi−1 − kiz1 − ni(zi)zi]

· · ·
αn = 1

Lgnh(x1,x2,··· ,xn)
[α̇n−1 − fn(x1, · · · , xn)− gn−1(x1, x2, · · · , xn−2)zn−1 − knzn − nn(zn)zn]

u = αn

(66)

with z1 = h(x1) − yd and zi = xi − αi−1. Such a backstepping controller results in closed-loop dynamics
given by ż = −K(z)z + S(x)z, with

K(z) =









k1 + n1(z1) 0 · · · 0
0 k2 + n2(z2) · · · 0
· · · · · · · · · · · ·
0 0 · · · kn + nn(zn)









(67)
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S(x) =





















0 Lg1(x1) 0 · · · 0 0 0
−Lg1(x1) 0 g2(x1, x2) 0 0 0

0 −g2(x1, x2) 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 gn−1(x1, · · · , xn−1) 0
0 0 0 · · · −gn−1(x1, · · · , xn−1) 0 0
0 0 0 · · · 0 −gn(x1, · · · , xn 0)





















(68)
From the above it can be noticed that the so-called backstepping control, which is based on the recursive
computation of the control signal of the system after applying virtual control inputs to the individual rows
of the state-space model, can be completely substituted by the proposed flatness-based control method.
A backstepping control law can be derived for systems of the triangular form [1],[16]. However, as it was
previously analyzed, by showing that each row of the state-space model stands for a subsystem that satis-
fies differential flatness properties one can apply effectively to each subsystem the controller design stages
found in input-output linearizing flatness-based control methods.
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