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Abstract: The control problem for the multivariable and nonlinear dynamics of unmanned rotorcrafts is
treated with the use of a flatness-based control approach which is implemented in successive loops. The
state-space model of 6-DOF autonomous quadrotors is separated into two subsystems, which are con-
nected between them in cascading loops. Each one of these subsystems can be viewed independently as a
differentially flat system and control about it can be performed with inversion of its dynamics as in the
case of input-output linearized flat systems. The state variables of the second subsystem become virtual
control inputs for the first subsystem. In turn, exogenous control inputs are applied to the second subsys-
tem. The whole control method is implemented in two successive loops and its global stability properties
are also proven through Lyapunov stability analysis. The validity of the control method is further con-
firmed through simulation experiments showing precise tracking of 3D flight paths by the 6-DOF quadrotor.

Keywords: unmanned aerial vehicles, quadrotors, multivariable control, differential flatness properties,
flatness-based control in successive loops, global stability, Lyapunov analysis.

1 Introduction

Research on control of nonlinear dynamical systems has grown significantly during the last years, with
differential flatness theory to have a major contribution in the development of related results and solutions
for nontrivial control problems [1-8]. Differential flatness properties are confirmed for a dynamical system
if all its state variables and its control inputs can be expressed as functions of algebraic variables which
constitute the so-called flat outputs vector, and also as functions of the flat-output vector’s derivatives
[9-12]. The differential flatness property enables the transformation of the nonlinear system’s dynamics
in the linear canonical form [13-17]. The latter description is controllable and observable thus allowing
to treat effectively control and estimation problems [18-21]. In this paper, a successive loops approach
is developed for controller design in nonlinear dynamical systems which exhibit the differential flatness
property. The method makes use of the initial nonlinear model of the system and of its decomposition into
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a set of nonlinear subsystems for which the differential flatness property holds [29-30].

Usually, through successive differentiations of its flat outputs a differentially flat dynamical system can
be transformed through successive differentiations of its flat outputs into the input-output linearized form
and subsequently into the canonical Brunovsky form [22- 24] . Because quadrotors are underactuated sys-
tems, this linearization process through successive differentiations will also need to extend the state-space
model of these systems by applying the dynamic extension principle and by considering as additional state
variables some of the systems’ inputs and their time derivatives [24-28]. The canonical state-space descrip-
tion is both controllable and observable. Therefore one can argue that the control and state-estimation
problems for differentially flat systems can be easily solved once their transformation into the canonical
state-space description is completed. However, one has to perform also inverse transformations so as to
return to the initial nonlinear state-space model of the system. These transformations may come against
singularity (non-invertibility) issues. On the other side, in the article’s flatness-based control method in
successive loops there are no changes of state variables, no transformations of the state-space model of
the controlled system and back and forth transformations, and consequently the occurrence of singularities
should be excluded.

The present article treats the control and trajectories tracking problem for 6-DOF unmanned quadropters
with the use of a flatness-based control approach which is implemented in successive loops. This control
problem is nontrivial due to the strong nonlinear dynamics and the multivariable form that characterizes
the associated state-space description. The state-space model of the 6-DOF autonomous quadropters is
separated into two subsystems, which are connected between them in cascading loops. By proving that
differential flatness properties hold for each one of these subsystems it is confirmed that a stabilizing feed-
back controller can be designed for each one of them through inversion of their dynamics. The state vector
of the subsequent (i+1-th) subsystem becomes virtual control input to the preceding (i-th) subsystem.
Equivalently, the virtual control input of the preceding (i-th) subsystem becomes setpoint for the subse-
quent (i+1-th) subsystem. From the last subsystem one computes the real control inputs which should be
applied to this aerial drone by tracing backwards the virtual control inputs for all previous subsystems.
The global stability properties of the control scheme are proven through Lyapunov analysis. The method
is easy to implement since to stabilize the unmanned aerial vehicle it suffices to define for each one of its
subsystems a positive diagonal gain matrix.

The new solution of the motion control and trajectory tracking problem of 6-DOF unmanned quadrotors
is a meaningful result. Such a type of drones finds also ample use in several civilian, security and military
applications. The motion of the 6-DOF quadropter can be described using either an inertial reference
frame or a body-fixed frame [31-32]. In the inertial reference frame the quadrotor’s motion is defined by a
vector of three cartesian coordinates and by a vector of three Euler angles (rotation angles) of the drone
around the axes of the inertial reference system [33-34]. In the body-fixed frame the quadrotor’s motion
is defined by a vector of three linear velocities and by a vector of three angular velocities which express
rotation around the axes of the body-fixed reference system [35-36]. Transition from the description in the
inertial reference frame to the description in the body-fixed frame and inversely is performed with suitable
rotation matrices [37-38]. The dynamic model of the 6-DOF quadrotor is underactuated, which imposes an
additional level of difficulty in the solution of the associated control problem [39-41]. There are six-degrees
of freedom (out of which three describe translational motion and three describe rotational motion) while
the drone’s dynamic model receives only four control inputs (a lift force and three torques which define the
turn angles of the quadropter) [42-43]. The complete 6-DOF dynamic model of the quadrotor is a highly
nonlinear one and its control is usually performed with (i) global linearization control methods [44- 45], (ii)
local linearization control methods [46-48] and (iii) Lyapunov analysis-based methods [49-51]. The present
article demonstrates solution of the nonlinear control problem of 6-DOF unmanned quadrotors with the
use of flatness-based control implemented in successive loops.
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The structure of the article is as follows: In Section 2, the dynamic model of 6-DOF autonomous quadrotors
is analyzed. In Section 3, flatness-based control in successive loops is developed for the dynamic model of
6-DOF unmanned quadrotors. In Section 4, simulation tests are performed to further confirm the global
stability properties and the fine tracking performance of flatness-based control in successive loops for 6-
DOF unmanned quadrotors. Moreover, in Section 5, concluding remarks are stated.

2 Dynamic model of 6-DOF quadrotors

The considered problem is that of control of the quadrotor in a 6 degrees of freedom motion. The first
three degrees of freedom describe translational motion of the quadrotor in the xyz cartesian space, along
the x-axis, the y-axis and the z-axis. The rest three degrees of freedom describe rotational motion of the
quadrotor around the axes of the inertial reference frame. Considering as state variables (a) the x, y and
z-axis position of the UAV, (b) the rotation angles of the drone φ, θ and ψ around the axes of the inertial
reference frame, (c) the linear angular velocities of the UAV ẋ, ẏ and ż along the axes of inertial frame
and finally (d) the angular velocities of the UAV φ̇, θ̇, and ψ̇ around the axes of the inertial coordinates
system, the resulting state-space model is of dimension 12, while receiving only four control inputs. The
four control inputs of the quadrotor are a thrust force that can lift up the drone and torques generated by
the unequal turn speeds of its rotors that can change the position of the quadrotor’s center of gravity or
can change its orientation angles with respect to the axes of the inertial reference frame. The quadrotor’s
model is nonlinear and underactuated and the solution of the associated control problem is a nontrivial task.

The kinematic and dynamic model of the quadrotor can be described with the use of a body-fixed frame
and an inertial reference frame. The body-fixed frame is denoted as OXY Z and describes the position of
the quadrotor in the cartesian space ξ = [x, y, z]T , as well as the quadrotor’s attitude which is described
by the Euler angles vector η = [φ, θ, ψ]T (rotation angles around axes OX, OY and OZ respectively). The
body-fixed frame is denoted as OB1B2B3 and describes linear velocities VB = [u, v, w]T , as well as rotation
velocities ω = [p, q, r]T in this coordinates system [1], [2].

The linear velocities vector of the quadrotor in the inertial frame is denoted by VE = [ẋ, ẏ, ż]T and is
related with the velocities vector in the body-fixed frame VB = [u, v, w]T through the following equation
[1], [2]

VE = RVB (1)

where rotation matrix R is given by

R =





CψCθ CψSθSφ− SψCφ CψSθCφ+ SψSφ
SψCθ SψSθSφ+ CψCφ SψSθCφ− CψSφ
−Sθ CθSφ CθCφ



 (2)

where C = cos(·) and S = sin(·). The angular velocities of the quadrotor in the inertial frame η̇ = [φ̇, θ̇, ψ̇]T

and the angular velocities in the body-fixed frame ω = [p, q, r]T are connected through the relation

η̇ =W−1ω (3)

that is [1], [2]





φ̇

θ̇

ψ̇



 =





1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)









p
q
r



 (4)

The Euler-Lagrange equation for the quadropter is formulated as follows
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Figure 1: Inertial and body-fixed reference frames for the 6-DOF quadropter

d
dt
( ∂L
∂q̇i

)− ∂L
∂qi

=

(

fξ
τη

)

(5)

where the Lagrangian is defined as L(q, q̇) = ECtr
+ECrot

−Ep, ECtr
is the kinetic energy of the quadrotor

due to translational motion, ECrot
is the kinetic energy of the quadrotor due to rotational motion and Ep

is the total potential energy of the quadrotor due to lift. The generalized state vector is q = [ξT , ηT ]T∈R6,
τη∈R

3 is the torques vector that causes rotation round the axes of the body-fixed reference frame, and

fξ = Rf̂ + αT is the translational forces vector applied to the quadropter due to the main control input
U1, while αT = [Ax, Ay, Az]

T is the aerodynamic forces vector, defined along the axes of the inertial ref-

erence frame. Since the Lagrangian does not contain cross-coupling between the ξ̇ and the η̇ terms, the
Lagrange-Euler equations can be divided into translational and rotational dynamics.

Euler-Lagrange analysis for the qusdrotor
Parameter Definition

L(q, q̇) = ECtr
+ ECrot

− Ep Lagrangian of the quadrotor
ECtr

kinetic energy due to translational motion
ECrot

kinetic energy due to rotational motion
Ep total potential energy due to lift

q = [ξT , ηT ]T∈R6 generalized state vector
ξ ∈R3 Cartesian coordinates vector
η ∈R3 rotation angles vector in inertial frame
τη ∈ R3 torques’ vector

fξ = Rf̂ + αT translational forces vector
αT = [Ax, Ay, Az]

T aerodynamic forces vector

The translational dynamics of the quadropter is given by
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mξ̈ +mge3 = fξ (6)

where e3 = [0, 0, 1]T is the unit vector along the z axis of the inertial reference frame. Eq. (6) can be
written using the following three equations [1], [2]:

ẍ = 1

m
(cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))U1 +

Ax

m

ÿ = 1

m
(sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ))U1 +

Ay

m

z̈ = −g + 1

m
(cos(θ)cos(φ))U1 +

Az

m

(7)

where m is the quadropter’s mass and g is the gravitational acceleration. The rotational dynamics of the
quadropter is given by [1], [2]

M(η)η̈ + C(η, η̇)η̇ = τη (8)

where the inertia matrix M(η) is defined as

M(η) =





Ixx 0 −IxxSθ
0 IyyC

2φ+ IzzS
2φ (Iyy − Izz)CφSφCθ

−IxxSθ (Iyy − Izz)CφSφCθ IxxS
2θ + IyyS

2φC2θ + IzzC
2φC2θ



 (9)

and the Coriolis matrix is

C(η, η̇) =





c11 c12 c13
c21 c22 c23
c31 c32 c33



 (10)

where the elements of the matrix are

c11 = 0

c12 = (Iyy − Izz)(θ̇CφSφ+ ψ̇S2φCθ) + (Izz − Iyy)ψ̇C
2φCθ

c13 = (Izz − Iyy)ψ̇CφSφC
2θ

c21 = (Izz − Iyy)(θ̇CφSφ+ ψ̇S2φCθ) + (Iyy − Izz)ψ̇C
2φCθ + Ixxψ̇Cθ

c22 = (Izz − Iyy)φ̇CφSφ

c23 = −Ixxψ̇SθCθ + Iyyψ̇S
2φCθSθ + Izzψ̇C

2φSθCθ

c31 = (Iyy − Izz)ψ̇C
2θSφCφ− Ixxθ̇Cθ

c32 = (Izz − Iyy)(θ̇CφSφSθ + φ̇S2φCθ) + (Iyy − Izz)φ̇C
2φCθ + Ixxψ̇SθCθ−

−Iyyψ̇S
2φSθCθ − Izzψ̇C

2φSθCθ

c33 = (Iyy − Izz)φ̇CφSφC
2θ − Iyy θ̇S

2φCθSθ−

−Izz θ̇C
2φCθSθ + Ixxθ̇CθSθ

(11)

Thus, the mathematical model that describes the quadrotor’s rotational motion is given by [1], [2]

η̈ = −C(η, η̇)η̇ +M(η)−1τη (12)

In the relations describing the translational motion of the quadrotor, given in Eq. (7) one defines the
following control inputs:

v1 = 1

m
(cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))U1

v2 = 1

m
(sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ))U1

v3 = −g + 1

m
(cos(θ)cos(φ))U1

(13)

After intermediate algebraic operations one can confirm that the following relations hold

v21 + v22 + (v3 + g)2 = 1

m
U2
1⇒U1 = m·

√

v2
1
+ v2

2
+ (v3 + g)2 (14)
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Using the above definition of auxiliary control inputs, as well as the definition for aerodynamics coefficients
Ax = −Kxx, Ay = −Kyy, Az = −Kzz, the dynamics of the translational motion of the quadropter,
previously given in Eq. (7) are now written as

ẍ = −Kxx
m

+ v1
ÿ = −

Kyy

m
+ v2

z̈ = −Kzz
m

+ v3

(15)

or equivalently





ẍ
ÿ
z̈



 =





−Kx

m
0 0

0 −
Ky

m
0

0 0 −Kz

m









x
y
z



+





1 0 0
0 1 0
0 0 1









v1
v2
v3



 (16)

By denoting vectors xE = [x, y, z]T , vE = [ẋ, ẏ, ż]T , FE = [v1, v2, v3]
T , as well as by denoting matrices

KE = diag[−Kx

m
,−

Ky

m
,−Kz

m
], GE = I3×3 one has the following concise description for the translational

motion of the quadrotor

ẋE = VE
V̇E = KExE +GEFE

(17)

Moreover, in the equation about the rotational motion of the quadrotor which appears in Eq. (12) one
can use the vectors definition η̇ = ωE = [φ, θ, ψ]T , η̇ = [φ̇, θ̇, ψ̇]T , and can finally rewrite the rotational
dynamics of the UAV in the form

η̇ = ωE
ω̇E = −C(η, η̇)η̇ +M(η)−1τη

(18)

Next, by merging Eq. (17) and Eq. (18) one obtains the complete dynamic model of the quadrotor in the
form

ẋE = VE
η̇ = ωE

V̇E = KExE +GEFE
ω̇E = −C(η, η̇)η̇ +M(η)−1τη

(19)

Next, the state-vector of the quadrotor is defined as

x = [xE , η, VE , ωE ]
T⇒

x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T⇒
x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]

T

(20)

and the control inputs vector of this UAV is defined as

u = [FE , τη]
T⇒u = [v1, v2, v3, τφ, τθ, τψ]

T

⇒u = [u1, u2, u3, u4, u5, u6]
T (21)

Additionally, the dynamic model the quadrotor can be written in the form of two chained subsystems after
defining the state subvectors x1,6 = [x1, x2, x3, x4, x5, x6]

T and x7,12 = [x7, x8, x9, x10, x11, x12]
T as well as

the following subvectors and submatrices.

f1,6(x1,6) = 06×1 g1,6(x1,6) = I6×6 (22)

f7,12(x1,6, x7,12) =

(

KExE
−M−1(u)C((η, ωE)ωE

)

g7,12(x1,6, x7,12) =

(

GE 0
0 M−1(η)

)

(23)
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Using the above, the dynamics of the quadrotor can be written in the form of two chained subsystems

ẋ1,6 = f1,6(x1,6) + g1,6(x1,6x7,12)x7,12 (24)

ẋ7,12 = f7,12(x1,6, x7,12) + g7,12(x1,6, x7,12)u (25)

The dynamic model of the quadrotor is differentially flat with flat output vector Y = [x1, x2, x3, x4, x5, x6]
T =

x1,3. Indeed from Eq. (24)

x7,12 = g1,6(x1,6)
−1[ẋ1,6 − f1,6(x1,6)]

⇒x7,12 = hx7,12
(Y, Ẏ )

(26)

This signifies that x7,12 is a differential function of the flat outputs of the system Y . Moreover, from Eq.
(25) one solves for the control inputs vector u. This gives

u = g−1

7,12(x1,6, x7,12)[ẋ7,12 − f7,12(x1,6, x7,12)]

⇒v = hv(Y, Ẏ )
(27)

which signifies that u is a differential function of the flat outputs vector. Consequently, the dynamic model
of the quadrotor is differentially flat.

3 Flatness-based control in successive loops for 6-DOF quadropters

It will be proven that each one of the subsystems of Eq. (24) and Eq. (25) is differentially flat and that
stabilizing feedback control about them can be achieved by applying a dynamics inversion technique which
is commonly used in input-output linearized systems.

For the subsystem of Eq. (24) the flat outputs vector is taken to be Y1 = x1,6 while x7,12 is taken to
be a virtual control input, that is v̄1 = x7,12. Thus, solving Eq. (24) for v̄1 one obtains Eq. (26) which
signifies that v̄1 is a differential function of the flat outputs Y1. Consequently, Eq. (24) is a differentially
flat subsystem.

For the subsystem of Eq. (25) the flat outputs vector is taken to be Y2 = x7,12 while x1,6 is taken to be a
coefficients vector and u is the real control input. Thus, solving Eq. (25) for u one obtains Eq. (27) which
signifies that u is a differential function of the flat outputs Y2. Consequently, Eq. (25) is a differentially
flat subsystem.

In confirmation of the differential flatness properties of the subsystems of Eq. (24) and Eq. (25) one can
notice that these subsystems are in the input-output linearized form. Consequently, control and stabiliza-
tion about them can be achieved by applying common dynamics inversion techniques which have been used
for input-output linearized systems.

The setpoint for the subsystem of Eq. (24) is x∗1,6 and the stabilizing feedback control is taken to be

v̄1 = x∗
7,12 = g1,6(x1,6)

−1[x∗
1,6 − f(x1,6)−K1(x1,6 − x∗

1,6)] (28)

where K1 is a diagonal matrix K1∈R
6×6 with diagonal elements K1,ii > 0, i = 1, 2, · · · , 6. For the

subsystem of Eq. (25) the stabilizing feedback control is taken to be

u = g7,12(x1,6, x7,12)
−1[x∗7,12 − f7,12(x1,6, x7,12)−K2(x7,12 − x∗7,12)] (29)

where K2 is a diagonal matrix K2∈R
6×6 with diagonal elements K2,ii > 0, i = 1, 2, · · · , 6.
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By applying the control law of Eq. (28) into the subsystem of Eq. (24) and by defining the tracking error
variable e1,6 = x1,6 − x∗1,6 one obtains

ẋ1,6 = f1,6(x1,3) + g1,6(x1,6)g1,6(x1,6)
−1[x∗

1,6 − f(x1,6)−K1(x1,6 − x∗
1,6)]⇒

(ẋ1,6 − ẋ∗
1,6) +K1(x1,6 − x∗

1,6) = 0⇒ė1,6 +K1e1,6 = 0⇒
limt→∞e1,6(t) = 0⇒limt→∞x1,6(t) = x∗1,6

(30)

By applying the control law of Eq. (29) into the subsystem of Eq. (25) and by defining the tracking error
variable e7,12 = x7,12 − x∗

7,12 one obtains

ẋ7,12 = f7,12(x1,6, x7,12) + g7,12(x1,6, x7,12)g7,12(x1,6, x7,12)
−1[x∗

7,12 − f(x7,12)−K2(x7,12 − x∗
7,12)]⇒

(ẋ7,12 − ẋ∗7,12) +K2(x7,12 − x∗7,12) = 0⇒ė7,12 +K2e7,12 = 0⇒
limt→∞e7,12(t) = 0⇒limt→∞x7,12(t) = x∗

7,12

(31)
The global stability properties of the control method can be also proven through Lyapunov analysis. To
this end, the following Lyapunov function is defined

V = 1

2
[eT

1,6e1,6 + eT
7,12e7,12] (32)

It holds that V > 0 ∀ e1,6 6=0, e7,12 6=0 and V = 0 iff e1,6 = 0, e7,12 = 0. By differentiating in time the
Lyapunov function of Eq. (32) one obtains

V̇ = 1

2
[2eT1,6ė1,6 + 2eT7,12ė7,12] (33)

Moreover, by using the tracking error dynamics of Eq. (30) and Eq. (31) one obtains

V̇ = [eT1,6(−K2e1,6) + eT7,12(−K2e7,12)]⇒

V̇ = −eT
1,6K1e1,6 − eT

7,12K2e7,12⇒

V̇ < 0 ∀ e1,6 6=0, e7,12 6=0

(34)

Therefore, V is a strictly diminishing function which converges asymptotically to 0. Consequently, it holds
that limt→∞e1,6 = 0 and limt→∞e7,12 = 0.

An explicit demonstration of the exponential stabilization that is achieved by flatness-based control in
successive loops is given next. The Lyapunov function of the control loop is written as:

V = 1

2
[
∑6

i=1
e2i +

∑12

j=7
e2j ] (35)

where ei i = 1, · · · , 6 are the tracking errors for the state variables of the quadrotor associated with
translational motion and ej j = 7, · · · , 12 are the tracking errors for the state variables of the quadrotor
associated with rotational motion. Equivalently, the first-order time-derivative of the Lyapunov function
is written as

V̇ = −[
∑6

i=1
k1,ie

2

i +
∑12

j=7
k2,je

2

j ] (36)

where k1,i > 0 i = 1, · · · , 6 are the diagonal elements of gain matrix K1 and k2,j > 0 j = 7, · · · , 12 are
the diagonal elements of gain matrix K2. By denoting the minimum of the above-noted elements of the
feedback gain matrices as kmin, that is

kmin = min{k1,i : i = 1, · · · , 6 and k2,j : j = 7, · · · , 12} (37)

and using Eq. (36) one obtains that

V̇≤− kmin[
∑6

i=1
e2i +

∑12

j=7
e2j ]

⇒V̇≤− 2kminV⇒V̇ + 2kminV≤0
(38)
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From Eq. (38) one can demonstrate the exponential convergence of the Lyapunov function V to 0.

Remark 1 : The feedback control scheme, which is followed for the cascading subsystems that constitute
the dynamic model of 6-DOF quadrotor and which is based on inversion of the subsystems’ dynamics of
this aerial drone, is equally robust to sliding-mode control in which the switching control term has been
substituted by a saturation function. One can easily confirm this for the first-order i-th subsystem of the
form ẋi = fi(xi) + gi(xi)vi by defining the sliding surface si = ei = x1 − xdi and the associated sliding

mode controller vi = ĝi(x)
−1[ẋdi − f̂i(xi) −Kisgn(xi − xdi )] which after substituting the sgn(si) function

with the saturation sat(si) function becomes vi = ĝi(x)
−1[ẋdi − f̂i(xi) −Ki(xi − xdi )]. The latter relation

coincides with the flatness-based control in successive loops for the i-th subsystem under uncertainty (with

use of the estimated functions f̂i(x) and ĝi(x)) which is computed by the article’s control method. There-
fore, the proposed flatness-based control method in successive loops provides sufficient robustness margins
which enable the reliable and safe functioning of the 6-DOF quadrotor under reasonable levels of model
uncertainty or external perturbations.

4 Simulation tests

The flatness-based control method has been tested in different trajectory tracking scenarios for the au-
tonomous aerial vehicle, as shown in Fig. 2 to Fig. 9, so as to confirm further the global stability
properties of the control scheme that were previously proven through the article’s stability analysis and
to demonstrate the reliability of the new control method under variable operating conditions of the drone.
As it can be seen in the associated 3D plots of the drone’s helicoidal flight path under the proposed
flatness-based control method in successive loops, the quadrotor follows precisely the reference trajectory
and is capable of accomplishing complicated maneuvers in the 3D space. The reference trajectories in the
presented 3D diagrams have been generated by considering motion of the drone on circular or ellipsoidal
paths in the horizontal XY plane with simultaneous uplift motion along the Z axis under constant speed.
Each flight scenario has been obtained by assuming different dimensions of the circular or ellipsoidal paths
in the horizontal XY plane and different uplift velocity along the Z axis.

Indicative values about the parameters of the 6-DOF quadrotor UAV which have been used in the simulation
experiments are given below: m = 40kgr, g = 10m/sec2, Kx = 1.1, Ky = 1.1, Kz = 1.1, Ixx = 10.6kgr·m2,
Iyy = 10.6kgr·m2, Izz = 10.6kgr·m2, Ixy = 0.6kgr·m2, Ixz = 0.6kgr·m2, Iyz = 0.6kgr·m2. Results about
the tracking accuracy and the speed of convergence to setpoints of the successive-loops flatness-based
control method, in the case of the 6-DOF autonomous quadrotor, are shown in detail in Fig. 2 to Fig.
9. It can be noticed again, that under this control scheme one achieves fast and precise tracking of ref-
erence setpoints for all state variables of the dynamic model of the 6-DOF autonomous quadrotor. It
is noteworthy, that through the stages of this method one solves also the setpoints definition problem
for all state variables of the quadrotor. Actually, the selection of setpoints for state variables x1 to x6,
that is x∗1,6 = [x∗, y∗, z∗, φ∗, θ∗, ψ∗]T is unconstrained. On the other side by defining state variables x7
to x12 as virtual control inputs for the subsystem of state variables x1 to x6 one can find the setpoints
for x7 to x12, denoted as x∗7,12 as functions of the setpoints for x1 to x6. The speed of convergence of
the state variables of the 6-DOF autonomous quadrotor when using flatness-based control implemented in
successive loops is determined by the selection of values for the diagonal gain matricesK1∈R

6×6, K2∈R
6×6.

To elaborate on flatness-based control in successive loops for the 6-DOF UAV the following Tables are
given (i) Table II providing results about the accuracy of tracking of setpoints by the state variables of the
6-DOF UAV under an exact dynamic model, (ii) Table III providing results about the accuracy of tracking
of setpoints by the state variables of the 6-DOF UAV under a model that is subject to disturbances (for
instance change ∆α% in the parameter which is the drag-force coefficientKy, of the UAV’s dynamic model).
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Figure 2: Tracking of trajectory 1 by the 6-DOF autonomous quadrotor (a) convergence of state variables
x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) convergence of state
variables x7 to x12 to their reference setpoints (red line: setpoint, blue line: real value)
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Figure 3: Tracking of trajectory 1 by the 6-DOF autonomous quadrotor (a) variations of the thrust control
input u1 and of torque control inputs u2 to u4 (blue line), (b) tracking of reference trajectory (red line) by
the quadrotor’s position (blue line) in the XYZ cartesian space
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Figure 4: Tracking of trajectory 2 by the 6-DOF autonomous quadrotor (a) convergence of state variables
x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) convergence of state
variables x7 to x12 to their reference setpoints (red line: setpoint, blue line: real value)
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Figure 5: Tracking of trajectory 2 by the 6-DOF autonomous quadrotor (a) variations of the thrust control
input u1 and of torque control inputs u2 to u4 (blue line), (b) tracking of reference trajectory (red line) by
the quadrotor’s position (blue line) in the XYZ cartesian space
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Figure 6: Tracking of trajectory 3 by the 6-DOF autonomous quadrotor (a) convergence of state variables
x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) convergence of state
variables x7 to x12 to their reference setpoints (red line: setpoint, blue line: real value)
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Figure 7: Tracking of trajectory 3 by the 6-DOF autonomous quadrotor (a) variations of the thrust control
input u1 and of torque control inputs u2 to u4 (blue line), (b) tracking of reference trajectory (red line) by
the quadrotor’s position (blue line) in the XYZ cartesian space
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Figure 8: Tracking of trajectory 4 by the 6-DOF autonomous quadrotor (a) convergence of state variables
x1 to x6 to their reference setpoints (red line: setpoint, blue line: real value), (b) convergence of state
variables x7 to x12 to their reference setpoints (red line: setpoint, blue line: real value)
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Figure 9: Tracking of trajectory 4 by the 6-DOF autonomous quadrotor (a) variations of the thrust control
input u1 and of torque control inputs u2 to u4 (blue line), (b) tracking of reference trajectory (red line) by
the quadrotor’s position (blue line) in the XYZ cartesian space
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Table II
Tracking RMSE ×10−3 for the 6-DOF quadrotor UAV in the disturbance-free case

RMSEx1
RMSEx2

RMSEx3
RMSEx4

RMSEx5
RMSEx6

RMSEx7
RMSEx8

test1 0.1303 0.1747 0.0001 0.0001 0.0001 0.0001 0.1058 0.0851
test2 0.2860 0.2639 0.0001 0.0001 0.0001 0.0001 0.2453 0.3163
test3 0.0931 0.4013 0.0001 0.0001 0.0001 0.0001 0.0756 0.5547
test4 0.1747 0.0745 0.0001 0.0001 0.0001 0.0001 0.0951 0.0604
test5 0.3471 0.3010 0.0001 0.0001 0.0001 0.0001 0.3248 0.4160
test6 0.1889 0.1248 0.0001 0.0001 0.0001 0.0001 0.1512 0.0680
test7 0.3140 0.1276 0.0001 0.0005 0.0045 0.0007 0.2782 0.0353
test8 0.2258 0.0749 0.0001 0.0026 0.0004 0.0001 0.1745 0.0408

Table III
Tracking RMSE ×10−3 for the 6-DOF quadrotor UAV in the case of disturbances

∆a% RMSEx1
RMSEx2

RMSEx3
RMSEx4

RMSEx5
RMSEx6

RMSEx7
RMSEx8

0% 0.1889 0.1248 0.0001 0.0001 0.0001 0.0001 0.1512 0.1680
10% 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000 1.3000
20% 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.2000 2.6000
30% 0.2000 0.4000 0.1000 0.1000 0.1000 0.1000 0.2000 4.0000
40% 0.2000 0.5000 0.1000 0.1000 0.1000 0.1000 0.2000 5.3000
50% 0.2000 0.7000 0.1000 0.1000 0.1000 0.1000 0.2000 6.6000
60% 0.2000 0.9000 0.1000 0.1000 0.1000 0.1000 0.2000 8.0000

The concept of flatness-based control in successive loops is clearly analyzed in the article. The state-space
model of the controlled system, being in the triangular (backstepping integral) form, is decomposed into
a chain of subsystems which are connected in a cascading form, that is the state vector of the (i + 1)-th
subsystem becomes virtual control inputs vector for the i-th subsystem. Equivalently, the value of the
virtual control inputs vector which stabilizes the i-th subsystem becomes setpoint for the state vector of
the (i + 1)-th subsystem. For each subsystem differential flatness properties are proven, signifying that
it can be written in the input-output linearized form and the stabilizing feedback control about it can
be designed by inverting its dynamics. The global stability properties of this control scheme are proven
analytically through the equations that give the tracking error dynamics of this system. They are also
proven through Lyapunov stability analysis.

The presented flatness-based control method in successive loops for 6-DOF quadrotor UAVs is based on an
exact linearization procedure of the dynamics of the controlled system without being subjected to the flaws
of global linearization procedures, that is the need to perform changes of state variables and complicated
transformations of state-space descriptions. Therefore, comparing to global linearization-based control ap-
proaches, for instance (i) Lie algebra-based control which requires the extended computations of the so
called Lie-derivatives of the state-space model of the system and (ii) typical implementations of flatness-
based control which require successive differentiations of the flat outputs of the system so as to arrive at an
input-output linearized form or at canonical Brunovsky’s forms, the article’s flatness-based control method
in successive loops is applied directly on the initial nonlinear state-space model of the system and does
not require any state-space model transformations. Additionally, in comparison to control methods which
use approximate linearization of the state-space model of the controlled system, as for instance methods of
multi-model fuzzy control methods that linearize locally the controlled system around operating points and
compute controllers associated with the local linear models, the article’s approach does not introduce any
modelling errors and does not have to compensate for model uncertainty induced by the linearization pro-
cess. It is also noted that the article’s flatness-based control method in successive loops is of proven global
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stability and of associated robustness margins, which is not the case for other popular control schemes for
industrial systems such as PID control and Nonlinear Model Predictive Control. Actually, PID control
is mostly relying on an empirical selection of the feedback gains of the controller so as to achieve satis-
factory performance around a specific operating point. Changes of the operating conditions or exogenous
perturbations can destabilize PID control loops. Furthermore, in NMPC methods the convergence of the
iterative search for an optimum is dependent also on empirical selection of controller parameters and on
initialization (multiple shooting methods) while also lacking a global stability proof.

Remark 2 : The proposed flatness-based control method in successive loops has good potential for use at
the industrial scale and in a wide class of robotic systems. This control method can be used in all robotic
systems which can be written in the triangular (strict-feedback) state-space form after decomposing their
initial state-space description into a series of chained subsystems. Among various application domains
one can note several types of robotic manipulators, such as multi-DOF robotic arms with rigid links and
electric, electro-hydraulic or electro-pneumatic actuators, robotic manipulators with flexible joints, special
types of robots such as SCARA robots, parallel robots, redundant robotic manipulators and gantry cranes.
Besides, one can note several types of autonomous vehicles in which the flatness-based control method
in successive loops is applicable. These include, autonomous ground vehicles such as four-wheel car-like
vehicles and three-wheel omnidirectional robots, unmanned aerial vehicles such as quadrotors, tilt-rotor
UAVs and octocopters, aerospace systems such as autonomous reentry vehicles and satellites, autonomous
underwater vessels such as 3-DOF submersible autonomous robots and 6-DOF submarines. The flatness-
based control method in successive loops is characterized by the avoidance of complicated state-space model
transformation and simplicity in the computation of the stabilizing feedback control gains which take the
form of some positive diagonal matrices.

Remark 3 : One can certainly consider a state estimation-based approach for controlling the 6-DOF au-
tonomous quadrotor in which the flatness-based controller in successive loops stabilizes the UAV and makes
it track precisely the designated flight paths after using feedback of the estimated state vector of the drone
which is obtained with the use of a nonlinear filtering technique.The nonlinear H-infinity Kalman Filter is
a robust-to-noise state estimator which can be used for this purpose. This filter is based on linearization of
the drone’s dynamic model through the computation of the associated Jacobian matrices. This lineariza-
tion takes place at each sampling instant around a time-varying setpoint which is defined by the present
value of the system’s state vector and by the last sampled value of the control inputs vector.

Remark 4 : The so-called backstepping control, which is based on the recursive computation of the control
signal of the system after applying virtual control inputs to the individual rows of the state-space model,
can be completely substituted by the proposed flatness-based control method. A backstepping control law
can be derived for systems of the triangular form. However, as it was previously analyzed, by showing
that each row of the state-space model stands for a subsystem that satisfies differential flatness properties
one can apply effectively to each subsystem the controller design stages found in input-output linearizing
flatness-based control methods.

5 Conclusions

The article has analyzed a novel solution to the problem of nonlinear control of 6-DOF autonomous quadro-
tors, without the need to apply changes of state variables (diffeomorphisms) and complicated state-space
transformations. The new solution is a flatness-based control approach implemented in successive loops.
The proposed control method in successive loops can be used in all autonomous aerial vehicles which
have a state-space model in the strict feedback (backstepping integral) form or to systems which can be
transformed to such a form. The method can be applied through the same implementation stages to
more types of aerial drones, such as several types of rotorcrafts, fixed-wing aircrafts and helicopters. So
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far the flatness-based control method in successive loops has been tested in autonomous quadrotors and
octocopters, fixed-wing VTOLs, and tilt-rotor UAVs.

In flatness-based control in successive loops the dynamic model of the nonlinear system is separated into
cascading subsystems which satisfy differential flatness properties. For each subsystem of the state-space
model a virtual control input is defined, capable of inverting the subsystem’s dynamics and of eliminating
the subsystem’s tracking error. The control input which is actually applied to the initial nonlinear system
is obtained from the last row of the state-space description. This control input incorporates in a recursive
manner all virtual control inputs which were computed from the individual subsystems included in the ini-
tial state-space equation. The global stability properties of the new control method have been analytically
proven with the use Lyapunov stability analysis, while exponential convergence has been also confirmed.

Statement: This research work has been partially supported by Grant Ref. 301022 ”Nonlinear optimal

and flatness-based control methods for complex dynamical systems” of the Unit of Industrial Automation
of the Industrial Systems Institute.
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[8] Villagra J., d’Andrea-Novel B., Mounier H. and Pengov M., 2007, ”Flatness-based vehicle steering
control strategy with SDRE feedback gains tuned via a sensitivity approach”, IEEE Transactions on
Control Systems Technology, 15, pp. 554-565.

[9] Bououden S., Boutat D., Zheng G., Barbot J.P. and Kratz F., 2011, ”A triangular canonical form
for a class of 0-flat nonlinear systems”, International Journal of Control, Taylor and Francis, 84(2),
pp. 261-269.

[10] Menhour L., d’Andre’a-Novel B., Fliess M. and Mounier H., 2014, ”Coupled nonlinear vehicle control:
Flatness-based setting with algebraic estimation techniques”, Control Engineering Practice, Elsevier,
22, pp. 135–146.

[11] Nicolau F., Respondek W. and Barbot J.P, 2022, ”How to minimally modify a dynamical system
when constructing flat inputs”, Internattional Journal of Robust and Nonlinear Control, 31(18), pp.
9538-9561, J. Wiley.

16



[12] Letelier C. and Barbot J.P., 2021, ”Optimal flatness placement of sensors and actuators for controlling
chaotic systemsm Chaos”, AIP Publications, 31(10), article No 103114.

[13] Sira-Ramirez H. and Agrawal S., 2004, ”Differentially Flat Systems”, Marcel Dekker, New York.
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