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Abstract: In the presence of different nucleophilic Knoevenagel competitors, cyclic and acyclic
ketones have been shown to undergo highly chemoselective aldol reactions with aldehydes. In doing
so, the substrate breadth for this emerging methodology has been significantly broadened. The
method is also no longer beholden to proline-based catalyst templates, e.g., commercially available
O-t-Bu-L-threonine is advantageous for acyclic ketones. The key insight was to exploit water-based
mediums under conventional (in-water) and non-conventional (deep eutectic solvents) conditions.
With few exceptions, high aldol-to-Knoevenagel chemoselectivity (>10:1) and good product profiles
(yield, dr, and ee) were observed, but only in DESs (deep eutectic solvents) in conjunction with ball
milling did short reaction times occur.

Keywords: organic synthesis; green chemistry; organocatalysis; in-water conditions; deep eutectic
solvents; aldol reaction; Knoevenagel reaction

1. Introduction

Asymmetric organocatalysis is an incredibly appealing sustainable approach for the
synthesis of enantiomerically pure compounds using chiral organocatalysts without the
need for transition metals or enzymes [1-4]. The chiral organocatalysts used in these
reactions are typically derived from natural products or designed through rational design
approaches. Various methodologies have been explored to enhance the sustainability
of organocatalytic processes. One such approach involves the use of alternative and
environmentally friendly solvents, which helps reduce waste formation typically associated
with volatile organic compounds (VOCs) used as reaction media [5,6]. Deep eutectic
solvents (DESs) have lately gained attention as highly promising sustainable solvents for
organic transformations [7-9]. These alternative solvents share characteristics with ionic
liquids, such as low vapor pressure and non-flammability. However, they are not only
cost-effective and easy to recycle but also have a minimal ecological impact and are simple
to synthesize. Despite the numerous advantages of DESs and the significant increase in
their utilization in asymmetric organocatalysis in recent years [10-12], their application in
asymmetric organocatalyzed reactions has remained relatively limited to the typical aldol,
Michael, and a-functionalization of 1,3-dicarbonyl compounds. Here, we show DESs can
advantageously influence chemoselectivity.

Aldol and Knoevenagel condensation reactions share aldehydes as common elec-
trophiles (Scheme 1). Knoevenagel pronucleophiles, most often methylene units flanked
by two electron withdrawing groups (EWG), can be converted to their nucleophilic forms
under acidic, neutral, or basic conditions [13,14]. Furthermore, their significantly lower
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pK; values, as compared to ketones, allow them to chemoselectively undergo Knoevenagel
reactions in the presence of ketones [15-17]. Further supportive evidence of the greater
reactivity of Knoevenagel versus aldol (ketone) nucleophiles comes from the literature
reports on the amino acid catalyzed variants. For example, the reaction of cyclohexanone
or acetylacetone with benzaldehyde, under similar reaction conditions, always show Kno-
evenagel [18,19] reactions with significantly higher rates of reaction as compared to the
corresponding aldol [20-22] reactions.

aldol products Knoevenagel products
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Scheme 1. Chemoselective switch: aldol/Knoevenagel competition reactions with aldol selectivity.

To enable a chemoselective amino-acid-catalyzed aldol reaction in the presence of a
Knoevenagel nucleophile, off-cycle equilibria must be suppressed, e.g., beginning with
catalyst deprotonation of or catalyst enamine formation with the Knoevenagel nucleophile.
We recently reported [23] that employment of a water phase (in-water reactions condi-
tions [24]) suppresses rate determining Knoevenagel intermediate accumulation, and in
turn allowed a chemoselective switch wherein enantioselective aldol reactions occurred.
It was further noted that the presence of water alone was not sufficient. For example, a
monophasic solvent system containing water, an organic solvent, reactants, and the catalyst,
only resulted in non-productive mixtures of aldol and Knoevenagel products [23]. A new
chemoselectivity had been established, but the demonstrated substrate scope was narrow
(Figure 1).

n=1or2

o)
o O
n 0
0]

Figure 1. Previously studied substrates enabling chemoselective aldol versus Knoevenagel reactions.

In this study, we present the chemo- and enantioselective organocatalyzed aldol
reaction between a wide variety of ketones and aldehydes in the presence of Knoevenagel
nucleophiles using water or ternary aqueous deep eutectic solvent reaction mediums. Our
study not only broadens the ketone (aldol) and Knoevenagel pronucleophile scope, but
importantly demonstrates how mechanochemical conditions in conjunction with deep
eutectic solvent mixtures can provide dramatically shorter reaction times. Simultaneously,
regio-, diastereo-, and enantioselective controls have been imparted on the aldol products.
Additionally, we have conducted a comparative analysis of the outcomes obtained in deep
eutectic solvents with those using in-water conditions.

2. Discussion and Results

Competition reactions are ideally suited for probing the chemoselective challenge at
hand. To achieve that, we employed equimolar quantities of an aldol and Knoevenagel
nucleophile, each competing for the limiting reactant, an aldehyde (Scheme 1), under amino
acid catalysis (Figure 2). We began our study with our previously reported in-water aldol
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reaction conditions, which permit high aldol product stereoselectivity [23,24]. However,
the optimal equivalents of water were not rigorously investigated, and we chose the com-
petition reaction of cyclohexanone and acetylacetone for 4-(trifluoromethyl)benzaldehyde
(Scheme 2) to determine this. The data (Table 1, entries 1-5) shows that as little as 3.0 equiv
of water are sufficient, but we chose 15 equivalents of water for our standard protocol
because it allowed more consistent and effective stirring. To further highlight the critical
role of a water phase, the same reaction conditions were applied (Table 1, footnote a) albeit
in dry DMSO-dg (0.50 M, no added water)), but reaction conversion was held below 10%
after 36 h. However, using 30 mol% of catalyst 1 in dry DMSO-d¢ (0.70 M, no added water),
the reaction proceeded to give >95% conversion with high Knoevenagel chemoselectivity
(aldol/Knoevenagel = 1:17) based on in situ IH NMR measurement (For further details, see
Section S9 of the Supplementary Materials).

TBDPSO, BuO O BuO O

o OH OH
N
H OH NHZ NHZ
Hayashi popularized (1) O-tBu-L-threonine (2) O-tBu-L-serine (3)

Figure 2. Investigated amino acid catalysts.
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(Figure 2) (Table 1)
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Scheme 2. Benchmark aldol/Knoevenagel competition reaction.

Table 1. Water volume: effect on chemoselectivity and stereoselectivity (Scheme 2) 2.

Entry H,0P" Chemoselectivity Yield(%) 4 dr ee
(equiv) 4/5¢ (anti-&syn-4) (anti-/syn-4) (anti-4)
1 0 8:1 78 5:1 93
2 3.0 14:1 83 >19:1 98
3 7.5 14:1 78 >19:1 99
4 15.0 13:1 84 >19:1 98
5 30.0 15:1 79 >19:1 98
6 15.0¢ 13:1 87 13:1 98
7f 15.0 7:1 78 14:1 98

@ Standard reaction conditions: cyclohexanone (2.25 mmol, 1.5 equiv), acetylacetone (2.25 mmol, 1.5 equiv),
4-(trifluoromethyl)benzaldehyde (1.5 mmol, 1.0 equiv (limiting reactant)), catalyst 1 (2.5 mol%), 40 h. ® 3.0 equiv
(4.5 mmol, 81.1 uL), 7.5 equiv (11.25 mmol, 203 uL), 15 equiv (22.5 mmol, 405 pL), and 30 equiv (45 equiv, 811 uL).
¢ Accurate chemoselectivity values were only achieved (:HH NMR) when the entire crude reaction was dissolved
in CDCl;. 4 After silica gel chromatography. © Distilled water was replaced with brine. f Double the equiv of
acetylacetone (3.0 equiv, 4.5 mmol) were used.
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Physically, the employed in-water reaction conditions are heterogeneous, i.e., the
added water is one phase while the reactants and catalyst constitute a concentrated organic
phase. However, this fact raises a concern if the high chemoselectivity occurred due to
the greater water solubility of the Knoevenagel versus aldol nucleophile. The chosen
reaction (Scheme 2) uniquely addresses this hypothesis for multiple reasons which are
now addressed. First, all reactants are liquids and this removes uncertainties arising
from a solid providing inconsistent results due to non-uniform solubilization, e.g., due
to particle size, conglomeration of solids, rates of stirring, efc. Second, the Knoevenagel
nucleophile (acetylacetone solubility: 17.1 g/100 mL H,O) is approximately twice as soluble
in water as the aldol nucleophile (cyclohexanone solubility: 8.8 g/100 mL H,O). Despite
this, the aldol/Knoevenagel chemoselectivity was consistent when comparing the use
of 3.0 versus 15 equiv of water (Table 1, entries 2 (14:1) and 4 (13:1)). However, with no
intentionally added water (note: enamine formation produces water during the reaction),
the chemoselectivity decreased to 8:1 (Table 1, entry 1) and when 30 equiv of water were
employed, the chemoselectivity was observed to be 15:1 (Table 1, entry 5).

To further examine the role of substrate solubility on chemoselectivity, water was replaced
with brine (Table 1, entry 6). Interestingly, the chemoselectivity (13:1) was unchanged from
the optimized protocol (entry 4) albeit with decreased aldol product dr. Finally, our optimized
reaction conditions (Table 1, entry 4) were modified such that twice as much acetylacetone
was used. This decreased the chemoselectivity to 7:1 (Table 1, entry 7), but the effect was not
dramatic and provides further evidence for the strong role of a water phase in suppressing
Knoevenagel reactions. In summary, for this reaction (Scheme 2), the greater water solubility of
the Knoevenagel versus aldol nucleophile had a non-discernable effect on the chemoselectivity.
Of further importance to note, where data could be located, all other Knoevenagel nucleophiles
studied here are less soluble in water than cyclohexanone (see Supplementary Materials,
Section S4: water solubility data for aldol and Knoevenagel nucleophiles).

With the reliability of our competition reaction established, we first investigated a variety
of competition reactions (Scheme 1) using the in-water reaction conditions (Tables 2 and 3).
Successful outcomes were noted when applying the Hayashi popularized catalyst 1 to
cyclic ketones (Table 2, all entries and Table 3, entry 1) while O-t-Bu-L-threonine (2) was
superior to O-t-Bu-L-serine (3) and optimal for the acyclic substrate: TBS-hydroxyacetone
(Table 3, entries 2-4).

Two categories of Knoevenagel competitors were examined: (i) classical: acetylace-
tone, diethylmalonate, and methanesulfonylacetone, and (ii) non-classical: chloroace-
tone and ethyl-2-phenylacetate. In addition, an aldol competitor was also examined:
4-nitroacetophenone (Table 2, entry 9). Acetylacetone is a high value Knoevenagel nucle-
ophile to assess because it has the lowest pK; value from those examined. In the event, those
competition reactions provided good to high yield, dr and ee for the aldol products (Tables 2
and 3). Notable exceptions were the competition reactions with 4-methylcyclohexanone
(Table 2, entry 10), cyclopentanone (Table 2, entry 11), and TBS-hydroxyacetone (Table 3,
entry 4). The first is a challenging ketone aldol substrate [24,25] and a single stereoisomer,
albeit from eight possible stereoisomeric products, was isolated in only 65% yield. The
second, a competition reaction between cyclopentanone/acetylacetone, proceeded with
the lowest dr (4:1) of all in-water examples (Tables 2 and 3) and initially displayed lower
diastereoselectivity (2.3:1). It was found that higher catalyst loadings (>2.5 mol%) and
longer reactions times (>24 h) negatively impacted the aldol product dr and may reflect
catalyst induced product epimerization. In the end, a balance was struck when 2.5 mol% of
catalyst 1 provided a 4:1 diastereomeric aldol ratio in 94% yield in 24 h.

The presence of alternative Knoevenagel nucleophiles, ¢.g., diethyl malonate and methane-
sulfonylacetone (Table 2, entries 4 and 5), also allowed aldol good product profiles, albeit
the latter suppressed the aldol product yield. Not shown or currently understood is why
malononitrile provided an intractable mixture of products, and this is a current limitation.
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Table 2. Aldol chemoselective competition reactions (Scheme 1) 2.
Ent Knoevenagel Major Competition Kn(ilvdeoria(zlt)zll G) Time Yield(%) dr celanti-a)
y Nucleophile Product (anti-4) 8 (anti-9) ¢ @4
Chemoselectivity
0] OH 4a
O O
1 )]\/U\ 13:1 40 84 ¢ >19:1 98
CF3
O OH 4b
(e} O
2 )]\/U\ 18:1 36 90 € >19:1 99
N02
O O
3 PYN 8:1 40 73 >19:1 99
o o
4 o Moa i 17:1 36 83 >19:1 99
NO,
O OH 4a
5f I o : >19:1 20 61 >19:1 99
)J\/S\ : ' '
CF3
o
f . .
6 L >19:1 24 83 17:1 99
O OH 4c
o}
7 )J\/CI 15:1 30 82 17:1 98
o}
8f M e 11:1 42 59 10:1 95
o
9f )b\ é/'\@ >19:1 36 82 14:1 98
NO, CFs
o o 13:1
10t 10:1 28 65 17:1 98
)J\/U\ NG, g
o o o) OH CI
24 94 € 4:1 99

1 L &/lf\@ 19:1

2 Standard reaction conditions: ketone nucleophile (2.25 mmol, 1.5 equiv), Knoevenagel nucleophile (2.25 mmol,
1.5 equiv), aldehyde (1.5 mmol, 1.0 equiv (limiting reactant)), 2.5 mol% of catalyst 1 (Figure 2), H,O (22.5 mmol,
405 pL, 15 equiv). b Based on crude 'H NMR analysis: anti- and syn-aldol products 4/Knoevenagel product
5. ¢ anti-aldol product (single diastereomer) after silica gel chromatography. ¢ anti/syn aldol (4) ratio. © Yield
represents anti- and syn-aldol products 4 after silica gel chromatography. f 5.0 mol% of catalyst 1. & Ratio of the
anti(major)/anti(minor), see Supplementary Materials for structural details.
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Table 3. Aldol chemoselective reactions using a-oxygenated ketones (Scheme 1) 2.
Knoevenagel Major Competition Aldol @)/ Time . 110/ C dr ee
Entry  Nucleophile Product (syn-4) Knoevenagel (5) = ")) Yield(%) @ (syn-d)
P Y Chemoselectivity ? Y
O OH 4g
e o o : f g h
1 )J\/U\ o & 7:1 30 63 17:1 95
K e
O OH 4h
. o o .
21 16:1 30 80 9:1 97)
)J\/U\ TBSO
NO,
O OH 4i
3 8:1 40 77 8:1 95)
)J\/U\ 850
CN
o o O OH CI
4 AN >19:1 60 37 8:1 -k
EtO OEt TBSO 4j

2 Standard reaction conditions: ketone nucleophile (2.25 mmol, 1.5 equiv), Knoevenagel nucleophile (2.25 mmol,
1.5 equiv), aldehyde (1.5 mmol, 1.0 equiv (limiting reactant)), 15 mol% of catalyst 2 (Figure 2), HO (22.5 mmol,
405 pL, 15 equiv). P Based on crude "H NMR analysis: syn- and anti-aldol products 4/Knoevenagel product 5.
¢ syn- and anti-aldol products 4 after silica gel chromatography. 4 syn/anti aldol (4) ratio. © 5.0 mol% of catalyst 1
(Figure 2) and brine (15 equiv). f Represents the anti-aldol product as a single diastereomer after silica gel
chromatography. & anti(major)/syn(minor) aldol product. N ee of the anti-product. * H,O (11.3 mmol, 203 uL,
7.5 equiv). J The enantiomeric excess was determined using the O-acylated analog (Chiralpak OD-H HPLC
column). ¥ The enantiomeric excess was not determined, this aldol product and its O-acetylated derivative failed
to resolve (Chiralpak OD-H HPLC column using Hex/IPA mixtures).

The presence of chloroacetone and ethyl-2-phenylacetate, non-classical Knoevenagel
competition substrates, readily allowed aldol product formation (Table 2, entries 6-8).
However, this was not a foregone conclusion and especially so for chloroacetone, a dual
threat because (i) it has been previously shown to undergo amino acid catalyzed aldol
reactions [26,27] and (ii) multiple nucleophiles, including the catalyst, could attack the
reactive o-halocarbon.

We next examined the tolerance of this methodology when using cyclic or acyclic
x-oxygenated ketone substrates, specifically: 2,2-dimethyl-1,3-dioxan-5-one and TBS-
hydroxyacetone (Table 3). Using catalyst 1 (Figure 2), we isolated a mediocre yield of
the anti-aldol product 4g (63%) but with excellent dr and ee (Table 3, entry 1). We then tested
the acyclic substrate with a primary amine catalyst: O-t-Bu-L-threonine (2), wherein good
chemoselectivity for the syn-aldol (major) products 4h and 4i was observed in the presence
of acetylacetone (Table 3, entries 2 and 3) [28-31]. Because the studied aldol reactions
are known (Tables 2 and 3), no catalyst optimization was performed. Instead, literature
validated aldol catalysts, specific to each ketone substrate, were used [24]. This also clarifies
our abrupt change in catalyst choice (Table 3, entry 1 to 2) and why catalyst screening was
not pursued. Of further general interest, acyclic ketone substrates are known to provide
anti major aldol products under proline (and derivatives thereof) catalysis, while syn major
aldol products are noted under primary amine catalysis [24]. Interestingly, the syn selective
reactions provide superior dr and this is why we chose to investigate a primary amine
catalyst (2) with TBS-hydroxyacetone.

The final in-water competition reaction examined an ortho-substituted aldehyde (Table 3,
entry 4) and provided excellent chemoselectivity but unacceptably low yield (37%). Exam-
ination of the O-t-Bu-L-serine catalyst (3) provided a more deleterious result. In fact, only
the chiral primary—tertiary diamine developed by Chimni has been reported to give practi-
cal product profiles when reacting this, and related, acyclic ketones with ortho-substituted
aldehydes [29].
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After successful demonstration of in-water reaction conditions for a wide variety
of nucleophiles and electrophiles, a new study was carried out to observe the behavior,
in terms of chemo- and stereoselectivity, of the optimized catalytic system when using
deep eutectic solvents as the reaction medium. For this purpose, the aldol reaction be-
tween cyclohexanone and 4-nitrobenzaldehyde in the presence of acetylacetone and chiral
organocatalyst 1 was carried out in the mixture choline chloride ChCl/urea: 2:1 at room
temperature. As can be seen in Table 4 (entry 1), when the reaction was carried out em-
ploying 30 mol% of 1, under conventional magnetic stirring conditions, a 92% conversion
was observed after 36 h. Regarding chemoselectivity, the aldol/Knoevenagel ratio was
8/1 with a dr of 1.7/1 with a low 32% ee for the major anti-diastereoisomer. Interestingly,
the reaction time could be reduced to 7 h by employing ball mill stirring [32], as well
as providing a remarkable improvement in the diastereo- and enantioselectivity of the
aldol reaction (entry 2). Considering the demonstrated effect that the presence of water
has on the chemoselectivity of this process, the competition reaction was then studied
in the ternary DES ChCl/urea/water (1:2:5.7) mixture [33]. As shown in entry 3, both
the chemo- and the diastereoselectivity of the process were improved (to 15:1 and 8:1,
respectively) while maintaining both the conversion (93%) and the enantioselectivity of
the anti-isomer (96%). With respect to catalyst loading (Table 4, entries 4-7), the reaction
was equally effective for this ternary eutectic mixture when reducing 1 to 5 mol% (entry
4). Under this lower catalyst loading, the absence of water (entry 5) led, as previously
observed, to a lower chemo- (aldol/Knoevenagel, 3:1) and diastereoselectivity (anti/syn;
3.2:1). Similar results were observed (catalyst 1, 5 mol%) when using an alternative DES,
e.g., ChCl/glycerol (1:2) provided the following profile: aldol/Knoevenagel (3.4:1), anti/syn
(3:2), and 59% ee (anti-product). On the other hand, when using 2.5 and 1 mol% of 1 in
ChCl/urea/water(1:2:5.7) (Table 4, entries 6 and 7), a decrease in the reaction conversion
and the diastereoselectivity of the aldol process was observed. Finally, we studied the
competition reaction in other aqueous ChCl/urea DES. As shown in Table 4 (entries 8 and
9) the eutectic mixtures ChCl/urea/water 1:2:2.8 and 1:2:1.4 were equally effective with
respect to chemoselectivity (aldol/Knoevenagel, 15:1 and 14:1, respectively), conversion
(95 and 91%, respectively) and enantioselectivity of the anti diastereoisomer (95 and 92%
ee, respectively). Only for the mixture ChCl/urea/water (1:2:1.4) did a decrease in the
diastereoselectivity (anti/syn) of the aldol reaction from 9:1 to 4.5:1 (compare in Table 4,
entries 4 and 9) occur.

Under the optimized reaction conditions (1 (5 mol%), ChCl/urea/water (1:2:5.7),
ball-mill stirring, room temperature, 7 h) the substrate scope of the competition reac-
tion was then examined (Table 5). Initially, cyclohexanone showed good chemoselec-
tivities (aldol/Knoevenagel from 6:1 to 13:1) when competing for 4-nitrobenzaldehyde,
4-trifluoromethylbenzaldehyde, and methyl 4-formylbenzoate, and not only with acetylace-
tone but also with more activated nucleophilic methylene units such as methanesulfony-
lacetone (Table 5, entries 1-4). Similar results were obtained when other ketones were used,
both cyclic as tetrahydro-4H-thiopyran-4-one (entries 5 and 6), 2,2-dimethyl-1,3-dioxan-5-
one (entry 7), 4-methylcyclohexanone (entry 8), and acyclic as TBS-hydroxyacetone (entry
9) with chemoselectivities ranging between 6:1 and 32:1. Regarding the aldol reaction,
high anti-diastereoselectivities were also obtained especially for the cyclic ketones with
enantiomeric excesses between 53% and 99% for the major anti-isomer (Table 5). The acyclic
anti-product (entry 9) has been previously synthesized [34].
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Table 4. Aldol chemoselective reaction in ChCl/Urea (1:2). Reaction optimization ?.
TBDPSO
ij M © ChCl/Urea: 1/2 (0.4 mL) m
0, rt, ball mill stirring, 7 h
Aldol (4)/Knoevenagel (5) . b dr ee
o, 0,
Entry 1 (mol%)/H,0 (uL) Chemoselectivity P Conversion(%) (antilsyn-4) ® (anti-4) €
1 30/0 8:1 92 1.7:1 324
2 30/0 7.8:1 90 5:1 93
3 30/200 € 15:1 93 8:1 96
4 5/200 € 13:1 94 9:1 99
5 5/0 3:1 98 3.2:1 92
6 2.5/200 € 16:1 87 8:1 93
7 1/200 ¢ 11:1 70 2:1 93
8 5/100 f 15:1 95 7.5:1 95
9 5/508 14:1 91 4.5:1 92
10 5/600 1 12:1 95 7:1 93
@ Standard reaction conditions: cyclohexanone (1.58 equiv), acetylacetone (1.54 equiv), catalyst 1, and 4-
nitrobenzaldehyde (1.5 mmol) were added to the reaction vessel followed by the DES (400 uL). b Determined
by '"H NMR analysis of crude reaction mixtures. ¢ Determined by chiral HPLC analysis (97:3 Hex:IPA, OD-H,
0.6 mL/min). 4 Reaction performed under magnetic stirring for 36 h. ¢ Water content: 29 wt% (200 uL). f Water
content: 17 wt%. 8 Water content: 9 wt%. 1 No DES added, this volume of water mimics the total solvent volume
for optimized entry 4.
Table 5. Aldol chemoselective reaction in ChCl/Urea (1:2). Substrate scope study 2.
Knoevenagel Major Competition  Aldol (4)/Knoevenagel (5) Yield b.d e
Entry Nucleophile Product (4) Chemoselectivity P 4, %) ¢ dr (4) ee (4)
o} OH 4b
o} o}
1 )J\/U\ : 13:1 73 9:1 99
N02
o} OH 4b
2 i ' 61 75 8515 98
)J\/S\ : ' o
NO,
[¢] OH 4a
o} o}
3 )J\/U\ 10:1 70 6.5:3.5 74 f
CFs
o} o}
4 )J\/U\ 6:1 30 9:1 98
O O
5 H 6:1 65 9.8:0.2 98 8
)J\/U\ /:
S NO,
o} OH 4k
(@] O\ o)
6 \S//\ : 32:1 64 9.3:0.7 96

s NO,
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Table 5. Cont.
Knoevenagel Major Competition  Aldol (4)/Knoevenagel (5) Yield b,d e
Entry Nucleophile Product (4) Chemoselectivity P @, %) ¢ dr (4) ee (4)
(o] OH 4g
o} e}
7 )J\/U\ 8:1 62 9:1 99 h
NO,
o} O
8.8:1.2
8 )J\/U\ 8:1 60 911 94
NO,
o O .
9 K 6:1 58 6:4 53]
)J\/U\ TBSO "
2

2 Standard reaction conditions: ketone nucleophile (2.37 mmol, 1.58 eq.), Knoevenagel nucleophile (2.37 mmol,
1.58 eq.), aldehyde (1.5 mmol, 1.0 equiv. (limiting reactant), catalyst 1 (5 mol%), ChCl/urea/water: 1/2/5.7
(270 mg ChCl/231 mg urea/200 mg H,0), ball milling stirring at rt for 7 h. ® Determined by crude 'H NMR
analysis. € Isolated yield after column chromatography for the anti/syn aldol products 4. ¢ anti/syn aldol product
(4) ratio. © Determined by chiral HPLC analysis (95:5 Hex:IPA, OD-H, 1 mL/min). f Determined by chiral
HPLC analysis (98:2 Hex:IPA, AD-H, 1 mL/min). & Determined by chiral HPLC analysis (90:10 Hex:IPA, AD-H,
1 mL/min). M Determined by chiral HPLC analysis (90:10 Hex:IPA, OD-H, 0.75 mL/min). ! anti(major)/anti(minor).
J Analysis of acetylated alcohol derivative (95:5 Hex:IPA, OD-H, 0.5 mL/min).

3. Materials and Methods
3.1. General Procedure for the Preparation of the Deep Eutectic Solvents (DES)

The hydrogen bond donor and hydrogen acceptor were added to a round bottom flask
in the desired molar ratios and stirred magnetically whilst heating until the formation of
completely transparent solution was observed. The DES should be used within the same
day to avoid degradation or any absorption of additional water.

ChCl:Urea (1:2)

Choline chloride (2.69 g, 19 mmol, 1 equiv.) and Urea (2.31 g, 38 mmol, 2 equiv.) were
added to a round bottom flask and stirred magnetically at 80 °C until the formation of
completely transparent solution was observed yielding approximately 5 g of DES.

ChCl:Glycerol (1:2)

Choline chloride (0.43 g, 3 mmol, 1 equiv.) and Glycerol (0.57 g, 6 mmol, 2 equiv.)
were added to a round bottom flask and stirred magnetically at 80 °C until the formation
of completely transparent solution was observed yielding approximately 1 g of DES.

3.2. Typical Competition Experimental Procedure for the Knoevenagel versus Aldol Reaction
in DES

Cyclohexanone (2.37 mmol, 1.58 equiv.), 4-nitrobenzaldehyde (1.5 mmol, 1.0 equiv.),
acetylacetone (2.37 mmol, 1.58 equiv.), and the chiral organocatalyst 1 were added to a 3 mL
Eppendorf vial, followed by the DES (400 uL) and water (when required). The reaction
was mixed in a ball mill with 5 stainless steel balls for 7h at a frequency of 15.5 s-1. Upon
completion of the reaction, it was extracted with EtOAc (20 mL x 3) and water (15 mL),
washed with brine (15 mL), dried over MgSO, and concentrated under reduced pressure
to afford the crude reaction mixture which was first analyzed by 'H NMR and chiral HPLC
to determine the reaction conversion as well as the chemo- and stereoselectivity of the
process. Finally, the crude mixture was purified by column chromatography to afford the
pure compounds which were fully characterized by 'H NMR.
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3.3. Typical Competition Experimental Procedure for the Knoevenagel versus Aldol Reaction
in HO

To a clean screw cap V-shaped reaction vessel (5.0 mL) equipped with a pyrami-
dal stir bar, the following were added in the stated order: cyclohexanone (MW = 98.14,
1.5 equiv., 2.25 mmol, 221 mg, density = 0.947 g/mlL, 233.2 pL), acetylacetone (MW =100.12,
1.5 equiv., 2.25 mmol, 225 mg, density = 0.975 g/mL, 231 uL), deoxygenated distilled wa-
ter (MW =18.02, 15 equiv, 22.5 mmol, 405 uL), purified 4-(trifluoromethyl)benzaldehyde
(MW =174.12, 1.0 equiv, 1.5 mmol, 261 mg, density = 1.275 g/mL, 204.9 205 uL), and trans-
4-(tert-butyldiphenylsilyloxy)-L-proline catalyst (MW = 369.54, 2.5 mol%, 0.0375 mmol,
13.9 mg). Within ten seconds, the solid catalyst fully dissolved leaving a transparent bipha-
sic solution. The resulting heterogenous solution was rigorously stirred for 40 h such that
an emulsion was always noted. Work-up entailed standard separatory funnel extractive
procedures using CH,Cl, and are found in the Supplementary Materials with additional
important reaction information.

4. Conclusions

The goal of this research was to provide evidence for broader substrate applicability,
or lack thereof, when examining a new type of chemoselectivity wherein aldol reactions
prevail over Knoevenagel reactions. This was unequivocally established while demon-
strating the synthesis of previously reported aldol products. Furthermore, we showed:
(i) practical reaction conditions (only 1.5 equivalents of the carbonyl nucleophiles required),
(ii) mediocre-to-high yields of highly enantioenriched aldol products, and (iii) short re-
action times under DES/ball milling applications. The last point proved insightful for
advancing this methodology because ternary aqueous deep eutectic solvent mixtures allow
a water phase to coexist with the DES, while mechanochemical conditions provided effec-
tive reactant mixing. The presence of a water phase in turn suppresses rate-determining
Knoevenagel intermediate accumulation and this enforces high chemoselectivity for aldol
reactions. Finally, this proof-of-concept research was realized with commercially available
catalysts 1-3, and higher yields and/or stereoselectivity are expected when using the
best-in-class organocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /molecules29010004/s1, it contains one hundred and eleven pages of
supportive information in the form of experimental details, spectra, and chromatograms. Refs. [35-57]
are cited in supplementary materials.
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