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A B S T R A C T   

Modular chemical process simulators are widespread in chemical industries to design and optimize production 
processes with sufficient accuracy. However, convergence issues and entrapment in local optima during process 
optimization are still challenges to overcome. To circumvent them, surrogate models of first principles simula
tions have attracted attention as they are easier to handle, with hybrid surrogates combining data-driven sur
rogate models with mechanistic equations becoming particularly appealing. In this context, this work explores 
the use of Bayesian symbolic regression to construct and globally optimize hybrid analytical surrogate models of 
process flowsheets, where some units are approximated with tailored analytical expressions rather than with 
neural networks or Gaussian processes, which might be harder to globally optimize. Comparing with other 
prevalent black-box surrogate modeling & optimization approaches, such as kriging and Bayesian optimization, 
we find that our approach can find better solutions than those identified with pure black-box methodologies, yet 
model building is much more computationally demanding.   

1. Introduction 

Simulation software is commonly used in Process Systems Engi
neering to model complex chemical processes. Particularly, standard 
process units, such as distillation columns and reactors, can be modeled 
via first principles, which allows for their analysis and optimization. 
However, using standard simulators, such as the Aspen® suite, for 
optimization is not exempt from limitations. Specifically, while many 
simulation packages have built-in optimization capabilities, numerical 
noise makes it challenging to estimate derivatives accurately, leading to 
a prohibitive number of function evaluations and a substantial compu
tation time (McBride and Sundmacher, 2019). Additionally, due to the 
non-convex nature of the nonlinear equations derived from first prin
ciples, multi-modality might become an issue, resulting in potential 
entrapment in local optima or even failure to converge to a feasible 
point. 

If the process simulation model could be approximated with a 
simpler formulation using explicit input-output relationships (Caballero 
and Grossmann, 2008), state-of-the-art commercial solvers could be 

used to efficiently identify optimal solutions. Developing and optimizing 
such models, also called surrogate models, metamodels, or reduced 
order models (Papalambros and Wilde, 2000), is an active research field. 
A variety of techniques, such as polynomial regression (Ostertagová, 
2012), support vector regression (Xiang et al., 2017), artificial neural 
networks (ANNs) (Kahrs and Marquardt, 2007; Lim et al., 2002), radial 
basis function networks (Kramer et al., 1992), random forests (Williams 
and Cremaschi, 2019), and kriging (Santos et al., 2022), among others, 
have been employed for surrogate model generation. 

Surrogate models constructed through a direct mapping between 
some process inputs and the corresponding outputs, without any prior 
process knowledge, i.e., a black-box model, (also referred to as surrogate 
model at the system level, in which a single surrogate model is used to 
represent the whole system (Misener and Biegler, 2023)) often lack 
interpretability due to the absence of mechanistic insights. This, in turn, 
can lead to overfitting and poor generalization (Psichogios and Ungar, 
1992), which is why considerable attention has been devoted recently to 
developing hybrid surrogate models. A hybrid model improves upon the 
black-box model by adding mechanistic equations, such as mass bal
ances, thus combining the strengths of data-driven approaches and first 
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principles knowledge. Sansana et al. (2021) provided a detailed review 
of hybrid modeling in chemical process modeling, including (and not 
limited to) applications in process optimization, monitoring, and con
trol. ANNs have been mostly employed for the hybrid modeling and 
optimization of process units or even entire process flowsheets, e.g., 
Psichogios and Ungar (1992) successfully modeled the cell growth rate 
in a bioreactor using an ANN complemented with mass balances. They 
concluded that the hybrid model had a greater ability for generalization 
and extrapolation. Henao and Maravelias (2011) and Fahmi and Cre
maschi (2012) substituted individual process units with ANN-based 
surrogate models, which were complemented with mechanistic equa
tions, in a superstructure-based optimization. Caballero and Grossmann 
(2008) used kriging (Krige, 1952) metamodels to substitute a distillation 
column and a plug flow reactor and iteratively optimized the process 
unit using a local solver. This work was later extended by Quirante and 
Caballero (2016) and Quirante et al. (2018), who optimized process 
flowsheets that included both surrogate kriging units and standard 
process units in a hybrid model. In the field of continuous pharmaceu
tical manufacturing, Bhalode et al. (2022) developed a hybrid adaptive 
modeling framework, with the data-driven model being a neural 
network. The hybrid model results were compared to plant outputs, and 
the model was then updated (if necessary) based on pre-defined criteria. 
Additionally, they integrated multi-scale information using hybrid 
multi-zonal compartment models. These two hybrid strategies were 
envisaged to aid in the creation of an integrated digital twin in contin
uous pharmaceutical processes. Further, Chen and Ierapetritou (2020) 
investigated the plant-model mismatch in first principles models (i.e., 
cases in which historical plant data do not match well with the pre
dictions of a model). The first principles models were then re-analyzed 

to generate hybrid models (with serial, parallel, and combined struc
tures, using ANN for the data-driven part), and their implementation 
was discussed for a continuous stirred tank reactor (CSTR), as well as in 
two case studies in continuous pharmaceutical processes. In order to 
assess different hybrid modeling approaches, Bradley and Boukouvala 
(2014) first used a sequential approach (i.e., where the neural network, 
used as the data-driven model, and the mechanistic model are generated 
independently). They compared such an approach with an integrated 
one, in which the solver optimized the neural network weights while 
simultaneously considering the mechanistic model-based constraints. 
They concluded that the integrated approach performed better in terms 
of constraint violation, but highlighted the computational limitations of 
using neural networks. In the domain of dynamic modeling of bio
processes, Wang et al. (2023) demonstrated the use of different statis
tical methods for hybrid model selection (e.g., Akaike information 
criterion (AIC), Bayesian information criterion (BIC), etc.). Applying the 
methodology to a microalgae cultivation case study, they concluded that 
the hybrid model selected using the BIC performed well for different 
noise levels. 

While hybrid models provide more versatility than black-box models 
(Psichogios and Ungar, 1992), the non-convex nature of the optimiza
tion problem can still lead to suboptimal solutions if a global solver is 
not used (Schweidtmann et al., 2021). While derivative-free optimiza
tion techniques, such as genetic algorithms (GAs), simulated annealing, 
and Bayesian optimization (BO), can provide high-quality solutions, 
they cannot guarantee the solution’s global (nor local) optimality. In 
contrast, deterministic global solvers ensure convergence to the global 
optimum within a given tolerance, but often lead to large CPU times. 
The ARGONAUT framework (Boukouvala and Floudas, 2017) provides 

Nomenclature 

Abbreviations 
ANN Artificial neural network 
CSTR Continuous stirred tank reactor 
AIC Akaike information criterion 
BIC Bayesian information criterion 
BO Bayesian optimization 
NLP Nonlinear programming 
GP Gaussian process 
KP Kaizen programming 
MINLP Mixed-integer nonlinear programming 
ALAMO Automated learning of algebraic models 
BMS Bayesian machine scientist 
MCMC Markov chain Monte Carlo 
GAMS General algebraic modeling system 
OF Objective function 
LHS Latin hypercube sampling 
HY Hybrid 
BB Black-box 
TAC Total annualized cost 
ACCR Annual capital charge ratio 
CAPEX Capital expenditures 
OPEX Operational expenditures 
MSE Mean squared error 
MAPE Mean absolute percentage error 
GA Genetic algorithm 
EI Expected improvement 
DAC Direct air capture 
PFR Plug flow reactor 

Sets 
I {i : Set of process units that are replaced with a surrogate} 

J {j : Set of surrogate process models} 
C {c : Set of continuous process variables} 
U {u : Set of continuous structural variables} 
Z {z : Set of integer variables} 
A {a : Set of all components in the flowsheet of case study 1} 
B {b : Set of all components in the flowsheet of case study 2} 
JIi ⊂J Set defining each surrogate model j of each process unit i 
NC⊂C {c : Set of continuous process variables defined as degrees 

of freedom of the whole flowsheet} 
NU⊂U {u : Set of continuous structural variables defined as 

degrees of freedom of the whole flowsheet} 
NZ⊂Z {z : Set of integer variables defined as degrees of freedom 

of the whole flowsheet} 
IMC

ij ⊂C {c : Set of continuous process variables that act as inputs 
for process unit i and model j} 

IMU
ij ⊂U {u : Set of continuous structural variables that act as inputs 

for process unit i and model j} 
IMZ

ij⊂Z {z : Set of integer variables that act as inputs for process 
unit i and model j} 

OMij⊂C {c : Set of continuous process variables that are obtained as 
outputs from process unit i and model j} 

Variables 
x Continuous variable 
c Continuous process variable 
u Continuous structural variable 
z Integer variable 
xc Value of continuous process variable c 
du Value of continuous structural variable u 
yz Value of integer variable z  
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an iterative methodology for the global optimization of constrained 
grey-box problems using the global solver ANTIGONE (Misener and 
Floudas, 2014). This approach solves subproblems to global optimality 
at each iteration, which increases the computational burden substan
tially, thus potentially limiting its practical use in large problems. 
Bongartz et al. (2018) introduced the tailored spatial branch and bound 
solver MAiNGO based on the propagation of McCormick relaxations 
(McCormick, 1976) in a reduced space. They showed the successful 
implementation of this approach in nonlinear programming (NLP) 
problems modeled using ANNs (Schweidtmann and Mitsos, 2019) as 
well as Gaussian processes (GPs) (Schweidtmann et al., 2021). 

Here we shall explore the construction and optimization of hybrid 
models for process optimization, where the surrogate component is built 
using symbolic regression. Symbolic regression, which has recently 
gained wide interest, represents any closed-form mathematical expres
sion as an expression tree (Koza, 1992). This tree structure can be used 
to build regression models to fit given data. Specifically, given some 
data, suitable regression models can be found by the simultaneous 
optimization of the tree structure and the operators and values at each 
node of the tree (Cozad and Sahinidis, 2018). 

There have been numerous recent contributions in symbolic regres
sion, yet the applications in chemical engineering are still scarce. Sym
bolic regression approaches include genetic programming (Orzechowski 
et al., 2018) and Kaizen programming (KP). KP utilizes genetic pro
gramming to construct basis functions, which are then linearly com
bined via linear regression. This approach has been shown to outperform 
standalone genetic programming-based models in some problems (Fer
reira et al., 2019). Specifically, focusing on chemical engineering ap
plications, Ferreira et al. (2022) used real data from an oil refinery to 
build models based on KP to predict the composition of C4 hydrocarbons 
in the distillate stream of a splitter column and compared their results 
with a GP model, showing that the KP model outperformed the GP 
model. In a recent work, Cozad and Sahinidis (2018) developed an 
elegant mixed integer nonlinear programming (MINLP) formulation for 
symbolic regression using disjunctive programming, which was solved 
via deterministic global optimization (BARON (Tawarmalani and Sahi
nidis, 2005)). 

Focusing on closed-form algebraic expressions for surrogate 
modeling, Ma et al. (2022b) recently investigated surrogate models 
constructed using ALAMO (Automated learning of algebraic models) 
(Cozad et al., 2014), which generates closed-form algebraic expressions 
by choosing from a user-defined list of basis functions and applying 
various model selection criteria. They compared the optimization of 
various surrogate models constructed using ALAMO for an extractive 
distillation process. Ma et al. (2022a) also investigated the deterministic, 
discrete-time optimization of an integrated chemical plant using 
different abstraction levels of surrogate modeling (i.e., unit-level and 
plant-level), where the surrogate models were constructed using 
ALAMO. They concluded that the highest level of abstraction, i.e., 
plant-level abstraction, performed the best for enterprise-wide 
optimization. 

Recently, Guimerà et al. (2020) introduced the Bayesian machine 
scientist (BMS), a symbolic regression tool that generates closed-form 
algebraic expressions from data. Their method employs an empirical 
corpus of equations to quantify prior expectations about the model, 
while the exact marginal posterior over models is computed using 
explicit approximations. The search space is navigated using Markov 
chain Monte Carlo (MCMC) sampling, and successive expressions are 
generated via heuristics and accepted or rejected according to the 
Metropolis’ rule (Metropolis et al., 1953). Focusing on chemical engi
neering applications, Negri et al. (2022) applied the BMS to build 
closed-form analytical expressions of two CO2 capture processes simu
lated in Aspen HYSYS®. More recently, the BMS was used in the global 
optimization of process flowsheets by Forster et al. (2023), who con
structed black-box surrogate models using the BMS and GPs. They 
showed that the former models could be globally optimized in shorter 

CPU times using state-of-the-art solvers, yet they required more time for 
model building. 

Fig. 1 shows a simple example of expression trees of mathematical 
expressions generated using the BMS. Considering a CSTR with inputs F1 
and T1, the figure shows representative equations to model output F2. 
The different moves (i.e., node replacement, root addition, root removal, 
and elementary tree replacement) that are used by the BMS to explore 
the space of closed-form expressions are also depicted. 

In this work, we shall use Bayesian symbolic regression to generate a 
hybrid model of a process flowsheet and subsequently optimize it using 
state-of-the-art solvers. In essence, we capitalize on the ability of the 
BMS to generate closed-form analytical expressions which can be easier 
to optimize relative to other general-purpose black-box models (e.g., 
ANNs, GPs). These analytical equations are then inserted into algebraic 
formulations containing mechanistic equations that can be optimized in 
any modeling system (e.g., general algebraic modeling system (GAMS), 
Pyomo) using off-the-shelf solvers, including global optimization algo
rithms. The approach is compared against other surrogate modeling 
methodologies, such as kriging and GP, optimized using BO and alge
braic solvers. 

The structure of the paper is as follows. We first describe the problem 
statement and the methodology adopted in this work. This is followed by 
two case studies and the associated results. The final section presents the 
conclusions of the work. 

2. Problem statement 

We aim to optimize a general process flowsheet model effectively. In 
what follows, we shall consider the following general mathematical 
formulation: 

min F(x, z)
s.t. h(x, z) = 0

g(x, z) ≤ 0x ≤ x ≤ x
z ≤ z ≤ z
x ∈ Rn, z ∈ Z

(1)  

where F(x, z) is the objective function (OF) to be minimized, which is a 
function of the variables of the process flowsheet, denoted by x and z, 
where x represents continuous variables, and z represents integer var
iables. The equality and inequality constraints are denoted by h(x, z) and 
g(x, z), respectively. The lower bounds of the continuous and integer 
variables are denoted by x and z, respectively, while the upper bounds 
are represented by x and z, respectively. While any integer variable can 
be expressed as a linear combination of binary variables, here we shall 
keep integers in the formulation as they already represent some design 
decisions, e.g., the number of trays in a distillation column. 

Here we approximate the problem above with a hybrid analytical 
surrogate process model, which can then be optimized with determin
istic global optimization algorithms using off-the-shelf global solvers. 
The main idea is illustrated in Fig. 2, which shows how the hybrid 
formulation consists of two complementary parts: (i) the data-driven 
part, built by solving a symbolic regression problem using the BMS, 
and (ii) the mechanistic part, which is based on first principles (i.e., mass 
and energy balances, thermodynamic constraints, etc.). 

As an example, the process flowsheet in Fig. 2 consists of a mixer, 
CSTR, distillation column, and splitter. Here, the mixer and splitter 
could be modeled with mechanistic models. Meanwhile, the CSTR and 
distillation column would be replaced with surrogate models. Accord
ingly, for each output of interest, an analytical surrogate would be built 
using Bayesian symbolic regression (applying the BMS). For example, F2 
and T2 in the CSTR would be modeled with functions f1 and f2, using the 
degrees of freedom of the input stream as inputs (i.e., F1 and T1). The 
mechanistic and surrogate models would be then combined into a hybrid 
analytical surrogate model, optimized using deterministic solvers. 
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3. Methodology 

This section describes the surrogate modeling and optimization 
framework adopted in this work. A schematic representation of the 
methodology is shown in Fig. 3, and each of its steps is described in the 
following sub-sections. In essence, we first run detailed simulations from 
which we build surrogate models that are combined with mechanistic 
equations prior to their optimization. 

3.1. Data sampling and generation of outputs from the process flowsheets 

The input dataset for each degree of freedom is generated via Latin 
hypercube sampling (LHS) applied within the allowable range. For each 
point of the dataset, the simulation is reinitialized and run by fixing the 
values of the degrees of freedom in the process simulator. If the simu
lation converges, the relevant values of the outputs from each process 
unit are stored, otherwise, the point is discarded and we move on to the 
next point. 

3.2. Surrogate modeling and optimization of the process flowsheets using 
different methods 

In this work, we create several surrogate models for a set of replaced 
process units, which are then combined with mechanistic equations in a 
hybrid (HY) model. For each of these surrogate models, the different 
outputs are modeled using the relevant inputs of the individual process 
unit being considered. The general formulation of the HY model is as 
follows: 

xc = mij

(
xc’∈ IMC

ij
, du∈IMU

ij
, yz∈ IMZ

ij

)
∀ i ∈ I, j ∈ JIi, c ∈ OMij (2) 

The sets C,U, and Z contain the continuous process variables c, 
continuous structural variables u, and integer variables z, respectively. 
Note that these sets do not include all the possible variables in the 
process flowsheet, but only those used in the analysis. For example, the 
temperature of a tray in a column might be omitted if the column is 
approximated with a surrogate, but is needed to evaluate the perfor
mance of the column when mechanistic tray-by-tray equations are 
applied. The values of the continuous process variables are denoted by 
xc, those of continuous structural variables by du, and those of integer 
variables by yz. I is the set of process units i that are replaced with a 
surrogate, and J is the set of surrogate process models j for each process 
unit i (recall that more than one surrogate might be required to model 
one process unit depending on the outputs of interest). Thus, each sur
rogate process model j of process unit i is defined by the subset JIi⊂J. The 
input-output relationship is given by the function mij, which is a function 
of the inputs of the specific surrogate process unit. Further, IMC

ij ⊂C de
notes the subset of continuous process variables c that are fed to model j 
of process unit i. Similarly, IMU

ij ⊂U and IMZ
ij⊂Z are analogous to IMC

ij for 
the continuous structural and integer variables respectively. All three 
subsets of input variables are defined for every process model j and its 
associated process unit i. OMij⊂C denotes the subset of continuous pro
cess variables c that are obtained as the output of process unit i in model 
j. Our surrogate models have a single output variable c for each unit i in 
model j. Note that in this work, for simplicity, we only model output 
continuous process variables, while the continuous structural variables 
and integer variables are inputs, thus not needing to define their 
respective output subsets. 

The HY model is compared with a fully black-box (BB) model, in 
which the OF to be optimized is directly modeled in terms of the degrees 

Fig. 1. Representation of mathematical equations as expression trees and different moves used by the BMS to explore the space of closed-form expressions (Guimerà 
et al., 2020). 

Fig. 2. Hybrid analytical surrogate modeling using Bayesian symbolic regression.  
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of freedom of the whole flowsheet. The general formulation of the BB 
model is as follows: 

f BB
(
xc∈NC , du∈NU , yz∈NZ

)
(3)  

where fBB directly approximates F in the set of equations defined in 
Equation (1) using a surrogate model. It is a function of the continuous 
process, continuous structural, and integer variables defined as degrees 
of freedom of the whole flowsheet. They are contained in the subsets 
NC ⊂C, NU⊂U, and NZ⊂Z, respectively. 

Fig. 3. Flowchart of the methodology adopted for surrogate modeling and optimization of process flowsheets.  
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The surrogate models defined in Equations (2) and (3) for the HY and 
BB models respectively, are now explained with the help of a repre
sentative process flowsheet, as shown in Fig. 4. 

In this flowsheet, the pressure of all streams is assumed to be con
stant at 1 bar. The feed stream contains only one component A, with 
molar flow rate FS1

A at a constant temperature TS1. The pressure of stream 
S1 is denoted by PS1 (the molar flow rates, temperatures, and pressures 
of all other streams are defined analogously). Component A reacts in 
reactor R (operating isothermally at temperature T) to produce 
component B, as shown in reaction RE1:  

A → B                                                                                       (RE1) 

Further, a design specification (DS) ensures a 99.5% molar purity of 
component B in stream S4 in distillation column D, resulting in 0.5% of 
component A in stream S4. The rest of the components A and B (a ma
jority of A and trace amounts of B) are recovered in stream S3. The molar 
flow rate of A (FS1

A ), reactor temperature (T), reactor volume (V), 
number of stages of the column (NS), and the reflux ratio of the column 
(RR) are the five degrees of freedom of the whole flowsheet. 

Let us now consider the formulation of the HY model for this flow
sheet. For the HY model, we replace the process units R and D with 
surrogate models. The outputs of R, estimated by surrogate models, are 
the conversion of component A in the reactor (X) and the heat duty of 
the reactor (HR). These two outputs are denoted by R1 and R2, respec
tively. The outputs of D, estimated by surrogate models, are the molar 
flow rate of component B in stream S4 (FS4

B ), the heat duty of the 
condenser (Hcond), and the heat duty of the reboiler (Hreb). These outputs 
are denoted by D1, D2, and D3, respectively. Note that the outputs 
approximated by surrogate models can also be obtained using mecha
nistic equations. For example, the heat duty of the reactor can be ob
tained from the conversion in the reactor and the energy balance. 
Therefore, the approach is flexible and the choice of using a mechanistic 
equation or a surrogate model for each output is up to the user. 

Next, to construct surrogate models of the five outputs defined pre
viously, we use as inputs the degrees of freedom of streams S1 and S2 (i. 
e., the continuous process variables), and the continuous structural and 
integer variables of the process units R and D. The degrees of freedom of 
streams S1 and S2 are as follows: 

Stream S1: PS1, TS1, FS1
A 

Stream S2: PS2, TS2 (same as reactor temperature T), FS2
A , FS2

B 
The continuous structural variables and integer variables of reactor R 

and distillation column D are as follows: 

Process unit R: 
Continuous structural variables: T,V; No integer variables 
Process unit D: 
Continuous structural variables: RR, DS; Integer variable: NS 
Further, the sets and subsets defined above in Equations (2) and (3) 

contain the following elements in this example: 

Sets
I := {R,D}

J := {R1,R2,D1,D2,D3}

C :=
{
PS1,TS1,FS1

A ,PS2,FS2
A ,FS2

B ,FS3
A ,FS3

B ,FS4
A ,FS4

B ,X,HR,FS4
B ,Hcond,Hreb

}

U := {T,V,RR,DS}
Z := {NS}

Subsets for degrees of freedom of the whole flowsheet
NC :=

{
PS1, TS1,FS1

A

}

NU := {T,V,RR,DS}
NZ := {NS}

Subsets for process unit R
JIR := {R1,R2}

IMC
R,R1

:=
{
PS1,TS1,FS1

A

}
IMU

R,R1
:= {T,V}IMZ

R,R1
:= {}

OMR,R1 := {X}
IMC

R,R2
:=

{
PS1,TS1,FS1

A

}
IMU

R,R2
:= {T,V}IMZ

R,R2
:= {}

OMR,R2 := {HR}

Subsets for process unit D
JID := {D1,D2,D3}

IMC
D,D1

:=
{
PS2, T,FS2

A ,FS2
B

}
IMU

D,D1
:= {RR,DS}IMZ

D,D1
:= {NS}

OMD,D1 :=
{
FS4
B

}

IMC
D,D2

:=
{
PS2, T,FS2

A ,FS2
B

}
IMU

D,D2
:= {RR,DS}IMZ

D,D2
:= {NS}

OMD,D2 := {Hcond}

IMC
D,D3

:=
{
PS2, T,FS2

A ,FS2
B

}
IMU

D,D3
:= {RR,DS}IMZ

D,D3
:= {NS}

OMD,D3 := {Hreb}

(4)  

Thus, the outputs R1, R2, D1, D2, and D3, i.e., the data-driven part of the 
HY model, are defined as follows (with the general definition shown in 
Equation (2)): 

Fig. 4. Representative process flowsheet containing reactor (R) and distillation column (D).  
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xX = mR,R1

(
xPS1 , xTS1 , xFS1

A
, dT , dV

)

xHR = mR,R2

(
xPS1 , xTS1 , xFS1

A
, dT , dV

)

xFS4
B

= mD,D1

(
xPS2 , xT , xFS2

A
, xFS2

B
, dRR, dDS, yNS

)

xHcond = mD,D2

(
xPS2 , xT , xFS2

A
, xFS2

B
, dRR, dDS, yNS

)

xHreb = mD,D3

(
xPS2 , xT , xFS2

A
, xFS2

B
, dRR, dDS, yNS

)

(5)  

Note that for completeness, the values of the temperature of stream S1 
(xTS1 ), the pressures of streams S1 and S2 (xPS1 and xPS2 ), and the design 
specification (dDS) have been shown as inputs in the equations in 
Equation (5), although they are constants. 

The other part of the HY model is the mechanistic equations. In this 
example, we define mass balance equations based on the outputs of the 
surrogate models and the design specification previously mentioned. 
Accordingly, the following mechanistic equations defining the molar 
flow rates of components A and B in streams S2, S3, and S4 are part of 
the HY model: 

xFS2
A
= xFS1

A
⋅(1 − xX)

xFS2
B
= xFS1

A
⋅(xX)

xFS4
B

xFS4
A
+ xFS4

B

= 0.995 ⇒ xFS4
A
=

0.005⋅xFS4
B

0.995
(as per the design specification)

xFS3
A
= xFS2

A
− xFS4

A

xFS3
B
= xFS2

B
− xFS4

B

(6)  

The HY model thus contains the surrogate modeling equations as 
defined in Equation (5) and the mechanistic equations as defined in 
Equation (6). Further, the general mathematical formulation for the 
optimization of this HY model is as follows: 

minf HY
(
xc, du, yz

)

s.t. xc = mij

(
xc’∈ IMC

ij
, du∈IMU

ij
, yz∈ IMZ

ij

)
∀i ∈ I, j ∈ JIi, c ∈ OMij

h
(
xc, du, yz

)
= 0

g
(
xc, du, yz

)
≤ 0

xc ≤ xc ≤ xc
du ≤ du ≤ du
yz ≤ yz ≤ yz

xc, du ∈ Rn, yz ∈ Z+

(7)  

where fHY is the OF to be minimized. The first constraint describes the 
surrogate model equations, which are defined in Equation (5) for the 
representative flowsheet in Fig. 4. The explicit equality constraints h(xc,

du, yz) are based on first principles that connect the different surrogate 
and rigorous models, and denote the mass and energy balances in the HY 
model. These are defined in Equation (6) for the representative flow
sheet. The inequality constraints g(xc, du, yz) denote additional con
straints imposed on the variables, such as product quality constraints, or 
the minimum demand of a product (there are no inequality constraints 
defined in the representative flowsheet). The lower bounds of the 
continuous process, continuous structural, and integer variables are 
denoted by xc, du, and yz, respectively, while their respective upper 

bounds are denoted by xc, du, and yz. 
Let us now consider the formulation of the BB model for this flow

sheet, which will be used for comparison with the HY model. The OF to 
be optimized (fBB) is directly modeled with a surrogate model, and is 
defined as follows: 

f BB
(
xPS1 , xTS1 , xFS1

A
, dT , dV , dRR, dDS, yNS

)
(8) 

Analogous to the HY model, the values of the temperature of stream 

S1 (xTS1 ), the pressure of stream S1 (xPS1 ), and the design specification 
(dDS) are constants, but have been shown here for completeness. 

Now, we define the specific OF quantifying the economic perfor
mance, i.e., the total annualized cost (TAC), to be used in the optimi
zation of the HY and BB models described above. The OF for the HY and 
BB models, and the TAC (in $⋅kg− 1 of product) are then defined as 
follows: 

f HY = TAC
(
xc, du, yz

)

f BB = TAC
(
xPS1 , xTS1 , xFS1

A
, dT , dV , dRR, dDS, yNS

)

TAC = (ACCR × CAPEX) + OPEX

(9)  

where ACCR denotes the annual capital charge ratio, CAPEX denotes the 
capital expenditures (such as the capital costs of the reactor and distil
lation column), and OPEX denotes the operational expenditures (such as 
the costs of component A, heating utilities and cooling utilities). 

3.3. Performance metrics 

Errors in the training and test sets are obtained for each surrogate 
modeling method prior to their optimization. For this purpose, we use 
the coefficient of determination (R2), mean squared error (MSE), and 
mean absolute percentage error (MAPE) as performance metrics. Each of 
these metrics is defined as follows: 

R2 = 1 −
SSR
SST

= 1 −

∑n
i=1(yi − ŷi)2

∑n
i=1(yi − y)2

MSE =
1
n

∑n

i=1
(ŷi − yi)2

MAPE =
1
n

∑n

i=1

|(yi − ŷi)|
yi

(10)  

where SSR and SST refer to the sum of squares of residuals and the total 
sum of squares, respectively. The total number of data points is denoted 
by n, while each data point is denoted by i. The variables yi, ŷi and y are 
the actual output value, predicted output value (from the surrogate 
model), and the mean of the actual output values, respectively. 

Further, after the optimization of the surrogate models, the optimal 
values of the degrees of freedom are inserted back into the rigorous 
simulation in Aspen Plus®, and the true value of the optimized OF is 
obtained from the rigorous simulation, denoted by F. This value is then 
compared with the OF value obtained from the optimization of the 
surrogate model, denoted by f , to quantify the deviation (in %) between 
the surrogate model and the simulation in Aspen Plus®: 

Deviation [%] =
|F − f |
F

∗ 100 (11) 

In the final step, the results obtained from the surrogate modeling 
and optimization using the various methods described above are 
compared. 

3.4. Software implementation 

We employ several software packages to construct and optimize the 
surrogate models. All the calculations are performed on an Intel® Core 
i7 10700 CPU @ 2.90 GHz computer. The process flowsheets are con
structed in Aspen Plus® v11, generating the dataset via LHS in pyDOE 
v0.3.8. The final dataset consists of 500 converged data points for the 
training set and 125 converged data points for the test set. 

For the approach developed in this work (the HY model), the sur
rogate models are generated using Bayesian symbolic regression 
through the BMS (with 6,000 MCMC steps) run in Python v3.7. The HY 
model is then optimized using BARON v21.1.13 in GAMS v35.2.0. As 
shown in the flowchart in Fig. 3, we compare our approach with five 
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alternative methods, all of which are based on BB models. For these 
alternative methods, we use different surrogate modeling techniques to 
construct (and subsequently optimize) the BB models, i.e., Bayesian 
symbolic regression, kriging, GP, BO, and GA. The first alternative 
method consists of using Bayesian symbolic regression through the BMS 
(also with 6,000 MCMC steps; run in Python v3.7) to construct the BB 
model. The second alternative method uses kriging to generate the BB 
model. The DACE kriging toolbox v2.0 (Lophaven et al., 2002) in Mat
Lab® vR2021b (The MathWorks Inc., 2021a) is used for building the 
kriging model (with the regression model being a zero-order poly
nomial, and the correlation model being a Gaussian correlation). These 
BB models of the first two alternative methods are each optimized using 
BARON v21.1.13 in GAMS v35.2.0. The third alternative method con
sists of using a GP to generate the BB model. MeLON v0.0.8 
(Schweidtmann et al., 2020) is used to construct the GP (using the 
package GPyTorch, with the Matern kernel with smoothness parameter 
5/2, constant mean function, 250 training iterations with the Adam 
optimizer, and a learning rate of 0.1). This model is subsequently opti
mized using MAiNGO v0.5.0 (Bongartz et al., 2018). The fourth alter
native method consists of using BO through the package GPyOpt v1.2.6 
(The GPyopt authors, 2016). GPyOpt internally uses the package GPy 
v1.10.0 (GPy, 2012) to create a GP surrogate model to be used in the BO. 
Thereafter, Python v3.7 is connected to Aspen Plus® v11 using the COM 
interface to query the simulation directly at each iteration of the opti
mization. The acquisition function used is the expected improvement 
(EI). The fifth alternative method is to use a derivative-free optimization 
algorithm without a surrogate model, for which we use a GA imple
mented in the Global Optimization Toolbox in MatLab® vR2021b (The 
MathWorks Inc., 2021b). In order to be comparable to the optimization 
using BARON, the constraint tolerance for the GA was set to 1.00·10− 5, 
while the function tolerance was set to 1.00·10− 9. To avoid convergence 
issues in the derivative-free optimization techniques, we penalize 
non-converged iterations in the OF with a very high value, as discussed 
in further detail in Section 5. 

The nomenclature used henceforth for the different surrogate 
modeling and optimization strategies with the software described above 
is summarized in Table 1. The model names for the deterministic opti
mization approaches have been chosen based on the software used to 
construct the surrogate models, while the Bayesian optimization-based 
model and the optimization using genetic algorithm are directly 
named BO and GA, respectively. 

An important point to note here is that the same initial point, which 
corresponds to one of the points in the training set, is used in all the 
optimization approaches (except for the BO and GA, which do not 
require an initial point to be provided). Using this same initial point, we 
also attempted to compare the results of the surrogate modeling and 
optimization approaches with those obtained using the built-in opti
mizer in Aspen Plus®. However, the optimization algorithm in Aspen 
Plus® was unable to converge the flowsheets to a feasible point for the 
MINLP problems considered in this work, and thus these values have not 
been reported. 

4. Case studies 

We consider two case studies, i.e., propylene glycol and green 

methanol production. The first case study is a simplified version of the 
industrial production process of propylene glycol from propylene oxide 
and water, used as a proof-of-concept. The second case study focuses on 
green methanol production from electrolytic hydrogen and carbon di
oxide obtained from direct air capture (DAC). For simplicity, the unitary 
production cost (in $⋅kg− 1 of product), used as the OF for the optimi
zation in the case studies, accounts only for the OPEX computed for 
2018, as it often dominates the CAPEX. A further analysis of the CAPEX 
for the optimum points found for each of the models is provided in 
section S3 of the supplementary material. Thus, the OF (to be mini
mized) is defined as follows: 

OF = CFeed + CCU + CHU + CElectricity + CWastewater (12)  

where CFeed refers to the costs associated with the raw materials, CCU and 
CHU refer to the cooling and heating utilities’ costs respectively, CElectricity 

refers to the cost of electricity, and CWastewater refers to the cost of 
wastewater treatment, all these by kilogram of product. The cost pa
rameters used for calculating the OF in both case studies are described in 
Table S1 and Table S2 in the supplementary material (Ghanta et al., 
2013; Keith et al., 2018; Parkinson et al., 2019; Turton et al., 2018). 

In both case studies, the optimization is formulated as an MINLP 
problem, as described in Section 3. The termination criteria for the 
optimization of all models are a maximum CPU time of four hours (i.e., 
14,400.00 seconds), or a relative optimality gap of 10− 9 (this second 
criterion does not apply to the BO and GA), whichever is attained first. 
Reaching an optimality gap of 10− 9 guarantees that the surrogate model 
(either BB or HY) is solved to global optimality within this tolerance, 
which is not accomplished in some cases. Hence, additionally, we select 
exceeding a maximum CPU time of four hours as a secondary termina
tion criterion. As will be discussed later, the BMS approaches spend 
more time on model building, while the surrogate optimization is usu
ally faster. Specifically, in these case studies, considering parallelization 
of the BMS calculations to generate analytical equations for each output 
of the BMS HY model, the training time was up to about six hours for the 
whole BMS HY model. The training time to generate an analytical 
equation for the OF in the BMS BB model was between two to three 
hours. On the other hand, the DACE BB, MeLON BB, and BO models 
completed their training in a few seconds. The question we want to 
address is whether the BMS models, owing to the more tractable, closed- 
form equations generated, lead to savings in the optimization that can 
offset their larger training times. 

Additionally, an important point to note here is that the analytical 
equation provided by the BMS might not include all the degrees of 
freedom of the whole flowsheet (elements of the subsets NC, NU, and NZ 

defined in Section 3.2). This can be the case in the BMS HY model, where 
some of the degrees of freedom of the whole flowsheet may not be 
present in the analytical equations of the outputs of the relevant process 
units. For example, in the flowsheet shown in Fig. 4, and the BMS 
equations in Equation (5), the reactor volume V might not be present in 
the final analytical equation of the conversion X. It could also be the case 
in the BMS BB model, where the OF modeled using the BMS might not 
include some of the degrees of freedom of the whole flowsheet. Taking 
the same example as before, the BMS equation (to get output fBB) of the 
BB model in Equation (8) might not include the reactor volume V. In 
such cases, the values of such degrees of freedom not present in the BMS 
equation (i.e., the degrees of freedom of the whole flowsheet not present 
in the final analytical equation/s in the BMS HY model and/or BMS BB 
model, and thus not optimized subsequently) are taken from the initial 
point provided for the optimization, which as mentioned previously in 
Section 3.4, is one of the points in the training set. A sensitivity analysis 
of these degrees of freedom omitted in the BMS models has been added 
in section S8 of the supplementary material. 

Table 1 
Nomenclature used for different surrogate modeling and optimization strategies.  

Model type Model name Surrogate model Optimization 

HY BMS HY BMS BARON 
BB BMS BB BMS BARON 
BB DACE BB DACE kriging toolbox BARON 
BB MeLON BB MeLON MAiNGO 
BB BO GPy GPyOpt 
BB GA - MatLab  
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4.1. Case study 1 – propylene glycol production 

Propylene glycol (C3H8O2) is commonly used as an intermediate for 
various chemicals and also in food, cosmetics, and pharmaceuticals. 
Commercially, it is produced by the hydrolysis of propylene oxide 
(C3H6O) using an excess of water (H2O), and without a catalyst (Trent, 
2001). This reaction also results in the production of dipropylene glycol, 
tripropylene glycol, and higher polyglycols, and an excess of H2O is used 
to maximize the commercial production of C3H8O2. This work considers 
the simplifying assumption that only C3H8O2 is produced in reaction 
RE2 shown below.  

C3H6O + H2O → C3H8O2                                                            (RE2) 

As the flowsheet depicted in Fig. 5a shows, a saturated liquid fresh 
feed of C3H6O and H2O at 25 ◦C and 1 bar pressure enters the CSTR, 
operating isothermally at 1 bar pressure, in which the hydrolysis reac
tion takes place. As mentioned earlier, an excess of H2O is used in the 
commercial process to ensure higher conversion to C3H8O2. We thus 
enforce that the molar ratio of H2O to C3H6O in the fresh feed (FS1

H2O 

/FS1
C3H6O) falls in the range 2 to 5 to ensure an excess of H2O in the inlet to 

the CSTR. Subsequently, after the reaction in the CSTR, the stream S3 
enters the distillation column D, in which a design specification ensures 
a 99.5% molar purity of C3H8O2 (by varying the distillate-to-feed ratio) 
in S5, while the split fraction of the purge from the splitter (S7) is fixed to 
0.1. The molar flow rates of C3H6O and H2O (FS1

C3H6O and FS1
H2O, respec

tively), the CSTR temperature and volume (T and V, respectively), and 
the number of stages and reflux ratio of the distillation column (N and 

Fig. 5. a) Process flowsheet for case study 1, in which the mixer (M), CSTR (R), distillation column (D), condenser (C), reboiler (H), and splitter (S) are shown. b) 
Process flowsheet for case study 1 denoting the process units replaced by surrogate models SM 1.1 and SM 1.2. 

Table 2 
Degrees of freedom and their associated ranges for case study 1.  

Degrees of freedom Symbol Unit Lower bound Upper bound 

Flow rate of C3H6O FS1
C3H6O kmol⋅hr− 1 100.00 500.00 

Flow rate of H2O FS1
H2O kmol⋅hr− 1 200.00 2,500.00 

CSTR temperature T ◦C 40.00 80.00 
CSTR volume V m3 6.00 10.00 
Reflux ratio RR - 0.50 10.00 
No. of stages N - 5.00 15.00  
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RR, respectively) are the six degrees of freedom. The degrees of freedom, 
along with their associated ranges, are shown in Table 2. The thermo
dynamic package NRTL is used in the flowsheet. The utilities consumed 
are cooling water (20 ◦C to 30 ◦C) and high-pressure steam (250 ◦C, 40 
bar). The OF quantifies the total cost expressed as $⋅kg− 1 of C3H8O2 
produced and considers CFeed (C3H6O and H2O), CCU (cooling water), 
and CHU (high-pressure steam). 

For the BMS HY model, the process units replaced by surrogate 
models are labeled as SM 1.1 and SM 1.2 in Fig. 5b, while the mixer and 
splitter are modeled using mass balances for each of them alongside a 
simplified energy balance described later. The inputs and outputs of 
each BMS equation of SM 1.1 and SM 1.2 of the BMS HY model are 
shown in Table 3. The set A in Table 3 contains all three components of 
the flowsheet, i.e., C3H6O, H2O, and C3H8O2. FS2 denotes the total molar 
flow rate of stream S2, while the mole fraction of H2O in stream S2 is 
denoted by xS2

H2O. 
As SM 1.1 requires the temperature of stream S2 (TS2) to be known, it 

has been calculated in the BMS HY model using a simplified energy 
balance, in which the specific heat capacities at constant pressure (Cp) of 
streams S1, S2, and S6 have been assumed to be equal (for the training 
set, this assumption results in a MAPE of 1.14⋅10− 2 between the actual 
and predicted values of the temperature of stream S2). As the mole 
fraction of C3H8O2 in stream S2 is less than 10− 4, it is assumed to be 
negligible. Therefore, the inputs to model SM 1.1 are only the total 
molar flow rate and the mole fraction of H2O. 

4.2. Case study 2 – green methanol production 

As methanol (CH3OH) production currently relies on natural gas (for 
syngas production), it is necessary to look for alternative routes to 
reduce its dependence on fossil carbon. Accordingly, pathways based on 
carbon dioxide (CO2) hydrogenation have been proposed. The flowsheet 
shown in Fig. 6a is based on the works by Van-Dal and Bouallou (2013) 
and Vázquez and Guillén-Gosálbez (2021). It considers CO2 obtained 
from DAC powered by natural gas and electricity from the current mix, 
while hydrogen (H2) is obtained from wind-powered water splitting. 

We assume that there is a DAC facility integrated with the methanol 
production plant. The CO2 feed, which enters at 25 ◦C and 1 bar at a 
constant flow rate of 2000 kmol⋅hr− 1, is compressed with the help of a 
compression train with intermediate cooling to reach the desired pres
sure at the reactor inlet. This reactor pressure (P) is one of the degrees of 
freedom. The compression train is required to keep the compression 
ratio below three in each compressor, while intermediate cooling is 
required because of the high temperatures resulting from compression. 
The H2 feed is assumed to be available at 30 bar, with its molar flow rate 
(FS9

H2
) being a degree of freedom. The H2 feed needs to be compressed to 

reach the desired pressure. The CO2 and H2 are then fed into a process 
heater along with the recycle stream S19, where the outlet temperature 
(T) is modeled as a degree of freedom. This heated stream (S12) then 
enters the plug flow reactor (PFR) operating adiabatically and con
taining a Cu-ZnO-Al2O3 catalyst, in which the CO hydrogenation 

reaction RE3 and water-gas shift reaction RE4 take place. The volume of 
the PFR (V) is another degree of freedom.  

CO + 2H2 ⇆ CH3OH                                                                  (RE3)  

CO2 + H2 ⇆ CO +H2O                                                               (RE4) 

Reactions RE3 and RE4 lead to the global reaction RE5:  

CO2 + 3H2 ⇆ CH3OH + H2O                                                      (RE5) 

The kinetic model developed by Van-Dal and Bouallou (2013) has 
been used in this work. The outlet stream from the reactor (S13) is 
cooled down in two successive coolers, the first one is enforced to ach
ieve a vapor fraction of one, and the second one to cool the stream to 35 
◦C. This cooled stream (S15) is then sent to the first flash unit, where 
most of the unreacted CO and H2 are recycled back to the reactor (with 
intermediate compression). A small part of the recycle stream is purged, 
with the split fraction (SF) of the purge from the splitter (S17) being 
another degree of freedom. The stream coming out at the bottom of the 
first flash unit (S20) is expanded to 2 bar, before being sent to the second 
flash unit, and then to a distillation column. The bottom of the distil
lation column yields a wastewater stream S26 (containing about 0.1 
mole% CH3OH) that is treated in a separate facility. The distillate stream 
S27, containing mainly CO2 and CH3OH (with a 99.9% molar recovery 
of CH3OH, obtained by varying the distillate-to-feed ratio of the column) 
is then sent to the third flash unit to obtain a 99.5% (by mole) pure 
stream of CH3OH (S30) at the bottom. This purity is attained by varying 
the operating temperature of flash F3. The reflux ratio and the number of 
stages of the distillation column (RR and N, respectively) are the 
remaining two degrees of freedom, thus resulting in a total of seven 
degrees of freedom for the flowsheet. These degrees of freedom, along 
with their associated ranges, are shown in Table 4. There are no explicit 
constraints associated with the degrees of freedom in this case study. 

The thermodynamic packages Peng-Robinson (for streams at pres
sures greater than 2 bar) and NRTL (for streams at pressures less than 2 
bar) have been used in the simulation. A pressure drop of 0.1 bar is 
considered in the distillation column, 0.2 bar in the process heaters and 
coolers (except H1), and 5 bar in the PFR. Although an explicit pressure 
drop is not considered in H1, it is assumed to be included in the pressure 
drop defined for the PFR. The utilities used are electricity from the grid, 
cooling water (20 ◦C to 30 ◦C), and high-pressure steam (250 ◦C, 40 bar). 
Heat integration considers the following streams: the process heaters 
(H1 and H3), process coolers (C1 to C5), the condenser (C6) and reboiler 
(H4) of the distillation column D, and the flash units F2 and F3 (for 
which we define a heater (H2) and cooler (C7) before flash units F2 and 
F3, respectively). The minimum temperature difference considered is 10 
◦C. We use pinch analysis to calculate the minimum heating and cooling 
utilities’ targets for each point in the training set in the BB models. In the 
HY model, we carry out the optimization of process variables and heat 
integration in GAMS simultaneously, using the model developed by 
Duran and Grossmann (1986). 

The OF quantifies the total cost expressed in $⋅kg− 1 of CH3OH pro
duced and considers the terms CFeed (CO2 and H2), CCU (cooling water), 
CHU (high-pressure steam), CElectricity (electricity from the grid), and 
CWastewater. 

For the BMS HY model, the process units replaced by surrogate 
models are labeled from SM 2.1 to SM 2.12 in Fig. 6b, while the splitter S 
is modeled using its mass balance. Note that the first three compressors 
(K1 to K3) and the first three coolers (C1 to C3) are not modeled, as the 
molar flow rate of CO2 is not a degree of freedom and is instead kept 
constant at 2000 kmol⋅hr− 1. Thus, the variables of these process units 
(such as the electricity requirement of compressors K1 to K3, heat duties 
of the coolers C1 to C3, etc.) are constants in this case study and are 
defined as such in the calculations. 

The inputs and outputs of each BMS equation of SM 2.1 to SM 2.12 of 
the BMS HY model are shown in Table 5. The set B in Table 5 contains all 

Table 3 
Inputs and outputs associated with each BMS equation of SM 1.1 and SM 1.2 in 
the BMS HY model for case study 1.  

Surrogate 
Model 

Inputs BMS 
equation 

Output Unit 

SM 1.1 V, T, FS2, TS2,

xS2
H2O 

SM 1.1.1 Fractional 
conversion of C3H6O 
in R 

- 

SM 1.1.2 Heat duty of R GJ⋅hr− 1 

SM 1.2 T, RR, N, 
FS3

a ∀ a ∈ A 
SM 1.2.1 Temperature of S4 ◦C 
SM 1.2.2 Heat duty of C GJ⋅hr− 1 

SM 1.2.3 Heat duty of H GJ⋅hr− 1 

SM 1.2.4 Molar flow rate of 
C3H8O2 in S5 

kmol⋅hr− 1  
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five components of the flowsheet, i.e., CO, CO2, H2, CH3OH, and H2O. 
As heat integration requires the temperature of stream S11 to be 

known, it has been predicted in model SM 2.4. We did not use correla
tions to calculate the enthalpies of the individual process streams to 
predict this temperature, as we want to avoid introducing an additional 
source of error due to the correlations. Additionally, the molar flow rates 
of only some of the components have been used as inputs in models SM 
2.9 to SM 2.12. This is because components that have a mole fraction of 
less than 10− 4 in a stream are neglected, to simplify the calculations in 
the BMS HY model. 

5. Results and discussion 

5.1. Case study 1 – propylene glycol production 

5.1.1. Results of the surrogate modeling 
The sampling time taken for generating the required outputs from 

the flowsheet for the training dataset is 842.00 seconds. 
In the BB models, the training dataset consisting of 500 × 6 inputs is 

sent to the BMS, DACE kriging toolbox, MeLON, and GPyOpt to generate 
the BMS BB, DACE BB, MeLON BB, and BO models, respectively. Fig. 7 
shows the quality of the BMS BB, DACE BB, and MeLON BB models for 
the test set. All three surrogate models approximate the OF accurately, 
with the minimum R2 value being 99.63% for the BMS BB model. 
Similarly, the highest MSE and MAPE values are observed for the BMS 
BB model. Even so, the model obtained shows an acceptable level of 
accuracy in the data fitting (defining the acceptable level of accuracy as 
R2 > 99%). 

Concerning the HY model, the quality of the fitting for the test set is 
shown in Figures S1 and S2 in the supplementary material. The R2 

values range from 99.15% to 100.00%, indicating that the BMS HY 
model performs very well. The individual training times for each BMS 
equation of the BMS HY model are reported in Table 6. The process units 
mentioned in Table 6 refer to the process flowsheet shown in Fig. 5. 

Fig. 6. a) Process flowsheet for case study 2, in which the compressors (K), mixer (M), coolers (C), heaters (H), PFR (R), splitter (S), flash separators (F), distillation 
column (D), and valve (V) are shown. b) Process flowsheet for case study 2 denoting the process units replaced by surrogate models SM 2.1 to SM 2.12. 

Table 4 
Degrees of freedom and their associated ranges for case study 2.  

Degrees of freedom Symbol Unit Lower bound Upper bound 

Molar flow rate of H2 FS9
H2 

kmol⋅hr− 1 4,500.00 6,000.00 
PFR temperature T ◦C 180.00 240.00 
PFR pressure P bar 45.00 55.00 
PFR volume V m3 35.00 54.00 
Split fraction SF - 1.00·10− 3 5.00·10− 2 

Reflux ratio RR - 1.25 1.80 
No. of stages N - 45.00 55.00  
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5.1.2. Results of the optimization 
The sizes of the deterministic optimization models (i.e., BMS HY, 

BMS BB, DACE BB, and MeLON BB models) are summarized in Table 7. 
As seen in Table 7, the BMS HY model has more equations and 

variables than any other method. This is due to the fact that the surro
gate models are defined for several process units and also because we 
combine them with mass and energy balance equations. All the BB 
models have only three equations, one for the objective function directly 
modeled with a surrogate model, and the other two for the constraints 
defined previously. Further, the BMS BB model does not contain any 
integer variable, as it is not present in the final analytical equation of the 
surrogate model. 

The results of the optimization (i.e., minimization of the unitary 
production cost in $⋅kg− 1) are summarized in Table 8, i.e., training time, 
optimization time to find the best solution (i.e., the solution showing the 
minimum OF value among all the solutions explored within the 
maximum CPU time defined as the termination criterion), total opti
mization time (all in seconds), and OF values obtained from the surro
gate model (f) and rigorous simulation in Aspen Plus® (F), both in 
$⋅kg− 1, along with their associated deviation (in percentage). 

Note that the training time reported for the BMS HY model in Table 8 
corresponds to the maximum of the individual training times of the six 
surrogate models it contains, as we assume that the BMS calculations 
could be parallelized. 

As seen in Table 8, the training of the BMS BB model is faster than in 
the BMS HY model, yet both are much slower in the training phase than 
the other approaches. Specifically, the training of the DACE BB, MeLON 
BB, and BO models is very fast (i.e., 1.12 seconds, 11.14 seconds, and 
1.00 second, respectively). As there is no surrogate model used by the 
GA, no training time has been reported. Considering the optimization 
performance, the BMS HY model can be globally optimized with a 
relative optimality gap of 10− 9 in just 2.14 seconds, and it finds the best 
solution in only 0.25 seconds. However, the BMS BB, DACE BB, and 
MeLON BB models are not able to close the same optimality gap within 
the maximum CPU time specified as the termination criterion (i.e., 
14,400.00 seconds). Moreover, all of them find their respective best 

solutions in much lesser time, being found during the pre-processing for 
the BMS BB model, and only in 14.84 seconds for the MeLON BB model 
(also during the pre-processing). For the DACE BB model, the best so
lution is found in 5,409.98 seconds, and for the BO model in 8,556.40 
seconds, although the maximum time is set to 14,400.00 seconds in all 
cases. For the GA model, the optimization time to find the best solution 
is 12,878.59 seconds, even though the maximum time is also set to 
14,400.00 seconds. 

Further, comparing the values of F for each model, it is observed that 
the BMS HY model is the best in terms of the minimum value found (i.e., 
2.42 $⋅kg− 1). It is followed by the GA approach, which also finds a value 
of 2.42 $⋅kg− 1 (after rounding off to three digits, the values are the same, 
but for five significant digits, the OF values from the BMS HY and GA 
models are 2.4205 $⋅kg− 1 and 2.4211 $⋅kg− 1, respectively). Further, GA 
was able to complete 3,963 evaluations of the simulation in 14,400.00 
seconds. Thus, if the training time of the BMS HY model could be 
improved, it could potentially find a better solution than GA in much 
lesser optimization time. The BMS HY and GA models are followed by 
the BMS BB and DACE BB models, which find the same value of 2.45 
$⋅kg− 1 (rounding off the result to three significant digits results in the 
same value, but the DACE BB model actually finds a 0.12% higher value 
than the BMS BB model). The MeLON BB model returns a slightly higher 
value of 2.46 $⋅kg− 1, while the BO model performs the worst with a 
value of 2.49 $⋅kg− 1 using a penalty parameter value of 75. The results 
for other penalty parameter values have been reported in section S4 of 
the supplementary material. 

In terms of the percentage deviation between the f and F values, the 
BMS HY model presents the minimum deviation, 0.23%. The BMS BB 
and MeLON BB models show deviations of 4.42% and 4.68% respec
tively, while the DACE BB model has a higher deviation of 8.16%. There 
is no deviation reported for the BO and GA models (NA, i.e., not appli
cable) as they sample directly from the flowsheet. 

The optimized values of the six degrees of freedom for each model 
are shown in Table 9. As we can see, for the best-performing model (i.e., 
BMS HY), the optimized values of T, V, RR, and N are at the bounds of 
their respective ranges, while for the second best-performing approach, 

Table 5 
Inputs and outputs associated with each BMS equation of SM 2.1 to SM 2.12 in the BMS HY model for case study 2.  

Surrogate Model Inputs BMS equation Output Unit 

SM 2.1 P SM 2.1.1 Power required for K4 GJ⋅hr− 1 

SM 2.2 FS9
H2

, P SM 2.2.1 Power required for K5 GJ⋅hr− 1 

SM 2.3 P, FS18
b ∀ b ∈ B SM 2.3.1 Power required for K6 GJ⋅hr− 1 

SM 2.3.2 Temperature of S19 ◦C 
SM 2.4 FS9

H2
, P, TS19, FS19

b ∀ b ∈ B SM 2.4.1 
SM 2.4.2 

Temperature of S11 
Heat duty of H1 

◦C 
GJ⋅hr− 1 

SM 2.5 P, T, V, FS12
b ∀ b ∈ B SM 2.5.1 CH3OH produced in R kmol⋅hr− 1 

SM 2.5.2 CO produced in R kmol⋅hr− 1 

SM 2.5.3 Temperature of S13 ◦C 
SM 2.6 TS13, PC4, FS13

b ∀ b ∈ B SM 2.6.1 Heat duty of C4 GJ⋅hr− 1  

SM 2.6.2 Temperature of S14 ◦C 
SM 2.7 TS14, PC5, FS14

b ∀ b ∈ B SM 2.7.1 Heat duty of C5 GJ⋅hr− 1 

SM 2.8 PF1, FS15
b ∀ b ∈ B SM 2.8.1 Split fraction of CH3OH in F1 - 

SM 2.8.2 Split fraction of CO2 in F1 - 
SM 2.8.3 Split fraction of H2O in F1 - 
SM 2.8.4 Heat duty of F1 GJ⋅hr− 1 

SM 2.9 FS20
b ∀ b ∈ {CO2,CH3OH,H2O} SM 2.9.1 Split fraction of CO2 in F2 - 

SM 2.9.2 Heat duty of F2 GJ⋅hr− 1 

SM 2.9.3 Temperature of S21 ◦C 
SM 2.10 FS24

b ∀ b ∈ {CO2,CH3OH,H2O} SM 2.10.1 Heat duty of H3 GJ⋅hr− 1 

SM 2.11 N, RR, FS25
b ∀ b ∈ {CO2,CH3OH,H2O} SM 2.11.1 Heat duty of C6 GJ⋅hr− 1 

SM 2.11.2 Heat duty of H4 GJ⋅hr− 1 

SM 2.11.3 Temperature at inlet of C6 ◦C 
SM 2.11.4 Temperature of S27 ◦C 
SM 2.11.5 Temperature at inlet of H4 ◦C 
SM 2.11.6 Temperature of S26 ◦C 

SM 2.12 TS28, FS28
b ∀ b ∈ {CO2,CH3OH} SM 2.12.1 Split fraction of CH3OH in F3 - 

SM 2.12.2 Heat duty of F3 GJ⋅hr− 1 

SM 2.12.3 Temperature of S28 ◦C  
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i.e., GA model, the feed flow rates are also at their lower bounds. 
Further, the imposed constraint on the ratio (FS1

H2O/FS1
C3H6O) is at its lower 

bound of 2 for all six models, being only marginally higher for the BO 
model. This is in line with expectations, as the optimization tries to 
minimize FS1

C3H6O, which shows the largest contribution to the OF. 
Further, the DACE BB model reports optimal values of the feed flow rates 
which are much higher compared to those from the other approaches. 

Although this would result in a larger production of C3H8O2, it also re
sults in larger heat duties in the CSTR, condenser, and reboiler, thus 
increasing the utility costs as a trade-off. This results in the OF value for 
this approach being higher than that for the BMS HY and GA models (the 
two best-performing approaches). Considering the CSTR temperature 
and volume, higher values for both these degrees of freedom enable 
greater conversion of C3H6O to C3H8O2, while a lower value of the reflux 
ratio in the column reduces the heat duties of the condenser and 
reboiler. Similarly, a higher value of the number of stages enables a 
more effective separation in the column. Thus, the optimal values of the 
reflux ratio and the number of stages found for the best-performing 
approach (BMS HY model) are at their lower bound and upper bound, 
respectively. Additionally, the number of stages is not present in the 
final BMS equation obtained for the BMS BB model. Therefore, as 
mentioned in section 4, the number of stages is fixed at its value in the 
initial point used in the optimization of the BMS BB model. A sensitivity 
analysis of the influence of the number of stages on the BMS BB model 
has been shown in section S8 of the supplementary material. 

5.2. Case study 2 – green methanol production 

5.2.1. Results of the surrogate modeling 
The sampling time taken for generating the required outputs from 

the flowsheet for the training dataset is 2,440.00 seconds. 
In the BB models, the training dataset consisting of 500 × 7 inputs is 

sent to the BMS, DACE kriging toolbox, MeLON, and GPyOpt to generate 
the BMS BB, DACE BB, MeLON BB, and BO models, respectively. Fig. 8 
shows the quality of the fitting generated by the BMS BB, DACE BB, and 
MeLON BB models for the test set. It is seen that all three surrogate 

Fig. 7. Comparison between the real (rigorous simulation) and surrogate values of the OF for the test data of case study 1.  

Table 6 
Training time [s] for each BMS equation of the BMS HY model for case study 1.  

Surrogate 
Model 

BMS 
equation 

Output Unit Training 
time [s] 

SM 1.1 SM 1.1.1 Fractional conversion 
of C3H6O in R 

- 12,030.00 

SM 1.1.2 Heat duty of R GJ⋅hr− 1 10,590.00 
SM 1.2 SM 1.2.1 Temperature of S4 ◦C 1,760.00 

SM 1.2.2 Heat duty of C GJ⋅hr− 1 9,777.00 
SM 1.2.3 Heat duty of H GJ⋅hr− 1 11,407.00 
SM 1.2.4 Molar flow rate of 

C3H8O2 in S5 
kmol⋅hr− 1 5,327.00  

Table 7 
Size of the mathematical programming models for case study 1.  

Model Equations Continuous variables Integer variables 

BMS HY 27 31 1 
BMS BB 3 6 0 
DACE BB 3 7 1 
MeLON BB 3 7 1  

Table 8 
Results of the minimization problem for case study 1.  

Model Training time [s] Optimization time for best solution [s] Total optimization time [s] f [$⋅kg− 1] F [$⋅kg− 1] Deviation [%] 

BMS HY 12,030.00 0.25 2.14 2.43 2.42 0.23% 
BMS BB 7,527.00 Pre-processing 14,400.00 2.34 2.45 4.42% 
DACE BB 1.12 5,409.98 14,400.00 2.25 2.45 8.16% 
MeLON BB 11.14 14.84 14,400.00 2.35 2.46 4.68% 
BO 1.00 8,556.40 14,400.00 NA 2.49 - 
GA NA 12,878.59 14,400.00 NA 2.42 -  
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models perform very well in modeling the OF, with the minimum R2 

value being 99.59% for the BMS BB model. Similarly, the highest MSE 
and MAPE values are found in the BMS BB model. Even so, the model 
obtained shows an acceptable level of accuracy in the data fitting (again 
defining the acceptable level of accuracy as R2 > 99%). 

In the HY model, the quality of the fitting for the test set is shown 
graphically in Figures S3 to S12 in the supplementary material. With a 
minimum R2 value of 80.98%, a maximum value of 100.00%, and a 
mean value of 98.74%, it can be concluded that most of the surrogate 
models of the BMS HY model perform very well in modeling each 
output. Moreover, only three of the 29 outputs show an R2 value of less 
than 98.00%. 

The individual training times for each BMS equation of the BMS HY 
model are reported in Table 10. The process units mentioned in Table 10 
refer to the process flowsheet shown in Fig. 6. 

5.2.2. Results of the optimization 
The sizes of the deterministic optimization models (i.e., BMS HY, 

BMS BB, DACE BB, and MeLON BB models) are summarized in Table 11. 
As seen in Table 11, analogous to case study 1, the BMS HY model has 

more equations and variables than any other method. This is because the 
surrogate models are defined for various process outputs, and also due to 
the presence of mass and energy balance equations in the model. All the 
BB models have only one equation for the objective function directly 
modeled with a surrogate model. Further, the BMS BB model does not 
contain any integer variable, as it is not present in the final analytical 
equation of the surrogate model. 

The results of the optimization (i.e., minimization of the unitary 
production cost in $⋅kg− 1) are displayed in Table 12, which shows the 
training time, optimization time to find the best solution, total optimi
zation time (all in seconds), and the OF values obtained from the sur
rogate model (f) and rigorous simulation in Aspen Plus® (F), both in 
$⋅kg− 1, along with their associated deviation (in percentage). 

Note that the training time reported for the BMS HY model in 
Table 12 is the maximum of the individual training times of the 29 
surrogate models, as we again assume the parallelization of the BMS 
training. 

As seen in Table 12, analogous to case study 1, the training of the 
BMS BB model is completed in less time than with the BMS HY model. 
Moreover, the training of the DACE BB, MeLON BB, and BO models is 
again very fast (i.e., 3.62 seconds, 10.96 seconds, and 1.00 second, 
respectively). Moreover, the BMS HY model completes the optimization 
with a relative optimality gap of 10− 9 in just 0.89 seconds. However, 
while the BMS BB and DACE BB models find the best solution during pre- 
processing itself, both are unable to close the relative optimality gap of 
10− 9 within the CPU time specified as the termination criterion (i.e., 
14,400.00 seconds). The MeLON BB model completes the optimization 
in 15.66 seconds only and finds the best solution during pre-processing, 
but the globally optimal values reported by the model (with the default 
settings of MeLON, as mentioned in Section 3.4) are the same as the 
initial point provided to the model. For the BO and GA models, the 
optimization time required to find the best solution is 11,931.27 and 
13,821.55 seconds, respectively, but they are allowed to continue the 
optimization for 14,400.00 seconds (like in all other methods). The 

Table 9 
Optimized values of degrees of freedom for case study 1.  

Degrees of freedom Symbol Unit Model    

BMS HY BMS BB DACE BB MeLON BB BO GA 

Flow rate of C3H6O FS1
C3H6O kmol⋅hr− 1 157.59 100.00 409.75 100.00 174.89 100.00 

Flow rate of H2O FS1
H2O kmol⋅hr− 1 315.17 200.00 819.90 200.00 370.86 200.00 

CSTR temperature T ◦C 80.00 57.07 80.00 59.64 61.64 80.00 
CSTR volume V m3 10.00 10.00 6.00 6.00 8.36 6.00 
Reflux ratio RR - 0.50 0.50 0.50 0.50 0.50 0.50 
No. of stages N - 15.00 9.00 8.00 13.00 15.00 15.00  

Fig. 8. Comparison between the real (rigorous simulation) and surrogate values of the OF for the test data of case study 2.  
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value reported for the BO model is found with a penalty parameter value 
of 20. The results for other penalty parameter values have been reported 
in section S4 of the supplementary material. 

Further, comparing the values of F for each model, it is observed that 
the GA model is the best in terms of the minimum value found (i.e., 1.20 
$⋅kg− 1). It is closely followed by the BO model and BMS HY model, 
which find values of 1.21 $⋅kg− 1 and 1.22 $⋅kg− 1, respectively, i.e., 
0.83% and 1.67% higher than that found by the GA model, respectively. 
Further, the GA was able to complete 2,517 evaluations of the simula
tion in 14,400.00 seconds. Therefore, analogous to case study 1, if the 
training time of the BMS HY model was improved, it would have the 
potential to find a better solution than GA in much lesser optimization 
time. The first three models in terms of best optimization performance 
are followed by the DACE BB model (1.26 $⋅kg− 1), closely followed by 
the MeLON BB model (i.e., 1.27 $⋅kg− 1). The BMS BB model returns the 
worst value of 1.48 $⋅kg− 1. It must be noted that the flowsheet in Aspen 
Plus® failed to converge with the default options for convergence for the 

solution provided by the DACE BB model. Therefore, the tolerance for 
tear stream convergence was adjusted from 10− 4 to 10− 5 for the DACE 
BB model. Additionally, the method for tear stream convergence in 
Aspen Plus® was changed from ‘Newton’ to ‘Wegstein’ for the DACE BB 
model. This ensures that the flowsheet converges. 

In terms of the percentage deviation between the f and F values, the 
BMS HY model presents the minimum deviation, 0.53%. The BMS BB 
model and DACE BB model have higher deviations of 13.54% and 
17.70%, respectively, and the maximum deviation of 49.85% is found 
for the MeLON BB model. Again, there is no deviation reported for the 
GA and BO models as they sample directly from the flowsheet. 

The optimized values of the seven degrees of freedom for each model 
are shown in Table 13. For each of the models, we can calculate the 
stoichiometric number M (Medrano-García et al., 2017), usually defined 
to measure the quality of the syngas (which is a mixture of CO, CO2, and 
H2): 

M =
Flow rateH2 − Flow rateCO2

Flow rateCO + Flow rateCO2

(13)  

Here, as there is no CO in the feed, we only consider the flow rate of H2 

obtained from the optimization (FS9
H2

), and the constant CO2 molar flow 
rate of 2000 kmol⋅hr− 1. Usually, values of M close to 2 are preferred for 
methanol synthesis. From the values obtained from the optimization, we 
observe that except for the BMS BB model (with a value of 1.25 for M), 
all other approaches result in values close to 2. While there is no clear 

Table 10 
Training time [s] for each BMS equation of the BMS HY model for case study 2.  

Surrogate Model BMS equation Output Unit Training time [s] 

SM 2.1 SM 2.1.1 Power required for K4 GJ⋅hr− 1 8,184.00 
SM 2.2 SM 2.2.1 Power required for K5 GJ⋅hr− 1 8,550.00 
SM 2.3 SM 2.3.1 Power required for K6 GJ⋅hr− 1 10,223.00 

SM 2.3.2 Temperature of S19 ◦C 2,350.00 
SM 2.4 SM 2.4.1 

SM 2.4.2 
Temperature of S11 
Heat duty of H1 

◦C 
GJ⋅hr− 1 

6,359.00 
7,401.00 

SM 2.5 SM 2.5.1 CH3OH produced in R kmol⋅hr− 1 5,061.00 
SM 2.5.2 CO produced in R kmol⋅hr− 1 1,817.00 
SM 2.5.3 Temperature of S13 ◦C 23,402.00 

SM 2.6 
SM 2.7 

SM 2.6.1 
SM 2.6.2 
SM 2.7.1 

Heat duty of C4 GJ⋅hr− 1 

◦C 
GJ⋅hr− 1 

12,991.00 
11,490.00 
10,434.00 

Temperature of S14 
Heat duty of C5 

SM 2.8 SM 2.8.1 Split fraction of CH3OH in F1 - 9,738.00 
SM 2.8.2 Split fraction of CO2 in F1 - 10,535.00 
SM 2.8.3 Split fraction of H2O in F1 - 9,390.00 
SM 2.8.4 Heat duty of F1 GJ⋅hr− 1 10,161.00 

SM 2.9 SM 2.9.1 Split fraction of CO2 in F2 - 8,637.00 
SM 2.9.2 Heat duty of F2 GJ⋅hr− 1 21,397.00 
SM 2.9.3 Temperature of S21 ◦C 17,283.00 

SM 2.10 SM 2.10.1 Heat duty of H3 GJ⋅hr− 1 14,814.00 
SM 2.11 SM 2.11.1 Heat duty of C6 GJ⋅hr− 1 5,863.00 

SM 2.11.2 Heat duty of H4 GJ⋅hr− 1 14,625.00 
SM 2.11.3 Temperature at inlet of C6 ◦C 4,383.00 
SM 2.11.4 Temperature of S27 ◦C 2,447.00 
SM 2.11.5 Temperature at inlet of H4 ◦C 3,965.00 
SM 2.11.6 Temperature of S26 ◦C 1,835.00 

SM 2.12 SM 2.12.1 Split fraction of CH3OH in F3 - 3,276.00 
SM 2.12.2 Heat duty of F3 GJ⋅hr− 1 3,541.00 
SM 2.12.3 Temperature of S28 ◦C 2,988.00  

Table 11 
Size of the mathematical programming models for case study 2.  

Model Equations Continuous variables Integer variables 

BMS HY 171 184 1 
BMS BB 1 5 0 
DACE BB 1 8 1 
MeLON BB 1 8 1  

Table 12 
Results of the minimization problem for case study 2.  

Model Training time [s] Optimization time for best solution [s] Total optimization time [s] f [$⋅kg− 1] F [$⋅kg− 1] Deviation [%] 

BMS HY 23,402.00 0.89 0.89 1.21 1.22 0.53% 
BMS BB 10,237.00 Pre-processing 14,400.00 1.28 1.48 13.54% 
DACE BB 3.62 Pre-processing 14,400.00 1.03 1.26* 17.70% 
MeLON BB 10.96 15.38 15.66 1.90 1.27 49.85% 
BO 1.00 11,931.27 14,400.00 NA 1.21 - 
GA NA 13,821.55 14,400.00 NA 1.20 - 

*The default convergence options had to be changed as the flowsheet failed to converge 
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trend observed for the reactor pressure, temperature, and volume (as 
they influence multiple aspects of the overall process), their values are at 
the higher end of their bounds. For the split fraction, a value very close 
to the lower bound is reported by all the approaches, as a larger recycle 
would ensure a higher conversion of the feed to methanol. Further, the 
three best-performing approaches (i.e., GA model, BO model, and BMS 
HY model, in that order) report the reflux ratio at the lower bound, 
which would result in lower heat duties for the condenser and reboiler of 
the distillation column. 

For the BMS HY model, the PFR volume is not present in the final 
BMS equations obtained for the surrogate model of the PFR (SM 2.5). 
Therefore, as mentioned in Section 4, the value of the PFR volume from 
the initial point is used in the BMS HY model. Similarly, the PFR pres
sure, reflux ratio, and number of stages are not present in the final BMS 
equation obtained for the BMS BB model. Therefore, these values are 
taken from the initial point and are used in the BMS BB model. A 
sensitivity analysis of the influence of these degrees of freedom on the 
BMS BB model is given in section S8 of the supplementary material. 

Overall, the BMS HY model is the best-performing optimization 
strategy in case study 1. It performs the third-best in case study 2, 
providing a value that is 1.67% higher than the best-performing opti
mization strategy (i.e., the GA model), and where one of the other ap
proaches (i.e., DACE BB model) fails to provide a solution that converges 
in the simulation package. 

6. Conclusions 

Here we explored the use of hybrid models built using Bayesian 
symbolic learning to simplify the global optimization of process flow
sheets. In essence, some of the process units are approximated with 
analytical surrogates constructed using symbolic regression, which are 
combined with mechanistic equations. Through comparison with other 
process optimization approaches, we found that the optimization of 
hybrid models built using Bayesian symbolic regression provides high- 
quality solutions in much less CPU time than their fully black-box 
counterparts. However, building such hybrid models requires much 
larger CPU times than constructing other standard surrogates (i.e., 
kriging, GPs), and also more time than generating fully black-box 
analytical equations of entire flowsheets. 

The hybrid approach based on symbolic regression (BMS HY model) 
performs the best in case study 1, and the third-best in case study 2 (with 
the derivative-free optimization approaches performing better), where 
there are no explicit constraints on the degrees of freedom of the process. 
Thus, while the specific outcome can differ on a case-by-case basis, the 
BMS HY model has the potential to outperform other alternative ap
proaches, one of which even failed to provide a feasible point after the 
optimization, i.e., the flowsheet did not converge for the optimized 
values obtained in the DACE BB model. 

Overall, our work showcases the advantages of the hybrid analytical 
surrogate modeling approach in the global optimization of process 
flowsheets. Specifically, we showed how hybrid modeling based on 
analytical equations can address the simultaneous process optimization 
and heat integration problem successfully. We expect that our approach 
becomes more competitive as more efficient algorithms for symbolic 

regression emerge in the literature. Moreover, our method might be 
particularly appealing in applications where multiple optimizations 
need to be executed, like in multi-objective optimization via single- 
objective reformulations, as once the model is built it can be opti
mized effectively iteratively. Additionally, in case the constrained con
ditions of the process change slightly, our method is expected to remain 
valid within the bounds of the training points, while it would be 
necessary to repeat all simulations using the derivative-free approaches. 
Future extensions could include the incorporation of uncertainties in the 
modeling framework and the simultaneous optimization of several 
flowsheets within an integrated cluster. 
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Table 13 
Optimized values of degrees of freedom for case study 2.  

Degrees of freedom Symbol Unit Model 
BMS HY BMS BB DACE BB MeLON BB BO GA 

H2 flow rate FS9
H2 

kmol⋅hr− 1 5,931.04 4,500.00 6,000.00 5,792.03 5,965.86 5982.59 
PFR temperature T ◦C 237.58 218.61 203.01 238.83 209.96 215.03 
PFR pressure P bar 46.18 49.16 47.61 49.16 49.61 54.93 
PFR volume V m3 38.08 54.00 54.00 38.08 45.67 53.63 
Split fraction SF - 1.60·10− 3 1.00·10− 3 1.00·10− 3 5.00·10− 3 1.00·10− 3 1.00·10− 3 

Reflux ratio RR - 1.25 1.45 1.80 1.45 1.25 1.26 
No. of stages N - 55.00 51.00 55.00 51.00 55.00 49.00  
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