
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:9742–9761
https://doi.org/10.1007/s11227-023-05814-y

1 3

Advancements in number representation for high‑precision
computing

H. Mora1 · M. T. Signes‑Pont1 · F. A. Pujol López1 · J. Mora‑Pascual1 ·
J. M. García Chamizo1

Accepted: 11 November 2023 / Published online: 14 December 2023
© The Author(s) 2023

Abstract
Efficient representation of data is a fundamental prerequisite for addressing compu-
tational problems effectively using computers. The continual improvement in meth-
ods for representing numbers in computers serves as a critical step in expanding the
scope and capabilities of computing systems. In this research, we conduct a compre-
hensive review of both fundamental and advanced techniques for representing num-
bers in computers. Additionally, we propose a novel model capable of representing
rational numbers with absolute precision, catering to specific high precision appli-
cations. Specifically, we adopt fractional positional notation coupled with explicit
codification of the periodic parts, thereby accommodating the entire rational number
set without any loss of accuracy. We elucidate the properties and hardware repre-
sentation of this proposed format and provide the results of extensive experiments
to demonstrate its expressiveness and minimal codification error when compared to
other real number representation formats. This research contributes to the advance-
ment of numerical representation in computer systems, empowering them to handle
complex computations with heightened accuracy, making them more reliable and
versatile in a wide range of applications.

Keywords High-performance computing · Architecture and systems · Computer
arithmetic · Number representation

 * H. Mora
 hmora@ua.es

 M. T. Signes-Pont
 teresa@ua.es

 J. Mora-Pascual
 jeronimo@ua.es

1 Department of Computer Science Technology and Computation, University of Alicante,
Alicante, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05814-y&domain=pdf

9743

1 3

Advancements in number representation for high‑precision…

1 Introduction and motivation

Consider the following problem:
With the first-order equation

, the result is well known and easy to calculate, and the value for x is found as

That number expressed in fractional positional notation indicates, with abso-
lute precision, the value of the variable x. However, as with most currently avail-
able algorithmic technologies, it is not possible to obtain an exact result, but only
an approximation.

This result occurs due to the nature of the positional representation of the peri-
odic number, which comprises infinite fractional digits.

This issue raises several questions regarding the characteristics of numerical
representation. How many significant digits does a number have? To what extent
is this influenced by the number representation base? What numeric sets cause
this situation? An analysis of these questions will enable us to clarify whether
there are alternative numerical codifications for these numbers or whether it is
necessary to relinquish the expression of their exact value through a positional
representation. The most frequent is to undertake approximations to the correct
value using a specific number of digits.

Number processing plays a vital role in resolving various computational prob-
lems that are challenging to address with global solutions due to factors such as
the complexity of operations, functional domains, data nature, and numerical
ranges of operands and results. Certain applications, in particular, demand high-
performance computing for intricate mathematical calculations, while simulta-
neously imposing stringent constraints on accuracy. For instance, scenarios like
calculating trajectories for moving bodies in space or over significant distances,
guidance and positioning systems, quantum theory calculations, intensive finan-
cial transactions, climate modeling, and more [1], all require utmost precision in
computations. In these applications, the magnitude of the error could be difficult
to delimit, and the incorrect results could propagate by other subsequent opera-
tions. Thus, even a minor imprecision during operations can lead to substantial
deviations in the final results, especially in algorithms composed by highly itera-
tive and complex numerical methods [2, 3].

In such computation-intensive scenarios, the representation of data is a funda-
mental concern for achieving accurate computational resolutions. Key questions
arise: What numerical set is best suited for data codification? How many signifi-
cant digits are necessary to ensure accurate calculations? Which representational
format should be employed? Addressing these critical questions leads us to an
appropriate numerical codification that strikes a delicate balance between accu-
racy and computational complexity.

3x = 1,

x = 0.3̂10

9744 H. Mora et al.

1 3

In this paper, we propose a computation model that satisfactorily solves the
accuracy requirements of a set of problems from the lowest level of the computer
architecture. More specifically, the main contribution of this work is a new method
for representing error-free rational numeric data, based on floating-point schemes.
This method allows the development of operators for arithmetic functions in order
to build a rational arithmetic unit. A typical arithmetic unit supports a small set of
basic operators from which a large set of mathematical functions can be computed
by function composition. For example, from the basic operators of addition and mul-
tiplication, more complex functions such as reciprocation, square root, exponentia-
tion, or trigonometric functions can be obtained using the Newton–Raphson, Gold-
schmidt, or Taylor algorithms [4].

In spite real number set is more generic than rational one, real irrational numbers
can be approximated by rational numbers as much as it is needed, and in addition,
rational numbers can be represented in positional way with finite word length.

The proposed rational computational model constitutes an algebraic field with
addition and multiplication operations where every nonzero rational number has
multiplicative inverse and can be represented with the format.

This paper is structured as follows: Sect. 2 provides a review of the current state
of knowledge on numerical representation and analyses the most relevant propos-
als of this topic, Sect. 3 develops the formal framework in which the model is con-
structed and describes the proposed numerical representation of rational numbers
and their implementation, Sect. 4 shows a comparison with other formats, Sect. 5
develops an empirical evaluation, next, Sect. 6 describes an application example and
finally, Sect. 7 summarizes the conclusions of this work.

2 Literature survey of number representation in a computer

2.1 Number representation

The relevance of the topic at hand is underscored by the multitude of proposals and
works dedicated to resolving specific aspects of the problem. For applications that
demand greater accuracy, the prevalent approach involves employing variable preci-
sion software tools for reasons of portability. These tools act as a layer of abstrac-
tion, furnishing structures and operations with adjustable lengths tailored to each
application’s requirements. Such tools encompass function libraries, various data
types, arithmetic packages, and extensions for common programming languages like
C, Pascal, Python, Fortran, etc. [5–7]. While they extend the range of representation
formats to accommodate more significant digits and achieve greater accuracy, the
computational complexity of their operations often limits their general use. Conse-
quently, these software solutions increase computation runtimes compared to native
machine numerical formats, and their final codification remains constrained by the
formats and numerical representations supported by the underlying hardware, which
adds its own restrictions.

The pursuit of high-precision calculations has led to the development of
algorithms that work with data of considerable length, compensating for the

9745

1 3

Advancements in number representation for high‑precision…

limitations of standard representation formats. In this context, proposals for
numerical decimal processing prove particularly interesting as they sidestep
errors introduced by binary conversion of data [8–11]. Notable methods for cal-
culating results with a large number of digits include the well-known algorithms
of Newton–Raphson, Goldschmidt, CORDIC, and Taylor [11–13], as well as
arithmetic on-line operation methods [14, 15], which perform operations from the
most significant to the least significant digits. While some of these algorithms
are included in the aforementioned software tools, they inherit the same limita-
tions. Some hardware implementations have been proposed and developed, offer-
ing limited solutions, including those mentioned below.

In general, numerical codification formats are predominantly conditioned by
the characteristics of the numerical sets they represent, with distinct formats for
natural, integer, and real numbers. Fractional positional notation, used to repre-
sent real numbers, directly expresses the value of the number with an integer and
a fractional part.

The simplest fractional representation is the fixed-point format, which sets a spe-
cific number of digits for the integer and fractional parts, leading to rounded frac-
tional point representation, while advantageous for simplicity in operator design,
fixed-point formats can only precisely represent numbers that align with discrete
codifiable elements, approximating the remainder.

For a broader representation range, floating-point systems are particularly rel-
evant. In floating-point systems, the integer part is minimized, and the fractional
part is extensively developed, akin to scientific notation. This format is structured
into sign, exponent, and mantissa fields. While it extends the expression capac-
ity of fixed-point formats, it still establishes a discrete range of representation for
real numbers in a computer. The widely adopted standard for floating-point num-
ber representation is IEEE-754 [16], encompassing various representation formats,
rounding methods, and exceptions. However, finite precision sets employed in
floating-point schemes do not allow representation of fractional values beyond the
significant digits allowed by the format, leading to calculation errors [17–20] that
prevents a satisfactory resolution for applications requiring high precision results.
While these formats include methods to refine or round the codification to reduce
errors, modifying the least significant digits of the representation compromises exact
representation.

As the demand for computing capacities surpasses present systems, research is
inclined toward designs dedicated to addressing hardware deficiencies. This leads to
specific computer architectures with new functionalities tailored for resolving such
problems. Numerical representation is closely related to this situation, with numer-
ous valid solutions for specific environments. Alternative methods of numerical
expression and arithmetic calculations implemented in specialized processor designs
have been explored, and the progress made, along with notable deficiencies, are
reviewed in the subsequent sections. These proposals are classified based on their
expressiveness and capacity for number representation.

The method with the greatest expressivity is symbolic computation, characterized
by exact representation using algebraic expressions for numerical values, forming an
exact arithmetic scheme [21, 22]. Continuous fractions also offer an exact method of

9746 H. Mora et al.

1 3

representation for rational numbers, encoding numbers through successive fractions
of integers [23].

Another group of proposals relies on the arithmetic model of intervals, which
defines the inaccuracy introduced when providing a numerical result. Numbers are
expressed by the interval extremes in which they are found, codified using float-
ing-point notation [24, 25]. Arithmetic operations are performed on the interval
extremes, retaining results within the limits [26]. While this technique does not
yield a single exact value, it maintains the error of the numerical result, delimited by
the interval limits. Interval arithmetic provides guaranteed results, but it is not well
suited for the validation of high precision. Instead, the round-off error propagation
could be estimated using stochastic arithmetic and then increasing number certainty
[27]. Some proposals combine interval arithmetic and symbolic notation, with lazy
arithmetic [28] expressing results through symbolic mathematical expressions while
providing numeric results as intervals. For higher precision requirements, new cal-
culations can be performed to obtain improved approximations.

Other proposals aim to increase the precision of numerical values by using a
greater number of significant digits to represent operands and results, attempting to
achieve accurate approximations for specific problem requirements. However, such
systems cannot encode numbers with an infinite number of fractional digits, lead-
ing to the loss of exact representation of rational values and processing errors. This
group includes staggered arithmetic and on-line arithmetic: Staggered arithmetic
[29] represents each number using a variable list of non-overlapping floating-point
values that provide the value of the number they encode; On-line arithmetic [14, 15]
processes operands serially, performing calculations digit-by-digit based on partial
knowledge of the input data. This property allows for the design of segmented cal-
culation methods, facilitating operations with a variable number of digits and estab-
lishing regular structures for arithmetic units.

Lastly, other numerical representations focus on improving computer perfor-
mance through the simplification of basic operators and increasing the arithmetic
unit’s throughput. These proposals are useful for high-throughput arithmetic pro-
cesses, such as in DSP applications, but might not prioritize accuracy. Examples
include Residue Number System (RNS) [30], and Redundant Binary Representa-
tions (RBR) [31].

2.2 Findings

The exploration of these state-of-the-art representation methods demonstrates that
conventional techniques and standard formats encounter challenges when represent-
ing numbers with infinite fractional digits. While certain specific proposals offer
valid and widely accepted solutions, enhancing the expression capacity of new
methods and formats often results in increased complexity. Moreover, for many
applications, having a single number that represents the result’s value is crucial.

Software-based representation proposals, though versatile and compatible with
most systems for constructing specialized applications, fall short of meeting the
performance expectations of some applications. In contrast, hardware low-level

9747

1 3

Advancements in number representation for high‑precision…

solutions, based on interval arithmetic and other variable significant digit methods,
offer intriguing alternatives to improve result precision. However, they may not pro-
vide exact values, presenting approximations whose quality is challenging to gauge.

In conclusion, applications requiring high-performance computing and sub-
stantial calculation accuracy emphasize the need for an appropriate expression of
operands and the development of corresponding low-level algorithms. This paves
the way for conceiving an exact method of operand codification based on numeri-
cal representation, representing an improvement over current proposals. Such a
method should provide knowledge of operand values and generated partial results,
with effective adjustment or approximation policies according to the application’s
requirements. The subsequent section addresses the establishment of an appropriate
representation format.

3 Rational exact representation format

3.1 Specification of the double mantissa format

Fixed and floating-point representation schemes show that although their number-set
representation is contained in the rational set ℚ, there are infinite rational numbers
that cannot be expressed in these formats, although arbitrary lengths of the binary
word are permitted. That is, as much as the amount of digits represented is increased,
it is impossible to codify such values exactly [8, 17, 18]. Nevertheless, the codifica-
tion of rational numbers is of particular interest because it is the largest subset of ℝ,
where the exact value of their elements can be written in a positional representation
format. The inherent characteristics of the rational numbers in ℚ suggest the possi-
bility of obtaining a representation model that fulfils the following objectives:

1. To contain the exact positional notation of the numbers representing them in a
direct way.

2. To allow an indeterminate number of exact fractional digits to be obtained accord-
ing to the requirements of each application.

3. To reach very high or very low extreme values.

The proposed number representation is based on an extension of the floating-
point scheme, where it is considered both the fixed and the periodic expansion of the
positional representation of rational numbers. This proposal develops a representa-
tion format for high precision computing proposed in our previous researches [32,
33].

The number’s mantissa is obtained by concatenation of the fixed mantissa (mf)
and the periodic mantissa (mp) for an indefinite number of times. Expression 1 illus-
trates its construction.

(1)Mantissa (M) = mfmpmpmpmpmp … = mfm̂p

9748 H. Mora et al.

1 3

The value of the rational number is now obtained according to the same expres-
sion as with the floating-point format:

where B is the numerical base of the representation, M is the complete mantissa
formed by the concatenation of the fixed mantissa and the periodic mantissa for an
infinite number of times, and E is the exponent. The exact value of the complete
mantissa can be calculated by means of the following expression:

where MPWL is the length of the periodic mantissa, MFwl is the length of the fixed
mantissa, mfmp is the one-time concatenation of the fixed mantissa and the periodic
mantissa, and the denominator is formed by the concatenation of the digits as often
as indicated.

To avoid multiple representations of the numbers, the format imposes the follow-
ing normalization conditions:

1. The mantissa of the number is normalized by positioning the first significant digit
to the right of the fractional point. If the fixed mantissa does not exist, the periodic
mantissa is then normalized by rotating its digits to the left.

2. When the fixed mantissa or periodic mantissa does not exist, their corresponding
field in the codification will be left empty.

Please, note that the cases when the periodic mantissa is 0 or (B − 1) are the same.
The periodic mantissa equal to 0 is the general case when the number has not period.
And the case when the periodic mantissa is equal to the base representation minus
one (‘1’ in binary representation base), it is achieved just by adding ‘one’ to lest sig-
nificant bit of the fixed mantissa.

3. The fixed mantissa cannot contain groups of digits that match with the periodic
mantissa in its least significant part:

Then,

(2)x ∈ ℚ, x = (−1)s ⋅ M ⋅ BE,

(3)
M =

mfmp − mf

(B − 1)⋯ (B − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MPWL

0⋯ 0
⏟⏟⏟
MFWL

(4)M = 0,mfm̂p∕M ∈ [B−1, 1[

(5)
mf = �MfWL−1 … �1�0

mp = �MpWL−1 … �1�0

∀i ∈
[

0..MpWL − 1
]

, �i−1 … �1�0 ≠ �i−1 … �1�0

9749

1 3

Advancements in number representation for high‑precision…

4. The periodic mantissa must have the minimum number of digits, that is, it should
not be composed of smaller periodic sub-mantissas.

Then,

The number of digits, MpWL, that forms the period of a rational number is
closely related to the denominator of the irreducible fraction that represents the
rational number according to the following expression:

The number of periodic fractional digits is always smaller than b. In particular,
the definition of the function ℑ that determines MpWL consists of the following
congruence relations:

where f1, …, fp id the list of prime factors of the representation base B, and j ∈ ℕ.
Thus:

Thus, the nonzero period of the periodic numbers is related to the representa-
tion base. This observation is of great relevance for numerical representation and
computer arithmetic, since in a binary domain there are fractional numbers of zero
period in decimal that will produce periodic expansion in binary representation.
Hence, the importance of defining a model that allows to represent and operate with
these numbers accurately.

3.2 Properties of the representation format

The proposed format covers the whole ℚ set as each number can be represented
exactly. In this way, the proposed representation function, Γidentity, is a bijective
application among the rational number set.

mp = �MpWL−1 … �1�0

(6)

∀i ∈ [1..MpWL − 1] ∕MpWL mod i = 0 ⇒

⇒ �i−1 … �1�0 ≠ �2i−1 … �1�i∧
∧�i−1 … �1�0 ≠ �3i−1 … �2i+1�2i∧
…

∧�i−1 … �1�0 ≠ �MpWL−1 … �MpWL−i+2�MpWL−i+1

(7)
∀x = 𝛼MfWL𝛼MfWL−1 … 𝛼i, 𝛼i−1 … 𝛼1𝛼0 �𝛾MpWL−1 … 𝛾1𝛾0 ∈ ℚ,∃a, b ∈ ℤ∕

∕ x =
a

b
∧ b ≠ 0 ∧mcd(a, b) = 1 ⇒ MpWL = ℑ(b) < b

(8)

if mcd(B, b) = 1 ⇒ BMpWL ≡ 1 mod (b)

else ∃b�,m ∈ ℤ∕b = m ⋅ b�∧

mcd
(

B, b�
)

b = 1 ∧m =

p
∏

i=1

f
j

i

(9)
a

b
=

1

m
⋅

a

b
∧mcd

(

B, b�
)

= 1 ∧ BMpWL ≡ 1 mod
(

b�
)

9750 H. Mora et al.

1 3

This function complies with the following properties:
Injective: Each rational value has a different codification. The amount of frac-

tional digits of rational numbers is finite or it is periodically infinite within a finite
period.

Surjective: Any rational value can be represented with the proposed format.

Existence of inverse: Due to the conjunction of the two other properties, (11) and
(12), the representation function is provided with the inverse of the ℚ set, that is,
it is possible to construct a function that obtains the initial rational value for each
number codification.

As a result of these properties, any rational number that is normalized according
to the format will have a characteristic expression comprising a sign, an exponent, a
fixed mantissa, and a periodic mantissa. Therefore, this implementation constitutes
an exact evaluation of the identity function.

The format must provide special codifications that represent special situations or
exceptional cases, e.g., codification of zero, overflow, underflow, and error result.
Special codes of the exponent are allowed to express these situations, similar to the
conventional floating-point formats.

3.3 Hardware implementation

In this subsection, we describe a specific structure of the registers comprising the
flexible storage space that can store the representation format data. The proposed
implementation is one of several that are possible for this format. The binary base is
adopted for encoding number representations for performance reasons.

The proposed format distributes the significant digits of the representation of the
number into four parts: sign (1 bit), exponent (EWL bits), fixed mantissa (MfWL
bits), and periodic mantissa (MpWL bits), where WL is the word length. The fixed
mantissa (mf) constitutes the fractional part of the non-periodic rational number,
whereas the periodic mantissa (mp) represents the digits that form the repetitive part.
The exponent, as in the floating-point format, expresses the order of magnitude of
the number. With this technique, numbers with infinite fractional digits are obtained
from a finite codification and their exact representation can be obtained by the ALU.
The following figure shows a diagram of the representation scheme (Fig. 1).

The proposed design for hardware implementation is based on the layout of the
fields that make up the number in a finite length word and that provide flexibility
in the distribution of fractional numbers between the fixed and periodic mantissa.

(10)Γidentity ∶ ℚ → ℚ

(11)∀x1, x2 ∈ ℚ,Γidentity

(

x1
)

≠ Γidentity

(

x2
)

(12)∀x ∈ ℚ,∃ s, E,mp,mf ∈ ℤ∕Γidentity(x) = x

(13)∃Γ−1
identity

∶ ℚ → ℚ∕∀x ∈ ℚ, x = Γ−1
identity

(

Γidentity(x)
)

9751

1 3

Advancements in number representation for high‑precision…

Therefore, the parts of the number are placed consecutively in a fixed-RWL reg-
ister. This length must be previously set, depending on the application require-
ments. The sign (1), the exponent (EWL), and the mantissa (MWL) are provided
with a number of positions determined for their representation.

The following figure shows a diagram of the register that contains the informa-
tion with the distribution of the lengths in their fields. The mantissa is formed by
the fixed and periodic digits of the number (Fig. 2):

As can be seen from the previous figure, the representation of the exponent is
made in the assigned space. Any integer number codification format will be used
to complete all of the reserved positions.

The flexible division of the mantissa digits into fixed and periodic parts
requires a pointer, which marks the separation between the two parts and which
enables separate processing. To complete all of the digits assigned to the man-
tissa field, the fractional digits of the period are concatenated forming a cycle,
and their lengths are stored with the previous pointer. These three segments of
the data are associated with the register that contains the number and are placed
adjacent to it, as can be seen in the structure illustrated in the following figure
(Fig. 3):

The mantissa of the numbers without a fixed part is constructed only by means
of concatenation of the digits of the periodic mantissa. In this case, the pointer that
marks the separation between the mantissas takes the value MWL.

When the length of any part of the number exceeds the register length, its exact
expression is not possible and it will be necessary to adjust the codification to the
closest representable value. The proposed criterion is intended to completely rep-
resent the exponent and the sign and to apply the cut in the mantissa. When the
mantissa is affected by the limitation of MWL digits, its approximate expression is

Exponent (E)sign Fixed Man�ssa (mf) Periodic Man�ssa (mp)

1 EWL MfWL MpWL

Fig. 1 General scheme of the format of the double mantissa representation

Fig. 2 Distribution of the digits
of the number fields

Exponent (E)sign

EWL

Man�ssa

MWL

0RWL-1

1

EWL MWL

MfWL MpWL

MWL-MfWL
0RWL-1

Exponent (E)s mf mp mp ···
1

MWL-MfWL

Fig. 3 Structure of the implementation of the double mantissa format

9752 H. Mora et al.

1 3

considered, and the last digits are ruled out following the order of magnitude of the
digits. The situations that might arise are as follows:

• If the amount of < EWL, MWL > digits is enough for the complete codification
of the exponent and the mantissa overall, its exact representation may be made.

• If the amount of MWL digits is not enough for the complete representation of
the mantissa of the number, an approximate representation is obtained. Two sce-
narios are proposed in the codification according to the number field affecting
the reduction of digits. The first is shown in Fig. 4.

• Case I If full codification of the periodic mantissa is not possible, then it is elim-
inated. A zero value is assigned to the indicator of the period length, and its dig-
its are used to construct an extended fixed mantissa, which fulfils the total length
available. Then, the approximate value of the mantissa is rounded. As the follow-
ing figure shows, the rounding is made with the period digits remaining outside
the limit. Any rounding method referred to in the bibliography may be applied
using the necessary amount of digits [34].

• Case II If the complete codification of the fixed mantissa is not possible, then
the periodic mantissa is directly rejected by assigning zero to its length indicator,
and the fixed mantissa is then adjusted by rounding off the remaining digits.

In both cases, the position of the start of the periodic mantissa, which is marked
by the associated pointer, is irrelevant.

• Finally, if the amount of available EWL digits does not even accommodate the
representation of the order of magnitude, the number is not representable with
the conditions imposed. In this case, the result will show an error.

The characteristics of the representation format ensure that there exists a regis-
ter size that is suitable for the exact representation of each set of rational numbers.

Exponent (E)s Fixed Man�ssa

0RWL-1

EWL MWL

Exponent (E)s

Periodic Man�ssa

RoundedMan�ssa

1

Rounding

Fig. 4 Transference of digits between period and fixed mantissas and round off

9753

1 3

Advancements in number representation for high‑precision…

However, it is crucial to find a length that strikes a balance between representation
complexity and the required expressive capacity for each application. Moreover, the
placement of these registers will have an impact on the system’s performance. It is
advisable to position the register bank within the arithmetic unit and in close prox-
imity to the operation hardware.

4 Comparison with others floating‑point formats

The implementation features described in the previous section establish the conver-
sion rules of the proposed format to any floating-point format, including the IEEE
formats. In these cases, the field lengths and the representation base will specify the
representation scope of the format.

The following table shows a comparison between the field lengths used in some
floating-point formats Table 1.

We have observed the tendency of the formats to use more and more bits in the
codification of the numbers to obtain more precise results. However, the require-
ments of each application will mark the necessary precision, and the hardware
restrictions will limit the number of bits.

Considering the whole mantissa, both exact and approximate representations, is
placed on the same level as the proposed double mantissa representation format and
the classic floating-point format. Moreover, it has the additional capacity of coding a
set of periodic rational numbers without error. Specifically, if the record structure is
set according to the size of the fields according to the IEEE-754 standard, a compat-
ible representation is returned. This fact allows numbers to be processed with exist-
ing algorithms and complete the rational computing arithmetic model.

However, advantages are obtained if suitable methods are used for the new format
to take advantage of their ability to express and produce accurate results.

Table 2 shows some codification examples made by the representation format in
comparison with the standard representation in floating point. The sample aims to be
as heterogeneous as possible and covers periodic and non-periodic rational numbers

Table 1 Format’s field size Representation format Mantissa Exponent

IEEE simple precision [16] 23 (binary) 8
IEEE double precision [16] 52 (binary) 11
IEEE quadruple precision [16] 113 (binary) 15
IEEE octuple precision [16] 237 (binary) 19
IEEE dec64 [16] 16 (decimal) 10
IEEE dec128 [16] 34 (decimal) 14
CADAC [36] 6..106 (binary) 10
M.J. Schulte [26] 64..4160(binary) 16
Proposed MfWL + MpWL (binary) EWL

9754 H. Mora et al.

1 3

Ta
bl

e
2

 R
at

io
na

l n
um

be
r r

ep
re

se
nt

at
io

n

D
ec

im
al

 n
um

be
r

B
in

ar
y

nu
m

be
r e

xp
an

si
on

IE
EE

 7
54

 si
m

pl
e

pr
ec

is
io

n
co

di
fic

at
io

n
Pr

op
os

ed
 fo

rm
at

Ex
p

M
an

tis
sa

Er
ro

r
Ex

p
Fi

xe
d

m
an

tis
sa

Pe
rio

di
c

m
an

tis
sa

0.
12

5
0.

00
1

01
11

11
00

00
00

00
00

00
00

00
00

00
00

00
0

0
11

0
1

–
0.

2
0.

00
11

00
11

00
11

00
11

…
01

11
11

00
10

,0
11

,0
01

,1
00

,1
10

,0
11

,0
01

,1
01

1.
19

·1
0−

8
11

0
–

11
00

0.
6

0.
10

01
10

01
10

01
10

01
…

01
11

11
10

00
11

00
11

00
11

00
11

00
11

01
0

7.
15

·1
0−

8
0

–
10

01
2.

18
10

.0
01

01
11

00
00

1
01

00
01

11
1…

10
,0

00
,0

00
00

01
01

11
00

00
10

10
00

11
11

1
1.

72
·1

0−
7

01
0

10
0

01
01

11
00

00
 1

,0
10

,0
01

,1
11

0
.3̂

0.
10

10
10

10
10

10
10

10
…

01
11

11
01

01
01

01
01

01
01

01
01

01
01

01
1

1.
67

·1
0−

8
0

–
10

7
.5̂

11
1.

10
00

11
10

00
11

1…
10

,0
00

,0
01

11
,1

00
,0

11
,1

00
,0

11
,1

00
,0

11
,1

00
2.

11
·1

0−
7

01
1

1
11

1,
00

0

3
7
.2̂
1

10
0,

10
1.

00
11

01
10

01
…

10
,0

00
,1

00
00

10
10

01
10

11
00

10
01

10
11

0
1.

16
·1

0−
6

01
10

10
01

01
00

11
01

10

6
4
,

̂
0
1
3
6
9
8
6
3

1,
00

0,
00

0.
00

00
00

11
1

10
,0

00
,1

01
00

00
00

00
00

00
11

10
00

00
10

0
3.

86
·1

0−
6

01
11

1,
00

0,
00

0
00

00
00

11
1

9755

1 3

Advancements in number representation for high‑precision…

both in decimal and binary. The exponent of the proposed method is represented in
sign/magnitude format.

The previous table shows IEEE 754 Simple Precision codification for simplic-
ity, but accuracy problems would be the same as in the new IEEE release [16] and
extended binary formats. From the results of this Table 2, the following facts can be
derived:

• The proposed method is able to represent numbers with an infinite number of
digits within a discrete representation range.

• Errors produced in the decimal–binary–decimal conversion are avoided.
• The proposed method allows the exact representation of numbers for which con-

ventional techniques produce errors.

5 Empirical evaluation

In this work, we performed a series of empirical tests to analyze the functional
behavior of the proposed format. The experiments were based on a study of the cod-
ification of the significant part of the mantissa, assuming that both the exponent and
the sign were represented correctly in all cases. The experiments were conducted by
means of a simulation in a C programming environment.1 They are divided into two
sets.

Experiment Set I Studying the number of digits necessary for codification of the
rational values.

The tests were performed studying the relationship that exists between the area
complexity and the numerator and the denominator of the fraction that produces
the rational value (a/b). The results obtained are shown in Figs. 5 and 6. Figure 5
shows the increase in the number of digits necessary to contain the fixed mantissa
with regard to the fraction’s numerator. It grows according to the integer loga-
rithm of the numerator in the same way as in conventional formats. The denomi-
nator does not influence the growth of this mantissa.

Figure 6 shows a linear growth of the number of digits of the periodic mantissa
with regard to the fraction denominator. This means that in the worst case, the
number of digits of the period depends directly on its magnitude. When there are
timing or area restrictions, this growth can be a disadvantage, which should be
taken into account when designing the solution.

Experiment Set II Comparing the proposed method and the conventional meth-
ods of representation as used in most general-purpose computers, i.e., the stand-
ard IEEE 754.

Conclusions were drawn from this test about the expressiveness of this format
and about the deviations that take place in rational numerical representation.

The profile of this test is defined as the codification of 107 random rational
numbers (non-periodic and periodic) in the IEEE 754 representation format in

1 C++ for Windows in Microsoft Visual Studio.

9756 H. Mora et al.

1 3

simple precision (32 bits) and double precision (64 bits). Each non-periodic num-
ber belongs to the interval [0, 1] and consists of 128 random significant fractional
bits. Each periodic number belongs to the interval [0, 1] and is built by means of
a fraction 1/b, where b is a 16-bit random integer value that is not a power of 2.

In all the cases, the proposed format can represent all the generated num-
bers without error by means of the double mantissa representation as shown in
Table 2. Thus, the aim of these tests is to check the IEEE 754 format represen-
tations while taking the proposed method as a valid reference in the error-free
codification of rational numbers. From this comparison, an absolute measurement
of the error committed by the IEEE 754 simple and double precision formats are

Fig. 5 Growth of digit of fixed mantissa

Fig. 6 Growth of digit of periodic mantissa

9757

1 3

Advancements in number representation for high‑precision…

obtained as well as the deviation on the correct codification in terms of the posi-
tion of the first incorrect bit.

Table 3 shows the average of the first incorrect position from the mantissa. In all
of the cases, its value is very near the length of the mantissa. It represents a meas-
urement of the similarity between the exact value and the true value represented,
although it is not indicative of the error committed in the representation.

Table 4 shows the average error produced in the mantissa’s magnitude. These
errors should be taken into account as much as they are influenced by an exponent
that is able to amplify their magnitude. Such imprecision makes us reflect on the
suitability of using floating-point formats in the data representation.

The calculation methods with this representation format should have the capabil-
ity to deliver the precise result of the operation within a finite word size, thereby
bypassing the need for a final rounding stage; the length of the exact result, rep-
resented in a positional notation system, is directly proportional to the initial size
of the operands; and the development of strategies to fine-tune precision and the
result’s length is achievable by iterative calculation methods of the mantissas. The
utilization of iterative structures and pre-calculated data can serve as a means of
achieving flexibility in designs and adjusting the result according to the unique
requirements of each application [32, 35].

6 Application example and discussion

In this section we describe an application example in which the proposed computa-
tional model has advantages over other number representation formats. The working
scenario could be to a stock market which perform a lot of daily operations. The
exactness of number representation is essential to maintain the accuracy of prices,
ensure correct assessment, and determine the evolution of the value of the stocks. In

Table 3 First incorrect bit
average

IEEE format Non-periodic
numbers

Periodic numbers

Position σ Position σ

IEEE 754 simple precision 23.36 8.97 23.08 8.34
IEEE 754 double precision 52.01 15.05 51.82 14.88

Table 4 Average error in IEEE 754 representation

IEEE format Non-periodic numbers Periodic numbers

Position σ Position σ

IEEE 754 simple precision 2.97·10−8 2.05·10−13 2.97·10−8 1.18·10−13

IEEE 754 double precision 5.55·10−17 1.85·10−33 5.54·10−17 1.03·10−33

9758 H. Mora et al.

1 3

this case, it is considered that the rational domain of the numbers is euro cents, that
is, two decimal fractional digits.

The rational representation of these numbers by IEEE binary formats is not exact
for the majority of the numbers with this precision. Figure 7 shows the representa-
tion error for all multiples of euro cent with IEEE Simple Precision format (32 bits
length).

The average error of the previous representation is ~ 10−8 and the accumulated
error, if addition of absolute values is considered, it is ~ 9.9·10−7. These results
show, once again, the insufficiency of binary positional numeric formats to represent
rational numbers exactly, regardless of the number of digits used to it.

The representation of cents has the following positional numeric expression2:

By means the proposed method, encoding these numbers required only 22 sig-
nificant digits with the following distribution between fixed and periodic mantissas:

All fractional numbers required in pricing will be a multiple of the previous one,
and therefore, our method does not need more fractional digits for coding them
exactly.

Although there are other radix-10 encoding formats in the latest revision of the
IEEE 754 standard able to represent numbers of these characteristics, they cannot
resolve the problem discussed in this example for all cases, as it can produce the
results with decimal periodic digits that cannot be encoded in these formats. Such as
the rational number (1/3) outlined in the introduction to this paper.

0.01 C= 0.00 ̂000010100011110101112

0.01C= 0.00mf
00001010001111010111mp

Fig. 7 Representation error for all multiples of euro cent with IEEE SP format

2 The numerical positional expansion of the fractions [1/a] where a ∊ [1..1000] is provided as supple-
mentary material.

9759

1 3

Advancements in number representation for high‑precision…

7 Conclusions

In this study, we introduced a binary representation format for rational numbers. The
core concept revolves around leveraging the mathematical characteristics of their frac-
tional representation and separately codifying the fixed and periodic digits. As a result,
rational numbers are furnished with a positional representation of their value, featur-
ing a finite number of significant fractional digits, which allows for their codification
within a finite material space representation. This floating-point coding surpasses clas-
sic fixed or floating-point representations, which can be seen as specific cases thereof,
by accurately codifying a broader numeric set without errors.

One of the primary advantages of the proposed format is its ability to circumvent
errors arising from the human user’s introduction of data into a computer, where the
base codification changes from decimal to binary. When applied to systems with area
restrictions, the method behaves similarly to other floating-point formats, incorporat-
ing a rounding process that grants it variable precision properties. Simulation tests con-
vincingly demonstrate its superior expression capacity when compared to conventional
binary methods, and the application example showcases a real case of number codifica-
tion. For these reasons, our format presents a viable alternative to symbolic calculation
for exact processing.

In the future, we will work on the design of basic arithmetic operators in order to
build a minimum operative set of instructions to compute high-precision demanding
applications. We specially will focus on the multiplicator operator, since this function is
the key for developing other advanced elementary functions.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s11227- 023- 05814-y.

Acknowledgements This work was supported by the Spanish Research Agency (AEI) (https:// doi. org/ 10.
13039/ 50110 00110 33) under project HPC4Industry PID2020-120213RB-I00.

Author contributions All authors have contributed to all sections of the document. H.M. conduct the
experiments. All authors reviewed and accepted the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability All data has been generated through the methods described in this paper.

Declarations

Competing interests The authors declare no competing interests.

Conflict of interest The authors declare that they have no conflict of interest.

Consent to participate The authors declare that they agree to participate.

Consent for publication The authors declare that they agree to publish.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative

https://doi.org/10.1007/s11227-023-05814-y
https://doi.org/10.1007/s11227-023-05814-y
https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100011033

9760 H. Mora et al.

1 3

Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Bailey DH (2005) High-precision floating-point arithmetic in scientific computation. Comput Sci
Eng 7(3):54–61

 2. Javidi M, Saedshoar Heris M (2023) New numerical methods for solving the partial fractional
differential equations with uniform and non-uniform meshes. J Supercomput 79:14457–14488.
https:// doi. org/ 10. 1007/ s11227- 023- 05198-z

 3. Rico-Garcia H, Sanchez-Romero JL, Jimeno-Morenilla A, Migallon-Gomis H, Mora-Mora H,
Rao RV (2019) Comparison of high-performance parallel implementations of tlbo and jaya
optimization methods on manycore GPU. IEEE Access. https:// doi. org/ 10. 1109/ ACCESS. 2019.
29410 86

 4. Ercegovac MD, Lang T, Muller J-M, Tisserand A (2000) Reciprocation, square root, inverse
square root, and some elementary functions using small multipliers. IEEE Trans Comput
49(7):628–637. https:// doi. org/ 10. 1109/ 12. 863031

 5. Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2007) MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Trans Math Softw 33(2):13. https://
doi. org/ 10. 1145/ 12364 63. 12364 68

 6. Bailey DH, Li XS, Hida Y, Thompson B (2002) ARPREC: an arbitrary precision computation
package. Software available online: http:// crd- legacy. lbl. gov/ ~dhbai ley/ mpdist, Accessed on 30
Sept 2023

 7. Dhawale PG, Kamboj VK, Bath SK (2023) A levy flight based strategy to improve the exploita-
tion capability of arithmetic optimization algorithm for engineering global optimization prob-
lems. Trans Emerg Telecommun Technol. https:// doi. org/ 10. 1002/ ett. 4739

 8. Bohlender G (1990) What do we need beyond IEEE arithmetic? Computer arithmetic and self-
validating numerical methods. Academic Press, Boston

 9. Muhamed FM (2023) Exact versus inexact decimal floating-point numbers and arithmetic. IEEE
Access 11:17891–17905. https:// doi. org/ 10. 1109/ ACCESS. 2023. 32448 91

 10. Chu Z, Li Z, Xia Y, Wang L, Liu W (2021) BCD adder designs based on three-input XOR and
majority gates. IEEE Trans Circuits and Syst II: Express Br. https:// doi. org/ 10. 1109/ TCSII. 2020.
30473 93

 11. Sanchez-Romero JL, Mora H, Mora-Pascual J, Jimeno-Morenilla A (2011) Function approxi-
mation on decimal operands. Digit Signal Proces 21(2):354–366. https:// doi. org/ 10. 1016/j. dsp.
2010. 06. 013

 12. Changela A, Zaveri M, Verma D (2023) A comparative study on CORDIC algorithms and applica-
tions. J Circuits, Syst Comput 32(05):2330002. https:// doi. org/ 10. 1142/ S0218 12662 33000 27

 13. Sanchez-Romero JL, Mora H, Mora-Pascual J, Jimeno-Morenilla A (2008) Architecture Implemen-
tation of an Improved Decimal CORDIC Method. In: IEEE International Conference on Computer
Design. Lake Tahoe, CA USA. https:// doi. org/ 10. 1109/ ICCD. 2008. 47518 46

 14. Usman M, Ercegovac M, Lee JA (2023) Low-latency online multiplier with reduced activities and
minimized interconnect for inner product arrays. J Signal Process Syst. https:// doi. org/ 10. 1007/
s11265- 023- 01856-w

 15. Ercegovac MD (2020) On Reducing Module Activities in Online Arithmetic Operations. In: 2020
54th Asilomar Conference on Signals, Systems, and Computers. IEEE. Pacific Grove, CA, USA. p
524–528. https:// doi. org/ 10. 1109/ IEEEC ONF51 394. 2020. 94435 76

 16. IEEE Std 754-2019 (2019) Institute of Electrical and Electronic Engineers Standard for Floating-
Point Arithmetic, Institute of Electrical and Electronics Engineers, New York, NY, USA. https:// doi.
org/ 10. 1109/ IEEES TD. 2019. 87662 29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11227-023-05198-z
https://doi.org/10.1109/ACCESS.2019.2941086
https://doi.org/10.1109/ACCESS.2019.2941086
https://doi.org/10.1109/12.863031
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
http://crd-legacy.lbl.gov/~dhbailey/mpdist
https://doi.org/10.1002/ett.4739
https://doi.org/10.1109/ACCESS.2023.3244891
https://doi.org/10.1109/TCSII.2020.3047393
https://doi.org/10.1109/TCSII.2020.3047393
https://doi.org/10.1016/j.dsp.2010.06.013
https://doi.org/10.1016/j.dsp.2010.06.013
https://doi.org/10.1142/S0218126623300027
https://doi.org/10.1109/ICCD.2008.4751846
https://doi.org/10.1007/s11265-023-01856-w
https://doi.org/10.1007/s11265-023-01856-w
https://doi.org/10.1109/IEEECONF51394.2020.9443576
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229

9761

1 3

Advancements in number representation for high‑precision…

 17. Goldberg D (1991) What every computer scientist should know about floating-point arithmetic.
Comput Surv 23(1):5–48

 18. Lafage V (2020) Revisiting what every computer scientist should know about floating-point arith-
metic. arXiv:2012.02492. https:// doi. org/ 10. 48550/ arXiv. 2012. 02492

 19. Kneusel RT (2017) Arbitrary precision floating-point. Numbers and computers. Springer, Cham.
https:// doi. org/ 10. 1007/ 978-3- 319- 50508-4_9

 20. Zhang Z, Xu J, Hao J et al (2023) Hierarchical search algorithm for error detection in floating-point
arithmetic expressions. J Supercomput. https:// doi. org/ 10. 1007/ s11227- 023- 05523-6

 21. Meurer A et al (2017) SymPy: symbolic computing in python. PeerJ Comput Sci. 3:e103. https://
doi. org/ 10. 7717/ peerj- cs. 103

 22. Campbell JM, Cantarini M, D’Aurizio J (2022) Symbolic computations via fourier-legendre expan-
sions and fractional operators. Integral Transform Spec Funct 33(2):157–175. https:// doi. org/ 10.
1080/ 10652 469. 2021. 19191 03

 23. Ibran Z, Aljatlawi E, Awin A (2022) On continued fractions and their applications. J Appl Math
Phys 10:142–159. https:// doi. org/ 10. 4236/ jamp. 2022. 101011

 24. Ganesan K, Veeramani P (2005) On arithmetic operations of interval numbers. Int J Uncertain,
Fuzziness Knowl-Based Syst 13:619–631

 25. Revol N, Benet L, Ferranti L, Zhilin S (2023) Testing interval arithmetic libraries, including their
IEEE-1788 compliance. In: Wyrzykowski R, Dongarra J, Deelman E, Karczewski K (eds) Parallel
processing and applied mathematics. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 031- 30445-3_
36

 26. Schulte MJ (2000) A family of variable-precision interval arithmetic processors. IEEE Trans Com-
put 49(5):1–11. https:// doi. org/ 10. 1109/ 12. 859535

 27. Graillat S, Jézéquel F, Wang S et al (2011) Stochastic arithmetic in multiprecision. Math Comput
Sci 5:359–375. https:// doi. org/ 10. 1007/ s11786- 011- 0103-4

 28. Gianantonio PD, Lanzi PL (2004) Lazy algorithms for exact real arithmetic. Electron Notes Theor
Comput Sci 104:113–128. https:// doi. org/ 10. 1016/j. entcs. 2004. 08. 021

 29. Priest DM (1991) Algorithms for Arbitrary Precision Floating Point Arithmetic. In: Symposium of
Computer Arithmetic. p. 132–143 https:// doi. org/ 10. 1109/ ARITH. 1991. 145549

 30. Rubia JJ, Shibi CS, Balajishanmugam V, Lincy RB (2023) High-performance computing based on
residue number system: a review. Int Conf Adv Comput Commun Syst (ICACCS). https:// doi. org/
10. 1109/ ICACC S57279. 2023. 10112 959

 31. Li B, Wang J, Ding G, Fu H, Lei B, Yang H, Bi J, Lei S (2021) A high-performance and low-cost
montgomery modular multiplication based on redundant binary representation. IEEE Trans Circuits
Syst II: Express Br. https:// doi. org/ 10. 1109/ TCSII. 2021. 30536 30

 32. Mora H, Mora-Pascual J, García-Chamizo JM, Signes-Pont MT (2017) Mathematical model and
implementation of rational processing. J Comput Appl Math 309:575–586. https:// doi. org/ 10. 1016/j.
cam. 2016. 05. 001

 33. Mora-Mora H, Mora-Pascual J, García-Chamizo JM, Jimeno-Morenilla A (2006) Real-time arith-
metic unit. Real-Time Syst 34:53–79. https:// doi. org/ 10. 1007/ s11241- 006- 8753-z

 34. Thompson SR, Stine JE (2020) A Novel rounding algorithm for a high performance IEEE 754 dou-
ble-precision floating-point multiplier. IEEE Int Conf Comput Des (ICCD). https:// doi. org/ 10. 1109/
ICCD5 0377. 2020. 00081

 35. Mora H, Mora-Pascual J, Signes-Pont MT, Sánchez-Romero JL (2010) Mathematical model of
stored logic based computation. Math Comput Model 52(7):1243–1250. https:// doi. org/ 10. 1016/j.
mcm. 2010. 02. 034

 36. Cohen MS, Hull TE, Hamacher VC (1983) CADAC: a controlled-precision decimal arithmetic unit.
IEEE Trans Comput C–32:370–377. https:// doi. org/ 10. 1109/ TC. 1983. 16762 38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.48550/arXiv.2012.02492
https://doi.org/10.1007/978-3-319-50508-4_9
https://doi.org/10.1007/s11227-023-05523-6
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1080/10652469.2021.1919103
https://doi.org/10.1080/10652469.2021.1919103
https://doi.org/10.4236/jamp.2022.101011
https://doi.org/10.1007/978-3-031-30445-3_36
https://doi.org/10.1007/978-3-031-30445-3_36
https://doi.org/10.1109/12.859535
https://doi.org/10.1007/s11786-011-0103-4
https://doi.org/10.1016/j.entcs.2004.08.021
https://doi.org/10.1109/ARITH.1991.145549
https://doi.org/10.1109/ICACCS57279.2023.10112959
https://doi.org/10.1109/ICACCS57279.2023.10112959
https://doi.org/10.1109/TCSII.2021.3053630
https://doi.org/10.1016/j.cam.2016.05.001
https://doi.org/10.1016/j.cam.2016.05.001
https://doi.org/10.1007/s11241-006-8753-z
https://doi.org/10.1109/ICCD50377.2020.00081
https://doi.org/10.1109/ICCD50377.2020.00081
https://doi.org/10.1016/j.mcm.2010.02.034
https://doi.org/10.1016/j.mcm.2010.02.034
https://doi.org/10.1109/TC.1983.1676238

	Advancements in number representation for high-precision computing
	Abstract
	1 Introduction and motivation
	2 Literature survey of number representation in a computer
	2.1 Number representation
	2.2 Findings

	3 Rational exact representation format
	3.1 Specification of the double mantissa format
	3.2 Properties of the representation format
	3.3 Hardware implementation

	4 Comparison with others floating-point formats
	5 Empirical evaluation
	6 Application example and discussion
	7 Conclusions
	Acknowledgements
	References

