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Abstract
Efficient representation of data is a fundamental prerequisite for addressing compu-
tational problems effectively using computers. The continual improvement in meth-
ods for representing numbers in computers serves as a critical step in expanding the 
scope and capabilities of computing systems. In this research, we conduct a compre-
hensive review of both fundamental and advanced techniques for representing num-
bers in computers. Additionally, we propose a novel model capable of representing 
rational numbers with absolute precision, catering to specific high precision appli-
cations. Specifically, we adopt fractional positional notation coupled with explicit 
codification of the periodic parts, thereby accommodating the entire rational number 
set without any loss of accuracy. We elucidate the properties and hardware repre-
sentation of this proposed format and provide the results of extensive experiments 
to demonstrate its expressiveness and minimal codification error when compared to 
other real number representation formats. This research contributes to the advance-
ment of numerical representation in computer systems, empowering them to handle 
complex computations with heightened accuracy, making them more reliable and 
versatile in a wide range of applications.
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1  Introduction and motivation

Consider the following problem:
With the first-order equation

, the result is well known and easy to calculate, and the value for x is found as

That number expressed in fractional positional notation indicates, with abso-
lute precision, the value of the variable x. However, as with most currently avail-
able algorithmic technologies, it is not possible to obtain an exact result, but only 
an approximation.

This result occurs due to the nature of the positional representation of the peri-
odic number, which comprises infinite fractional digits.

This issue raises several questions regarding the characteristics of numerical 
representation. How many significant digits does a number have? To what extent 
is this influenced by the number representation base? What numeric sets cause 
this situation? An analysis of these questions will enable us to clarify whether 
there are alternative numerical codifications for these numbers or whether it is 
necessary to relinquish the expression of their exact value through a positional 
representation. The most frequent is to undertake approximations to the correct 
value using a specific number of digits.

Number processing plays a vital role in resolving various computational prob-
lems that are challenging to address with global solutions due to factors such as 
the complexity of operations, functional domains, data nature, and numerical 
ranges of operands and results. Certain applications, in particular, demand high-
performance computing for intricate mathematical calculations, while simulta-
neously imposing stringent constraints on accuracy. For instance, scenarios like 
calculating trajectories for moving bodies in space or over significant distances, 
guidance and positioning systems, quantum theory calculations, intensive finan-
cial transactions, climate modeling, and more [1], all require utmost precision in 
computations. In these applications, the magnitude of the error could be difficult 
to delimit, and the incorrect results could propagate by other subsequent opera-
tions. Thus, even a minor imprecision during operations can lead to substantial 
deviations in the final results, especially in algorithms composed by highly itera-
tive and complex numerical methods [2, 3].

In such computation-intensive scenarios, the representation of data is a funda-
mental concern for achieving accurate computational resolutions. Key questions 
arise: What numerical set is best suited for data codification? How many signifi-
cant digits are necessary to ensure accurate calculations? Which representational 
format should be employed? Addressing these critical questions leads us to an 
appropriate numerical codification that strikes a delicate balance between accu-
racy and computational complexity.

3x = 1,

x = 0.3̂10
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In this paper, we propose a computation model that satisfactorily solves the 
accuracy requirements of a set of problems from the lowest level of the computer 
architecture. More specifically, the main contribution of this work is a new method 
for representing error-free rational numeric data, based on floating-point schemes. 
This method allows the development of operators for arithmetic functions in order 
to build a rational arithmetic unit. A typical arithmetic unit supports a small set of 
basic operators from which a large set of mathematical functions can be computed 
by function composition. For example, from the basic operators of addition and mul-
tiplication, more complex functions such as reciprocation, square root, exponentia-
tion, or trigonometric functions can be obtained using the Newton–Raphson, Gold-
schmidt, or Taylor algorithms [4].

In spite real number set is more generic than rational one, real irrational numbers 
can be approximated by rational numbers as much as it is needed, and in addition, 
rational numbers can be represented in positional way with finite word length.

The proposed rational computational model constitutes an algebraic field with 
addition and multiplication operations where every nonzero rational number has 
multiplicative inverse and can be represented with the format.

This paper is structured as follows: Sect. 2 provides a review of the current state 
of knowledge on numerical representation and analyses the most relevant propos-
als of this topic, Sect. 3 develops the formal framework in which the model is con-
structed and describes the proposed numerical representation of rational numbers 
and their implementation, Sect. 4 shows a comparison with other formats, Sect. 5 
develops an empirical evaluation, next, Sect. 6 describes an application example and 
finally, Sect. 7 summarizes the conclusions of this work.

2  Literature survey of number representation in a computer

2.1  Number representation

The relevance of the topic at hand is underscored by the multitude of proposals and 
works dedicated to resolving specific aspects of the problem. For applications that 
demand greater accuracy, the prevalent approach involves employing variable preci-
sion software tools for reasons of portability. These tools act as a layer of abstrac-
tion, furnishing structures and operations with adjustable lengths tailored to each 
application’s requirements. Such tools encompass function libraries, various data 
types, arithmetic packages, and extensions for common programming languages like 
C, Pascal, Python, Fortran, etc. [5–7]. While they extend the range of representation 
formats to accommodate more significant digits and achieve greater accuracy, the 
computational complexity of their operations often limits their general use. Conse-
quently, these software solutions increase computation runtimes compared to native 
machine numerical formats, and their final codification remains constrained by the 
formats and numerical representations supported by the underlying hardware, which 
adds its own restrictions.

The pursuit of high-precision calculations has led to the development of 
algorithms that work with data of considerable length, compensating for the 
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limitations of standard representation formats. In this context, proposals for 
numerical decimal processing prove particularly interesting as they sidestep 
errors introduced by binary conversion of data [8–11]. Notable methods for cal-
culating results with a large number of digits include the well-known algorithms 
of Newton–Raphson, Goldschmidt, CORDIC, and Taylor [11–13], as well as 
arithmetic on-line operation methods [14, 15], which perform operations from the 
most significant to the least significant digits. While some of these algorithms 
are included in the aforementioned software tools, they inherit the same limita-
tions. Some hardware implementations have been proposed and developed, offer-
ing limited solutions, including those mentioned below.

In general, numerical codification formats are predominantly conditioned by 
the characteristics of the numerical sets they represent, with distinct formats for 
natural, integer, and real numbers. Fractional positional notation, used to repre-
sent real numbers, directly expresses the value of the number with an integer and 
a fractional part.

The simplest fractional representation is the fixed-point format, which sets a spe-
cific number of digits for the integer and fractional parts, leading to rounded frac-
tional point representation, while advantageous for simplicity in operator design, 
fixed-point formats can only precisely represent numbers that align with discrete 
codifiable elements, approximating the remainder.

For a broader representation range, floating-point systems are particularly rel-
evant. In floating-point systems, the integer part is minimized, and the fractional 
part is extensively developed, akin to scientific notation. This format is structured 
into sign, exponent, and mantissa fields. While it extends the expression capac-
ity of fixed-point formats, it still establishes a discrete range of representation for 
real numbers in a computer. The widely adopted standard for floating-point num-
ber representation is IEEE-754 [16], encompassing various representation formats, 
rounding methods, and exceptions. However, finite precision sets employed in 
floating-point schemes do not allow representation of fractional values beyond the 
significant digits allowed by the format, leading to calculation errors [17–20] that 
prevents a satisfactory resolution for applications requiring high precision results. 
While these formats include methods to refine or round the codification to reduce 
errors, modifying the least significant digits of the representation compromises exact 
representation.

As the demand for computing capacities surpasses present systems, research is 
inclined toward designs dedicated to addressing hardware deficiencies. This leads to 
specific computer architectures with new functionalities tailored for resolving such 
problems. Numerical representation is closely related to this situation, with numer-
ous valid solutions for specific environments. Alternative methods of numerical 
expression and arithmetic calculations implemented in specialized processor designs 
have been explored, and the progress made, along with notable deficiencies, are 
reviewed in the subsequent sections. These proposals are classified based on their 
expressiveness and capacity for number representation.

The method with the greatest expressivity is symbolic computation, characterized 
by exact representation using algebraic expressions for numerical values, forming an 
exact arithmetic scheme [21, 22]. Continuous fractions also offer an exact method of 
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representation for rational numbers, encoding numbers through successive fractions 
of integers [23].

Another group of proposals relies on the arithmetic model of intervals, which 
defines the inaccuracy introduced when providing a numerical result. Numbers are 
expressed by the interval extremes in which they are found, codified using float-
ing-point notation [24, 25]. Arithmetic operations are performed on the interval 
extremes, retaining results within the limits [26]. While this technique does not 
yield a single exact value, it maintains the error of the numerical result, delimited by 
the interval limits. Interval arithmetic provides guaranteed results, but it is not well 
suited for the validation of high precision. Instead, the round-off error propagation 
could be estimated using stochastic arithmetic and then increasing number certainty 
[27]. Some proposals combine interval arithmetic and symbolic notation, with lazy 
arithmetic [28] expressing results through symbolic mathematical expressions while 
providing numeric results as intervals. For higher precision requirements, new cal-
culations can be performed to obtain improved approximations.

Other proposals aim to increase the precision of numerical values by using a 
greater number of significant digits to represent operands and results, attempting to 
achieve accurate approximations for specific problem requirements. However, such 
systems cannot encode numbers with an infinite number of fractional digits, lead-
ing to the loss of exact representation of rational values and processing errors. This 
group includes staggered arithmetic and on-line arithmetic: Staggered arithmetic 
[29] represents each number using a variable list of non-overlapping floating-point 
values that provide the value of the number they encode; On-line arithmetic [14, 15] 
processes operands serially, performing calculations digit-by-digit based on partial 
knowledge of the input data. This property allows for the design of segmented cal-
culation methods, facilitating operations with a variable number of digits and estab-
lishing regular structures for arithmetic units.

Lastly, other numerical representations focus on improving computer perfor-
mance through the simplification of basic operators and increasing the arithmetic 
unit’s throughput. These proposals are useful for high-throughput arithmetic pro-
cesses, such as in DSP applications, but might not prioritize accuracy. Examples 
include Residue Number System (RNS) [30], and Redundant Binary Representa-
tions (RBR) [31].

2.2  Findings

The exploration of these state-of-the-art representation methods demonstrates that 
conventional techniques and standard formats encounter challenges when represent-
ing numbers with infinite fractional digits. While certain specific proposals offer 
valid and widely accepted solutions, enhancing the expression capacity of new 
methods and formats often results in increased complexity. Moreover, for many 
applications, having a single number that represents the result’s value is crucial.

Software-based representation proposals, though versatile and compatible with 
most systems for constructing specialized applications, fall short of meeting the 
performance expectations of some applications. In contrast, hardware low-level 
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solutions, based on interval arithmetic and other variable significant digit methods, 
offer intriguing alternatives to improve result precision. However, they may not pro-
vide exact values, presenting approximations whose quality is challenging to gauge.

In conclusion, applications requiring high-performance computing and sub-
stantial calculation accuracy emphasize the need for an appropriate expression of 
operands and the development of corresponding low-level algorithms. This paves 
the way for conceiving an exact method of operand codification based on numeri-
cal representation, representing an improvement over current proposals. Such a 
method should provide knowledge of operand values and generated partial results, 
with effective adjustment or approximation policies according to the application’s 
requirements. The subsequent section addresses the establishment of an appropriate 
representation format.

3  Rational exact representation format

3.1  Specification of the double mantissa format

Fixed and floating-point representation schemes show that although their number-set 
representation is contained in the rational set ℚ, there are infinite rational numbers 
that cannot be expressed in these formats, although arbitrary lengths of the binary 
word are permitted. That is, as much as the amount of digits represented is increased, 
it is impossible to codify such values exactly [8, 17, 18]. Nevertheless, the codifica-
tion of rational numbers is of particular interest because it is the largest subset of ℝ, 
where the exact value of their elements can be written in a positional representation 
format. The inherent characteristics of the rational numbers in ℚ suggest the possi-
bility of obtaining a representation model that fulfils the following objectives:

1. To contain the exact positional notation of the numbers representing them in a 
direct way.

2. To allow an indeterminate number of exact fractional digits to be obtained accord-
ing to the requirements of each application.

3. To reach very high or very low extreme values.

The proposed number representation is based on an extension of the floating-
point scheme, where it is considered both the fixed and the periodic expansion of the 
positional representation of rational numbers. This proposal develops a representa-
tion format for high precision computing proposed in our previous researches [32, 
33].

The number’s mantissa is obtained by concatenation of the fixed mantissa (mf) 
and the periodic mantissa (mp) for an indefinite number of times. Expression 1 illus-
trates its construction.

(1)Mantissa (M) = mfmpmpmpmpmp … = mfm̂p
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The value of the rational number is now obtained according to the same expres-
sion as with the floating-point format:

where B is the numerical base of the representation, M is the complete mantissa 
formed by the concatenation of the fixed mantissa and the periodic mantissa for an 
infinite number of times, and E is the exponent. The exact value of the complete 
mantissa can be calculated by means of the following expression:

where MPWL is the length of the periodic mantissa, MFwl is the length of the fixed 
mantissa, mfmp is the one-time concatenation of the fixed mantissa and the periodic 
mantissa, and the denominator is formed by the concatenation of the digits as often 
as indicated.

To avoid multiple representations of the numbers, the format imposes the follow-
ing normalization conditions:

1. The mantissa of the number is normalized by positioning the first significant digit 
to the right of the fractional point. If the fixed mantissa does not exist, the periodic 
mantissa is then normalized by rotating its digits to the left.

2. When the fixed mantissa or periodic mantissa does not exist, their corresponding 
field in the codification will be left empty.

Please, note that the cases when the periodic mantissa is 0 or (B − 1) are the same. 
The periodic mantissa equal to 0 is the general case when the number has not period. 
And the case when the periodic mantissa is equal to the base representation minus 
one (‘1’ in binary representation base), it is achieved just by adding ‘one’ to lest sig-
nificant bit of the fixed mantissa.

3. The fixed mantissa cannot contain groups of digits that match with the periodic 
mantissa in its least significant part:

Then,

(2)x ∈ ℚ, x = (−1)s ⋅ M ⋅ BE,

(3)
M =

mfmp − mf

(B − 1)⋯ (B − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MPWL

0⋯ 0
⏟⏟⏟
MFWL

(4)M = 0,mfm̂p∕M ∈ [B−1, 1[

(5)
mf = �MfWL−1 … �1�0

mp = �MpWL−1 … �1�0

∀i ∈
[

0..MpWL − 1
]

, �i−1 … �1�0 ≠ �i−1 … �1�0
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4. The periodic mantissa must have the minimum number of digits, that is, it should 
not be composed of smaller periodic sub-mantissas.

Then,

The number of digits, MpWL, that forms the period of a rational number is 
closely related to the denominator of the irreducible fraction that represents the 
rational number according to the following expression:

The number of periodic fractional digits is always smaller than b. In particular, 
the definition of the function ℑ that determines MpWL consists of the following 
congruence relations:

where f1, …, fp id the list of prime factors of the representation base B, and j ∈ ℕ. 
Thus:

Thus, the nonzero period of the periodic numbers is related to the representa-
tion base. This observation is of great relevance for numerical representation and 
computer arithmetic, since in a binary domain there are fractional numbers of zero 
period in decimal that will produce periodic expansion in binary representation. 
Hence, the importance of defining a model that allows to represent and operate with 
these numbers accurately.

3.2  Properties of the representation format

The proposed format covers the whole ℚ set as each number can be represented 
exactly. In this way, the proposed representation function, Γidentity, is a bijective 
application among the rational number set.

mp = �MpWL−1 … �1�0

(6)

∀i ∈ [1..MpWL − 1] ∕MpWL mod i = 0 ⇒

⇒ �i−1 … �1�0 ≠ �2i−1 … �1�i∧
∧�i−1 … �1�0 ≠ �3i−1 … �2i+1�2i∧
…

∧�i−1 … �1�0 ≠ �MpWL−1 … �MpWL−i+2�MpWL−i+1

(7)
∀x = 𝛼MfWL𝛼MfWL−1 … 𝛼i, 𝛼i−1 … 𝛼1𝛼0 �𝛾MpWL−1 … 𝛾1𝛾0 ∈ ℚ,∃a, b ∈ ℤ∕

∕ x =
a

b
∧ b ≠ 0 ∧mcd(a, b) = 1 ⇒ MpWL = ℑ(b) < b

(8)

if mcd(B, b) = 1 ⇒ BMpWL ≡ 1 mod (b)

else ∃b�,m ∈ ℤ∕b = m ⋅ b�∧

mcd
(

B, b�
)

b = 1 ∧m =

p
∏

i=1

f
j

i

(9)
a

b
=

1

m
⋅

a

b
∧mcd

(

B, b�
)

= 1 ∧ BMpWL ≡ 1 mod
(

b�
)



9750 H. Mora et al.

1 3

This function complies with the following properties:
Injective: Each rational value has a different codification. The amount of frac-

tional digits of rational numbers is finite or it is periodically infinite within a finite 
period.

Surjective: Any rational value can be represented with the proposed format.

Existence of inverse: Due to the conjunction of the two other properties, (11) and 
(12), the representation function is provided with the inverse of the ℚ set, that is, 
it is possible to construct a function that obtains the initial rational value for each 
number codification.

As a result of these properties, any rational number that is normalized according 
to the format will have a characteristic expression comprising a sign, an exponent, a 
fixed mantissa, and a periodic mantissa. Therefore, this implementation constitutes 
an exact evaluation of the identity function.

The format must provide special codifications that represent special situations or 
exceptional cases, e.g., codification of zero, overflow, underflow, and error result. 
Special codes of the exponent are allowed to express these situations, similar to the 
conventional floating-point formats.

3.3  Hardware implementation

In this subsection, we describe a specific structure of the registers comprising the 
flexible storage space that can store the representation format data. The proposed 
implementation is one of several that are possible for this format. The binary base is 
adopted for encoding number representations for performance reasons.

The proposed format distributes the significant digits of the representation of the 
number into four parts: sign (1 bit), exponent (EWL bits), fixed mantissa (MfWL 
bits), and periodic mantissa (MpWL bits), where WL is the word length. The fixed 
mantissa (mf) constitutes the fractional part of the non-periodic rational number, 
whereas the periodic mantissa (mp) represents the digits that form the repetitive part. 
The exponent, as in the floating-point format, expresses the order of magnitude of 
the number. With this technique, numbers with infinite fractional digits are obtained 
from a finite codification and their exact representation can be obtained by the ALU. 
The following figure shows a diagram of the representation scheme (Fig. 1).

The proposed design for hardware implementation is based on the layout of the 
fields that make up the number in a finite length word and that provide flexibility 
in the distribution of fractional numbers between the fixed and periodic mantissa. 

(10)Γidentity ∶ ℚ → ℚ

(11)∀x1, x2 ∈ ℚ,Γidentity

(

x1
)

≠ Γidentity

(

x2
)

(12)∀x ∈ ℚ,∃ s, E,mp,mf ∈ ℤ∕Γidentity(x) = x

(13)∃Γ−1
identity

∶ ℚ → ℚ∕∀x ∈ ℚ, x = Γ−1
identity

(

Γidentity(x)
)
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Therefore, the parts of the number are placed consecutively in a fixed-RWL reg-
ister. This length must be previously set, depending on the application require-
ments. The sign (1), the exponent (EWL), and the mantissa (MWL) are provided 
with a number of positions determined for their representation.

The following figure shows a diagram of the register that contains the informa-
tion with the distribution of the lengths in their fields. The mantissa is formed by 
the fixed and periodic digits of the number (Fig. 2):

As can be seen from the previous figure, the representation of the exponent is 
made in the assigned space. Any integer number codification format will be used 
to complete all of the reserved positions.

The flexible division of the mantissa digits into fixed and periodic parts 
requires a pointer, which marks the separation between the two parts and which 
enables separate processing. To complete all of the digits assigned to the man-
tissa field, the fractional digits of the period are concatenated forming a cycle, 
and their lengths are stored with the previous pointer. These three segments of 
the data are associated with the register that contains the number and are placed 
adjacent to it, as can be seen in the structure illustrated in the following figure 
(Fig. 3):

The mantissa of the numbers without a fixed part is constructed only by means 
of concatenation of the digits of the periodic mantissa. In this case, the pointer that 
marks the separation between the mantissas takes the value MWL.

When the length of any part of the number exceeds the register length, its exact 
expression is not possible and it will be necessary to adjust the codification to the 
closest representable value. The proposed criterion is intended to completely rep-
resent the exponent and the sign and to apply the cut in the mantissa. When the 
mantissa is affected by the limitation of MWL digits, its approximate expression is 

Exponent (E)sign Fixed Man�ssa (mf) Periodic Man�ssa (mp)

1 EWL MfWL MpWL

Fig. 1  General scheme of the format of the double mantissa representation

Fig. 2  Distribution of the digits 
of the number fields

Exponent (E)sign

EWL

Man�ssa

MWL

0RWL-1

1

EWL MWL

MfWL MpWL

MWL-MfWL
0RWL-1

Exponent (E)s mf mp mp ···
1

MWL-MfWL

Fig. 3  Structure of the implementation of the double mantissa format
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considered, and the last digits are ruled out following the order of magnitude of the 
digits. The situations that might arise are as follows:

• If the amount of < EWL, MWL > digits is enough for the complete codification 
of the exponent and the mantissa overall, its exact representation may be made.

• If the amount of MWL digits is not enough for the complete representation of 
the mantissa of the number, an approximate representation is obtained. Two sce-
narios are proposed in the codification according to the number field affecting 
the reduction of digits. The first is shown in  Fig. 4.

• Case I If full codification of the periodic mantissa is not possible, then it is elim-
inated. A zero value is assigned to the indicator of the period length, and its dig-
its are used to construct an extended fixed mantissa, which fulfils the total length 
available. Then, the approximate value of the mantissa is rounded. As the follow-
ing figure shows, the rounding is made with the period digits remaining outside 
the limit. Any rounding method referred to in the bibliography may be applied 
using the necessary amount of digits [34].

• Case II If the complete codification of the fixed mantissa is not possible, then 
the periodic mantissa is directly rejected by assigning zero to its length indicator, 
and the fixed mantissa is then adjusted by rounding off the remaining digits.

In both cases, the position of the start of the periodic mantissa, which is marked 
by the associated pointer, is irrelevant.

• Finally, if the amount of available EWL digits does not even accommodate the 
representation of the order of magnitude, the number is not representable with 
the conditions imposed. In this case, the result will show an error.

The characteristics of the representation format ensure that there exists a regis-
ter size that is suitable for the exact representation of each set of rational numbers. 

Exponent (E)s Fixed Man�ssa

0RWL-1

EWL MWL

Exponent (E)s

Periodic Man�ssa

RoundedMan�ssa

1

Rounding

Fig. 4  Transference of digits between period and fixed mantissas and round off
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However, it is crucial to find a length that strikes a balance between representation 
complexity and the required expressive capacity for each application. Moreover, the 
placement of these registers will have an impact on the system’s performance. It is 
advisable to position the register bank within the arithmetic unit and in close prox-
imity to the operation hardware.

4  Comparison with others floating‑point formats

The implementation features described in the previous section establish the conver-
sion rules of the proposed format to any floating-point format, including the IEEE 
formats. In these cases, the field lengths and the representation base will specify the 
representation scope of the format.

The following table shows a comparison between the field lengths used in some 
floating-point formats Table 1.

We have observed the tendency of the formats to use more and more bits in the 
codification of the numbers to obtain more precise results. However, the require-
ments of each application will mark the necessary precision, and the hardware 
restrictions will limit the number of bits.

Considering the whole mantissa, both exact and approximate representations, is 
placed on the same level as the proposed double mantissa representation format and 
the classic floating-point format. Moreover, it has the additional capacity of coding a 
set of periodic rational numbers without error. Specifically, if the record structure is 
set according to the size of the fields according to the IEEE-754 standard, a compat-
ible representation is returned. This fact allows numbers to be processed with exist-
ing algorithms and complete the rational computing arithmetic model.

However, advantages are obtained if suitable methods are used for the new format 
to take advantage of their ability to express and produce accurate results.

Table 2 shows some codification examples made by the representation format in 
comparison with the standard representation in floating point. The sample aims to be 
as heterogeneous as possible and covers periodic and non-periodic rational numbers 

Table 1  Format’s field size Representation format Mantissa Exponent

IEEE simple precision [16] 23 (binary) 8
IEEE double precision [16] 52 (binary) 11
IEEE quadruple precision [16] 113 (binary) 15
IEEE octuple precision [16] 237 (binary) 19
IEEE dec64 [16] 16 (decimal) 10
IEEE dec128 [16] 34 (decimal) 14
CADAC [36] 6..106 (binary) 10
M.J. Schulte [26] 64..4160(binary) 16
Proposed MfWL + MpWL (binary) EWL
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both in decimal and binary. The exponent of the proposed method is represented in 
sign/magnitude format.

The previous table shows IEEE 754 Simple Precision codification for simplic-
ity, but accuracy problems would be the same as in the new IEEE release [16] and 
extended binary formats. From the results of this Table 2, the following facts can be 
derived:

• The proposed method is able to represent numbers with an infinite number of 
digits within a discrete representation range.

• Errors produced in the decimal–binary–decimal conversion are avoided.
• The proposed method allows the exact representation of numbers for which con-

ventional techniques produce errors.

5  Empirical evaluation

In this work, we performed a series of empirical tests to analyze the functional 
behavior of the proposed format. The experiments were based on a study of the cod-
ification of the significant part of the mantissa, assuming that both the exponent and 
the sign were represented correctly in all cases. The experiments were conducted by 
means of a simulation in a C programming environment.1 They are divided into two 
sets.

Experiment Set I Studying the number of digits necessary for codification of the 
rational values.

The tests were performed studying the relationship that exists between the area 
complexity and the numerator and the denominator of the fraction that produces 
the rational value (a/b). The results obtained are shown in Figs. 5 and 6. Figure 5 
shows the increase in the number of digits necessary to contain the fixed mantissa 
with regard to the fraction’s numerator. It grows according to the integer loga-
rithm of the numerator in the same way as in conventional formats. The denomi-
nator does not influence the growth of this mantissa.

Figure 6 shows a linear growth of the number of digits of the periodic mantissa 
with regard to the fraction denominator. This means that in the worst case, the 
number of digits of the period depends directly on its magnitude. When there are 
timing or area restrictions, this growth can be a disadvantage, which should be 
taken into account when designing the solution.

Experiment Set II Comparing the proposed method and the conventional meth-
ods of representation as used in most general-purpose computers, i.e., the stand-
ard IEEE 754.

Conclusions were drawn from this test about the expressiveness of this format 
and about the deviations that take place in rational numerical representation.

The profile of this test is defined as the codification of  107 random rational 
numbers (non-periodic and periodic) in the IEEE 754 representation format in 

1 C++ for Windows in Microsoft Visual Studio.
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simple precision (32 bits) and double precision (64 bits). Each non-periodic num-
ber belongs to the interval [0, 1] and consists of 128 random significant fractional 
bits. Each periodic number belongs to the interval [0, 1] and is built by means of 
a fraction 1/b, where b is a 16-bit random integer value that is not a power of 2.

In all the cases, the proposed format can represent all the generated num-
bers without error by means of the double mantissa representation as shown in 
Table 2. Thus, the aim of these tests is to check the IEEE 754 format represen-
tations while taking the proposed method as a valid reference in the error-free 
codification of rational numbers. From this comparison, an absolute measurement 
of the error committed by the IEEE 754 simple and double precision formats are 

Fig. 5  Growth of digit of fixed mantissa

Fig. 6  Growth of digit of periodic mantissa
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obtained as well as the deviation on the correct codification in terms of the posi-
tion of the first incorrect bit.

Table 3 shows the average of the first incorrect position from the mantissa. In all 
of the cases, its value is very near the length of the mantissa. It represents a meas-
urement of the similarity between the exact value and the true value represented, 
although it is not indicative of the error committed in the representation.

Table  4 shows the average error produced in the mantissa’s magnitude. These 
errors should be taken into account as much as they are influenced by an exponent 
that is able to amplify their magnitude. Such imprecision makes us reflect on the 
suitability of using floating-point formats in the data representation.

The calculation methods with this representation format should have the capabil-
ity to deliver the precise result of the operation within a finite word size, thereby 
bypassing the need for a final rounding stage; the length of the exact result, rep-
resented in a positional notation system, is directly proportional to the initial size 
of the operands; and the development of strategies to fine-tune precision and the 
result’s length is achievable by iterative calculation methods of the mantissas. The 
utilization of iterative structures and pre-calculated data can serve as a means of 
achieving flexibility in designs and adjusting the result according to the unique 
requirements of each application [32, 35].

6  Application example and discussion

In this section we describe an application example in which the proposed computa-
tional model has advantages over other number representation formats. The working 
scenario could be to a stock market which perform a lot of daily operations. The 
exactness of number representation is essential to maintain the accuracy of prices, 
ensure correct assessment, and determine the evolution of the value of the stocks. In 

Table 3  First incorrect bit 
average

IEEE format Non-periodic 
numbers

Periodic numbers

Position σ Position σ

IEEE 754 simple precision 23.36 8.97 23.08 8.34
IEEE 754 double precision 52.01 15.05 51.82 14.88

Table 4  Average error in IEEE 754 representation

IEEE format Non-periodic numbers Periodic numbers

Position σ Position σ

IEEE 754 simple precision 2.97·10−8 2.05·10−13 2.97·10−8 1.18·10−13

IEEE 754 double precision 5.55·10−17 1.85·10−33 5.54·10−17 1.03·10−33
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this case, it is considered that the rational domain of the numbers is euro cents, that 
is, two decimal fractional digits.

The rational representation of these numbers by IEEE binary formats is not exact 
for the majority of the numbers with this precision. Figure 7 shows the representa-
tion error for all multiples of euro cent with IEEE Simple Precision format (32 bits 
length).

The average error of the previous representation is ~  10−8 and the accumulated 
error, if addition of absolute values is considered, it is ~ 9.9·10−7. These results 
show, once again, the insufficiency of binary positional numeric formats to represent 
rational numbers exactly, regardless of the number of digits used to it.

The representation of cents has the following positional numeric expression2:

By means the proposed method, encoding these numbers required only 22 sig-
nificant digits with the following distribution between fixed and periodic mantissas:

All fractional numbers required in pricing will be a multiple of the previous one, 
and therefore, our method does not need more fractional digits for coding them 
exactly.

Although there are other radix-10 encoding formats in the latest revision of the 
IEEE 754 standard able to represent numbers of these characteristics, they cannot 
resolve the problem discussed in this example for all cases, as it can produce the 
results with decimal periodic digits that cannot be encoded in these formats. Such as 
the rational number (1/3) outlined in the introduction to this paper.

0.01 C= 0.00 ̂000010100011110101112

0.01C= 0.00mf
00001010001111010111mp

Fig. 7  Representation error for all multiples of euro cent with IEEE SP format

2 The numerical positional expansion of the fractions [1/a] where a ∊ [1..1000] is provided as supple-
mentary material.
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7  Conclusions

In this study, we introduced a binary representation format for rational numbers. The 
core concept revolves around leveraging the mathematical characteristics of their frac-
tional representation and separately codifying the fixed and periodic digits. As a result, 
rational numbers are furnished with a positional representation of their value, featur-
ing a finite number of significant fractional digits, which allows for their codification 
within a finite material space representation. This floating-point coding surpasses clas-
sic fixed or floating-point representations, which can be seen as specific cases thereof, 
by accurately codifying a broader numeric set without errors.

One of the primary advantages of the proposed format is its ability to circumvent 
errors arising from the human user’s introduction of data into a computer, where the 
base codification changes from decimal to binary. When applied to systems with area 
restrictions, the method behaves similarly to other floating-point formats, incorporat-
ing a rounding process that grants it variable precision properties. Simulation tests con-
vincingly demonstrate its superior expression capacity when compared to conventional 
binary methods, and the application example showcases a real case of number codifica-
tion. For these reasons, our format presents a viable alternative to symbolic calculation 
for exact processing.

In the future, we will work on the design of basic arithmetic operators in order to 
build a minimum operative set of instructions to compute high-precision demanding 
applications. We specially will focus on the multiplicator operator, since this function is 
the key for developing other advanced elementary functions.
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