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Abstract In this work, we prove that every f (R) grav-
ity can be represented as a scale-dependent one, but not
every scale-dependent gravity can be represented in the
f (R) framework. Therefore, the f (R) formalism is strictly
included in the scale-dependent approach. This scale-depe-
ndent representation of f (R) gravity allows for a novel
approach toward both theories. In particular, we obtain a
novel dynamical characterization of light rings for f (R(r))
theories and we have shown that some previous solutions
of f (R) theories correspond to solutions of scale-dependent
gravity. Finally, new solutions to scale-dependent gravity are
identified with the help of the f (R) representation.

1 Introduction

Among the large variety of gravity theories, only a few sat-
isfy two essential criteria: (i) adherence to diffeomorphism
invariance, and (ii) strict adherence to the strong equivalence
principle. Notable examples include General Relativity, com-
monly referred to as GR, metric-affine gravity theories, and
others (see [1–3] and references therein). In addition to the
above, General Relativity has other attributes that confirm
its prominent status as the favoured theory of gravity. The
convincing detection of gravitational waves in 2015 stands
out as a robust empirical support for the credibility of GR,
as demonstrated by numerous studies [4,5]. Moreover, GR
has the versatility to incorporate the concept of dark energy,
which underlies the accelerated expansion of the universe.
In addition to its empirical support, the mathematical ele-
gance of GR remains a highly valued aspect of the theory.
Its ability to elegantly unify the concepts of spacetime and
gravity is particularly appreciated for its simplicity and aes-
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thetic appeal. However, despite of that, there are reasons to
investigate alternative theories of gravity. From a theoretical
point of view, GR manifests at least two strong problems: (i)
the presence of singularities [6,7], and (ii) the impossibility
of renormalization (following standard processes of quanti-
zation) [8]. The observational evidence (i.e., the discovery
of the dark sectors of the Universe) forces us to go beyond,
reconsidering fundamental physics. In such a sense, any alter-
native self-consistent theory of gravity should connect both
the ultraviolet and the infrared sectors, while preserving the
main features of GR.

In this regard, there has been a recent growing interest in
Extended Theories of Gravity (ETGs hereinafter) [2,9,10]. In
particular, special attention has been devoted to f (R) [11,12]
and scalar-tensor theories [13], as quantum theories of grav-
ity can be effectively described in the low-energy regime by
them [14–17]. In addition, these theories have been consis-
tently implemented in the cosmological context [18–20], as
they naturally exhibit an inflationary behaviour [21–24] and
lead to realistic dark energy [25–28].

On one hand, the gravitational action for f (R) theories of
gravity takes the form (see [11,12] and references therein):

S[gμν] = 1

2κ

∫
d4x

√−g f (R) + Smatter, (1)

where f (R) is a real-valued function, κ ≡ 8πG0c−4, G0 ≡
1 is the gravitational constant, c ≡ 1 is the speed of light
in vacuum, and the rest of symbols have the usual meaning:
gμν is the metric field, g is the determinant of the metric field
and R is the Ricci scalar.

Applying the variational metric formalism (which will be
assumed along the rest of the manuscript), we get the corre-
sponding equations of motion

F(R)Rμν − 1

2
f (R)gμν + [

gμν� − ∇μ∇ν

]
F(R) = 8πTμν, (2)

where F(R) ≡ d f
dR (R).
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On the other hand, the general scalar-tensor gravitational
action takes the form (see [13] and references therein)

S[gμν, φ] = 1

2κ

∫
d4x

√−g

[
f (φ)R

− ω(φ)

2
gαβ∇αφ∇βφ − V (φ)

]
+ Smatter,

(3)

where φ is a scalar field and ω(φ), V (φ) are arbitrary func-
tions representing a coupling function and a potential respec-
tively. It’s worth noting that the connection of f (R) theories
with scalar tensor theories, as discussed in the references [29–
31], has allowed a reinterpretation of the equations of motion.
This reinterpretation, in turn, has simplified the calculation
of the Newtonian and post-Newtonian limits. Although it
was initially suggested that such an equivalence might be
questionable, the essential point is that if f ′(R) is an invert-
ible function and there is an inverse relation, denoted R( f ′),
it becomes possible to construct the scalar field potential,
denoted V (φ). Consequently, this allows the representation
of f (R) theories as scalar tensor theories of gravity. The
most iconic example of these theories is the Brans–Dicke
theory [33,34], corresponding to f (φ) ≡ φ, ω(φ) ≡ ω0/φ

(with ω0 a constant), and V (φ) ≡ 0.
As shown in [32], particular f (R) and Brans–Dicke the-

ories are formally related. Specifically, a given f (R) theory
can be represented as an ω = 0 Brans–Dicke theory if f ′(R)

is invertible. The reciprocal identification requires the scalar-
tensor equation of motion R = dV/dφ to be invertible in
order to obtain φ(R) [32].

Thus, in light of previous comments, the purpose of this
work is to expand this classification of ETGs by studying
the equivalence between f (R) theories and scale-dependent
gravity, a recent ETG that promotes the couplings of the
classical gravitational action to scale-dependent quantities
[35,36], strongly inspired by asymptotically safe gravity.

This work is organized as follows: After this compact
introduction, we summarize, in Sect. 2, the main idea behind
scale-dependent gravity, whereas in Sect. 3 we show that
every f (R) theory can be represented as a scale-dependent
theory in two different ways: (i) at the level of the action and
(ii) at the level of the field equations. Subsequently, in Sect. 4,
we show two counterexamples in which scale-dependent
solutions are not expressible as solutions of f (R) gravity,
thus proving that f (R) formalism is strictly contained in
the scale-dependent framework. After that, we exhibit some
applications of the aforementioned relation between f (R)

and scale-dependent gravity, in Sect. 5. In the same section,
we also devote a few paragraphs to the study of light rings
in light of the scale-dependent formalism, highlighting the
relationship between such a concept and Gaussian curvature.
Finally, in Sect. 6, we summarize our main findings.

2 A brief account of scale-dependent gravity

Scale-dependent gravity is an alternative approach to ext-
end/find novel solutions commonly ignored in GR. In par-
ticular, we should reinforce that: (i) it introduces running
constants, which justify why we find novel solutions, (ii)
asymptotically safe gravity and scale-dependent gravity are
consistent in the IR (IR instability) and (iii) a standard fea-
ture strongly inspired by particle physics is that quantum fea-
tures can be parameterized as running couplings, as occurs,
for instance in renormalization “improved” black hole solu-
tions. However, our case does not require knowledge of the
renormalization scale k in terms of xμ, which is, of course,
a natural advantage.

Let us start by considering the effective gravitational
action, S[gμν, k], for scale-dependent gravity which takes
the form [36,37]

S[gμν, k] ≡
∫

d4x
√−g

[
1

2κk

(
R − 2	k

)]
+ Smatter, (4)

where k is a scale-dependent field related to a renormaliza-
tion scale, κk ≡ 8πGk is the Einstein coupling, Gk and 	k

refer to the scale-dependent gravitational and cosmological
couplings, respectively, and the rest of the symbols have the
usual meaning previously mentioned.

Taking variations with respect to the metric field, gμν ,
and the renormalization scale, k, we obtain: (i) the effec-
tive Einstein’s field equations and (ii) a consistent relation to
close the system (conventionally referred to as a consistency
equation). In this way, the effective equations of motion are
[35–39]

Gμν + 	kgμν + 
tμν = 8πG(x)Tμν. (5)

As is well-known, the tensor 
tμν contains the scale-
dependence of the gravitational coupling and it is defined
as


tμν = Gk
[
gμν� − ∇μ∇ν

]
G−1

k . (6)

Be aware and notice that k(x), the auxiliary scalar field,
is a real physical scale, usually identified as a momentum
scale of any spacetime point, xμ. Thus, the dependence of k
on the physical coordinates is not unique. We will bypass the
problem by considering that functions depending on k inherit
a dependence on xμ. In such a sense, we will consider that the
functions 	k andGk inherit the dependence on the spacetime
coordinates from the spacetime dependence of the scale field,
k(x). Thus, those couplings can be written as G(x) and 	(x)
[36,40].
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3 Scale-dependent representation of f (R) theories

In this section, we will consider the aforementioned formal
relation between f (R) and scale-dependent gravities: (i) at
the level of the action, and (ii) at the level of the field equa-
tions.

3.1 Analysis at the level of the action

Examining Eqs. (1) and (4) we see that the action of an f (R)

theory can be represented by a scale-dependent theory by
defining⎧⎪⎨
⎪⎩
G(x) ≡ α(x),

	(x) ≡ 1

2

[
R(x) − α(x) f (R(x))

]
,

(7)

where α(x) is a sufficiently regular but arbitrary function.
Albeit it seems to be trivial, the reciprocal identification

requires that the given scale-dependent theory fulfills

F(x) ≡ R − 2	(x)

G(x)
, (8)

which can be expressed as a function of the Ricci scalar, R,

F(x) = F(R(x)). (9)

In such a case, the scale-dependent gravitational action is
equivalent to that of an f (R) theory with

f (R) ≡ F(R). (10)

3.2 Analysis at the level of the field equations

Observe that representing a f (R) theory as a scale-dependent
one alters the variation of the action with respect to the metric.
This is because of the identification given by Eq. (7), where
f (R(x)) acts a non-dynamical function, depending on the
spacetime point.

This observation also applies to the reciprocal relation, as
G and 	 are considered functions of the Ricci scalar, and
not just non-dynamical functions. Therefore, an additional
analysis at the level of the field equations is required.

A convenient reformulation of the f (R) equations of
motion will allow a direct comparison with those of scale-
dependent gravity. In particular, it is possible to restate the
field equations for f (R) theories, Eq. (2) as

G̃μν + 
t̃μν = 8πF−1(R)Tμν, (11)

where we have defined two auxiliary tensors defined as

G̃μν = Rμν − 1

2

f (R)

F(R)
gμν, (12)


t̃μν = F−1(R)

[
gμν� − ∇μ∇ν

]
F(R), (13)

being (i) G̃μν an Einstein-like tensor, (ii) 
t̃μν a tensor which
accounts variation of F(R), and (iii) F(R) ≡ d f (R)/dR.

At this point, a straightforward comparison of the formal
structure of Eqs. (11) and (5) shows that the equations of
motion of an f (R) theory are equivalent to those of a scale-
dependent theory. This can be seen to be true by taking the
following identification,

⎧⎪⎨
⎪⎩
G(x) ≡ F−1(R(x)),

	(x) ≡ 1

2

[
R(x) − F−1(R(x)) f (R(x))

]
,

(14)

In order to identify the equations of motion of a scale-
dependent theory with those of an f (R) theory, notice that
we should invert the relation given by Eq. (14). Thus, it is
first required that G(x) and 	(x) can be represented as a
function of R, so,

{
G(x) = G(R(x)),

	(x) = 	(R(x)).
(15)

It is also mandatory, from Eq. (14), that

d

dR
F(R) = 1

G(R)
. (16)

Under these conditions, the equations of motion of such
a scale-dependent theory are equivalent to those of an f (R)

given by Eq. (10).
From the above discussion, we thus conclude one of the

main points of this work: every f (R) theory can be repre-
sented as a scale-dependent theory. The reciprocal identifica-
tion requires conditions, given by Eqs. (15) and (16), or just
the weaker restriction, Eq. (9), if the identification is made
at the level of the action.

These considerations allow us to include scale-dependent
gravity into the already known classification of well-establ-
ished ETGs [11], represented in Fig. 1. In this figure, the
labels of each connection represent the assumptions needed
to identify each formalism.

Finally, let us know that the problems of the appearance of
singularities and renormalization depend on either a break-
down of the action or a change in the formulation of the
action. Then, it is not a given fact that both f (R) and scale-
dependent representations remain equivalent at this level1

1 We thank the referee for pointing out this to us.
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Fig. 1 Partial classification of some ETGs. See text for details

4 Strict inclusion of f (R) gravity in the
scale-dependent framework

In the previous section, we proved that every f (R) theory
can be represented as a scale-dependent theory. At the same
time, the reciprocal identification requires conditions, Eqs.
(15) and (16), or just the weaker restriction, Eq. (9), at the
level of the action. In this section we will show examples
of scale-dependent gravity solutions not fulfilling the men-
tioned conditions, thus demonstrating that the f (R) formal-
ism is strictly contained in the scale-dependent framework. In
particular, we will focus on scale-dependent Schwarzschild–
de Sitter and scale-dependent polytropic black holes.

4.1 Scale-dependent Schwarzschild–de Sitter black hole

The first example is the scale-dependent Schwarzschild–de
Sitter black hole, originally obtained in [41] and revisited
in [42]. Such a black hole solution is described by the line
element

ds2 = − f (r)dt2 + f (r)−1 dr2 + r2d�2, (17)

where d�2 is the metric on the unit two-sphere and the lapse
function is defined as

f (r) = f0(r) + 1

2
ε

[
6M − 2r + 3rε (r − 4M)

+ 2r2ε (1 + 6Mε) ln

(
1 + 1

rε

) ]
.

(18)

Here, f0(r) corresponds to the classical Schwarzschild–de
Sitter solution,

f0(r) = 1 − 2M

r
− 1

3
	0r

2, (19)

where M,	0 are constants associated with the classical mass
and cosmological coupling, respectively.

The corresponding Newton’s coupling takes the form

G(r) = 1

1 + εr
, (20)

where ε > 0 is a constant that acts as a running parameter
measuring the deviation of the new solution with respect to

its classical counterpart. In this way, for ε → 0, the standard
Schwarzschild–de Sitter solution is recovered.

To study if the above-mentioned solution can be repre-
sented as an f (R) solution, we will analyze the concrete
form of the Ricci scalar, which is computed to be

R = ε

r2(1 + εr)2

(
6r + 6M(1 + 2εr)

× (−1 + 6εr(1 + εr)) + r2ε(1 − 6εr
(
4 + 3εr)

)

− 12r2ε(1 + 6Mε)(1 + εr)2 ln

[
1 + 1

εr

] )
+ 4	0.

(21)

At this point we should check both G(r) and R(r) in order to
verify that G(r) in (20) is one-to-one, however, R(r) in (21)
is not. In fact, by computing the first and second derivatives
we have

dR

dr
= −2ε

(
r2ε(rε + 3) + 3r − 6M

)
r3(rε + 1)3 , (22)

which has one positive root r̄ provided that M > 0. Besides,

d2R

dr2

∣∣∣∣
r=r̄

= − 6ε4

3
√

(6Mε + 1)
(

3
√

(6Mε + 1) − 1
)3 < 0, (23)

so r̄ is a local maximum and R(r) fails to be injective.
It is thus deduced that, in such a case, the solution for the

gravitational coupling can not be expressed as a function of
the Ricci scalar. Therefore, following the exposed reasoning,
this scale-dependent theory can not be identified (in general)
with an f (R) theory at the field equations level.2

To confirm that the link between scale-dependent gravity
and f (R) gravity is not possible to achieve, even at the level
of the action, it is enough to find two points, r1 and r2, such
that

F(r1) �= F(r2), (24)

but

R(r1) = R(r2), (25)

as in that case F(r) could not be expressed as a function of
the Ricci scalar. This behaviour can be explicitly shown in
Fig. 2 for certain {M,	0, ε}.

2 Nevertheless, for M < 0 it can be seen that R(r) is injective, and
it can be checked that condition (16) is satisfied. Therefore the scale-
dependent Schwarzschild–de Sitter black hole can be identified with an
f (R) theory.
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Fig. 2 R(r) and F(r) for fixed parameters M = 1, ε = 1, 	0 = 5.
See text for details

4.2 Scale-dependent polytropic black hole

The second example will be the scale-dependent polytropic
black hole, originally described in [43]. It also considers a
spacetime endowed with a metric as Eq. (17), in the presence
of a polytropic gas following the original paper [44,45]. Thus,
in the scale-dependent scenario, the solution has a scale-
dependent gravitational coupling again of the form of Eq.
(20), where

f (r) = f0(r) + 6Mr2ε3 ln

[
2M

rε + 1

r

]

+ 3Mε(1 − 2rε),

(26)

and f0(r) corresponds to the classical polytropic black hole
solution, given by

f0 (r, P0) = −	0r2

3
− 2M

r
. (27)

Again, to study if this scale-dependent solution can be
represented as an f (R) solution, we analyze the explicit form
of the Ricci invariant, which is computed to be

R = 2

r2

(
3Mε (2rε + 1) (6rε (rε + 1) − 1)

(rε + 1)2 + 1

)

− 72Mε3 ln

(
2M

(
1

r
+ ε

))
+ 4	0,

(28)

which again can be checked not to be injective in general
as a function of r . Therefore, the argument of the previous
example does apply.

Furthermore, even neglecting this argument and assuming
that Eq. (15) is satisfied, it can be shown that condition (16)
would not be met in general. Applying the chain rule, (16) is

Fig. 3 R(r) and F(r) for fixed parameters M = 0.5, ε = 1, 	0 = 5

equivalent to3

dF

dr

(
dR

dr

)−1

= G(r)−1. (29)

This relation applied to the scale-dependent polytropic black
hole solution, results in

rε(rε + 1)3

6Mε − 2(rε + 1)3 = 0, (30)

which is not true for ε > 0.
Starting from the action, we can also show that this scale-

dependent solution can not (in general) be identified with an
f (R) solution. Similarly to the previous example, this can
be confirmed by observing that at certain points, r1, r2, the
curvature scalar, R(r), is not injective, but F(r) is, as Fig. 3
reveals.

Therefore, up to this point, the main message is that every
f (R) theory can be represented as a scale-dependent the-
ory but the reciprocal identification is not true in general.
Thus, the f (R) formalism is strictly included in the scale-
dependent framework.

5 Applications in spherically symmetric and static
spacetimes

The scale-dependent representation of f (R) gravity already
shown suggests an alternative physical reinterpretation of
f (R) theories. Moreover, it allows for a novel approach to

3 Notice that this expression is valid on those open intervals in which
the derivative does not vanish. If these intervals did not exist, R would
be constant, making it clear that G(r) and 	(r) could not be expressed
as a function of R (as they would have to be constant functions of r ).
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face gravitational problems in f (R) gravity which we pro-
ceed to exhibit now.

We consider henceforth spherically symmetric and static
spacetimes described by the line element

ds2 = − f (r)dt2 + g(r)dr2 + r2d�. (31)

Employing a scale-dependent inspired strategy, detailed
in Sect. 5.1, we will obtain a new geometric characteriza-
tion of light rings in Sect. 5.2. In addition, we will intro-
duce a compact derivation of the general solution in f (R)

for f g = 1, physically interpreted via its scale-dependent
representation, in Sect. 5.3. Finally, we will present some pre-
viously unknown scale-dependent solutions, obtained from
recognized f (R) solutions, in Sect. 5.4.

5.1 Scale-dependent inspired strategy

Following a straightforward argument pointed out in [77],
the contraction of the Ricci tensor with radial null vectors
vanishes iff f g is constant.

This remark has been applied in the scale-dependent
framework to obtain the general solution for f g = 1 in vac-
uum [37,40–43,50–76]. By contracting the field equations
(5) with radial null vectors lμ, one arrives to the non-trivial
differential equation


tμνl
μlν = 0. (32)

We proceed to extend this strategy to f (R) gravity, con-
sidering this time arbitrary null vectors, nμ. In this way, we
contract the vacuum field equations (11) with nμ, obtaining

Rμνn
μnν = −
t̃μνn

μnν . (33)

Considering (31), the arbitrary null vector components are
(nt , nr , nθ , nφ), satisfying

nt =
√(

nr
)2
g(r) + (

nθ
)2
r2 + (

nφ
)2
r2 sin2 θ

f (r)
. (34)

Using this notation, the l. h. s and the r. h. s. of Eq. (33),
take the form

Rμνn
μnν = (

nr
)2 1

r

d

dr
(ln f g)

+
[
(nθ )

2 + (nφ)
2

sin2 θ
] 1

4r( f g)2

×
(
−r3 f ′2g + 4r f 2g(g − 1) + 2r2 f 2g′

−1

2
r3

(
f 2

)′
g′ + 2r2 f

(
r f ′)′

g

)
,

(35)

(−
t̃μν

)
nμnν = (

nr
)2

(
F ′′

F
− F ′

2F

d

dr
(ln f g)

)

+
[
(nθ )

2 + (nφ)
2

sin2 θ
]

×
(
r F ′ (2 f − r f ′)

2F f g

)
.

(36)

We have two natural ways to make use of this contracted
equation: (i) by taking radial null vectors (nθ = 0 = nφ)
and, (ii) by taking angular null vectors (nr = 0).

Considering case (i) yields

F ′′(r) + a(r)F ′(r) + b(r)F(r) = 0, (37)

where the functions a(r) and b(r) are auxiliary quantities
defined as:

a(r) = −1

2

d

dr
ln

(
f (r)g(r)

)
, (38)

b(r) = −1

r

d

dr
ln

(
f (r)g(r)

)
. (39)

Regarding case (ii), let us introduce the Ricci curvatures
corresponding to the (θ, φ), (t, r) and (r, θ) sectors, denoted
as (2)R, (2) R̃, and (2) R̂, respectively, as

(2)R = 2

r2 , (40)

(2) R̃ = − f ′′

f g
+ f ′g′

2 f g2 +
(
f ′)2

2 f 2g
, (41)

(2) R̂ = g′

rg2 . (42)

Using this notation, we obtain for case (ii) the relation

(2) R̂ − (2) R̃ + δ (2)R = 0, (43)

where we have defined the auxiliary function, δ, as follows

δ ≡ 1 − 1

2 f g

(
2 f − r f ′) (

1 + r
d

dr
ln(F)

)
. (44)

This scale-dependent inspired procedure of contracting
the field equations with null vectors, provides us with two
equations: (37) and (43). Interestingly, for f g = 1 these will
allow us to obtain a new geometric characterization of light-
rings and a compact derivation of the general solution. In
the general case, with f g non-constant, the trace of Eq. (11),
given by

F(R)R − 2 f (R) + 3�F(R) = 0, (45)
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is required to close the system. That is, Eqs. (37), (43) and
(45) are equivalent to the original field equations.4

5.2 Geometric characterization of light-rings

The field equation (43) and its auxiliary function δ, given by
Eq. (44), encode valuable information related to the appear-
ance of circular null geodesics (or light rings), which will be
studied employing the optical metric. Note that the geodesics
of this metric are the light rays and, therefore, they can be
characterized by the vanishing of their geodesic curvature,
which can be computed in the hyperplane θ = π/2, as
pointed out in [78]. In the following we will employ a stan-
dard approach based on the effective potential.

Let us consider a spacetime described by Eq. (31) with
f g = 1. For a null geodesic and taking θ = π/2 due to the
spherical symmetry restriction, the corresponding geodesic
equation reads

ṙ2 = L2
(

1

b2 − f (r)

r2

)
, (46)

where ṙ ≡ dx
dλ

(λ being an affine parameter), b = L
E is the

impact parameter, E = f ṫ and L = r2φ̇ being the photon’s
conserved energy and angular momentum, respectively). The
effective potential is given by

V (r) = f (r)

r2 . (47)

The circular null geodesics are obtained then when V ′(r) =
0, which corresponds to 2 f (r) − r f ′(r) = 0.

With these considerations, Eq. (44) can be expressed as

δ = 1 − 1

2r3 f g
V ′(r)

(
1 + r

d

dr
ln(F)

)
. (48)

Therefore, for f (R) theories such that

F(R(r)) �= αr−1, (49)

Equation (43) provides a new geometric characterization of
light rings: for any gravitational theory satisfying Eq. (49), a
circular curve is a light ring iff

(2) R̂ + (2)R − (2) R̃ = 0. (50)

At this point we would like to comment that the light ring
condition previously mentioned (V ′(r) = 0) is a purely kine-
matic effect; therefore, in principle, no field equations are
involved within their definition. In this sense, it appears sur-
prising that, within the aforementioned f (R) theories (which

4 To check this, it is enough to observe that Eqs. (37), (43) and (45)
are independent and they allow to express f (R), F ′(R) and F ′′(R) as
functions of F(R) and the metric. Applying these relations to the field
equations, a tautology is obtained.

contain GR), the existence of light rings can be traced back
to the very same field equations, given by Eq. (50).

Note that the light ring condition resembles somehow an
equilibrium of curvatures between different spacetime sec-
tors in a similar way that the event horizon can be defined
through the corresponding equilibrium condition. Specifi-
cally, after decomposing the Riemann curvature into its Weyl
and Ricci parts, it is possible to write both Eq. (50) and the
horizon condition, given by g(rH )−1 = 0, using the so-
called Newman–Penrose scalars (the interested reader can
consult [47] for a Newman–Penrose formulation of the hori-
zon condition related to horizon thermodynamics or [48] for
a study of light rings in static and extremal black holes using
the Newman–Penrose calculus). In the case of light rings, in
order to interpret Eq. (50), here we will present only the final
result of our rewriting without showing the whole calcula-
tions, which will reported elsewhere.

It turns out that the light ring condition can be equivalently
written in any of the three following ways

2 f (r) − r f ′(r) = 0 (51)
(2) R̂ + (2)R − (2) R̃ = 0 (52)

K − K ∗ − (�2 + 2	) = 0. (53)

At this point, some comments are in order. Let us con-
sider a null tetrad, {l, n,m, m̄}. Then, we have: (i) For
spherically symmetric spacetimes, K and K ∗ are given by
K = ρ2 −�2 +�11 +	 and K ∗ = −�2 −�11 +	, where
ρ stands for the expansion of a null geodesic congruence,
�2 = Cαβγ δlαmβm̄γ nδ and �11 = − 1

2 Rαβlαnβ+3	, being
Cαβγ δ and Rαβ the Weyl and Ricci tensor, respectively, and
	 = R

24 , where R = gαβ Rαβ . (ii) The asterisk (Sachs) oper-
ation interchanges the l, n and m, m̄ sectors of the geometry.
Interestingly, the four-dimensional curvatures K and K ∗ are,
in essence, the Gaussian curvatures of the (t, r) and (θ, φ)

sectors, respectively. (iii) The quantity �2 + 2	 is propor-
tional to the surface gravity of a spacelike two-surface [46].
In particular, it can be shown [47] that it represents the Komar
energy density associated with a particular spacelike surface.
And (iv), from these observations we can conclude that the
light ring condition is an equilibrium condition between very
precise curvatures with a physically relevant meaning, which
naturally appear in the Newman–Penrose formalism.

5.3 Scale-dependent representation of the vacuum f (R)

solution for the case f g = 1

As a starting point, let us note that in the context of f (R)grav-
ity, the general solution for f g = 1 in vacuum was reported
in Ref. [49]. However, its interpretation remained unclear,
as noted by the authors, who wrote “It is, however, unclear
whether these solutions correspond to maximally symmetric

123



 1101 Page 8 of 10 Eur. Phys. J. C          (2023) 83:1101 

(spatial) spaces or to some other type of spherically symmet-
ric (but nonsingular) cases” [49].

In the following lines we will show that the afore-
mentioned solution to f (R) gravity can be represented
as the scale-dependent Schwarzschild–de Sitter spacetime
(Sect. 4.1), thoroughly studied along the literature [41,79,
80].

For f g = 1 Eqs. (37) and (43) are substantially simplified,
and the trace equation, Eq. (45) is not longer necessary. The
radial null vector equation, Eq. (37), reduces to

F ′′(r) = 0, (54)

so that

F(r) = α0 + εr, (55)

where α0 and ε are arbitrary constants. While ε controls the
deviations from GR, in the sense that f (R) → α0R as ε →
0, assuming α0 = 1 is then equivalent to considering the
convention G0 ≡ 1.

With this assumption, the angular null vector equation,
Eq.(43), results in

1

r2 + f (r)

(
− 1

r2 − ε

r(1 + εr)

)

+ f ′(r) ε

2(1 + εr)
+ 1

2
f ′′(r) = 0,

(56)

whose general solution is given by Eq. (18), which corre-
sponds with the scale-dependent Schwarzschild–de Sitter
black hole solution, as previously claimed.

Therefore, the general solution of vacuum f (R) gravity
(for f g = 1) [49] can be represented as a black hole embed-
ded in a de Sitter-like Universe, where both the Newton and
cosmological couplings, G and 	, are functions which “run”
only with the radial coordinate, r .

5.4 Novel scale-dependent solutions

The link we have established between f (R) and scale-
dependent gravity can be also used in benefit of the latter.
In fact, the scale-dependent Schwarzschild de Sitter black
hole was originally obtained using a specific (and arbitrary)
choice for the constants that define Newton’s coupling. In
this sense, the function G(r) = 1

1+εr is usually considered
to recover the usual GR limit when ε → 0. However, from
the point of view of f (R) gravity, it has been shown [49]
that both the Schwarzschild de Sitter and the de Sitter space-
times are solutions of f (R) = R+	± 2

3 M

√−R − 2	 and
f (R) = ±2

√
R − 2	, respectively. Interestingly, following

our previous discussions, it can be seen that both of them are
also solutions to scale-dependent gravity for G(r) = 1

1∓ 1
3 M r

and G(r) = ∓ 1
r . Therefore, we conclude by noting that both

the Schwarzschild de Sitter and the de Sitter spacetimes are
solutions of certain models of scale-dependent gravity, where
non-standard features of the Newton coupling appear.

6 Concluding remarks

The main result of this work is that every f (R) theory of
gravity can be represented as a scale-dependent theory, both
at the level of the action and at the level of the field equations.
This inclusion is strict, i.e., not every scale-dependent theory
can be represented in the f (R) formalism, as exemplified in
Sect. 4 through the scale-dependent Schwarzschild de Sitter
and polytropic black hole solutions.

Next, we have exhibited the potential of this relation
to tackle gravitational problems in both theories in Sect. 5,
focusing on spherically symmetric and static spacetimes.

In the f (R) formalism we employed a scale-dependent
inspired strategy to analyze its field equations, which resulted
in two equalities, Eqs. (37) and (43). These provide all the
information needed to characterise the f g = 1 case. Inter-
estingly, the first equation provides a geometric character-
ization of light rings, as an equilibrium between particular
scalar curvatures, which has been further analyzed using the
Newman–Penrose formalism. At the same time, Eqs. (37)
and (43) provide a compact derivation of the general f (R)

solution for f g = 1. Even more, in line with the main point
of this paper, we have shown a physical interpretation of this
solution through its scale-dependent representation, which is
the scale-dependent Schwarzschild–de Sitter black hole.

Lastly, we exhibited how the scale-dependent gravity rep-
resentation of the f (R) framework can be used in favour of
the former. In particular, we showed that the Schwarzschild–
de Sitter and the de Sitter spacetimes, which are solutions
of f (R) gravity, are also solutions to scale-dependent grav-
ity. These solutions, not previously reported in the literature,
exhibit non-standard gravitational couplings.
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