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A B S T R A C T

In this paper, we study the black hole spacetime structure of a model consisting of the standard
Maxwell theory and a 𝑝-power-Yang–Mills term. This non-linear contribution introduces a non-
Abelian charge into the global solution, resulting in a modified structure of the standard
Reissner–Nordström black hole. Specifically, we focus on the model with 𝑝 = 1∕2, which
gives rise to a new type of modified Reissner–Nordström black hole. For this class of black
holes, we compute the event horizon, the innermost stable circular orbit, and the conditions
to preserve the weak cosmic censorship conjecture. The latter condition sets a well-established
relation between the electric and the Yang–Mills charges. As a first astrophysical implication,
the accretion properties of spherical steady flows around this new modified Reissner–Nordström
black hole are investigated in detail. Concretely, we compute the critical radius that establishes
the condition for having stable transonic flow in terms of the local sound speed and the
involved charges. Extensive numerical examples of how the Yang–Mills charge affects the
accretion process of an isothermal fluid in comparison to the standard Reissner–Nordström and
Schwarzschild black holes are displayed. Finally, analytical solutions in the fully relativistic
regime, along with numerical computations, of the mass accretion rate for a polytropic fluid in
terms of the electric and Yang–Mills charges are obtained. As a main result, the mass accretion
rate efficiency is considerably improved, with respect to the standard Reissner–Nordström and
Schwarzschild solutions, for negative values of the Yang–Mills charge.

. Introduction

In classical and alternative theories of gravity (i.e. in General Relativity and beyond), the research in the context of Black Hole
BH) physics is quite relevant [1,2]. Given that BHs are simple solutions of the Einstein’s field equations, and they incorporate
everal classical and quantum properties [3], they represent an ideal arena to get insights into profound questions still open, as (i)
ow we can consistently combine both the classical and the quantum regimen, or (ii) how to deal with certain singularities present
n General Relativity (GR). Black holes are parameterized at most by three fundamental quantities: (i) the mass 𝑀 , (ii) the angular
omentum 𝐽 and finally, (iii) the charge 𝑄, statement supported by the ‘‘no-hair theorem’’ [4].

BHs are the perfect example in which classical and quantum effects coexist in a non-trivial way and rule in different regimes.
t this point, it is essential to mention the Hawking radiation [5]. Ignoring the details, Hawking demonstrated that a black hole,
ith a surface gravity (labeled by 𝜅), emits thermal radiation with a temperature given by 𝑇𝐻 = 𝜅∕(2𝜋). The simplest case, i.e., a
chwarzschild black hole [6], for a given a black hole mass, 𝑀0, the temperature grows up when the black hole emits energy
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(consequence of its negative specific heat). Thus, albeit Hawking radiation has not been detected yet [5,7], it has a special spot
inside (among all the potential signatures related to the BH’s observations [8]) the different effects present in a black hole.

Numerous black hole solutions have been obtained within and beyond GR since the pioneering Schwarzschild solution, and
e have three remarkable examples of four-dimensional black holes. In addition to the Schwarzschild solution [6], we have: (i)

he Reissner–Nordström solution [9,10], (ii) the Kerr solution [11] and, finally, (iii) the Kerr–Newman solution [12]. The above-
entioned four solutions are considered as the ‘‘black-hole’’ solutions of general relativity. Such examples have been significantly

tudied, computing a huge variety of their physical properties. To be more precise, the celebrated Reissner–Nordström solution
as been extensively studied in the literature [9,10,13,14], leading, among other things, to interesting similarities with the Kerr
olution for rotating BHs: the electric charge plays an analogue role as the spin parameter does in the event horizon radius and
n the dynamics of magnetized particles as the magnetar J1745-2900 orbiting around the supermassive BH Sagittarius A⋆ (Sgr

A⋆) [15].
Classical self-gravitating configurations, such as soliton solutions (or boson stars) [16–21], are of great interest in astrophysics

since they can serve as black holes mimickers [22]. In general relativity and in the pure Yang–Mills theory, for instance, soliton
solutions with localized energy densities do not exist, but in the coupled Einstein–Yang Mills scenario they can arise [23]. It is
known, on the other hand, that the static Schwarzschild and Reissner–Nordström solutions are unique [24,25], in the sense that in
these solutions staticity implies spherical symmetry whereby regularity of the event horizon and the asymptotic behavior determine
the solutions completely in terms of the mass and charge, as appropriate [26]. As a consequence, stationary electrovacuum BHs are
axisymmetric and belong to a more general family of BH solutions called the Kerr–Newman BH [27]. Contrary to this claim, the
uniqueness and no-hair theorems can be violated by the presence of a non-Abelian gauge field [28], leading to the Einstein Yang–
Mills BH solution with non-trivial non-Abelian hair [29–31] (see also Ref. [23] for other generalized non-Abelian BH solutions). Let
us mention that the (non-Abelian) Yang–Mills theory is a natural generalization of the Abelian Maxwell theory. As mentioned, the
idea of considering Yang–Mills theory with gravity was first studied in Ref. [32] where a family of (purely magnetic) particle-like
solutions was found. The inclusion of a non-vanishing cosmological constant 𝛬 has been studied in Refs. [33–35]. Other non-trivial
solutions involving the Yang–Mills theory can be found in [36,37] in higher spacetime dimensions, and in the context of the
generalized SU(2) Proca theory in [21,38]. Other charged solutions in the context of alternative theories can be found at [39,40].

Subsequently, novel and also non-trivial black hole solutions were found in the Einstein–Yang Mills theory by adding extra
terms such as quartic self-interactions [38]. An emblematic example emerges when the idea of non-linear electrodynamics is
implemented in Einstein–Yang–Mills black hole solutions. Albeit simple, the most natural generalization appears when a power-law
electromagnetic Lagrangian is included (see [41–58] and references therein).

The power Yang–Mills solutions are quite promising in the sense that they generalize naturally the well-known Einstein–
Yang–Mills solution with the Wu–Yang Ansatz for the gauge field configuration, and allow non-trivial solutions to exist. Although
Yang–Mills and power Yang–Mills solutions are relevant, they are less popular than the Maxwell and power Maxwell counterpart
(see [59–64] and references therein).

The non-linearities of YM invariant have been exploited in different theories, and it has been also coupled either minimally
or non-minimally to other theories, resulting in generic BH solutions [38,59–61,63]. Nevertheless, one can think of one minimal
extension that includes both the electric and magnetic YM charge in the simplest setup. This configuration gives precisely place to
what we call the Einstein–Maxwell power Yang–Mills theory. Hence, the incorporation of the power Yang–Mills term to the Maxwell
theory naturally generalizes the new spacetime structure of the emerging BH. We can immediately think of this as a modification
of the standard Reissner–Nordström solution: a new kind of modified Reissner–Nordström BH with new properties.

A consolidated route to test gravity theories that involve (non-trivial) fields beyond the vacuum case is to study the behavior
of matter (and the same fields) and particles test around the emerging BH solutions. A variety of phenomena such as gravitational
lensing [65], the movement of the so-called 𝑆-stars around SgrA⋆ in our Galactic center [66] and accretion of matter through
ptically thick accretion disk [8,67,68], they all have been the central targets in recent observational projects to understand not
nly how matter behaves in extreme environments but also to comprehend the spacetime structure itself, which is crucial to study
he associated astrophysical processes. This latter aspect, in turn, provides an appealing way to test gravity theories beyond Einstein’s
eneral relativity theory. A particular program under this perspective is to study the stability conditions under which accretion of
atter onto BHs can take place [69], ensuring thus the astrophysical viability of the theory.

Motivated by this, the primary goal of this paper is to investigate the steady accretion flows around this new class of black
oles. Specifically, we aim to address the main question of how efficient the mass accretion rate is in this new setting compared
o the standard Reissner Nordström solution. To accomplish this, our study begins by examining the structure of the event horizon
nd the conditions required to prevent the occurrence of a naked singularity. These aspects are essential to establish the transonic
onditions of steady flows and, therefore, the mass accretion rate. In this respect, the study of accretion onto black holes for non-
eutral solutions in four-dimensional space–time has been studied on several occasions (see e.g. [70–77] and references therein).
ondi accretion is an interesting subject in astrophysics serving as a probe of concept of several phenomena [78–80].

This paper is organized as follows: after this compact introduction, in Section 2, we present the main ingredients and basic
quations that describe the BH spacetime structure. Subsequently, we present in Section 3 the equations that describe the spherical
teady accretion flows in a general theory of gravity. Then, in Section 4, we particularize the equations for the Einstein–Maxwell
-power Yang–Mills theory for the specific case 𝑝 = 1∕2 and compute the accretion rate for isothermal fluids and, more generally,
or polytropic fluids in the fully relativistic regime. Finally, in the last section, a general discussion of our main results and some
bservational perspectives of this work are presented. We will use the mostly positive metric signature, (−,+,+,+), and work in
2

geometrical units, i.e., 𝑐 = 1 = 𝐺.



Annals of Physics 459 (2023) 169489G. Gómez et al.

d
Y

m

B

2. Spacetime structure of the Einstein–Maxwell-Power Yang–Mills black

This section describes the main ingredients of the theory that describe a new non-linear black hole solution. We work in a 4-
imensional theory which includes three ingredients: (i) The Einstein–Hilbert term, (ii) The Maxwell invariant, and (iii) the Power
ang–Mills invariant. Accordingly, the total action becomes:

𝑆0 =
1
2 ∫

√

−𝑔 d4𝑥

[

𝑅 − M − 𝑝
YM

]

, (1)

where we have used the conventional definitions, i.e., 𝑅 is the Ricci scalar, 𝑔 is the determinant of the metric tensor 𝑔𝜇𝜈 , 𝑝 is a
real parameter that introduces possible non-linearities in the Yang–Mills theory. Moreover, we have defined the Maxwell invariant

M = 𝐹𝜇𝜈𝐹
𝜇𝜈 , (2)

and, subsequently, we have defined the power Yang–Mills term with the help of the following relations

YM = 𝐓𝐫
(

𝐹 (𝑎)
𝜆𝜎 𝐹

(𝑎)𝜆𝜎
)

, (3)

𝐓𝐫(⋅) =
3
∑

𝑎=1
(⋅) (4)

As usual, 𝐹𝜇𝜈 is the electromagnetic field strength, and 𝐹 (𝑎)
𝜇𝜈 is the gauge strength tensor that are defined in terms of the potentials

𝐴𝜈 and 𝐴(𝑎)
𝜈 , respectively, as follows:

𝐹𝜇𝜈 ≡ 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 , (5)

𝐹 (𝑎)
𝜇𝜈 ≡ 𝜕𝜇𝐴

(𝑎)
𝜈 − 𝜕𝜈𝐴

(𝑎)
𝜇 + 1

2𝜎
𝐶 (𝑎)
(𝑏)(𝑐)𝐴

(𝑏)
𝜇 𝐴(𝑐)

𝜈 , (6)

where the Greek indices run from 0 to 3 and 𝑎 is the internal gauge index running from 1 to 3. Also, notice that 𝐶 (𝑎)
(𝑏)(𝑐) symbolize

the structure constants of 3 parameter Lie group 𝐺, 𝜎 is an arbitrary coupling constant, 𝐴(𝑎)
𝜇 are the 𝑆𝑂(3) gauge group Yang–Mills

potentials, and finally 𝐴𝜇 is the conventional Maxwell potential. To be more precise, for the YM field, we use the well-known
agnetic Wu-Yang ansatz [37,81]

𝐀(𝑎) =
𝑞YM
𝑟2

(𝑥𝑖𝑑𝑥𝑗 − 𝑥𝑗𝑑𝑥𝑖), (7)

with

2 ≤ 𝑗 + 1 ≤ 𝑖 ≤ 3, (8)

1 ≤ 𝑎 ≤ 3, (9)

and

𝑟2 =
3
∑

𝑖=1
𝑥2𝑖 . (10)

The Maxwell potential 1-form is given by

𝐀 = 𝑄
𝑟
𝑑𝑡, (11)

where 𝑄 is the electric charge and 𝑞YM is the YM charge. Moreover, the Maxwell field and the non-Abelian gauge field are decoupled
to each other but, of course, they are coupled linearly through gravity. Notice that the general solution (for an N-dimensional case)
was first studied in [82] in the presence of a cosmological constant. In that work, the main thermodynamics, including a review of the
first law of black hole thermodynamics in the extended phase space, was also computed. To maintain the discussion self-contained,
we present the corresponding modified Einstein’s field equations, i.e.,

𝐺𝜇𝜈 + 𝛬𝑔𝜇𝜈 = 𝑇𝜇𝜈 , (12)

where we have defined two contributions to the energy–momentum tensor, i.e.,

𝑇𝜇𝜈 ≡ 𝑇M
𝜇𝜈 + 𝑇 YM

𝜇𝜈 , (13)

with the above tensors defined as

𝑇M
𝜇𝜈 = 2𝐹 𝜆

𝜇𝐹𝜈𝜆 −
1
2
𝐹𝜆𝜎𝐹

𝜆𝜎𝑔𝜇𝜈 , (14)

𝑇 YM
𝜇𝜈 = −1

2
𝑔𝛼𝜇

[

𝛿𝛼𝜈
𝑝
YM − 4𝑝𝐓𝐫

(

𝐹 (𝑎)
𝜈𝜆 𝐹

(𝑎)𝛼𝜆
)

𝑝−1
YM .

]

(15)

y Variation with respect to the gauge potentials 𝐀 and 𝐀(𝑎) provides the Maxwell and Yang Mills equations, respectively

d
(

⋆𝐅
)

= 0, (16)
3
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𝐝
(

⋆𝐅(𝑎)𝑝−1
YM

)

+ 1
𝜎
𝐶 (𝑎)
(𝑏)(𝑐)

𝑝−1
YM 𝐀(𝑏) ∧⋆ 𝐅(𝑐) = 0, (17)

where ⋆ means duality. For the Wu-Yang ansatz, the trace of the Yang–Mills takes the form:

YM =
𝑞2YM
𝑟4

, (18)

hich is positive, allowing us thus to consider all rational numbers for the 𝑝-values. It is evident that for 𝑝 = 1, the formalism
reduces to the standard Einstein–Yang Mills theory. In the same direction, we have remarkable examples of which Yang–Mills term
is included, for instance, [61,64]. Now, considering a spherically symmetric spacetime in Schwarzschild coordinates, we can write
the line element as

𝑑𝑠2 = −𝑓 (𝑟)𝑑𝑡2 + 𝑓 (𝑟)−1𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2), (19)

with 𝑟 being the radial coordinate. Ignoring the unnecessary details, the differential equation for the lapse function, coming from
the Einstein field equation, is given by

d𝑓 (𝑟)
d𝑟

+ 1
𝑟
𝑓 (𝑟) = 1

𝑟
− 𝑄2

𝑟3
−

2𝑝−1𝑞2𝑝YM
𝑟4𝑝−1

, (20)

and, identifying the total derivative on the left-hand side we simply write the well-known form

d
d𝑟

(

𝑟𝑓 (𝑟)
)

= 1 − 𝑄2

𝑟2
−

2𝑝−1𝑞2𝑝YM
𝑟4𝑝−2

. (21)

Thus, the metric function admits the general solution (setting the constant of integration as −2𝑀):

𝑓 (𝑟) = 1 − 2𝑀
𝑟

+ 𝑄2

𝑟2
+

𝑄YM

𝑟4𝑝−2
. (22)

Notice that the power Yang–Mills solution1 assembles linearly the standard Reissner–Nordström solution, and the Yang–Mills charge
𝑞YM is related to its normalized version as [64]

𝑄YM ≡ 2𝑝−1
4𝑝 − 3

𝑞2𝑝YM, (23)

for 𝑝 ≠ 3∕4. For 𝑝 = 3∕4 a radial logarithmic dependency appears from the solution which overclouds analytical treatments, so we left
ith the case 𝑝 ≠ 3∕4 for simplicity. We also have to restrict this study to some values of 𝑝 that satisfy some of the energy conditions

of general relativity (in the pure Yang–Mills case) and provide nearly asymptotic flat solutions for a wide range of Yang–Mills charge
values.2 One may ask whether such a Yang–Mills charge is related to Noether currents or any symmetry in the theory. The answer
is not. The magnetic charge is topological and comes from the Bianchi identity3 [83].

After exploring some possible 𝑝-exponents, we deal concretely with a simple, by still intriguing, case 𝑝 = 1∕2 because of: (i) it
is consistent with the well-known energy conditions of general relativity and the causality condition [64] and (ii) it modifies the
Reissner–Nordström spacetime structure in a non-trivial but still manageable way, unlike other cases explored that lead to obscure
tremendously the solution. Moreover, this case provides an illuminating analytical solutions for the inner (Cauchy) 𝑟− and external
(event horizon) 𝑟+ radii:

𝑟± =
𝑀 ±

√

𝑀2 −𝑄2(1 +𝑄YM)
1 +𝑄YM

. (24)

e call this solution henceforth modified Reissner–Nordström (MRN) solution with 𝑄YM ≠ −1. It is interesting to see that the
odification to the standard Reissner–Nordström is, in fact, effective on account of the denominator quantity; otherwise, a simple

harge redefinition would be carried out like for the case 𝑝 = 1. Notice that for the exponent 𝑝 = 1∕2, 𝑄YM is a dimensionless
arameter. The precise form for the event horizon radius is of great importance because, among other things, it sets a well-defined
elation between both charges for preventing the naked singularity. It yields4

𝑄YM > −1 ∧ 0 < 𝑄
𝑀

<

√

1
1 +𝑄YM

. (25)

Naturally, the standard constraint for the RN BH is contained in the previous expression and fully recovered in the limit 𝑄YM → 0,
leading to 𝑄∕𝑀 < 1 as it should be. For the allowed range of values of both charges, the corresponding horizons 𝑟+ are completely

1 Keeping only the power Yang–Mills solution with 𝑝 = 1 leads also to the Reissner–Nordström solution.
2 For instance, taking 𝑄 = 0.6𝑀 , and 𝑝 = 1∕3, 1∕4, 𝑄𝑌𝑀 ∼ (±10−3) whereas 𝑝 = 1∕2 allows 𝑄𝑌𝑀 ∼ (±1). The nearly asymptotic flat solution with a

residual Yang–Mills charge is achieved either from above or below, depending on the Yang–Mills charge sign since the associated term dominates at large radial
coordinate.

3 We thank J. F. Rodriguez for clarifying this point.
4 Observational inferences of the EHT horizon-scale image of SgrA⋆ set at 1𝜎 and 2𝜎, respectively, 𝑄∕𝑀 ≲ 0.8 and 𝑄∕𝑀 ≲ 0.95. So extremal RN BH and the

naked singularity regime 1 < 𝑄∕𝑀 ≲
√

9∕8 are ruled out [84]. Since such constraints are not applicable to our MRN BH, we allow extremal solutions in our
description, but not naked singularities, for merely astrophysical purposes.
4
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Table 1
Yang–Mills charge values −1 < 𝑄YM < 1 and derived constraint
𝑄 ∈ (0, 𝑄Max) by demanding the fulfillment of the weak cosmic
censorship conjecture Eq. (25). The existence of 𝑄YM changes the
possible values of 𝑟+. In particular, for a given 𝑄YM, we take the
maximum electric charge 𝑄Max that leads to the extremal case which
is always equal to one-half the purely power YM case (𝑄 = 0).
𝑄𝑌𝑀 𝑄∕𝑀 𝑟+∕𝑀

−0.9 (0, 3.16228) (20, 10)
−0.8 (0, 2.23607) (10, 5)
−0.7 (0, 1.82574) (6.66667, 3.33333)
−0.6 (0, 1.58114) (5, 2.5)
−0.5 (0, 1.41421) (4, 2)
−0.4 (0, 1.29099) (3.33333, 1.66667)
−0.3 (0, 1.19523) (2.85714, 1.42857)
−0.2 (0, 1.11803) (2.5, 1.25)
−0.1 (0, 1.05409) (2.22222, 1.11111)
0 (0, 1) (2 , 1)
0.1 (0, 0.95346) (1.81818, 0.90909)
0.2 (0, 0.91287) (1.66667, 0.83333)
0.3 (0, 0.87705) (1.53846, 0.76923)
0.4 (0, 0.84515) (1.42857, 0.71428)
0.5 (0, 0.81649) (1.33333, 0.66666)
0.6 (0, 0.79056) (1.25, 0.625)
0.7 (0, 0.76696) (1.17647, 0.58823)
0.8 (0, 0.74535) (1.11111, 0.55555)
0.9 (0, 0.72547) (1.05263, 0.52631)
1 (0, 0.70710) (1, 0.5)

determined. Some particular cases within the ranges −1 < 𝑄YM < 1 and derived constraint 𝑄 ∈ (0, 𝑄Max) from Eq. (25) are shown
in Table 1 to illustrate the emergence of the new structure of the MRN black hole in terms of both charges as compared with
Schwarzschild and RN cases. Another appealing solution embedded here is a kind of modified Schwarzschild BH, or a bit more
precisely, a trivially charged Yang–Mills solution, which is attained for 𝑄 = 0. For this solution clearly 𝑟− = 0 and the event horizon
becomes

𝑟YM+ = 2𝑀
1 +𝑄YM

, (26)

with the restriction 𝑄YM ≠ −1. On the contrary, for 𝑄 = 𝑄Max (upper value in the second column of Table 1 for a given 𝑄YM), 𝑟+ and
𝑟− each coincides with, which leads to a family of extremal BH solutions. This particular case corresponds to the lower possible value
of 𝑟+. It is interesting to notice that when 𝑄YM goes from the lowest possible value to larger ones, 𝑄 must be reduced consistently to
preserve the cosmic censorship conjecture, leading thereby to different extremal cases as compared to the standard RN BH solution:
𝑟RN+ ∕𝑀 = 1 with 𝑄∕𝑀 = 1. For instance, for 𝑄YM = 1, the corresponding maximum electric charge is now 𝑄∕𝑀 = 0.70710 with
a horizon 𝑟+ = 𝑟RN+ ∕2. For very large values 𝑄YM ≫ 1, 𝑟+ = 𝑟− → 0. In the opposite limit, 𝑄YM∕𝑀 → −1 which is the smallest
asymptotic value, 𝑟+ → ∞. This is, of course, unphysical as a result of the divergence appearing in Eq. (24). Taking (the non-
conservative) lower value 𝑄YM∕𝑀 = −0.9, results in the extremal case 𝑟+ = 10𝑟RN+ . In general, for 𝑄YM < 0, the event horizon
can be formed far beyond the standard Schwarzschild case with a maximum value corresponding to the Einstein–YM power case
(𝑄 = 0). In the opposite range 𝑄YM > 0, the horizon can be below the Cauchy horizon of the standard RN case when 𝑄 ≠ 0 and
matches the extreme RN case for 𝑄YM = 1 and 𝑄 = 0. This analysis is summarized in Table 1 where other combinations of charges
give place to extremal solutions as well.

Notice that the fact of having two charges leads to two-fold degeneracy of the event horizon. This is not illustrated in Table 1. Let
us then expose some concrete examples for completeness in our analysis. The case 𝑄YM = −0.25 with 𝑄∕𝑀 = 1 leads to 𝑟+∕𝑀 = 2,
as in the Schwarzschild case, but with a smaller Cauchy horizon 𝑟−∕𝑀 = 0.6666. Likewise, the case 𝑄YM = −0.36 with 𝑄∕𝑀 = 1.2
also leads to 𝑟+∕𝑀 = 2, but this time with a larger Cauchy horizon 𝑟−∕𝑀 = 1.125. So there are multiple choices of charge values
that provide similar results. In general, for a given 𝑄 value, the event horizon Eq. (24) is a monotonically decreasing function of
𝑄YM with small variations in the range 𝑄YM > 0.

Finally, it is important to note that some studies on the BH shadow size have constrained the electric charge, 𝑄, of a RN black
hole to satisfy roughly 𝑄∕𝑀 < 1, effectively ruling out the extremal case [85–87]. In Table 1, we consider large values of 𝑄 since
they still prevent the formation of a naked singularity, especially when negative Yang–Mills charge values are taken into account.
This serves as an illustrative example of how the presence of the Yang–Mills charge can modify the properties of the standard
RN black hole. Therefore, our numerical results do not conflict with the aforementioned constraints derived for the standard RN
black hole, as they are not directly applicable to our scenario. However, it is worth mentioning that we have recently conducted a
similar study in which we obtained constraints on the electric charge in terms of the Yang–Mills charge, and vice versa, by using
the observed shadow size [88].

On the other hand, another useful parameter in astrophysical accretion is the radius of the innermost stable circular orbit (ISCO).
5

Albeit well-known, we will briefly summarize the main ingredients behind the computation of ISCO for spherically symmetric
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four-dimensional backgrounds. We follow Ref. [89] closely for the main derivations. By using the line element (19) and following
Ref. [90], the equations of motion for test particles are obtained by using the geodesic equation

𝑑2𝑥𝜇

𝑑𝑠2
+ 𝛤 𝜇

𝜌𝜎
𝑑𝑥𝜌

𝑑𝑠
𝑑𝑥𝜎

𝑑𝑠
= 0, (27)

where 𝑠 is the corresponding proper time. The Christoffel symbols, 𝛤 𝜇
𝜌𝜎 , are related with the metric and its derivatives by [91]

𝛤 𝜇
𝜌𝜎 = 1

2
𝑔𝜇𝜆

( 𝜕𝑔𝜆𝜌
𝜕𝑥𝜎

+
𝜕𝑔𝜆𝜎
𝜕𝑥𝜌

−
𝜕𝑔𝜌𝜎
𝜕𝑥𝜆

)

. (28)

To rewrite the equation in a more suitable form, we take advantage of the existence of two conserved quantities (two first integrals
of motion), precisely as in the Keplerian problem in classical mechanics. In such a sense, we notice that, for 𝜇 = 1 = 𝑡 and 𝜇 = 4 = 𝜙,
the geodesic equations take the simple form

0 = 𝑑
𝑑𝑠

(

𝑓 (𝑟) 𝑑𝑡
𝑑𝑠

)

, (29)

0 = 𝑑
𝑑𝑠

(

𝑟2
𝑑𝜙
𝑑𝑠

)

. (30)

Introducing the corresponding conserved quantities

𝐸 ≡ 𝑓 (𝑟) 𝑑𝑡
𝑑𝑠

, 𝐿 ≡ 𝑟2
𝑑𝜙
𝑑𝑠

, (31)

we can, effectively, parameterize the problem easily. Thus, the last two quantities, 𝐸 and 𝐿, are usually related to the energy
and angular momentum, respectively. Assuming a motion on the (𝑥 − 𝑦) plane (namely, studying motions on the equatorial plane:
𝜃 = 𝜋∕2), the geodesic equation for the 𝜃 index is also satisfied automatically and, therefore, such an equation does not provide
information. The only non-trivial equation is obtained when 𝜇 = 2 = 𝑟 (see [90] for more details)

( 𝑑𝑟
𝑑𝑠

)2
=
[

𝐸2 − 𝑓 (𝑟)
(

𝜖 + 𝐿2

𝑟2

)]

, (32)

which may also be obtained from [90]

𝑔𝜇𝜈
𝑑𝑥𝜇

𝑑𝑠
𝑑𝑥𝜈

𝑑𝑠
= 𝜖. (33)

Notice at this level that we have more than one possibility, depending on the value of the 𝜖-parameter. Thus, when 𝜖 = 1 we deal
with massive test particles, and when 𝜖 = 0 with light rays. In what follows, we will consider the case with 𝜖 = 1 (massive test
article with mass 𝑚). Then the geodesic equation can be written accordingly to

( 𝑑𝑟
𝑑𝑠

)2
=
[

𝐸2 − 𝑓 (𝑟)
(

1 + 𝐿2

𝑟2

)]

, (34)

and identifying the effective potential

𝑉 (𝑟) = 𝑓 (𝑟)
(

1 + 𝐿2

𝑟2

)

, (35)

we can obtain ISCO radius. In concrete, from the condition 𝑉 ′(𝑟) = 0, 𝐿2 can be derived and replaced subsequently in 𝑉 ′′(𝑟) = 0 to
ultimately obtain the (real) root,

𝑟ISCO =
4𝑀4 − 3𝑀2𝑄2(1 +𝑄YM) +𝑀4∕3𝜇1∕3(2𝑀4∕3 + 𝜇1∕3)

𝑀5∕3(1 +𝑄YM)𝜇1∕3
, (36)

with 𝜇 = 𝜉1∕2+8𝑀4−9𝑀2𝑄2(1+𝑄YM)+2𝑄4(1+𝑄YM)2 and 𝜉 = 𝑄4(1+𝑄YM)2(5𝑀4−9𝑀2𝑄2(1+𝑄YM)+4𝑄4(1+𝑄YM)2). After careful
examination of the impact of both charges on the ISCO structure, some values of the ISCO radius are reported in Table 2 to illustrate
the richness of this class of BH. The pair of values (𝑄,𝑄YM) also fulfill the constraint Eq. (25). The first and third rows correspond,
respectively, to the Schwarzschild and extremal Reissner–Nordström cases. For a fixed electric charge, say, 𝑄 = 0.9, negative 𝑄YM
leads to a larger ISCO radius, even larger than the Schwarzschild case (see e.g. sixth row). On the contrary, keeping 𝑄YM fixed and
positive, large values of 𝑄 can reduce the ISCO radius even below the extremal Reissner–Nordström case (see seventh row). Hence,
the ISCO radius can be smaller than the extremal Reissner–Nordström case and larger than the Schwarzschild solution.

Interestingly, it is also possible to replicate the ISCO radius of the Schwarzschild and extremal Reissner–Nordström cases for
the selected values of charges: 𝑄YM = 1.732050 and 𝑄∕𝑀 = −0.58333; and 𝑄YM = 1.41421 and 𝑄∕𝑀 = −0.3750, respectively, in
agreement with Table 2. For the purely power Yang–Mills case (𝑄 → 0), the ISCO reads

𝑟YMISCO = 6𝑀
1 +𝑄YM

, (37)

which is, again, a modified version of the Schwarzschild solution. Notice that the ISCO radius is affected in the same fashion as the
event horizon (see Eq. (26)) by the Yang–Mills charge, that is, scaled by the factor (1 +𝑄YM).

All the aforementioned features for the event horizon and ISCO can also be observed in Fig. 1. In particular, it is depicted how
6

hese quantities behave as functions of the Yang–Mills charge for fixed values of the electric charge and how the extremal cases
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Fig. 1. The position of the event horizon (solid curves) and the innermost stable circular orbits (dashed curves) is plotted against the Yang–Mills charge 𝑄YM for
several fixed values of the (normalized) electric charge 𝑞 ≡ 𝑄∕𝑀 , as indicated in the legend. The event horizon for the solutions denoted by the solid blue and
red curves exists only in a certain region of the parameter space before the naked singularity becomes apparent. This region is delineated by the extremal cases
(points on the curves), for which 𝑄YM takes the maximum possible value for a given 𝑞. Conversely, there are solutions in which the innermost stable circular
orbits exhibit discontinuities. This occurs in a very small region of the parameter space (see red and blue dashed curves), where the solution itself cannot be
guaranteed. Gray horizontal lines indicate, as appropriate, the event horizon and the innermost stable circular orbit for the Schwarzschild solution.

Table 2
Radius of the ISCO in terms of both electric and Yang–Mills
charge for some reference values according to the relation
Eq. (25) that preserves the cosmic censorship conjecture. For
comparison the Schwarzschild and Reissner–Nordström cases
have been included in the first and third rows, respectively.
𝑄𝑌𝑀 𝑄∕𝑀 𝑟ISCO∕𝑀

0 0 6
1.732050 −0.583333 6
0 1 4
1.414213 −0.3750 4
0.234567 0 4.860
−0.2 0 7.50
0.234567 0.9 3.24
−0.2 0.9 6.09274
−0.2 1 5.67198

delimit the existence of the horizon (see points on the blue and red solid curves), thereby giving rise to the naked singularity beyond
such critical values.

Having investigated the general properties of the non-trivial structure of the event horizon and ISCO radii in terms of both
harges, and derived an useful relation between them that guarantees the cosmic sensor conjecture, we proceed now to investigate
he behavior of spherical steady accretion flows onto this class of black hole. It will be studied after a brief description of the
ydrodynamics equations.

. Spherical steady accretion flows in a general theory of gravity

Accretion processes of an ideal and polytropic fluids onto black holes in an arbitrary spacetime have been extensively investigated
s astrophysical probes to reveal any deviation from general relativity. Although we are working in the framework of Einstein’s
ravity we derive general accretion equations of steady flows in spherical symmetry spacetime5 but in a general background metric
ollowing the general description of Ref. [92]. Here, the gravitational backreaction of the accreting fluid on the metric function
s neglected. We consider a perfect fluid with total density 𝜌, mass density 𝜌0, internal energy density 𝜖, such that 𝜌 = 𝜌0 + 𝜖.

For isentropic fluids, the pressure can be defined as 𝑃 = 𝜔𝜌𝛾 where 𝜔 is a constant and 𝛾 is the adiabatic index. The stress
energy–momentum tensor is given by

𝑇 𝜇𝜈 = (𝜌 + 𝑃 )𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 , (38)

5 We consider the replacement 𝑓 (𝑟)−1 = 𝑔(𝑟) in the line element Eq. (19) to be more general in the description. The standard accretion equations are simply
7

ecovered by returning to the original metric function.
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where 𝑢𝜇 = (𝑢𝑡, 𝑢𝑟, 0, 0) is the four velocity of the fluid with radial accretion (and wind) flow. From the normalization condition one

ets the relation 𝑢𝑡 =
√

𝑔(𝑢2+𝑓 )
𝑓 , where we have defined for simplicity 𝑢 ≡ 𝑢𝑟. From the baryon conservation and energy–momentum

conservation

∇𝜇(𝜌0𝑢𝜇) = 0, (39)

∇𝜇𝑇
𝜇𝜈 = 0, (40)

one obtain two master equations, respectively

𝜌′0
𝜌0

+
𝑓 ′

2𝑓
+

𝑔′

2𝑔
+ 𝑢′

𝑢
+ 2

𝑟
= 0, (41)

𝑢𝑢′ +

(

𝑓 ′

2𝑓𝑔
+

𝑐2𝑠
𝑔

𝜌′0
𝜌0

)

(1 + 𝑔𝑢2) +
𝑔′

2𝑔
𝑢2 = 0, (42)

here prime denotes radial derivative. Here the sound speed is defined as 𝑐2𝑠 ≡ 𝑑𝑃
𝑑𝜌 at constant entropy. We have also used the first

aw of thermodynamics in the form 𝑑𝜌
𝑑𝜌0

= 𝜌+𝑃
𝜌0

to obtain the useful relation 𝑃 ′ = (𝜌+𝑃 )
𝜌0

𝑐2𝑠 𝜌′0. Integration of Eqs. (41) and (42) gives,
respectively, the mass accretion rate

𝑀̇ = 4𝜋𝑟2𝑢𝜌0, (43)

and the relativistic version of the Bernoulli equation

𝑓 (1 + 𝑔𝑢2)
(

𝜌 + 𝑃
𝜌0

)

= 𝐶, (44)

where 𝐶 is an integration constant that must be defined, as well as the equation of state, in order to solve for the infall radial
velocity.

4. Accretion process in Einstein–Maxwell-Power Yang–Mills theory

We start by solving the system of differential equations Eqs. (41)–(42) that governs the dynamics of the fluid flow for the
Einstein–Maxwell–Power Yang–Mills theory and metric function given by Eq. (22) with a power 𝑝 = 1∕2. There should exist a
critical radius that guarantees the monotonic increase of the velocity as decreasing 𝑟 and avoid singularities in the flow. At such a
point, the flow speed equals the sound speed even in the Newtonian treatment of the problem. This condition imposes regularity in
both equations at some critical point 𝑟𝑐 , resulting in

𝑢2𝑐 = −
𝑄2 −𝑀𝑟𝑐

2𝑟2𝑐
, (45)

𝑐2𝑠,𝑐 =
−𝑄2 +𝑀𝑟𝑐

𝑄2 + 𝑟𝑐 (−3𝑀 + 2(1 +𝑄YM)𝑟𝑐 )
, (46)

for the critical velocity of the fluid and the sound speed, respectively. In spite of having explicitly the Yang–Mills charge that changes
the structure of the fluid flow, it is possible, after some algebra, to write the critical velocity as 𝑢2𝑐 = −

𝑐2𝑠,𝑐𝑓

−1+𝑐2𝑠𝑐
as in the Schwarzschild

ase. With this, the critical radius can be determined:

𝑟𝑐 =
𝑀 + 3𝑐2𝑠,𝑐𝑀 ±

√

(𝑀 + 3𝑐2𝑠,𝑐 𝑀)2 − 8𝑐2𝑠,𝑐 (1 + 𝑐2𝑠,𝑐 )𝑄2(1 +𝑄YM)

4𝑐2𝑠,𝑐 (1 +𝑄YM)
. (47)

The critical radial velocity matches the Reissner–Nordström velocity at leading order whereas the critical sound speed receives
contributions from the Yang–Mills charge which makes the accretion flow differently. The Reissner–Nordström solutions is recovered
in the limit 𝑄YM → 0 and the Schwarzschild case taking, in addition, 𝑄 → 0.

The existence of the critical radius is ensured provided that the conditions

𝑄YM < −1 ∨

−1 <𝑄YM < −1 +
(1 + 3𝑐2𝑠,𝑐 )

2

8(𝑄∕𝑀)2𝑐2𝑠,𝑐 (1 + 𝑐2𝑠,𝑐 )
,

(48)

are satisfied. Such constraints are compatible with 𝑄 > 0 and the causality condition 𝑐2𝑠,𝑐 < 1. Nevertheless, to prevent the naked
singularity, the region 𝑄YM < −1 must be discarded in agreement with the condition set by Eq. (25). The critical radius for the pure
power Yang–Mills case (𝑄 = 0) is

𝑟YM𝑐 =
1 + 3𝑐2𝑠 +

√

(1 + 3𝑐2𝑠 )2

2
, (49)
8

4𝑐𝑠 (1 +𝑄YM)
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Fig. 2. Position of the critical point in terms of the critical sound speed for different values of the electric and YM charges as described by the legend. Dots
over curves point out the match of the critical radius with the event horizon which happens for 𝑐2𝑠,𝑐 = 1. Green curve corresponds to a naked singularity whose
associated critical radius exists only for 𝑐2𝑠,𝑐 ≲ 0.3 and the condition Eq. (48) can be preserved.

hose existence relies only on the nature of the matter fluid, that is, 𝑐2𝑠,𝑐 > −1∕3, which is plainly guaranteed and consistent with
he causality condition.

It is instructive to see how the variables involved affect the position of the critical radius in both cases. In doing so, it is convenient
o introduce the (electric) charge-to-mass ratio 𝑞 = 𝑄∕𝑀 and the dimensionless critical radius 𝑥𝑐 = 𝑟𝑐∕𝑀 . Since we have many
ariables at play, our strategy is to take certain values of the electric and YM charges and allow 𝑐2𝑠,𝑐 varies within some reasonable
ange. Although, values within 𝑐2𝑠,𝑐 < 1 are the ones of physical interest, we relax this condition knowingly to get a more complete
icture of the accretion problem. As we shall see, for 𝑐2𝑠,𝑐 > 1 accretion is apparently possible but breaks down the causal propagation
f the sound speed. In particular, we take values of charges so that the Cauchy and event horizons exist simultaneously, with the
xception of the case 𝑞 = 1.2 and 𝑄YM = −0.2 (naked singularity) as can be seen in Fig. 2, where the electric charge overcomes its
aximum allowed value as described in Table 1. The latter also violates the condition Eq. (48) for 𝑐2𝑠,𝑐 ≳ 0.3 whereas the other cases

ehaves regularly for any 𝑐2𝑠,𝑐 . This is the reason why the green curve is cut at a certain sound speed value as can be seen.
For subsonic sound speeds the critical radius can be accommodated far away from their respective event horizons and in the

pposite range, it can be located between the event horizon and the Cauchy horizon unless it corresponds to the extremal case:
= 0.9 and 𝑄YM = −0.2 (red curve), where the position of the critical radius is unaltered for 𝑐2𝑠,𝑐 ≥ 1, namely, once it reaches the

vent horizon.
For 𝑐2𝑠 = 1, the position of all critical points coincides with their respective position of the event horizon, as in the Schwarzschild

nd RN cases. This is marked with dots over all curves. Finally, in the limit of 𝑄YM → 0, our results agree fully with accretion of
erfect fluids in the RN metric [70].

.1. Accretion flow for isothermal fluids

In order to simplify our analysis and get some physical insights before proceeding in a more general way, we investigate first
ccretion of isothermal test fluids. The equation of state is then of the form 𝑃 = 𝜔𝜌, from which the sound speed is simply derived:
2
𝑠,𝑐 = 𝜔. This choice, in addition to reducing the analysis and the numerical computations considerably, gives us a general idea of
he behavior of the mass density and radial velocity through the critical points for a given constant 𝜔 and charges values. So, the
mplemented numerical strategy will cover some discrete values of the full parameter space that capture the general behavior of
he accreting matter flow.

We remind that the YM charge leads to an enhancement of the electric charge up to ∼ 3.2 that still preserves the cosmic weak
ensorship. It makes, as a consequence, that the critical radius can be located far away from the BH in comparison with the standard
chwarzschild and Reissner Nordström cases. So, for suitable comparison and representation, we take 𝑞 ≤ 1 in the subsequent
nalysis.

Let us start by considering a stiff fluid 𝜔 = 1. For certain values of the electric charge 𝑞, a range of values for the YM charge
hat satisfies Eq. (48) is derived. The results are shown in Fig. 3 with bar legends depicting the YM charge. Left panels correspond
o the radial velocities from top 𝑞 = 0 to bottom 𝑞 = 1 while right panels display the mass densities for the same values of charges.
o read this plot correctly, notice that as long as the color tone intensifies, which is dictated by the enhancement of 𝑄YM up to
ome positive upper value that is constrained by the existence of the solution itself according to Eq. (45), the trajectory of the infall
adial velocity approaches to the BH. Fair comparison can be done between the cases 𝑞 = 0, 𝑞 = 0.5 and 𝑞 = 0.7 where we have

chosen the same range of values for the YM charge unlike the case 𝑞 = 1 where negative values of 𝑄YM have been taken instead.
Red points, as well as their associated curves, correspond to the case with vanishing YM charge that coincides of course with the
9
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Fig. 3. Stiff case 𝜔 = 1. Left panel: infall radial velocity for specific values of the electric charge 𝑞 along with the effect of changing simultaneously the Yang–Mills
charge 𝑄YM, as described by the bar legend. Red points mark the critical point for the standard RN BH case 𝑄YM = 0. Right panel: mass density distribution due
to the BH gravitational potential for the same values of the electric charges as in the radial velocity. Notice that in bottom panels negative values of 𝑄YM have
been considered only to allow 𝑞 = 1 to exist according to the Table 1.

Schwarzschild case for 𝑞 = 0. Turning on the Yang–Mills charge, but still keeping 𝑞 = 0, leads to the purely power Yang–Mills case.
Notice that from 𝑞 = 0 till 𝑞 = 0.7, several accretion flows are allowed to transit around the standard RN case (red points) provided
that 𝑄YM ≠ 0. Hence, there do exist as many possible transonic solutions as values for the YM charge. The main effect of 𝑄YM on
the critical point is to bring the transonic flow closer to the BH as it increases. As to the case 𝑞 = 1, the critical point (red color)
coincides with the event horizon in agreement with our previous discussion about 𝑐2𝑠,𝑐 = 1 found below Eq. (48). Notice that the
abscissa now covers large values of the radial coordinate compared to the other cases. So, a comparison with the above cases must
be taken with caution.

This first comprehensive inspection tells us then that the Yang–Mills charge remarkably enriches the physical condition behind
the transonic flow of accreting matter, thus allowing new critical or sound points to existing. We do not explain in detail the other
10
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Fig. 4. Ultra-relativistic case 𝜔 = 1∕2. Left panels show the infall radial velocity while right panels describe the mass density distribution due to the BH
gravitational potential for a specific value of the electric charge 𝑞 along with the effect of changing simultaneously the Yang–Mills charge 𝑄YM as described by
the bar legend. Notice that in bottom panels negative values of 𝑄YM have been considered only to allow 𝑞 = 1 according to the Table 1.

cases because they can be described, considering the aforementioned properties for the stiff case, in a general way as follows. As 𝜔
gets smaller, passing from the ultra-relativistic case 𝜔 = 1∕2 (Fig. 4), the relativistic case (Fig. 5) to the case 𝜔 = 1∕4 (Fig. 6), and
considering the same values of charges, all critical points move away from the BH. This is the reason why the sequence of curves
spreads out so that they must be relocated in the new position of the critical points. This aspect becomes more noticeable as the
electric charge 𝑞 increases. Another noteworthy feature is that, for 𝜔 = 1∕3 and 𝜔 = 1∕4, as well as small electric charges 𝑞 < 1, the
transonic condition is no longer guaranteed. As a result, few sequence of curves are allowed to transit through the critical points,
in particular those characterized by 𝑄YM > 0.

Finally, we focus on both charges values that lead to the extremal case for this new BH solution and pay attention on how the
sequence of velocity curves transit for the same 𝜔-values as before. As a reference, the infall radial velocity for the standard extremal
Reissner Nordström case (𝑄 = 1, 𝑄 = 0) is described by the black curve along with some cases characterized by positives and
11
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Fig. 5. Relativistic case 𝜔 = 1∕3. Left panels show the infall radial velocity while right panels describe the mass density distribution due to the BH gravitational
potential for a specific value of the electric charge 𝑞 along with the effect of changing simultaneously the Yang–Mills charge 𝑄YM, as described by the bar
legend. The delimited range 0 < 𝑄YM < −0.5 in the three first arrows is because those values do provide transonic flows. Notice that in bottom panels negative
values of 𝑄YM have been considered only to allow 𝑞 = 1 according to the Table 1.

negatives Yang–Mills charges whose associated velocities are located respectively around it. This is shown in Fig. 7. All points over
the curves mark the position of the critical radius. Detailed information about the precise values of charges, critical points, and
critical velocities can be found in Table 3. All the main features discussed above keep unalterably. Notice, however, that for the
case 𝜔 = 1, the value of critical velocity does not change, unlike other cases.

4.2. Accretion rate for a polytropic fluid

At this point, the properties of the steady transonic flow at the sonic point are known which allow us to compute the maximum
accretion rate for the Einstein–Maxwell power-Yang–Mills theory. Before proceeding, it is very useful to rewrite radial velocity and
12
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Fig. 6. Case 𝜔 = 1∕4. Left panels show the infall radial velocity while right panels describe the mass density distribution due to the BH gravitational potential
for a specific value of the electric charge 𝑞 along with the effect of changing simultaneously the Yang–Mills charge 𝑄YM, as described by the bar legend. We
have delimited the range 0 < 𝑄YM < −0.5 for the same reason as the relativistic case. Notice that in bottom panels negative values of 𝑄YM have been considered
only to allow 𝑞 = 1 according to the Table 1.

sound speed at the critical point in terms of the known boundary conditions. It also demands knowledge of the equation of state.
So we consider a non-relativistic baryonic gas with polytropic equation

𝑃 = 𝐾𝑛𝛾 , (50)

where 𝛾 is the adiabatic index and 𝐾 is a constant. With this and from the first law of thermodynamics one can get

𝜌 = 𝑚𝑛 + 𝐾 𝑛𝛾 . (51)
13

𝛾 − 1
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Fig. 7. Infall radial velocity for a couple of values 𝑞 and 𝑄YM that lead to the extremal BH solution of the theory. As the Yang–Mills charge is turned on, new
radial velocities are allowed to transit around the critical points. See also Table 3 for further information.

Table 3
Critical radii and velocities for a couple of values 𝑞 and 𝑄𝑌𝑀 , that correspond to the new extremal BH solution according to Eq. (24), for a given constant 𝜔.
For 𝜔 = 1, the position of the critical point matches the corresponding event horizon as in the Schwarzschild and RN cases.
𝑞 𝑄𝑌𝑀 𝜔 = 1 𝜔 = 1∕2 𝜔 = 1∕3 𝜔 = 1∕4

(𝑥𝑐 , 𝑣𝑐 ) (𝑥𝑐 , 𝑣𝑐 ) (𝑥𝑐 , 𝑣𝑐 ) (𝑥𝑐 , 𝑣𝑐 )

1.41421 −0.5 (2, 0.41833) (3, 0.505524) (4, 0.51841) (5., 0.517687)
1.19523 −0.3 (1.42857, 0.41833) (2.14286, 0.483044) (2.85714, 0.467706) (3.57143, 0.442718)
1.05409 −0.1 (1.11111, 0.41833) (1.66667, 0.459465) (2.22222, 0.410789) (2.77778, 0.352134)
1 0 (1, 0.41833) (3/2, 0.44721) (2, 0.37914) (5/2, 0.296645)
0.95346 0.1 (0.90909, 0.41833) (1.36365, 0.434606) (1.81819, 0.344595) (2.27274, 0.228028)
0.87705 0.3 (0.76923, 0.41833) (1.15389, 0.408229) (1.53849, 0.262183) –
0.81649 0.5 (0.66666, 0.41833) (1, 0.380048) (1.33334, 0.136908) –

4.2.1. Relativistic regime
We provide here an exact expression for the accretion ratio in the relativistic regime for the theory in consideration. When

tudying accretion however most of the approaches focus on the asymptotic limit only, leaving thus incomplete the full picture of
he problem. For our surprise, no work has investigated analytically the steady-state spherical accretion rate in alternative theories
f gravity beyond GR in the fully relativistic regime. We follow closely Ref. [79], where Bondi accretion of steady spherical gas
low onto a Schwarzschild black hole has been studied.

From the polytropic equation, the sound speed can be written in terms of the mass density

𝑐2𝑠 =
𝛾𝐾𝜌𝛾−10

1 + 𝛾𝐾𝜌𝛾−10 ∕(𝛾 − 1)
. (52)

Evaluating this expression at the critical point and in the asymptotic region, it is easy to find the relation

𝜌0,𝑠 = 𝜌0,∞

(

𝑐2𝑠,𝑐
2

)

1
𝛾−1

(

𝛾 − 1 − 𝑐2𝑠,∞
2

)

1
𝛾−1

. (53)
14
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Finally, the relativistic Bernoulli equation, evaluated at the critical point, provides the relation

(1 + 3𝑐2𝑠,𝑐 )

(

1 −
𝑐2𝑠,𝑐
𝛾 − 1

)2

=

(

1 −
𝑐2𝑠,∞
𝛾 − 1

)2

. (54)

So, once the boundary condition at infinity is given, all the quantities at the critical point are uniquely determined. Notice that the
above equation is a cubic equation for 𝑐2𝑠,𝑐 but only one solution is (real) physical for a given polytropic equation of state. This is
solved by using a root-finding procedure.

Considering all the above, the critical accretion rate

𝑀̇ = 4𝜋𝜌0,𝑠𝑢𝑠𝑟2𝑠 , (55)

an be computed easily

𝑀̇MRN = 4𝜋

(

𝑀
𝑐2𝑠,∞

)2

𝑐2𝑠,∞ 𝜌0,∞ 𝜆MRN, (56)

ith a modified eigenvalue

𝜆MRN ≡

(

𝑐2𝑠,𝑐
𝑐2𝑠,∞

)

5−3𝛾
𝛾−1

(

𝛾 − 1 − 𝑐2𝑠,∞
𝛾 − 1 − 𝑐2𝑠,𝑐

)

1
𝛾−1

×

1
4
𝛽(1 + 3𝑐2𝑠,𝑐 )

3∕2.

(57)

Here the 𝛽 factor contains information of both charges whereby it accounts for deviation from the Schwarzschild solution and the
RN case as well. This is defined as

𝛽 = 1
4(1 +𝑄YM)2

×

⎡

⎢

⎢

⎣

1 +

√

√

√

√1 −
8𝑐2𝑠,𝑐 (1 + 𝑐2𝑠,𝑐 )𝑞2(1 +𝑄YM)

(1 + 3𝑐2𝑠,𝑐 )2

⎤

⎥

⎥

⎦

2

.
(58)

Computing the ratio of Schwarzschild to the modified Reissner–Nordström accretion ratios is particularly convenient for quantifying
the effect of both charges

𝑀̇MRN

𝑀̇Sch
= 𝛽. (59)

The purely power Yang–Mills case is independent of the adiabatic index and the boundary condition. This provides 𝛽YM = 1
(1+𝑄YM)2 .

Considering 𝑄YM > 0 leads to 𝛽 < 1 and vice versa. It means hence that 𝑄YM < 0 produce an enhancement of the accretion rate which
does not happen in the standard Reissner Nordström (see e.g. [71,93]) and Kerr [94] solutions: the mass accretion rate decreases
as the charge and spin values increase. On the other hand, the accretion rate for the Schwarzschild solution is recovered when both
charges are turned off, leading to 𝛽 → 1, as can be plainly checked. Solving the Bernoulli equation Eq. (54), that is, defining the
sound speed at the boundary condition and solving for 𝑐2𝑠,𝑐 , one can fully compute the 𝛽 factor (Eq. (58)) to determine Eq. (59).
This is shown in Fig. 8.

It is important to mention that the larger the boundary sound speed, the shorter the accretion rate variations are, keeping both
the adiabatic index 𝛾 and the electric charge fixed. Also, taking 𝑞 small makes things less distinguishable for a different 𝛾. So we
take 𝑐2𝑠 = 0.01 and 𝑞 > 0.3 to see changes between different 𝛾 ’s values. Intersections of all curves with the (gray) dashed vertical line
𝑄YM = 0 represent the Reissner Nordström accretion rates (strictly for 𝑞 ≤ 1) which in all cases is below one as is known. Notice
hat, for 𝛾 = 4∕3, 5∕3, the effect of the electric charge is quite perceptible: compare 𝑞 = 0 (solid black curve) and 𝑞 = 1 (magenta

curve) cases; unlike the case 𝛾 = 1 where both curves are practically indistinguishable. All curves, however, converge as 𝑄YM → −1
independent of the electric charge and adiabatic index. In general, the accretion rate efficiency in the relativistic regime (𝛾 = 4∕3) is
only larger than its non-relativistic counterpart (𝛾 = 5∕3) at sub-percent level. However, in the isothermal limit 𝛾 → 1, the difference
is a few percent levels compared to the previous cases. Even though the electric charge decreases the accretion rate, it is possible
to have 𝑀̇MRN ≥ 𝑀̇Sch by taking 𝑄YM < 0.

As a main result, the Yang–Mills charge, with 𝑄YM < 0, can correct the accretion rate deficiency of the electric charge or
practically cease the accretion process for 𝑄YM > 0 because the critical point is well inside the event horizon. The enhancement of
the accretion rate can be up to order 102 for 𝑄YM → −1 in comparison to the standard Schwarzschild case. These results hold only
for the power Yang–Mills case 𝑝 = 1∕2. We expect to find however similar qualitative results for 𝑝 ≠ 1∕2 whenever it leads to two
branches (±) of solutions for the Yang–Mills charge when finding the roots of the polynomial 𝑄YM =

2𝑝−1𝑞2𝑝YM
4𝑝−3 .

4.2.2. Asymptotic limit
We do not describe in detail all derivations regarding the hydrodynamic equations for the non-relativistic case since most of
15

them are independent of the metric background and can be found, for instance, in Ref. [80]. This description is strictly valid for a
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Fig. 8. Ratio of the mass accretion rates (Eq. (59)) as a function of the Yang–Mills charge for different polytropic indexes and electric charges, as described
by the legend. Notice that the Schwarzschild case is formally recovered when both charges vanish. However, as 𝛾 → 1, 𝑄YM → 0 and 𝑞 < 1, 𝑀̇MRN approaches
closely to 𝑀̇Sch. We have chosen 𝑐2𝑠,∞ = 10−3 as a reference value. The transonic condition for the critical velocity 𝑢𝑐 > 𝑐𝑠,∞ is fulfilled, where the maximum
ritical velocity is obtained for 𝛾 = 5∕3.

olytropic fluid Eq. (50) with adiabatic index 𝛾 < 5∕3 [80,94]. The Bernoulli equation provides the relation

𝑐2𝑠,𝑐 ≈
2𝑐2𝑠,∞

(5 − 3𝛾)
, (60)

for the non-relativistic condition 𝑐𝑠,𝑐 ≪ 1 which holds for reasonable large radius, 𝑟 ≫ 𝑟𝑐 , far away from the BH gravitational
influence. The same condition leads to the simple relation

𝑐2𝑠,𝑐 ≈ 𝐾𝛾 𝜌𝛾−10,𝑐 , (61)

etween the sound speed and the mass density at the critical point. This implies that the mass density can be expressed in terms of
he sound speed at the infinity in view of Eq. (60) to yield

𝜌0,𝑐 ≈ 𝜌0,∞

(

𝑐2𝑠,𝑐
2

)

1
𝛾−1

. (62)
16
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At this point all above is standard and the quantities does not receive contributions from the effective global charges 𝑄 and 𝑄YM at
the lowest order in 𝑐𝑠,𝑐 . This is not the case however for the critical radius Eq. (47) where the YM charge already appears explicitly
at leading order, affecting the Schwarzschild critical radius as a non-linear correction. At the next leading order, both charges
𝑄 and 𝑄YM appear independently of one another. Next correction, however, reveals the coupling between them as a non-linear

anifestation of the Maxwell-Power Yang–Mills structure:

𝑟𝑐 ≈
𝑀

2(1 +𝑄YM)𝑐2𝑠,𝑐
+

3𝑀2 − 2𝑄2(1 +𝑄YM)
2𝑀(1 +𝑄YM)

+

2𝑄2(𝑀2 −𝑄2(1 +𝑄YM))
𝑀3

𝑐2𝑠,𝑐 + (𝑐4𝑠,𝑐 ).

eeping only contributions up to next leading order and using Eq. (60), the critical radius can be approximated to

𝑟𝑐 ≈
1
𝜂

(

(5 − 3𝛾)
4𝑐2𝑠,∞

𝑀 +
3𝑀2 − 2𝑄2𝜂

2𝑀

)

, (63)

here the dimensionless correction factor due to the YM charge has been defined simply as

𝜂 = 1 +𝑄YM, (64)

onsidering the restriction 𝑄YM ≠ −1. It is instructive to write the purely Power Yang–Mills case

𝑟YM𝑐 ≈ 𝑀
𝜂

(

(5 − 3𝛾)
4𝑐2𝑠,∞

+ 3
2

)

, (65)

nd the non-relativistic version of the Reissner–Nordström case

𝑟RN𝑐 ≈
(5 − 3𝛾)
4𝑐2𝑠,∞

𝑀 + 3𝑀2 − 2𝑄2

2𝑀
. (66)

Considering all the above, we can proceed now to compute the accretion rate for the Einstein–Maxwell-Power-Yang–Mills theory
which corresponds to a non-relativistic flow with non-vanishing corrections to the Newtonian transonic flow. This results in

𝑀̇NR
MRN ≈ 4𝜋𝜌0,∞

(

𝑀
𝜂

)2
𝑐−3𝑠,∞

( 1
2

)

𝛾+1
2(𝛾−1) ×

(

5 − 3𝛾
4

)
3𝛾−5
2(𝛾−1)

𝜒2,

(67)

where the function 𝜒 = 1 +
(

6 − 4 𝑄2

𝑀2 𝜂
) 𝑐2𝑠,∞

(5−3𝛾) has been introduced for comparison purposes with the Schwarzschild accretion rate
xpression in the non-relativistic regime. This, besides, contains information of both electric and Yang–Mills charges even far outside
he event horizon. The non-relativistic version of the Reissner–Nordström solution is straightforwardly recovered in the limit 𝜂 → 1

and the one for the Newtonian accretion rate is achieved additionally when 𝑄 → 0. Consequently, we can write the accretion rate
in the compact form

𝑀̇NR
MRN =

(

𝜒
𝜂

)2
𝑀̇New. (68)

n this way, the ratio
(

𝜒
𝜂

)2
accounts for the deviation from the Newtonian accretion rate and it is the quantity we have to pay our

ttention to. First examination tells us that the effect of the electric charge is not so prominent (∼ 0.02%) since it is attenuated by
the squared sound speed which is taken to be very small,6 although it can be increased as 𝛾 → 5∕3. For values within the range
1 < 𝛾 < 5∕3, however, there do not exist appreciable differences when 𝑞 varies within the approximation 𝑐2𝑠,∞ ≪ 1. Interestingly, the
factor 𝜂, which depends on the Yang–Mills charge, does produce, on the contrary, significant changes in the accretion rate, specially
for very small values since accretion rate scales as 𝜂−2. Hence, the largest differences will appear for charge values 𝑄YM ∼ (−0.1),
or more precisely near the asymptotic value 𝑄YM → −1, as happens for the fully relativistic case (see Fig. 8).

5. Discussion and conclusions

In the present paper, we have investigated the spacetime structure of the resulting BH that arises from the Einstein–Maxwell
Power-Yang–Mills theory with power 𝑝 = 1∕2. The presence of the Yang–Mills charge modifies non-trivially the structure of
the standard Reissner–Nordström BH, and in the absence of the electric counterpart (the purely power Yang–Mills case), the
Schwarzschild solution. This can be noticed through Eqs. (24) and (26) that describe, respectively, the position of the event horizons
in the mentioned cases. In particular, negative Yang–Mills charges can increase considerably the event horizon for a given electric

6 This is however somehow artificial because of the non-linear dependence of the accretion rate on the critical radius that leads to write the accretion rate
17

n the form Eq. (68) i.e., as a factor of the Newtonian accretion rate.
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charge that can take, in this new modified version of the Reissner–Nordström BH, values up to ∼ 3.2, but still preserving the weak
cosmic censorship conjecture. Interestingly, the ISCO radius can be smaller than the extremal Reissner–Nordström case and larger
than the Schwarzschild solution depending on the combination of the charges (𝑄,𝑄YM) as reported in Table 2. The introduction of
he Yang–Mills charge, along with a specific electric charge value, can lead to an unexpected degeneracy of the event horizon and
SCO radii with respect to the Schwarzschild and Reissner–Nordström cases. This is not the case in the purely power Yang–Mills
ase. This degeneracy may be broken, for instance, with the aid of the BHs Shadow using the Event Horizon Telescope observations
f Sgr A⋆.

As a first astrophysical implication of this theory, we have investigated the steady, transonic properties of isothermal test fluids
hrough extensive numerical examples that cover from the Einstein–Power–Yang–Mills (𝑞 = 0 and 𝑄YM ≠ 0) to the Einstein–Maxwell–
ower–Yang–Mills case (𝑞 ≠ 0 and 𝑄YM ≠ 0). Thus, broad numerical solutions of sequence of velocity and density curves have been
epicted for discrete values of the involving charges and given equation of state 𝜔.

The derived results point out that all critical points shift towards the horizon for 𝑄YM > 0, while for 𝑄YM < 0 such points move
way from the event horizon. Nevertheless, for 𝜔 = 1∕3 and 𝜔 = 1∕4 isothermal fluids are affected distinctively from the other
ases considered: for some positive values of 𝑄YM, the radial critical velocity cannot transit through the critical point which is a
ecessary condition to have a well-behaved transonic flow and to avoid singularities in it. It restricts the sign of the Yang–Mills
harge to mostly negative values for 𝑞 ≤ 1∕2 and open, on the other hand, the possibility of having positive values for larger electric
harge 𝑞 > 1. In contrast, for 𝜔 = 1, 𝜔 = 1∕2 and 𝑞 ≤ 1∕2, positive values of 𝑄YM are allowed. Although there is a little preference for
aving negative Yang–Mills charges for 𝑞 small, this is not a conclusive outcome in the sense that the transonic condition depends
ensibly on both the electric charge and the nature of the fluid. It suggests that implementation of observational data is imperative
o set the suitable sign of 𝑄YM for ensuring the astrophysical applicability of the theory, and more generally, to constrain more
obustly the available parameter space beyond the theoretical bounds derived in this paper from physical grounds.

At the lowest order in 𝑐𝑠, or equivalently in the weak gravity regime, we have found that both the electric and the Yang–Mills
harges contribute independently to the critical radius. The latter enters, however, into the accretion rate expression in a non-linear
ay. Furthermore, we have quantified the effect of the Yang–Mills charge, in the full non-linear gravity regime, on the accretion

ate for a polytropic fluid. The effect of the Yang–Mills charge results, in the more optimistic scenario, in an enhancement of a factor
f up to 102 for 𝑄YM → −1. This conclusion holds for the range 1 < 𝛾 < 5∕3 and it is quite independent of the electric charge. As a
ain result, the mass accretion rate efficiency can be considerably improved, with respect to the standard Reissner–Nordström and

chwarzschild solutions, for negative values of the Yang–Mills charge. Physically, it can be understood as follows: as the location
f the critical points are far from the BH for 𝑄YM < 0, which means that particles velocities reach the transonic flow far before than
hose located near the BH 𝑄YM ≥ 0, a major contribution to the accretion flow of infalling particles towards the BH is naturally
xpected as a result of the spherical symmetry. This collective effect translates into larger accretion rate.

As a striking similarity to other BH solutions, we should mention that the Einstein–Maxwell Power-Yang–Mills black hole
ackground for 𝑝 = 1∕2 mimics a charged black hole solution surrounded by cloud of strings for concrete values of the parameters
f such solution (see, for instance [95]). In particular, the asymptotic structure of the metric potential is also modified, i.e., instead
f recovering asymptotically flat solution 𝑓 (𝑟 → ∞) ∼ 1, we obtain a slightly shifted modification, namely 𝑓 (𝑟 → ∞) ∼ 1 +𝑄YM, in

agreement with the predicted by the asymptotic behavior in a cloud of strings producing, 𝑓 (𝑟 → ∞) ∼ 1+𝐶, being 𝐶 a dimensionless
constant. This similarity between non-linear charged black holes and a solution surrounded by a cloud of strings will be addressed
in a future work.

A promising phenomenological approach to put constraints on the electric and Yang–Mills charges involves studying the main
properties of the EHT’s images of Sgr A⋆ and M87⋆ BHs within this new class of BH solution, such as the shadows and photon
rings, surrounded by an optically and geometrically thin accretion disk. To achieve this, the Newman–Janis algorithm must be
implemented to find the corresponding rotating charged BH solutions. However, we have recently made progress in the study of
quasi-normal modes and shadows within this setup, as presented in our recent work [88].
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