
Received 15 July 2023, accepted 10 September 2023, date of publication 25 September 2023,
date of current version 29 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3319093

A Malware Detection Approach Based on Feature
Engineering and Behavior Analysis
MANUEL TORRES , RAFAEL ÁLVAREZ , AND MIGUEL CAZORLA , (Senior Member, IEEE)
Department of Computer Science and AI, University of Alicante, 03690 Alicante, Spain

Corresponding author: Manuel Torres (mtm41@alu.ua.es)

This work was supported by the ‘‘Methodology for EmotionAware Education Based on Artificial Intelligence’’ (Program PROMETEO
2022—CIPROM/2021/017, Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana, Spain).

ABSTRACT Cybercriminals are constantly developing new techniques to circumvent the security measures
implemented by experts and researchers, so malware is able to evolve very rapidly. In addition, detecting
malware across multiple systems is a challenging problem because each computing environment has its
own unique characteristics. Traditional techniques, such as signature-based malware detection, have become
less effective and have largely been replaced by more modern approaches, including machine learning and
robust cross-platform behavior-based threat detection. Researchers employ these techniques across a variety
of data sources, including network traffic, binaries, and behavioral data, to extract relevant features and feed
them to models for accurate prediction. The aim of this research is to provide a novel dataset comprised
of a substantial number of high-quality samples based on software behavior. Due to the lack of a standard
representational format for malware behavior in current research, we also present an innovative method
for representing malware behavior by converting API calls into 2D images, which builds on previous work.
Additionally, we propose and describe the implementation of a newmachine learning model based on binary
classification (malware or benign software) using the previously mentioned novel dataset as its data source,
thereby establishing an evaluation baseline. We have conducted extensive experimentation, validating the
proposed model with both our novel dataset and real-world data. In terms of metrics, our proposed model
outperforms a well-known model that is also based on behavior analysis and has a similar architecture.

INDEX TERMS Convolutional neural networks, dataset, machine learning, malware.

I. INTRODUCTION
Malware-related security breaches are one of the main
sources of business economic losses associated with IT, coex-
isting with others that were more common a few years ago,
such as human error or industrial espionage. In 2019, 90% of
the 5,500 companies interviewed by Kaspersky [1] reported
losses of more than $500,000 due to malware-related security
incidents. These losses can result from a loss of access to
key business information that threatens the reputation of the
company almost irreparably and prevents normal logistical
and business operations.

In fact, the number of organizations compromised by at
least one successful attack has increased by 25% since 2014

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

(see [2]), leading us to the conclusion that the malware prob-
lem is growing. The variability of malware behavior is a
significant problem, as malware can rapidly mutate, incor-
porating elements of other malware or employing innovative
strategies that the security community has not yet identi-
fied. Furthermore, Alazab et al. [3] have identified the use
of code obfuscation, primarily metamorphic and polymor-
phic techniques (with or without encryption), as one of the
greatest challenges in malware detection, effectively render-
ing signature-basedmalware detection ineffective. According
to researchers such as Yuan et al. [4], antivirus software
employing this type of detection has a low probability of cor-
rectly identifying obfuscated malware as malicious software,
between 25% and 50%.

Software development evolves over time, utilizing new
patterns, frameworks, and tools that result in more diverse

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

105355

https://orcid.org/0009-0005-4030-6308
https://orcid.org/0000-0002-8254-6255
https://orcid.org/0000-0001-6805-3633
https://orcid.org/0000-0003-4704-5364

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

and difficult-to-classify behaviors, thereby enabling more
sophisticated malware that can exploit this variability. Simple
systems that only check for certain features must be replaced
with more intelligent methods that can provide a higher
level of accuracy when determining whether or not software
is actually harmful. In fact, given the growing success of
machine learning (ML) methods applied to a wide range of
tasks and their unique characteristics, automated malware
detection presents an excellent opportunity; consequently,
we will focus on the application of ML-based methods to
malware detection in this paper.

There are several approacheswithin the scope ofML-based
malware detection:

• Network traffic analysis. Numerous publications dis-
cuss classification techniques for network traffic; the
most pertinent methods include traffic matching with
static rules and pattern recognition based on particular
characteristics [5]. The latter is more flexible when it
comes to resolving concerns associated with the usage
of sophisticated evasion countermeasures that are not
reliant on predefined-rule matching; however, other
issues remain, such as the use of encryption or selecting
the optimal features for best results. In addition, modern
malware may not generate traffic for extended periods of
time until the required information is available; in fact,
this information is typically exfiltrated and concealed
within common protocols, such as DNS payloads or
specific HTTPS request headers. As published by Asaf
Nadler et al. [6], there is research that aims to detect
data exfiltration by searching for specific characteristics
within packet payloads or performing entropy analysis.
Unfortunately, these methods are less useful in general
malware detection environments and are therefore out-
side the scope of this work.

• Binary analysis. The majority of these techniques con-
centrate on extracting executable characteristics through
static analysis, taking into consideration PE header text,
entropy, OPCode sequence, and imported DLLs in order
to construct feature vectors and establish the type of
program [7]. One of the biggest problems with this strat-
egy is that malware creators employ countermeasures
to hide the real binary code. Usually, they do this by
using obfuscation techniques to hide the actual machine
code in an executable or DLL, either completely or
partially.

• Behavior analysis. In the vast majority of published
studies, the most crucial aspect is capturing the sequence
of API calls executed by the analyzed program. In con-
trast, other aspects, such as operating system or network
events, are generally considered to be of less signifi-
cance [8]. Dynamic analysis is required to collect this
information and is performed using third-party software
running concurrently with the malware on the same
system in order to inject itself into the suspicious pro-
cess and extract the relevant data. This is difficult to
accomplish due to the fact that most malware today

has anti-debugging and anti-virtual machine (anti-VM)
mechanisms.

It should be noted that, despite the fact that malware
traffic and binary code analysis provide very interesting
and certainly significant information for malware classifi-
cation, there are too many drawbacks with these methods,
in addition to the fact that extracting this information may
require dynamic malware analysis. Therefore, the API call
data obtained during execution gives us a clear picture of the
software’s true purpose, whether it is editing a registry key to
achieve persistence (RegSetValue), connecting to an external
domain to downloadmalware (ConnectEx), or encrypting key
files (CryptEncrypt). By analyzing these calls, we are able to
identify behavioral patterns and determine whether or not the
software in question is malicious.

Different ML techniques, such as deep learning based on
decision trees, graphs, support vector machines (SVM), and
even convolutional neural networks (CNN), are used within
these categories.

Themain goal of this study is to create a novel dataset com-
prised of high-quality samples, providing valuable resources
for future malware detection research. Additionally, we
propose an innovative method for representing malware
behavior, specifically designed to serve as input for a Con-
volutional Neural Network (CNN).

Our hypothesis is that leveraging this novel representa-
tional format will result in superior malware detection when
compared to current methods.

Consequently, our research has been primarily motivated
by the need to answer certain questions whose solutions
involve creating a high-quality dataset devoid of insufficient
samples, utilizing the features extracted from the API calls as
software behavior patterns, representing these features as 2D
images, analyzing the performance of a CNN model to find
behavior patterns in 2D images, and determining the optimal
model architecture to maximize accuracy.

This work builds upon and extends our previous research
on malware detection (see [9]). In this regard, the dataset has
been significantly improved, and a novel feature engineering
technique has been implemented. In addition to the afore-
mentioned dataset, a new CNN machine learning model has
been introduced, and a thorough comparison of results with
existing models has been conducted as well.

To conclude this section, we would like to highlight the
primary motivation for our research, which is to improve
malware detection using machine learning. Our work encom-
passes several contributions, including the development of
a novel dataset containing behavior analysis for thousands
of both malware and benign software samples. This dataset
contains a variety of elements, including API calls, argu-
ments, and processes, among others. In addition, we present
a novel Feature Engineering method to convert API call data
from sandbox reports into 2D images. The primary char-
acteristics extracted from each call are its name, category,
arguments, and frequency. These images serve as input for
a CNN model that we have implemented to improve the

105356 VOLUME 11, 2023

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

accuracy ofmalware detection. This model will automatically
extract features from the input images. By combining these
approaches, we aim to advance the field of malware detection
and contribute to the overall security of computer systems.

The remainder of the paper is structured as follows.
In Section II, we examine existing research that employs ML
techniques to detect malware behavior. Next, in Section III,
we propose a novel dataset and a CNN model with the
potential to accurately classify samples as malware or benign
software. In Section IV, we detail our experiments and com-
pare the results obtained with our proposed dataset to those of
previous publications. Finally, in Section V, we provide some
conclusions and recommendations for future research.

II. RELATED WORK
In this section, we examine recent publications in the field of
behavior-based malware detection, focusing primarily on the
use of operating system API calls.

In 2010, Trinius et al. [10] published a novel method for
representing software API calls as a meta-language known as
MIST (Malware Instruction Set). They intended to use this
method to establish a standard format for the representation
of malware analysis, as a large number of datasets related to
malware detection were emerging at the time. This is partic-
ularly compelling because it has the potential to significantly
improve research and collaboration in this field by providing
a way to represent malware that is sufficiently abstract to
describe both current and future malware.

This meta-language was initially constructed using a hex-
adecimal trace with twenty different categories and four dif-
ferent levels of priority (operation category, affected instance,
instance specification, and arguments). Fig. 1 depicts a
software sample executing a successful system call with
the intention of loading the NTDLL library, as well as
other descriptive data, including library size and memory
addresses.

In order to convert between sandbox-provided behavior
reports and MIST, features such as category, operation, file
size, memory address, or any other involving a finite number
of possibilities are directly converted to hexadecimal. For
instance, categories are encoded using two hexadecimal dig-
its, allowing for up to 256 categories. Other attributes that
cannot be encoded directly (paths, etc.) are converted to a
fixed-length value with a hash function.

As stated previously, dynamic analysis data supplied by a
third party is required to represent the behavior of malware.
In this instance, the CWSandbox platform was employed fol-
lowing the common approach for software behavior analysis,
as depicted in Fig. 2.
Beginning with the work of Trinius et al. [10], other

researchers have developed their own representation meth-
ods. In 2015, Fan et al. [11] used a collection of API
calls containing specific DLLs (that is, user32, kernel32,
advapi, ntdll, ws2, and wininet), obtained 1024 samples (773
malware and 251 benign) and developed an ML model based
on a naive Bayes classifier, a decision tree (J48) and SVM

architectures that managed to achieve an accuracy level of
95.3%. In this instance, a representation format based on
feature engineering was selected, in which the frequency of
calls to each API call was included in addition to the call
name.

In these studies, a custom representational format was
utilized to capture the behavior of their respective samples.
However, Trinius et al. adopted an architecture with a primary
level encompassing category and operation for the system
call, followed by multiple subsequent levels representing
each argument block. On the other hand, Chun-I Fan et al.
employed a Feature Engineering method based solely on API
call names and their frequencies.

In contrast to these approaches, our proposed method uti-
lizes a tree-level format that includes the category and API
call name consistently. However, the inclusion of API call
arguments or additional relevant data in subsequent levels is
dependent on the operation in question. This distinction is
essential as certain data within this field, such as random file
names or memory addresses, could introduce noise into our
dataset. A detailed explanation of our proposed method can
be found in Section III-A.
It should be noted that employing only a few features

may not guarantee a complete capture of malware behav-
ior, as there are many more relevant DLLs that are not
being analyzed. Baldangombo et al. [12] collected a total of
236756 malware programs, in which the shell32, wsock32,
oleaut32, and msvbvm50 DLLs had a higher frequency than
some of those selected by Chun-I Fan et al. In addition,
it is possible to perform the same action through multiple
DLLs. For instance, shell32 can run another DLL using the
Control_RunDLLAPI call and kernel32’s LoadLibraryAAPI
call.

In 2018, Masabo et al. [13] utilized a dataset supplied by
Marco Amilli with a MIST-based format, although one that
was considerably more direct and focused on rapid genera-
tion. It employs 22 features that are not related to signatures,
and the values assigned to them are the first eight characters
of the MD5 hash for each value of the feature (that is, the
name of the function used in an API call, which could be
LoadLibraryA). In a dataset containing 2957 samples, they
were able to classify two types of malware (Crypto and Zeus)
with an accuracy of 97%. However, since they are using the
partial result of a broken hash algorithm, such as MD5, this
method could lead to a collision issue.

In contrast to other studies, Rabadi and Teo [14] exam-
ine the significance of API call arguments as opposed to
only assessing the name and frequency of API calls. They
develop two ways to represent software features through
feature engineering: the first technique treats each API call
and its arguments as a single feature, while the secondmethod
handles them as individual features. These features are con-
verted into a binary vector and hashedwith theMurmurHash3
algorithm before being fed into an XGBoost model, which
performs at 96.7% accuracy on a test dataset with 2972 sam-
ples (divided into 1418 malicious and 1554 benign software

VOLUME 11, 2023 105357

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

FIGURE 1. Format conversion from CWSandbox to MIST.

samples). Consequently, this strategy suggests that it may
be a good idea to make features less specific or, in other
words, to eliminate additional parameters that do not alter the
purpose of the call and hinder the identification of similar API
calls and behavior patterns.

As shown in the study by Rabadi anf Teo, we acknowledge
the potential value of arguments in determining software
behavior and true intentions in our proposed method. How-
ever, it is important to note that the extraction of arguments
should be performed carefully to ensure that all relevant infor-
mation is included. Furthermore, whereas Dima Rabadi et al.
and other authors use traditional machine learning models,
we have chosen a CNN architecture in which the model
selects features from the provided images. This method
enables automatic feature extraction, improving the model’s
ability to learn and capture intricate patterns.

In 2020, Ficco [15] employed a detection approach using a
combination of five detectors to identify malware families in
the Android operating system. This paper discusses various
approaches, such as API call frequency and network traffic
analysis, but these features depend on information that can
change over time due to updates or obfuscation, particularly
in the case of network traffic and memory analysis. Besides,
this method does not consider the use of an abstract repre-
sentational method that can reveal software objectives during
system interactions, not taking advantage of the insights
gained from MIST [10]. Furthermore, the author does not
utilize important information about each API call, such as
the arguments that can significantly alter the meaning of cer-
tain calls. In our proposed method, described in Section III,
we introduce a feature engineering technique that combines
category, name, and relevant arguments (if applicable) for
each call. These components are encoded into separate chan-
nels of an RGB image, which is then analyzed by a CNN
model. Lastly, it is important to note that our proposal focuses
on Windows-based samples rather than Android samples,
as we believe this represents a more diverse environment.

As shown in Fig. 2, the research trends within the field
of behavior-based malware detection follow a pattern cen-
tered on the collection of API calls executed by malicious
and benign samples using third-party tools that are typically
sandboxes such as CWSandbox or Cuckoo Sandbox. These
tools generate reports for each sample fromwhich a sequence
of API calls and other useful parameters such as arguments,
frequencies, and timestamps can be extracted. These can
be further processed in order to apply feature engineering
techniques to compress relevant information, remove irrel-
evant features, and make the format compatible with any
sample representation. When the final features of the samples
are obtained, an ML-based model is typically applied as a
classifier, which can then be used to identify specific classes
of malware (clustering) or simply to differentiate malicious
from benign software.

There appears to be a severe lack of high-quality datasets
in the field of malware, which is another existing issue.
On the other hand, as Gamage et al. note in their survey [16],
there are a few datasets that are still used by the scientific
community despite being outdated, such as the well-known
KD99 and NLS-KDD datasets. There are datasets about
malware-generated traffic, binaries, and static features, but
it is hard to find high-quality datasets that capture mal-
ware behavior and include API calls. The rapid evolution
of malware makes it difficult to compile standard datasets.
This can lead researchers to generate implicitly biased
datasets that are coupled to their own unique representation
system.

Our proposed dataset consists of current samples analyzed
by the security community in a publicly accessible online
sandbox. The selection process for including these samples
in our dataset is not subjective, other than the exclusion of
non-adequate samples. Despite the fact that we convert API
call traces into 2D images, it is important to note that the
dataset contains the full report, which includes signatures,
static analysis results, network events, etc.

105358 VOLUME 11, 2023

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

III. PROPOSAL
This section is divided into two subsections. The first one
describes the methodology used to generate a novel dataset
from API calls made by both benign and malicious samples:
we describe the collection phase, highlighting the checks
that must be performed to generate the dataset, as well as
the process of converting the base reports into 2D images,
and conclude by comparing our dataset to others previously
published in other papers. In the second section, we describe
the technical details of the proposed machine learning model
that uses our dataset.

A. PROPOSED DATASET
We can assume that if we can capture the behavior of a
software sample in an easily understandable format and also
enable pattern recognition through the use of deep learning
models, we will be able to successfully classify malicious and
benign software or, at the very least, establish groups of sim-
ilar behavior. The following guidelines should be followed
when creating a format:

• In order for it to recognize patterns, it must be classified
into various types of actions that pursue the same end
goal. Due to the variable nature of the arguments, the
frequent use of obfuscation, and the vast number of
distinct but equivalent ways inwhich the same procedure
can be executed in an operating system, it would be
nearly impossible to repeat individual actions.

• These categories need to be sufficiently robust and
abstract to be unaffected by minor differences in mal-
ware behavior, thus preventing deception or evading
detection.

Zhang et al. develop a dataset and a deep learning model
that is capable of classifying software samples as malicious
or benign (see [17]). The dataset is formatted in JSON and
is based on basic Cuckoo Sandbox reports that represent the
behavior of the sample regardless of its nature (executable,
DLL, driver, etc.). These software samples are executed
within a virtual machine containing an agent that logs and
transmits action-related data to a remote host. Finally, for
each execution of the software sample, these actions are
reflected in a single report, and the virtual machine is reset to
its initial state, allowing another suspicious piece of software
to be executed independently of previous executions. This
behavior is depicted in Fig. 2.
Initially, we attempted to use the same methodology as

Zhang et al. [17], that is, generating reports on the behavior
of malware uploaded by us to a private Cuckoo Sandbox
environment. However, we decided that it would be more
appropriate to obtain these reports from a Cuckoo Sand-
box online environment (https://cuckoo.cert.ee/), a public
platform where anyone can upload software samples to be
analyzed. In this way, the samples used in the dataset will not
be subjective, although they will obviously be more focused
on suspicious software given that users who upload software
to this platform will typically be suspicious of its intent. This

platform has a higher number of reports and more variation
than the Zhaoqui et al. dataset. It also has samples that are
based on Linux.

The reports stored on this platform were downloaded
using a simple script; however, it was unclear whether the
downloaded report corresponded to a malicious or innocuous
software sample; as a result, a second script was written to
check the rating given by Cuckoo Sandbox (on a scale of 0 to
10) and determine the nature of the software based on the
following criteria:

• Benign software (with a rating of 0 to 3). This software
is not malware.

• Uncertain software (with a rating of 3 to 7). It is unclear
whether this software is malware or not.

• Malicious software (with a rating of 7 to 10). It is certain
that this software is malware.

To confirm the malicious nature of each sample, its sig-
nature was also validated against the databases of multiple
antivirus companies. In order to ensure that the dataset con-
tains as little noise as possible and that the samples used are
correctly classified, uncertain samples were omitted from the
final dataset and only benign and malicious software samples
were considered. In addition, samples that contained very
little information were removed, either because they could
not be executed successfully due to a lack of dependencies or
for other reasons outside the scope of this research.

It was possible to obtain a dataset1 containing 45236 sam-
ples (malware and benign) with an average duration of
6.4 minutes per sample on both Windows 7 and Linux.
Regarding the format of the report, it contains very relevant
information regarding the execution of the software sample
and its identification:

• The info and target sections contain fundamental infor-
mation such as the start and end timestamps as well as
the operating system on which it was executed, together
with the type of software (i.e., exe, dll, etc.). In addition,
the network section provides a summary of the connec-
tion attempts.

• The static analysis of the software sample is represented
by the metadata, strings, and signatures sections. This
involves comparing hashes and extracted strings from
the binary code with antivirus databases.

• The behavior section describes each action taken by the
processes in the sample. API calls are grouped by the
scope of the operation (file, crypto, network, etc.).

We performed a series of transformations on the Cuckoo
Sandbox source reports to convert them into 2D images in
order to obtain the benefits of CNN models for our dataset
and establish a standard method of representation. As shown
in Fig. 3, after obtaining the reports, we determined whether
the file is malicious or benign, as well as which operating
system it was executed on. Nonetheless, a detailed procedure
is required to evaluate the sample quality:

1This dataset is freely available from the following repository:
https://github.com/mtm41/dataset

VOLUME 11, 2023 105359

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

FIGURE 2. Behavior-based malware detection workflow.

FIGURE 3. Dataset generation.

• Verify that there are no duplicate reports on the dataset;
more specifically, that we do not have the same report
with the same API calls multiple times in the entire
dataset, which is distinct from having multiple reports
for the same sample with different API calls. The latter
is permitted in our dataset because it may provide alter-
native execution paths for the same piece of software,
a factor that must be taken into account when performing
dynamic analysis based on API calls.

• Control the number of reports with a low number of
API calls. That is, for instance, in the case of malware
samples that were not able to run malicious API calls,
the hash of the sample will probably raise a positive

when compared with the malware database, as well as
the Cuckoo Sandbox score, since a part of it relies on
the signature. Therefore, we would have an inconsis-
tency since the API calls captured in that sample do
not represent malicious behavior, and thus that sample
cannot be categorized as malware. On the other hand,
we need some benign samples with fewer API calls
because our model should be able to recognize them in
future predictions, but these samples must be correctly
labeled as benign to begin with.

Finally, reports have to be transformed into 2D images
while attempting to introduce as much automation, cus-
tomization, and abstraction as possible. The RGB representa-
tion was chosen as the image format because it has three 8-bit
channels in which we can add data, allowing us to represent
more behaviors if needed. Once the boundaries are clearly
defined, we divide these 24 bits into three parts:

• Category of the operation. This section consists of 8 bits,
and most of the categories defined by Cuckoo Sandbox
in their reports are included because they are suffi-
ciently abstract for our needs (i.e., File for an operation
that involves writing to or reading from the file sys-
tem, Registry for operations involving registry keys,
etc.). It should be noted that Cuckoo Sandbox only has
14 categories, but they are equally distributed among the
possible 28 different combinations available, avoiding
any possible color imbalance and allowing for future
additions since the category of the operation is the most
abstract data available and could be key to extracting a
behavioral pattern from malware API calls.

• API call. This section has another 8 bits assigned, allow-
ing for the representation of 28 API calls in a single
category. A global object is employed per each category
identified in our dataset through a reflection process, and
thus each API call is handled in an isolated method.
Other relevant information, such as frequency, is also
stored in the global category object. Even though API
call names are represented using the entire channel,
a higher number is assigned to those that are utilized
more frequently by malware (values close to 255). This
is consistent with the notion that a darker image (with
lower values in each channel) corresponds to a benign

105360 VOLUME 11, 2023

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

sample, while brighter hues may indicate a suspicious
one.

• Arguments used for the API call. This section covers
an additional 8 bits, so a total of 28 arguments per API
call in each category can be represented. Although argu-
ments are a significant source of information regarding
intent, they are not only extremely heterogeneous, but
their presence or absence can significantly alter the
meaning of an API call, making them difficult to rep-
resent. In addition, we must consider the fact that some
arguments do not contribute any useful information to
our dataset but rather add noise. In light of this, it must
be determined for each set of API calls if its arguments
or another feature should be considered. For instance,
in the case of API calls that handle registry keys or files,
the name of the involved key, directory, or file type is
encoded directly, and a hash function is employed if
the information is relevant but too large to be encoded.
In this third channel, the frequency of each API call is
also encoded.

Each API call is represented by a single RGB pixel, so the
image dimensions are based on the existing median number
of API calls in our data set. For the current iteration, we have
chosen to employ 32×32 pixel images, which corresponds to
a median of 1024 API calls. This decision is crucial, as mod-
els require the same dimension for each sample and images
must be large enough to efficiently encode all necessary data.

As can be seen, the method of converting API call data
from Cuckoo Sandbox to a 2D image is comparable to MIST,
as our method was heavily influenced by it. We retain the
category of the executed API call and use the API call as the
operation, but we eliminate asmuch dynamic data as possible,
such as file size ormemory addresses. However, file paths and
file names are still used, but we try to make them as abstract
as possible. For instance, we don’t use the file name in the
arguments section because it could vary greatly depending
on the implementation, and they are typically also hashed;
instead, we take the file type or extension.

From our perspective, these features may not be a valid
option in many instances, and we should allow the MLmodel
to determine the relevant features for classifying samples into
one or more categories. When discussing Windows systems,
it makes sense to let the ML model decide, as it is possi-
ble for malware samples to frequently use API calls related
to registry keys or encryption. Due to the diversity of this
environment, this pattern is not particularly precise, as many
benign samples could be identified as false positives.

Furthermore, development trends change on a regular
basis, making new ways of performing operations available
through the use of new patterns or frameworks; this results
in a situation in which features can hardly be defined in
advance. However, other features, such as the permissions of
the user running the process, may be suitable candidates for
the argument section of our implementation.

It should be noted that the rapid technological advances
in computing platforms and malware attack strategies may

necessitate constant model retraining to maintain classifica-
tion accuracy, which could lead to an untenable situation.
Our work attempts to effectively address this signifi-
cant challenge by introducing a representation format that
emphasizes abstract behavioral characteristics rather than
platform-specific API calls or operating system functions
that are likely to be subject to future modification. This
representation format aims to create a long-term, robust, and
sustainable model.

In Table 1, we can view a comparison between our pro-
posed dataset and previously published datasets. First, it is
important to note that the research community does not have
access to a large number of datasets that focus on API calls.
Moreover, many of them are based on a specific format
and some of them already include feature engineering meth-
ods, as seen in the Zhang et al. dataset [17]; therefore, the
experimentation cannot be replicated in its entirety because
unprocessed source samples are not provided.

Similarly, Y. Liu et al. employ a natural language process-
ing algorithm called word2vec in their dataset [18], a strategy
closely related to the objective pursued by feature engineering
algorithms and resulting in the same issue. However, there
are datasets that provide the original API call name without
obfuscation, such as the dataset proposed by Catak et al. [19],
but the lack of other relevant information about the API call,
such as the arguments, lowers the overall data quality. We can
also say that datasets collected more than ten years ago are
likely to be less useful because malware evolves rapidly, and
API calls used by malware more than a decade ago might not
be used today, especially if these datasets only consider API
call names and not their true purpose.

Our dataset includes a collection of software execution
reports containing a significant number of malware and
benign samples, as well as the entire sampling workflow,
from the source report generated by the sandbox to 2D image
conversion considering multiple API call indicators in addi-
tion to the function name. Along with Windows samples,
this dataset also includes 29,175 Linux samples. This allows
for additional experimentation on both operating systems,
improving robustness. The distribution of different malware
sample types is detailed in Table 2.

B. PROPOSED MODEL
Before defining the final CNN model, we experimented with
other well-known architectures, such as Inception V3 [20]
and Resnet [21], both of which produced results that could
be easily improved upon and were inferior to our proposed
architecture. As explained in Section III-A, it should be noted
that our images typically have small dimensions because they
are calculated based on the number of API calls in our dataset.
Consequently, the increased complexity of these architectures
may have a negative impact on the results. In addition, Incep-
tion v3 has a minimum image size of 75 × 75, which is
larger than the size of the images we use. As suggested by
Luke et al. [22], we must resize the dataset to this minimum
size before we can run themodel, whichmay result in a loss of

VOLUME 11, 2023 105361

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

TABLE 1. Datasets distribution.

TABLE 2. Sample type distribution.

feature quality and accuracy. In their experiments, they used
architectures such as Inception and Resnet.

In the case of Inception v3, we added a global spatial
average pooling layer to prevent over fitting, and a softmax
activation function is also used. For the optimizer, we defined
a learning rate of 0.0001 with a momentum of 0.9. On the
other hand, we used the 34-layer version of the Resnet archi-
tecture with the same optimizations as in Inception. As shown
in Table 3, Inception and Resnet achieve worse results than
our proposed model; however, the accuracy is still greater
than 90%despite the fact that loss does not decrease as epochs
pass, rendering the model more unstable.

As can be seen in Fig. 4, the chosen architecture employs a
straightforward strategy in which six convolutional 2D layers
are applied with 32, 64, 128, 256, 512, and 1024 filters, each
with a dimension of 2 × 2. Furthermore, a ReLU activation
function and a he_uniform layer weight initializer are used.
Two MaxPooling2D functions with a pool size of (2, 2) are
applied between the first and sixth layers to downscale the
output of the layers. A Flatten function is then used to obtain
features, followed by aDropout layer with a 0.6 rate. Finally,
a fully connected network of 4096 nodes is employed, the
activation function for this layer is also ReLU, although a Sig-
moid is used in the last Dense layer with the aim of reducing
the output to two nodes. A gradient descent optimizer with a
learning rate of 0.0001 and momentum of 0.9 is employed to
compile the model.

This proposed architecture does not have an excessive
number of layers and maintains simplicity as its primary
characteristic, which is closely related to the concept of shal-
low networks. In this instance, the use of a shallow network
with low complexity makes the model faster in terms of the
inference time required for classification, which is extremely
important in real-time environments where malware

detection must be as efficient as possible. On the other hand,
shallow networks have been shown to perform better than
more complex architectures when low-resolution images are
used (see [23]).

IV. RESULTS
In this section, the performance of our proposed model is
compared to that of the model proposed by Zhan et al. [17],
which exhibits the best performance among those examined.
The following metrics are used to measure the performance
of the evaluated models:

• A receiver operating characteristic (ROC) curve depicts
the diagnostic capabilities of a binary classifier system
relative to the discrimination threshold, analyzing the
relationship between the true positive rate (TPR) and the
false positive rate (FPR) at a variety of thresholds.

• The area under the curve (AUC) is a measure of a clas-
sifier’s ability to distinguish between classes, serving
as a summary of the ROC curve and corresponding to
its area. The greater the AUC, the better the model can
distinguish between positive and negative classes.

• Accuracy (ACC) is a straightforward validation metric
that measures the proportion of correct classifications.
It can be defined as

ACC =
TP + TN

TP + TN + FP + FN

where TP (true positives) represents the number of mal-
ware samples correctly classified, TN (true negatives)
represents the number of benign samples correctly clas-
sified, FP (false positives) represents the number of
benign samples misclassified as malware, and FN (false
negatives) represents the number of malware samples
misclassified as benign.

Training time for our detectors is dependent on the con-
figuration of the hardware employed. Our experiments were
performed on a computer with an AMD Ryzen 5 3600 pro-
cessor (3.6 GHz, 6 cores, 12 threads) and a Nvidia GeForce
RTX 2060 graphics card (6 GB of GDDR6 RAM) capable of
6.451 TFLOPS in FP32 (float) precision. Total training time,
including the 4-K-Fold validation procedure, was measured
at 386 minutes.

First, the model provided by Zhang et al. was trained using
the training section of their dataset, resulting in a unique
H5 file for each of the four K-folds generated during the
validation phase. Each H5 file contains a model that has been
evaluated using distinct data. This is a crucial aspect since we

105362 VOLUME 11, 2023

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

FIGURE 4. Model architecture representation.

TABLE 3. Model performance comparison.

must utilize each created model and the selected test dataset
to determine an acceptable deviation value. The lower the
precision variance between K-folds, the more accurate the
model will be.

Fig. 5 displays that the model achieves statistics similar
to those reported by Zhang et al. [17], with a very low FPR
and a high AUC value. Both results are relevant when com-
pared, since the AUC indicates that the model will assign
a greater maliciousness score to a malware sample than a
benign sample with a chance of 98%, corresponding to a low
false positive rate (see [24]).

On the other hand, we observe a recall value that is
not particularly high, indicating that there is still room for
improvement in the model’s ability to identify malware sam-
ples. As shown in Table 1, the accuracy of their model is
enhanced by the inclusion of roughly twice as many benign
samples as malicious samples in their dataset.

In fact, at first glance, we might believe that adding more
malware samples to their dataset or improving their quality
would improve the results. However, as shown in Table 3,
whenwe trained their model with our dataset, its performance
was worse, which may be a result of the lack of sample
variation in their dataset, as it is very likely that our dataset
exploits sample features that were not present in their dataset.

In Fig. 5, recall values can vary between K-fold execu-
tions by 3% to 16%, indicating a classification imbalance.
Considering the results obtained with our proposed dataset,
we observe a significant decrease in performance statis-
tics. We obtain an extremely low value for TPR, which is
nowhere near the value of approximately 73% that can be
obtained with their dataset, whilst FPR maintains a good
value (around 0.1%).

Furthermore, recall values are clearlyworsewhenwe apply
their model to our proposed dataset, as shown in the bottom

VOLUME 11, 2023 105363

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

FIGURE 5. Zhang et al. model result comparison across different K-folds.

section of Fig. 5, because the model is not improving when
taking 0.001 as a baseline FPR value.

This situation demonstrates the model’s inability to accu-
rately classify malware samples, as doubling the proportion

105364 VOLUME 11, 2023

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

FIGURE 6. Comparison of training and validation precision and loss with our proposed model and dataset.

FIGURE 7. Comparison of the ROC curves between both models.

of malware in the test significantly decreased the achieved
accuracy. In fact, with such a low TPR value, we can conclude
that the malware samples used for training in their dataset are
vastly distinct from those present in our proposed dataset.

Using our dataset in the testing phase causes the model
presented by Zhang et al. to produce poorer results; conse-
quently, our proposed dataset may be exploiting the implicit
limitations of their dataset. However, although testing our
own model with their dataset would have greatly benefited
our research, we were unable to do so because their dataset
already includes feature engineering and unprocessed sam-
ples are not provided.

In fact, when we attempt to classify Linux samples using
this model, it fails completely, presenting accuracy rates
below 50%. It should be noted that the Zhang et al. [17]
model was only tested on Windows samples because it was
trained entirely with API calls from this operating system.

This poor performance suggests that the model is overly
reliant on API function names, negating the benefits of
using behavior-oriented representation formats like MIST
and resulting in a model that will no longer be functional
because the operating system (in this case, Windows) has
implemented unrecognized DLLs or API calls. Focusing
sample features on patterns and operation categories, which
are good indicators of software behavior, can improve robust-
ness and possibly accuracy in these situations.

To evaluate the performance of our model on our own
proposed dataset, we used a sample distribution of 80% for
training and 20% for testing, with samples split into four
distinct K-folds. As shown in Table 3, the proposed model
achieves superior results in terms of accuracy, precision, and
recall, whereas the model proposed by Zhang et al. is gener-
ally inferior in terms of performance. The obtained curves for
the training and validation phases are depicted in Fig. 6.

VOLUME 11, 2023 105365

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

During the execution of the different epochs, it was
observed that the model proposed by Zhang et al. achieved
good results (over 89% in terms of accuracy) during the
initial training steps. This could mean that the model is too
deep or complicated for this task, since our approach uses
a simpler model architecture and obtains significantly better
results.

On the other hand, it is possible that their feature engineer-
ing technique is unable to capture features as relevant as those
in our proposed dataset. Moreover, the AUC value obtained
for our proposed model was 96.1%, whereas for the recall
values, as seen in the ROC curve in Fig. 7, higher TPR rates
are obtained earlier than in the Zhang et al. model; however,
the TPR rates obtained for an FPR value of 0.01 are not as
good as those published by Zhang et al.

As can be seen in Table 3, following the training phase,
we obtained a second dataset of over a thousand newer sam-
ples for the testing phase in order to provide our model with
new samples as input. With this additional set of samples, the
results are slightly worse but still greater than 90%.

During the testing phase, we measured the Mean Time To
Detect (MTTD) of our proposed solution. The MTTD was
calculated by splitting the time into two components: the
conversion of the report to an image and the actual detection
time of the model when the image is used as input. Our
feature engineeringmethod takes approximately 271.6ms per
sample to convert the report into an image, while the CNN
model takes only 1.8 ms per sample for the detection process.
Consequently, the entire solution operates at an average of
273.4 ms per sample.

V. CONCLUSION
In this paper we have analyzed the malware detection prob-
lem, described various possible approaches along with their
respective drawbacks, and emphasized the use of software
behavior to determine the security nature of software.

In this regard, the API call sequence made by each soft-
ware sample under analysis is crucial, as it can provide an
accurate representation of its intent, whether that is to block
the system using encryption, infect other computers on the
network, or simply remain hidden on the local system. All
of these circumstances require API calls to provide the nec-
essary encryption, network connection, or Windows registry
functionality.

As previously mentioned, there are not many datasets
available that pertain to malware behavior, and the few that
do exist are primarily in proprietary formats, based on a par-
ticular feature engineering method, or utilize only partial API
call information. This results in the development of numerous
incompatible datasets and representation formats.

Achieving a standard method for representing the behav-
ior of malware could considerably improve collaboration
between different research groups, thereby enhancing feed-
back and fostering innovation. Moreover, by adopting a more
abstract strategy, we would be less reliant on API call names
that are specific to particular operating systems, a problem

that can render valid datasets useless when API call names
change or malware employs newer functionality.

Due to this, we have developed a fully reproducible dataset
that includes the entire sampling workflow, from the initial
state (JSON reports) to the 2D image transformation process.
In addition, this dataset includes samples from two distinct
operating systems, with categories serving as the first level
of abstraction. We have also developed a machine learning
model that achieves promising results when compared to
previously published models and even better results with the
dataset we propose.

Future research could involve the addition of samples from
other operating systems to our model and the improvement
of its performance. Also, using machine learning to detect
malware in standard computing environments is still a con-
siderable challenge; this is because sample feature extraction,
2D image conversion, and inference processes need to be very
efficient for real-time analysis.

REFERENCES
[1] Kaspersky. Damage Control: The Cost of Security Breaches it Secu-

rity Risks Special Report Series. Accessed: Feb. 13, 2022. [Online].
Available: https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-
security-breaches.pdf

[2] CyberEdge Group. 2021 Cyberthreat Defense Report. [Online]. Available:
https://cyber-edge.com/wp-content/uploads/2021/04/CyberEdge-2021-
CDR-Report-v1.1-1.pdf

[3] M. Alazab, S. Venkatraman, P. Watters, M. Alazab, and A. Alazab,
‘‘Cybercrime: The case of obfuscated malware,’’ inGlobal Security, Safety
and Sustainability & e-Democracy, C. K. Georgiadis, H. Jahankhani,
E. Pimenidis, R. Bashroush, A. Al-Nemrat, Eds. Berlin, Germany:
Springer, 2012, pp. 204–211.

[4] X. Yuan, ‘‘PhD forum: Deep learning-based real-time malware detec-
tion with multi-stage analysis,’’ in Proc. IEEE Int. Conf. Smart Comput.
(SMARTCOMP), May 2017, pp. 1–2.

[5] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, ‘‘Malware traffic clas-
sification using convolutional neural network for representation learning,’’
in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2017, pp. 712–717.

[6] A. Nadler, A. Aminov, and A. Shabtai, ‘‘Detection of malicious and low
throughput data exfiltration over the DNS protocol,’’ Comput. Secur.,
vol. 80, pp. 36–53, Jan. 2019.

[7] J. Singh and J. Singh, ‘‘A survey on machine learning-based malware
detection in executable files,’’ J. Syst. Archit., vol. 112, Jan. 2021,
Art. no. 101861.

[8] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze,
‘‘Malware detection based on mining API calls,’’ in Proc. ACM Symp.
Appl. Comput. New York, NY, USA: Association for Computing Machin-
ery, 2010, pp. 1020–1025.

[9] M. Torres, R. Álvarez, and M. Cazorla, ‘‘Improving malware detection
with a novel dataset based on API calls,’’ in Proc. Int. Workshop Soft
Comput. Models Ind. Environ. Appl. Cham, Switzerland: Springer, 2022,
pp. 289–298.

[10] P. Trinius, C. Willems, T. Holz, and K. Rieck, ‘‘A malware instruction set
for behavior-based analysis,’’ Univ. Mannheim, Tech. Rep. TR-2009-007,
Dec. 2009.

[11] C.-I. Fan, H.-W. Hsiao, C.-H. Chou, and Y.-F. Tseng, ‘‘Malware detection
systems based on API log data mining,’’ in Proc. IEEE 39th Annu. Comput.
Softw. Appl. Conf., vol. 3, Jul. 2015, pp. 255–260.

[12] U. Baldangombo, N. Jambaljav, and S.-J. Horng, ‘‘A static malware detec-
tion system using data mining methods,’’ 2013, arXiv:1308.2831.

[13] E. Masabo, K. S. Kaawaase, and J. Sansa-Otim, ‘‘Big data: Deep learning
for detecting malware,’’ in Proc. IEEE/ACM Symp. Softw. Eng. Afr. (SEiA),
May 2018, pp. 20–26.

[14] D. Rabadi and S. G. Teo, ‘‘Advanced windows methods on malware
detection and classification,’’ in Proc. Annu. Comput. Secur. Appl. Conf.
New York, NY, USA: Association for Computing Machinery, 2020,
pp. 54–68.

105366 VOLUME 11, 2023

M. Torres et al.: Malware Detection Approach Based on Feature Engineering and Behavior Analysis

[15] M. Ficco, ‘‘Malware analysis by combining multiple detectors and obser-
vation windows,’’ IEEE Trans. Comput., vol. 71, no. 6, pp. 1276–1290,
Jun. 2022.

[16] S. Gamage and J. Samarabandu, ‘‘Deep learning methods in network intru-
sion detection: A survey and an objective comparison,’’ J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102767.

[17] Z. Zhang, P. Qi, and W. Wang, ‘‘Dynamic malware analysis with fea-
ture engineering and feature learning,’’ in Proc. AAAI Conf. Artif. Intell.,
Apr. 2020, vol. 34, no. 1, pp. 1210–1217.

[18] Y. Liu and Y. Wang, ‘‘A robust malware detection system using deep
learning on API calls,’’ in Proc. IEEE 3rd Inf. Technol., Netw., Electron.
Autom. Control Conf. (ITNEC), Mar. 2019, pp. 1456–1460.

[19] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, ‘‘Data augmentation
based malware detection using convolutional neural networks,’’ PeerJ
Comput. Sci., vol. 7, p. e346, Jan. 2021.

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[21] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[22] J. J. Luke, R. Joseph, and M. Balaji, ‘‘Impact of image size on accuracy
and generalization of convolutional neural networks,’’ Int. J. Res. Anal.
Rev., vol. 6, no. 1, p. 70, Feb. 2019.

[23] S. Targ, D. Almeida, and K. Lyman, ‘‘Resnet in resnet: Generalizing
residual architectures,’’ 2016, arXiv:1603.08029.

[24] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

MANUEL TORRES received the bachelor’s degree
in computer science and the master’s degree in
cybersecurity from the University of Alicante, in
2019 and 2020, respectively, where he is currently
pursuing the Ph.D. degree with the Department
of Computer Science and Artificial Intelligence.
In addition to his academic achievements, he has a
proven track record of success in system adminis-
tration andDevSecOps in international companies.

RAFAEL ÁLVAREZ received the bachelor’s and
master’s degrees in computer science, in 2001, and
the Ph.D. degree in computer science, in 2005.
He is currently an Associate Professor with the
Department of Computer Science and Artificial
Intelligence, University of Alicante. He is a mem-
ber of the Computational Security and Cryptology
Research Group. His research interests include
security, cryptography, machine learning, and their
applications in computer science. He has partic-

ipated in numerous international conferences and he has been published
in prestigious journals. He received the Extraordinary Doctorate Award,
in 2009.

MIGUEL CAZORLA (Senior Member, IEEE)
received the degree in computer engineering and
the Ph.D. degree in computer engineering from
the University of Alicante, in 1995 and 2000,
respectively.

In 1995, he started as an Assistant Professor
with the University of Alicante, where he has been
a Full Professor, since 2017. He has published
more than 70 papers indexed in JCR (with more
than 20 in Q1) and more than 100 publications

in national and international conferences. He has supervised 19 Ph.D. the-
ses and he is a principal investigator in several national projects (CICYT,
Challenges), and having completed multiple transfer contracts with the
industry. He is a member of different program committees of national and
international conferences. His research interest includes computer vision.
From the beginning, he applied these skills to try to solve robotic tasks.
In recent years, he has diversified his lines to apply deep learning techniques
to different areas (medical image, object recognition, depth estimation, and
identification of traffic objects). All his research in recent years has focused
on social robotics, that is, applying these techniques to help dependent
persons.

VOLUME 11, 2023 105367

