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ABSTRACT Despite of the progress that has been made in the field, the problem of adversarial attacks
remains unresolved. The most up-to-date models are still vulnerable, and there is not a simple way to
defend against these kinds of attacks; even transformers can be affected by this problem, although they have
not been extensively studied yet. In this paper, we study transferability, which is a property of adversarial
attacks in which images generated for one architecture can be transferred to another and still be effective.
In real-world scenarios like self-driving cars, malware detection, and face recognition authentication systems,
transferability can lead to security issues. In order to conduct a behavioral analysis, we select a diverse set
of networks and measure how effectively the images produced by various attacks can be transferred among
them. We generate adversarial samples for each network and then evaluate them with other networks to
determine the corresponding transferability performance. We can observe that all networks are susceptible
to transferability attacks, albeit in some cases at the expense of severely distorted images.

INDEX TERMS Adversarial attacks, convolutional neural networks, deep learning, GeoDA, HopSkipJump,
SurFree, transferability.

I. INTRODUCTION
The evolution and expansion of artificial intelligence and
machine learning (ML) are impressive, especially when
considering new text-to-image models such as StableDiffu-
sion [1] and Dall-E2 [2], natural language processing models
that are currently used to create virtual shopping assistants
and automate customer interaction, as well as applications
in fraud detection, face recognition, agricultural process
automation, and video games.

Despite the benefits of machine learning, adversarial
attacks remain a relevant and unresolved issue. These are
algorithms that use information from the target network to
generate input images for the purpose of causing misclassifi-
cations. Since Szegedy et al. discovered this vulnerability in
2013 [3], a vast amount of research has been conducted on
the subject. Defenses like image denoising, gradient mask-
ing, adversarial training, gradient regularization, or input
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reconstruction can help mitigate the attacks, but at the cost
of accuracy or performance.

The variety of attacks is vast; there are white-box and
black-box, physical and digital, targeted and non-targeted
attacks, as detailed in Section III. In the white box setting,
the adversary has complete or partial knowledge of the target
model; however, black box attacks are closer to a real-world
context because they do not require information about the
target model and only require an output label. In addition,
transferability allows the attacker to use the same outputs
against other exposed models.

Adversarial attacks can create insecure situations, such
as on self-driving cars, by altering the meaning of the traf-
fic signals captured by sensors, or at gates controlled by
facial recognition systems, where a malicious actor can
use a printed adversarial exampleÂ to gain access. This
study focuses on the transferability property of these attacks
because it represents the primary success vector in a realistic
setting. To generate adversarial images, an adversary can
train a similar new model and launch an attack. The attack
is then transferred from the adversarial model to the target
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FIGURE 1. Bad actor performing an attack on an open AI service and using transferability.

model by sending the images to the target to achieve incorrect
predictions, as shown in Fig. 1.
In particular, we study the transferability of non-targeted

attacks in black-box and white-box settings by creating and
evaluating adversarial images for five distinct attacks (two
white-box and three black-box) and seven target networks
in order to assess their transferability and gain a thorough
understanding of the problem.

When reviewing the relevant literature, the first mention
of transferability can be found in [3], where Szegedy et
al. researched how adversarial samples could successfully
transfer between models trained with the same dataset. Later,
Goodfellow et al. [4] observed that the transferable images
were highly aligned with the weights of the model, and that
different models learned similar weights for similar tasks.
However, they show [5] that this is not true in ImageNet-
basedmodels. It was demonstrated in [6] that differentmodels
trained on the same task share a fraction of subspaces,
allowing transferability. Finally, Petrov et al. [7] study the
transferability properties of three white-box attacks across
two network families, concluding that similar architectures
also have similarities in terms of adversarial attacks.

The rest of the paper is structured as follows. First,
in Section II, we briefly explain the targeted architectures.
Then an introduction to adversarial attacks and their types
can be found in Section III. Next, in Section IV, we describe
the study conducted in this research, discussing the obtained
results in Section V. Finally, in Section VI we state some
conclusions and future research directions.

II. TARGET ARCHITECTURES
Among the selected architectures for the study, there are six
families:

• Very Deep Convolutional Networks (VGG). Simonyan
and Zisserman described in [8] a new architecture with
small convolutional filters that lets 16- or 19-layer
convolutional neural networks be trainedwith good clas-
sification performance.

• Residual Networks (ResNet). In 2015, the ResNet
framework was proposed in [9]. Residual networks are
more complex than VGG models but easier to optimize
and have greater depth. Typically, deep networks expe-
rience a degradation issue that impacts their precision.
ResNets use a fundamental building block that consists
of stacked layers that correspond to an underlying map-
ping (the identity mapping layer), where the identity
layer has no parameters and is connected to the previ-
ous layer in order to sum its output and feed it to the
subsequent layers.

• Inverted Residuals (MobileNetV2). This architec-
ture [10] employs the same concept as [9] but changes
the layer shortcut connections. They introduce the
‘‘inverted residual with linear bottleneck’’ module. This
module expands the input to a higher dimension before
applying a lightweight convolution filter. With these
modules, the network requires fewer operations to pro-
duce results, making it suitable for use in constrained
environments such as mobile phones.

• EfficientNet. This network was conceived on the
premise that convolutional architectures can scale as
more resources become available. Therefore, they focus
on depth, width, and resolution in order to achieve
superior classification performance compared to con-
ventional networks. Tan and Le [11] proposed a
new method for the scalability of dimensions (resolu-
tion, depth, and width) using an effective compound
coefficient.
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• Dense Convolutional Network (DenseNet). Following
the concepts of inverted residuals and residual networks,
DenseNet networks modify the connections between
layers so that the output is close to the inputs of all
subsequent layers. With this configuration, the network
will have L(L+ 1)/2 connections. The authors note that
this configuration reduces the problem of vanishing gra-
dients. In addition, the architecture reduces the number
of parameters and improves the propagation of features
(see [12]).

• Inception. Szegedy et al. [13] introduced this architec-
ture in 2014. The primary feature of this network
architecture is the conservation of computer resources.
The authors expanded the width and depth of the net-
work while conserving resources. Internally, Inception
is based on the Hebbian principle and multi-scale pro-
cessing intuition.

For our research, we have chosen to evaluate at
least one model of each of the aforementioned architec-
tures: ResNet50, ResNet152V2, DenseNet201, EfficientB0,
VGG16, VGG19, MobileNetV2, as well as GoogleNet.
We used pre-trained models from Keras1 and PyTorch2 (with
an average Top-1 accuracy of 75% for Keras).

III. ADVERSARIAL ATTACKS
Since the discovery of adversarial attacks, an important num-
ber of algorithms and techniques have been proposed. Given
their diversity and volume, it is necessary to categorize them.
A common classification found in the literature could be
targeted or non-targeted, white-box or black-box, and digital
or physical:

• White-box. This category of attacks typically utilizes
total or partial knowledge of the target network. It is
assumed that the attacker knows the architecture,
weights, activation functions, and hyperparameters uti-
lized in the training process. It is common practice to
employ model gradients in attacks (see [4], [14], [15],
[16], [17], [18]).

• Black-box. In contrast to white-box attacks, the attacker
has no internal knowledge of the target and can only
access the network’s output. In this scenario, the exposed
network is typically protected by a service that restricts
the number of queries, making an attack more difficult.
One way to evaluate the effectiveness of this tech-
nique is to consider the number of successful queries
required (see [19], [20], [21], [22]). In addition, black-
box attacks can be classified as transfer, score-based,
or decision-based. In the transfer category, the attack
uses the output labels of the target network to label a
new dataset, which is then used to create a new syn-
thetic model [23]. The attacker then applies a white-box
attack to this new model in order to generate adversarial
images. Score-based attacks are focused on probability

1https://keras.io/api/applications/
2https://pytorch.org/vision/stable/index.html

vectors or softmax logits, querying the targeted model
in order to generate adversarial images (see [21], [24]).
Decision-based attacks are likely the most plausible and
challenging scenario, in which the attacker has only the
output label of the targeted network to create new images
(see [19], [22]).

• Non-targeted. Depending on the context, the adversary
only needs to achieve a misclassification on the target
network, regardless of the label result, as long as it does
not match the original classification associated with the
input image. These attacks can be classified as non-
targeted. The benefit of this configuration is that the
attack is typically simpler.

• Targeted. The goal of this attack is to find an adversarial
image in which the target network outputs a desired label
instead of the original, as opposed to merely causing a
generic misclassification (i.e., the output is an image of
a cat with a truck label). Almost every attack described
in this study is capable of producing both targeted and
non-targeted results.

• Digital. The results of an attack are typically digital files,
such as images, executables, audio files, etc. They con-
tinue to exist in the digital realm and can serve directly
as inputs for the targeted networks.

• Physical. Typically, physical attacks are generated in
the digital domain using white-box or black-box tech-
niques, but they are implemented in the physical world
as stickers, clothing, or eyeglasses; e.g., Sharif et al. [25]
impersonated a legitimate person while remaining unde-
tected by a facial recognition network by putting printed
frames into glasses. This attack is potentially quite dan-
gerous because it can be used in the real world to fool
facial recognition-based access control systems or, even
worse, to trick autonomous vehicles into misinterpreting
traffic signals, endangering human lives [26].

All of the attacks described in this research are imple-
mented in the Adversarial Robustness Toolbox (ART,3

see [27]) and Foolbox4 libraries. Both are written in Python
and support numerous attack and defense types. Next, we will
briefly describe the nature of these attacks.

A. FAST GRADIENT SIGN METHOD
Probably the simplest attack described in the literature, it was
developed by Goodfellow et al. [4]. It is a one-step attack that
generates a vector with the same length as the original input
and whose elements are derived from the cost function of the
targeted network.

As shown below, FGSM calculates the input gradients,
multiplies the result by a small multiplier, ϵ, and then adds
the vector to the original image:

x̃ = x + ϵ · sign(∇xJ (θ, x, y))

3https://github.com/Trusted-AI/adversarial-robustness-toolbox
4https://github.com/bethgelab/foolbox
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B. PROJECTED GRADIENT DESCENT
Projected Gradient Descent (PGD) [17] was developed in
2017. It is based on the Basic IterativeMethod (BIM) [28] and
incorporates a novel approach in which the algorithm begins
at a random point within the ϵ norm ball [29]. BIM is an
iterative variant of the FGSMattack, where a small step size is
done in each iteration and the intermediate pixels are clipped,
keeping them in the ϵ-neighborhood ball of the original input:

X̃0 = X

X̃N+1 = ClipX ,ϵ{X̃N + αsign(∇XJ (X̃N , y))}

C. HOP SKIP JUMP ATTACK
Hop Skip Jump Attack (HSJA) [19] is a black box and
decision-based attack that employs gradient direction estima-
tion to perform adversarial attacks and achieves high success
rates with a small number of queries in both targeted and
non-targeted contexts. It is based on the Boundary Attack
(BA) [30], has no hyperparameters, and controls boundary
deviation errors. The attack is composed of three primary
components: estimation of the gradient direction, step-size
search via geometric progression, and boundary search. The
attack attempts to address the following optimization issue:

min
x ′

d(x ′, x∗)

s.t. φx∗ (x ′) = 1

Here, d is the distance function that specifies the distance
between the adversarial and the original samples. This is
represented in Fig 2.

FIGURE 2. Boundary search.

D. GeoDA
Geometric Decision-based Attack [31] is a query-efficient
and iterative framework for crafting adversarial attacks.
GeoDA is based on the geometric properties of contemporary
deep neural networks, in which the decision boundary has a
low mean curvature in the vicinity of data samples (see [32]).
The key to this attack is to use a hyperplane in the vicinity of
a point x to locate a local normal vector (gradient estimation)

to the decision boundary. The attack aims to address the
following optimization problem:

min
v

||v||p

s.t. wT (x + v) − wT xB = 0

where xB is the boundary point and w is the normal vector to
the decision boundary.

E. SurFree
The SurFree attack [22] aims to reduce query budget and
accelerate distortion decay relative to HSJA, QEBA [33] and
GeoDA by focusing on trials along the decision boundary
in different directions rather than gradient surrogate esti-
mations. Therefore, SurFree does not use any information
substitution to proceed. In addition, the attack uses the DCT
transform to restrict the perturbations to a low-dimensional
subspace in order to generate fewer queries.

Given a classifier f (x) : [0, 1]D → RC where the output is
defined as cl(x) := argmaxk fk (x), the attack will succeed if
the adversarial xa is close to the original input x0 and cl(xa) ̸=

cl(x0) in the non-targeted setup. Thereby, an output region is
defined as O = {x ∈ RD

: cl(x) ̸= cl(x0)}. This gives an
optimal output:

x∗
a = argmin

x∈O
||x − x0||

The authors assume that, given a point y ∈ O, a line search
can be used to find another point xb ∈ [x0, y] that lies on
the classifier boundary denoted by ∂O. This concept is based
on the work by Fawzi et al. [32], which demonstrated that the
boundary of deep neural networks is a smooth, low-curvature
surface, justifying the use of a hyperplane to approximate the
boundary around the point. We refer to the original work for
more details about the attack.

IV. STUDY DESCRIPTION
Using three top-1 label black-box and two white-box attacks,
this study attempts to quantify the transferability between
various deep neural network architectures. We generate
adversarial images with multiple configuration parameters
using two white-box algorithms, Fast Gradient Sign Method
(FGSM, see [4]) and Projected Gradient Descent (PGD,
see [17]), and three black-box algorithms, HopSkipJumpAt-
tack [19], GeoDA [31], and SurFree [22]. One hundred
images were randomly selected from the Imagenet [34]
database for the attacks (all images were correctly classified
by the selected models).
For each attack, we generate 100 adversarial images for

each configuration parameter combination. These parameters
vary depending on the type of attack. FGSM, PGD, and
GeoDA rely on epsilon values as their primary configuration
source. SurFree andHSJA, on the other hand, take the number
of iterations.
For FGSM and PGD attacks, ART toolbox implementa-

tions were utilized. Based on previous experiments, an arbi-
trary progressive scale of epsilon values and three distance
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FIGURE 3. Fast Gradient Sign Method attack with a progression of epsilons.

norms were selected as parameters:

ϵ : (0.1, 0.2, 0.3, 0.5, 0.8, 1, 3, 5, 10, 15, 20, 30)

norms : (L∞,L1,L2)

The epsilon values determine the magnitude of the pertur-
bation on the adversarial image generated, while the norm
values establish the attack bound constraint. The effect of
applying different epsilon values is illustrated in Fig. 3.

The combination of these parameters allowed us to gen-
erate 3,600 adversarial images for each classifier, which we
then used to evaluate the transferability between models. All
images in our dataset were preprocessed prior to the attack
according to the input, and the epsilon values were adapted
to the pixel range of the target network; e.g., DenseNet201’s
pixel range is x/255 and the epsilon values used in the attack
for the first three values were (0.0003, 0.0007, 0.0011).

In the case of black box attacks, GeoDA and SurFree
were not implemented in the ART library at the time this
research was conducted; therefore, we used Foolbox to gen-
erate adversarial images for GeoDA and the original code
for the SurFree study.5 Although both libraries offer HSJA,
we chose the ART implementation. For the GeoDA attack,
we specified (1, 3, 5, 10, 25, 50) as the list of ϵ, sub as the
search space, and L∞ as the distance norm; the remaining
parameters were left at their default values. In the case of
the SurFree and HSJA attacks, we used a maximum-query
list with values: 500, 1000, 2500, 5000, 10000, 25000, and
50000. This parameter limits the number of attempts made
by the algorithms to deceive the target models. 5600 images
were generated in total for the black-box and white-box
attacks. As stated previously, adversarial images are evalu-
ated through each model to determine their transferability
across networks.

V. RESULTS AND DISCUSSION
A. FAST GRADIENT SIGN METHOD
Despite being the simplest attack, it appears that all of the
selected networks in this study are susceptible to it, albeit

5https://github.com/t-maho/SurFree

some more so than others. As seen in Fig. 4, the VGG family
is extremely vulnerable to attack. With decreasing epsilon
values, the VGG16 network classification rate decreases sig-
nificantly; with 0.3, its precision falls to 50%, and with 0.8,
it falls to approximately 10%. Even though VGG19 has more
layers than VGG16, its behavior is comparable. In terms of
transferability, the results indicate that adversarial examples
generated by the attack transfer to each other with a high
degree of success, although this becomes more apparent as
epsilon approaches 5. To achieve success, higher values of
epsilon are required to have a significant impact on the clas-
sification rate for the other networks, which have a less steep
slope.

The ResNet50 and ResNet152V2 networks, like VGG
networks, were highly sensitive to low epsilon values; their
precision drops to about 10%with a value of 0.30. The results
indicate that a high value of epsilon is required for successful
transfer; the slopes of ResNet50 are comparable to those of
VGG16 or VGG19, but in the case of ResNet152V2, more
distortion is required for a successful transfer.

The transferability slopes of the EfficientNetB0 network
are comparable to those of the ResNet and VGG families;
however, it is less effective in FGSM for low values of
epsilon. Beginning with a value of 5, the attack success
stabilizes and remains nearly constant.

As can be seen in the respective graphs, MobileNetV2 and
DenseNet201 are highly sensitive to FGSM. With an epsilon
of 0.02,MobileNetV2 precision decreases rapidly to 70% and
then to 25%, while DenseNet201 precision decreases to 30%.
However, for both networks, adversarial samples generated at
low values of epsilon do not transfer well, so higher values are
required to improve transferability.

In conclusion, FGSM is quite effective on every network
tested, even with low image distortion. The transferability
property is present in all instances, but its magnitude is
proportional to the degree of distortion in the adversarial
image and the depth of the targeted network. Adversarial
samples generated for deep networks, such as DenseNet201
or ResNet152V2, are typically not transferable. This may be

VOLUME 11, 2023 105549



E. Álvarez et al.: Exploring Transferability on Adversarial Attacks

FIGURE 4. FGSM transferability.

TABLE 1. FGSM transferability accuracy.

due to the fact that the gradients of the cost function make the
outcomes more specific.

In addition, the input image and epsilon values are adapted
to a specific pixel range, which can affect the transfer-
ability of the network: VGG, EfficientNet, and ResNet50
have an input range of [0, 255], while MobileNetV2 and
ResNet152V2 have input ranges of [x/127.5], and [x/255]
for DenseNet201. This result conforms to the L∞ norm; the
attack did not meet the L1,L2 norms, possibly because the
default parameters were insufficient.

Table 1 illustrates how adversarial images generated with
FGSM are transferred between networks using an epsilon
value of 10 for networks with an input pixel range of [0, 255],

ϵ = 0.0392 for a range of [x/127.5], and ϵ = 0.0784 for a
range of [x/255]. ResNet50 adversarial samples, for instance,
reduce VGG16 accuracy to 0.78 and DensetNet images
to 0.97.

B. PROJECTED GRADIENT DESCENT
As was the case with FGSM, the PGD attack was unsuccess-
ful for L1,L2 norms, so we discarded the images generated
for these norms and focused on the L∞ norm using the
same epsilon values and 1200 iterations. With this configu-
ration, the attack success is close to 100% for all networks
with low epsilon values. However, almost none of the
resulting adversarial samples transferred to other networks.
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FIGURE 5. PGD attack transferability.

As shown in Fig. 5, ResNet50, ResNet152V4, MobileNetV2,
and DenseNet201 images did not result in misclassifications
for the other networks.

In this case, only the VGG family presents sensitivity to
transferability (the slopes are similar to the FGSM method
results). The EfficientNetB0 attack demonstrates a modest
degree of transferability with MobileNetV2, reducing its pre-
cision to approximately 70%.

Overall, the attack was successful, but its transferability
was limited. This may be due to the fact that PGD pertur-
bations are tailored more towards the decision boundary of
the target network.

C. GeoDA
This attack was not implemented in ART at the time
of this study, so adversarial images were generated using
Foolbox. We use sub (low frequency sub-space) as the
search space, L∞ as the norm, and a list of epsilon val-
ues (1, 3, 5, 10, 25, 50) for the configuration parameters.
As shown in Fig. 7, the attack begins to be effective with high
values of epsilon on all networks, but the accuracy decreases
significantly after the value of 10 is reached. With low values

TABLE 2. GeoDA attack accuracy.

such as those utilized in the FGSM attack, the attack was
unable to generate images capable of deceiving the target
models. The attack performance for a range of epsilon values
is displayed in Table 2.

Regarding transferability, it appears in all cases and
roughly corresponds to when an attack begins to be success-
ful. Again, VGG families transfer better than others; in other
cases, a high epsilon value is required for transferability to
emerge.

Fig. 6 depicts the outcome of the GeoDA attack. The
success of the attack can be correlated with the precision of
the model and the transferability of the generated images;
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FIGURE 6. GeoDA attack with a progression of epsilons.

FIGURE 7. GeoDA transferability.

the latter two correspond to epsilon values of 25 and 50.
These perturbations can transfer to other networks, but they
are highly suspicious (easily detectable) and unreliable in a
real-world scenario.

D. SurFree
As previously stated, we utilized the original authors’ code
to execute this attack. Instead of directly using epsilon val-
ues, we set the algorithm to auto mode, where the epsilon
value is automatically calculated to be as small as possible
in each generated image. The attack uses the max_queries
parameter as a threshold to limit the number of evaluations
that can be performed on the target network, with a high

number of queries increasing the likelihood of generating an
adversarial image with low perturbation and close proximity
to the original. We carried out the attack using a range of
maximum queries (500, 1000, 2500, 5000, 10000, 25000,
50000) and left the remaining parameters at their default
values.

The attack is effective against all networks and is able to
deceive them between 500 and 50000 queries. Fig. 8 depicts
the outcome of the attack, in which all 100 generated images
successfully misled the targets.

However, transferability is only apparent in images gen-
erated with few iterations. In the VGG family of networks
and MobileNetV2, transferability is limited. Resnet152 and
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FIGURE 8. SurFree transferability.

FIGURE 9. SurFree attack iterations.

Densenet201 adversarial samples are more transferable, but
after 2500 iterations, this property diminishes.

In Fig. 9, we display the adversarial samples generated
between 500 and 50000 queries. Since the query budget of
the attack is low (500 or 1000), the initial adversarial samples
are more distorted; with a larger evaluation budget, however,
the attack can generate adversarial samples that are closer to
the original image.

E. HOP SKIP JUMP
The HopSkipJump attack was run with the same number of
evaluations as the SurFree attack and the max_iter parameter

set to 5000; all other configuration parameters were left at
their default values. The attack had a variety of outcomes
and did not behave as expected, as illustrated in Fig. 10; we
expected better results and greater consistency as the number
of evaluations increased.

The attack’s success rate on the VGG16 and VGG19
networks is approximately 0.4 and 0.3, respectively. The
attack is almost entirely successful in the case of Efficient-
NetB0, resulting in a 0.98 reduction in precision. In the
case of the ResNet family, the attack only reaches 0.10 for
ResNet50 and 0.45 for ResNet152V2, while MobileNetV2
achieved a maximum of 0.50 to 0.38 with 5000 and
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FIGURE 10. HSJA transferability.

10000 evaluations. With a high number of evaluations, the
attack for DenseNet201 reaches 0.10 and drops to nearly 0.0.
In terms of transferability, none of the experiments produced
images that could be transferred.

F. ATTACK FEATURE ANALYSIS
The attacks analyzed in this research were quite effective
at deceiving the targeted networks, but the resulting images
did not always transfer properly. Fig. 11 depicts the features,
or pixels, employed by the attacks to generate adversarial
images. The contrast of the images has been adjusted for
clarity so that we can see the shape of the features more
clearly. Each row represents one of the five attacks: FGSM,
PGD, HSJA, GeoDA, and Surfree.

Regardless of the targeted network, all attacks appear
to use similar features to achieve misclassification. The
features used in FGSM are more distorted than in PGD
because it is a one-shot attack, while GeoDa and SurFree
generate images with similar pixels. In addition, the fea-
tures used in the attacks are quite similar across net-
works. Taking this into consideration, we might wonder

why transferability does not occur in an HSJA attack, for
example.

The attack logic is to push the adversarial sample towards
an incorrect label while avoiding deviating too far from the
original image, which is limited by a norm restriction, and
it appears to change the most significant pixels of the image
that the targeted network uses to identify the label, with all
networks appearing to have learned the same patterns. It is
possible that the boundaries between labels learned by the
models are brittle and that adversarial attacks exploit this to
modify pixels. However, these changes did not affect other
networks in some cases.

We discovered that in FGSM with a relatively high epsilon
value, images begin to transfer on all networks since the
pixels are very perturbed, and there is a chance that the
images will fall on incorrect labels in the other networks. The
images will not transfer if the attack is more effective and
achieves a lower distortion because the pixels are adjusted
more precisely to the learning boundaries of the targeted
network, and this change is unlikely to be sufficient to correct
the incorrect labeling of the other models.
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FIGURE 11. Adversarial attack features.

VI. CONCLUSION
The primary objective of this research was to better com-
prehend how transferability behaves with different types
of attacks and state-of-the-art networks, as well as how

dangerous it can be in real-world situations. Transferability
is an important topic in the literature on adversarial attacks
because it can be used to deceive AI systems or, worse,
to cause malfunctions that endanger human lives. Our find-
ings indicate that the attacks are quite effective against the
targeted networks, although, in some instances, a higher
amount of image distortion was required to increase their
efficacy.

Transferability is more prevalent when target networks
have comparable architectures, but also when a greater dis-
tance to the original image is established via the epsilon
parameter. With a high value of perturbation, however, the
images become more suspicious to the human eye and easier
to detect, as demonstrated by the obtained results. Using
transferability to achieve certain attacks in a real-world sce-
nario can be challenging, as the attacker typically lacks
sufficient information to use white-box attacks, and black-
box attacks, as we have observed, do not transfer at all. This
may be the norm for black-box attacks, but additional testing
is required to confirm this hypothesis.

In this paper, we examine a small subset of attacks and
network families that are restricted to image recognition
tasks, giving us a limited perspective on transferability and
the adversarial problem. Although the fundamental problem
remains the same, transferability may behave differently in
different contexts.

Regarding future work, the study of transferability in a
physical world (using attacks as [25], [26], [35]) can be useful
in determining the extent to which an attacker could exploit
transferability in this context.
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