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ABSTRACT
Marble waste, as a subproduct of the exploitation of marble quarries, could be reused as a
replacement for the scarce sand sediment supply for beach nourishment. This work studied the
suitability of 4 different types of marble (Bateig, Ivory Cream, Imperial Brown and Niwala). The
method consisted of generating 3 samples for each type of marble and preparing them (i) with
jaw crusher and D50 ¼ 0.692mm; (ii) with jaw crusher and D50 ¼ 0.301mm; and (iii) with ball mill
and D50 ¼ 0.268mm. These samples were analysed using the accelerated particle wear test, and
the mineralogy and morphology of the particles were studied using X-ray diffraction and
Scanning electron microscopy. Results indicate that if the particle size is larger than 0.4mm, dur-
ability increases between 2 and 4 times compared to a usual sand sample. The jaw crusher gener-
ates a smaller number of fractures to the particles than the ball mill, increasing the durability of
the sample. If these criteria are followed, marble wastes can be used in beach nourishment,
becoming a circular economy asset, alleviating the adverse environmental impact, saving resources
and energy and reducing the total cost of nourishments.
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1. Introduction

Sandy beach erosion is a worldwide problem, coupled with
the scarcity of natural material for artificial beach nourish-
ment becomes an even greater problem. To mitigate this
problem, quarried materials are used recently to combat the
shortage of natural sediments. Although due to the progress
of science and the increase in global awareness for the pro-
tection of the environment, a new tendency to recycle indus-
trial waste has emerged (Amin et al. 2019).

One of the materials to be used in artificial beach nour-
ishment could be marble waste. In the last decade, the
annual growth rate of marble production is about 15% in
China (Secretariat of the China Stone Association 2017),
4–5% in Malaysia (Zainuddin et al. 2016), which is a large
volume of material to be utilized. However, the marble
waste generated after quarrying, cutting and polishing of the
pieces (about 70% of the resources) are dumped in landfills
due to the limited economic benefit they present (Gencel
et al. 2012; Hebhoub et al. 2011). Currently, the larger mar-
ble residues (not the dust) are deposited near the mines or
work and cutting areas and do not provide any benefit;
moreover, their indiscriminate dumping pollutes the soil to
such an extent that it is no longer suitable for cultivation,
and can even reach the groundwater table, contaminating
the water (Ch�avez et al. 2015). Recycling of marble waste is
possible through the development of value-added products
(Careddu, Marras, and Siotto 2014), which would also
reduce ecological and health risks (Rizzo, D’agostino, and

Ercoli 2008). Besides, recycling helps to both decrease pollu-
tion and reduce production costs (Amin et al. 2019).

In recent years, research on the use of marble waste has
focused on its use in mortar mixes (Khyaliya, Kabeer, and
Vyas 2017), concrete (Arel 2016; Ulubeyli, Bilir, and Artir
2016), concrete roof tiles (Aditya, Halim, and Putri 2014),
ceramic wall and floor tiles (Bilgin et al. 2011), etc. For
example, in the case of self-compacting concrete, marble
powder showed excellent performance as a substitute for
sand without the adverse effect on the hydration process
(Sadek, El-Attar, and Ali 2016). Although, as noted, its most
widespread use has been as coarse and fine aggregates in
concrete and/or cement (Alyamac, Ghafari, and Ince 2017),
it has also been studied for neutralizing acidic wastewater
and removing harmful metals (Mehta, Mondal, and George
2016; Mlayah and Jellali 2015), with an efficiency of >85%
by the zeolite adsorbent of marble dust (Javed et al. 2016).
However, very few studies have been conducted for the
reuse of marble waste for beach nourishment. Nordstrom
et al. (2008) studied the impression of people towards the
beach nourishment with marble pebble (0.8–200mm), and
the durability and rounding capacity versus other materials
such as limestone and basalt. Other authors investigated the
use of other types of waste such as glass in beach nourish-
ment with favourable results (Edge, Cruz-Castro, and
Magoon 2003; Makowski et al. 2007).

Finally, it is worth noting the economic advantage of
using recycled material instead of marine dredged material.
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The cost of a dredge (including the dredge, floating pipe,
auxiliary vessels, and drilling equipment), assuming that the
dredging area is less than 1 km from the coast, is approxi-
mately 87.5e/m3 (this price does not include the transport
of the dredge to the work area). However, according to
Hinkel et al. (2018), among others, the existence of sand for
dredging on the Spanish coast is very scarce (or almost non-
existent) because the continental shelf is very narrow, so the
cost would be even higher. On the other hand, the cost of
dumping recycled material would be reduced only to the
crushing and washing the rock and the subsequent dumping
on the beach, which has a cost of about 16.72 e/m3.
Therefore, the cost would be about 5 times lower
than dredging.

For all these reasons, this work studies the suitability of
processed marble waste for beach nourishment. Tests of par-
ticle wear, granulometry, calcimetry, X-ray diffraction and
electron microscopy were performed. All this to determine
the most suitable granulometry and its level of durability in
comparison with natural sediments.

2. Methodology

2.1. Sampling

The samples (Figure 1a) were collected from marble waste
generated by companies in the province of Alicante (Spain).
The province of Alicante produces 35% of the marble at
national level, generating a medium-sized waste (non-dust)
of 26,400–28,800 t/year (Data provided by M�armol de
Alicante, Asociaci�on de la Comunidad Valenciana, https://
marmoldealicante.com/). Specifically, four different types of
marble were used for this study: Bateig, Ivory Cream,
Imperial Brown and Niwala.

Once in the laboratory, the samples (approximate dimen-
sions of 0.4� 0.15� 0.05 m) were broken to manageable
sizes using a hammer and anvil (Figure 1c). The pieces
obtained were crushed using: (i) Jaw crusher (Figure 1d) or

(ii) Ball mill (Figure 1e). Finally, to achieve the established
particle size after the first crushing (if necessary), a manual
crushing with a mortar was performed (Figure 1f).

After crushing, three grain sizes were formed: 2 sand
samples with grain sizes similar to the sediments found on
the beaches of the province of Alicante (L�opez et al. 2018;
Pag�an et al. 2018a) with median sizes of 0.268mm (ball
mill) and 0.301mm (jaw crusher), and slightly coarser sand
sample with sizes between 0.4 and 0.8mm (jaw crusher) and
a median size of 0.692mm (Figure 2). To see the retained
weight on each sieve used, see the supplementary material.

2.2. Accelerated particle wear test (APW)

The wear and durability of the marble particles were per-
formed using the accelerated particle wear test (APW) pro-
posed by L�opez et al. (2016). In the test, 75 g of the sample
together with 500ml of seawater were stirred at 1600 rpm
with a magnetic stirrer in 24-hour cycles. After each cycle,
calcimetry of the water was done using the Bernard calcime-
ter method (UNE 103200), the sediment sample was dried
in an oven and granulometry was performed following the
UNE-EN ISO 17892-4:2019. The number of cycles applied is
the number of cycles necessary to reduce 50% of the sample
to sizes below 0.063mm.

2.3. X-ray diffraction (XRD)

The mineral phases of the tested samples were determined
by X-ray diffraction (XRD) using a Bruker D8-Advance dif-
fractometer with a G€oebel mirror. For this purpose, the
sample was ground with a ball mill to a size of less than
0.063mm. To analyse it, an accelerating voltage of 40 kV
and a current of 40mA and a scanning angle (2-Theta) of
4� to 60� were used. Through Rietveld analysis using
PANalytical Highscore Plus 4.6 software, the mineral phase
of the sample was quantitatively determined. The
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Figure 1. (a) Waste area of a marble company. (b) Waste collected from Ivory Cream and Imperial Brown. (c) Anvil and hammer. (d) Jaw crusher. (e) Ball mill. (f)
Pestle and mortar.
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Figure 2. Granulometries used in APW test.

Figure 3. Percentage weight loss and median sediment size (D50) evolution for: samples prepared with jaw crusher and D50 ¼ 0.692mm (a and b); samples pre-
pared with jaw crusher and D50 ¼ 0.301mm (c and d); and samples prepared with ball mill and D50 ¼ 0.268mm (e and f). The red horizontal line represents the
50% loss in the weight loss plots and the 0.063mm size in the D50 evolution plots.
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background was manually adjusted, the scale factor, cell
parameters and peak parameter were refined.

2.4. Scanning electron microscopy (SEM)

Using a Hitachi S3000N scanning electron microscope
(SEM) with an X-ray detector for microanalysis (EDS) and
variable pressure mapping, the microstructure and morph-
ology of the samples were examined.

3. Results and discussion

Figure 3 shows the results of the APW test. It is observed
that the larger the particle size, the more cycles in the test

they can withstand before converting to sizes below
0.063mm. The size 0.063mm is taken as a reference since,
on natural beaches, particles with sizes at or equal to
0.063mm are easily transported by waves, and when they
exceed the depth of closure they can no longer return to the
beach and the sand is lost (Aragon�es et al. 2016). However,
depending on the crushing method used, the behaviour of
the samples differs. For example, in the case of the Niwala
sample, when the sample preparation is done with the jaw
crusher, in the first cycle there is a significant mass loss of
38.6% in the case of D50 ¼ 0.692mm and 73.4% in the case
of D50 ¼ 0.301mm, while in the case of the ball mill after
the first cycle only 19.6% is lost. The high mass loss experi-
enced is consistent with that observed by Nordstrom et al.
(2008), according to whom after 40 hours in a ball mill at a
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Figure 4. Percentage of weight lost for samples of median sediment size 0.692mm, for sieves larger (0.8–0.4mm sieves) and smaller (0.32–0.08mm sieves) than
0.4mm. (a) Bateig. (b) Niwala.

Figure 5. Mineralogical composition. (a) Bateig. (b) Ivory Cream. (c) Imperial Brown. (d) Niwala.
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speed of 50 turns/min the grey marble suffered a 27% mass
loss and the white marble a 52% mass loss.

When comparing the duration of the samples with the
average duration of the sands in the province of Alicante—
4.8 cycles—(Chiva et al. 2018; L�opez et al. 2018; Pag�an et al.
2018a; Pag�an et al. 2018b) it is observed that the finer sam-
ples (D50 ¼ 0.301mm and D50 ¼ 0.268mm) last signifi-
cantly less than the natural sands, while the coarser samples
(D50 ¼ 0.692mm) last more than twice as long, with the

Imperial Brown and Ivory Cream samples lasting up to
almost 4 times longer. This indicates that the use of marble
as a beach nourishment material is valid as long as a suit-
able granulometry is used. In this case, the particles that in
cycle 0 were larger than 0.4mm lasted on average 7.5 cycles,
which indicates that a good sediment size for the use of
marble could be at least 0.4mm, which represents a sand
size accepted by users on a sandy beach (Marin et al. 2009;
Morgan 1999). The longer duration of sizes larger than
0.4mm is also observed in Figure 4, which shows the per-
centage of weight lost for the Bateig and Niwala samples of
median size 0.692mm, for sieves larger and smaller than
0.4mm. This is shown without considering the first cycle,
since the material lost in the first cycle for sizes above
0.4mm passes to the lower sizes producing an increase in
the amount of material retained between 0.32mm and
0.08mm. Thus, it is observed that sizes larger than 0.4mm
lose much less mass than sizes 0.32–0.08mm, producing a
cumulative loss in the last cycle in the case of Bateig of
41.1% and 60.9%, respectively, and in the case of Niwala of
15.6% and 28.0%, respectively. Furthermore, if the durability
results of marble are compared with those of quartz or lime-
stone (Pag�an et al. 2021), it is observed that for D50 ¼
0.692mm the Bateig and Niwala samples have a similar dur-
ability to that of limestone (D50 ¼ 0. 624mm; Duration at
APW 10 cycles), while at well below that of quartz (D50 ¼
0.565mm; Duration at APW 26 cycles), although the Ivory
Crean and Imperiral Brown samples are somewhat more
similar to quartz (17 and 19 cycles, respectively).

According to L�opez et al. (2016) the weathering of sedi-
ment particles in the APW is due to particle collision, dis-
solution of carbonates and particle separation. Therefore,
both mineralogical composition and particle morphology
should be analysed. Thus, the analysis of the mineralogical
composition of the samples (Figure 5) shows that all of
them have a very high calcite content (more than 60%),
except the Imperial Brown sample which only has 16% cal-
cite, the rest being dolomite. This could explain the better
APW behaviour of the Imperial Brown samples in practic-
ally all cases, since of the three minerals (quartz, calcite and
dolomite), dolomite has higher resistance (Kushnir et al.
2015). On the other hand, particle weathering can be
assessed by measuring the suspended CaCO3 content in the
test water after each cycle (Figure 6), as CaCO3 is part of
almost all minerals identified in the samples (Figure 5).
Figure 6 shows that the Niwala and Bateig samples show the
highest percentage of CaCO3 in suspension after the first
and second cycle in all cases. This could justify the abrupt
weight loss that both samples show in the first cycle of the
APW (Figure 3). It is noteworthy that the percentage of
CaCO3 in suspension in the water does not maintain a con-
stant increase, but shows a cyclical behaviour of increases
and decreases. This is because during the APW test part of
the CaCO3 sediments and part remains in suspension, which
is consistent with the observations of L�opez et al. (2016);
L�opez et al. (2018). In general, an increase in the percentage
of CaCO3 suspended in the water is observed in the final
cycles, which coincides with a sharp decrease in both sample
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Figure 6. Evolution of CaCO3 in suspension in the APW test water for: (a) sam-
ples prepared with jaw crusher and D50 ¼ 0.692mm; (b) samples prepared with
jaw crusher and D50 ¼ 0.301mm; and (c) samples prepared with ball mill and
D50 ¼ 0.268mm.
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mass and median size. This may be because the decrease in
median size causes an increase in specific surface area and
therefore there is a larger contact area with the water, and
part of the carbonates can pass into colloidal dispersion
(Chiva et al. 2018).

Understanding the fundamental mechanisms contributing
to abrasion and their link to the macroscopic behavior of
granular assemblies is of vital importance both for under-
standing beach erosion and for solving other problems such
as degradation of ballast performance, which translates into
huge costs for rehabilitation and maintenance of railway
infrastructure (De Bono, Li, and Mcdowell, 2020). Thus,
micromechanics-based approaches provide some key answers
to problems related to the performance of aggregates used in
engineering projects (Li and Mcdowell 2020). In this regard
interparticle-type experiments and indentation-based analy-
ses comprise two of the most recent approaches employed in
the study of aggregates and particulate materials (Kasyap, Li,
and Senetakis 2021). To determine the influence of micro-
structure on the abrasion of marble particles, particle morph-
ology has been studied in this work.

The study of the particle morphology (Figure 7) shows
that the particles prepared with a jaw crusher (Figure 7a)
show a higher angularity at the edges compared to the par-
ticles prepared with a ball mill (Figure 7d). However, it is
observed that the samples prepared with a ball mill (Figure
7e and 7f) show numerous fracture planes and cracks, which
may influence their rapid wear since, as indicated by L�opez
et al. (2016) the collision of the particles causes them to
break through these fractured planes very easily. Meanwhile,
the samples prepared with a jaw crusher show hardly any
cracks in the grains (Figure 7b and 7c), so the initial size
losses of the samples prepared with a jaw crusher in the ini-
tial cycles (Figure 3) may be due to the rounding of the par-
ticles as the more angular peaks become detached.

Although morphology is not related to particle size, it
does influence particle lifetime. Since, for example, for two

particles with cracks at approximately their center, the par-
ticle with larger size has a longer lifetime, as the particles
become approximately half their size after the collision
between them (Figure 3). Thus, the sample with smaller size
(D50 ¼ 0.301mm) becomes sample of about D50 ¼
0.150mm, while the sample with larger size (D50 ¼
0.692mm) become samples of the order of D50 ¼ 0.340mm.
And at a minimum the large sample will last twice as long
as the small sample.

The strong relationship observed between weight loss and
particle abrasion is supported by a number of studies pub-
lished in the literature, which have shown that the behavior
of geological materials is significantly affected by grain inter-
actions, including grain-to-grain contacts as well as grain
morphology (Kawamoto et al. 2018; Mollon et al. 2020).
Friction and wear behavior is inherently linked and affects
contact response with applications in industrial systems and
geological processes (Sandeep, He, and Senetakis 2018).
Yang et al. (2016) found that an important mechanism that
can control the tribological behavior of sand grains is related
to ploughing during shearing. Boneh and Reches (2018)
found that the wear rate of rock interfaces is inversely pro-
portional to the hardness of the material.

4. Conclusion

In this work, the suitability of marble waste beach nourish-
ment was studied. After studying the mineralogy, morph-
ology and APW test behaviour of 4 types of marble with
three different particle sizes (D50 ¼ 0.268mm, D50 ¼
0.301mm and D50 ¼ 0.692mm) prepared with jaw crusher
or ball mill, it can be affirmed that: (i) The size of the mar-
ble particles to be used should be larger than 0.4mm. These
sizes will allow a duration in the APW test of double or
even quadruple that of natural sands. (ii) It is preferable to
crush by jaw crusher as it generates a smaller number of
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Figure 7. Particle morphology (SEM). (a–c) Samples prepared with jaw crusher. (d–f) Samples prepared with ball mill.
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fractures to the particles and therefore improves the durabil-
ity of the sample.

However, since marble has a carbonate composition, it is
easy to cement under long-term immersion and compaction
in seawater. Therefore, as future lines of research it is pro-
posed to study the pressolution and compaction state of
marble residues in the state of immersion in seawater.
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