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Abstract In this article, using gravitational decoupling
by means of minimal geometric deformation approach, we
obtain a new spherically symmetric and static black hole solu-
tion. To progress, we close the system by assuming that the
average pressure of the θ -sector is vanishing. Also, we tackle
the problem regarding how, for a given minimally deformed
black hole solution, one can connect it to a wormhole space–
time.

1 Introduction

Black holes are logically one of the most attractive as well as
interesting compact objects in the field of gravitation. Such
interests are two folds: from a purely theoretical perspec-
tive [1] and from an observational point of view [2]. They
essentially merge together different fields of physics, espe-
cially, thermodynamical physics as well as quantum mechan-
ics. Therefore, starting from General Relativity (GR), pass-
ing by thermodynamics and quantum field theory, they do
now also impact into the regime of high energy physics, i.e.,
particle and collider physics.

Thus, black holes are interesting not only by their exotic
nature, but also because they are an ideal scenario to inves-
tigate gravity in the strong field regime, testing several
aspects of GR. A few classical and remarkable examples
of black holes in four dimensions are the following: (i) the
Schwarzschild solution [3], (ii) the Reissner-Nordström solu-
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tion [4,5], (iii) the Kerr solution [6] and, finally, (iv) the Kerr-
Newman solution [7].

In particular, black holes are parameterized by three fun-
damental values: (i) the mass M , (ii) the angular momentum
J and finally, (iii) the electric charge Q [8]. Such affirma-
tion is supported by the no-hair theorem, which claims that
these solutions should not carry any other charges [9]. Impor-
tantly, due to inner gauge symmetries, black holes can also
have “hairs”, i.e., additional charges which parameterize the
black hole solution [10].

The study of black hole physics is quite robust which
includes: (i) quasinormal modes (see classical reviews [11–
13], and a few recent works [14–19]), (ii) regular solu-
tions and also solutions with non-linear electrodynamics
[20–22], (iii) geodesic analysis [23–25], among other. Sim-
ilarly, black holes and their properties have been studied
beyond Einstein’s gravity. To name a few examples, we can
mention f (R), f (G), f (T ) (see [26–29]), Brans-Dicke
theory [30,31], Asymptotically safe gravity [32,33], scale-
dependent gravity [34–37], improved black hole solutions
[38] and many other approaches.

As mentioned before, these objects seem to be charac-
terized only by the mass M , the electric charge Q and the
angular momentum J . In order to bypass the no-go theorem,
we shall take advantage of a recent method that assume the
existence of an additional source described by a conserved
energy–momentum tensor θμν . Albeit the impact of an addi-
tional source in the energy–momentum tensor has been inves-
tigated on many occasions, in this case the novel property is
that the sources do not directly interact with the matter that
sources the (hairless) black hole solution. This method called
gravitational decoupling (GD) by minimal geometric defor-
mation (MGD), was developed in Refs. [39,40] precisely to
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make progress in such direction. It is worth mentioning that,
this is the first scheme applying GD in a consistent way,
within the framework of GR, providing analytical solutions
with physical content and interpretation.

Basically, GD by MGD can be implemented in two basic
forms: (i) extending solutions into extended domains, or (ii)
deconstructing a gravitational source into simple parts. In
the following sections, we shall introduce the main idea and
details behind GD by MGD. Still, at this level, it is essential
to mention that the method has been tested several times. To
be more precise, new hairy black holes and some of their
properties have been explored in Refs. [41–46]. Even more,
within the framework of the so-called extended MGD (e-
MGD) [47], more complex hairy black holes have been found
and their properties thoroughly studied in Refs. [48–63].

On the other hand, beyond the scope of black hole solu-
tions, a plethora of articles have been published using GD by
means of MGD or e-MGD, to obtain new toy models repre-
senting compact objects such as neutron stars from Einstein’s
gravity to modify gravity theories [64–96] (and references
therein).

This work has two main objectives. The first one, is to
implement GD by means of MGD, to minimally deform the
well-known exterior Schwarzschild space–time, obtaining in
this way a new “hairy” black hole solution. Therefore, the
resulting black hole can be characterized by the primary hair
l (a free constant parameter) and its mass M . The second
main target, is to obtain new wormhole solutions starting
from a minimally deformed black hole. Once this process is
performed, the resulting space–time bears a “dual” behavior,
i.e., it behaves either as a black hole or wormhole depending
on the role played by the space parameter.

The present paper is organized as follows: after this short
and compact introduction, we review the basic ingredients
of GD by MGD approach in a four-dimensional space–time
subject to spherical symmetry in Sect. 2. Then, in Sect. 3 in
general it is discussed how the causal structure of the orig-
inal space-time is affected after MGD and also the general
lines to convert minimally deformed black hole into a worm-
hole space–time. Subsequently, we discuss the main features
of our new solution in Sect. 4. Finally, we conclude on the
findings of the work in Sect. 5.

Along this manuscript, we shall use the most negative sig-
nature {+,−,−,−} and relativistic geometrized units where
G = c = 1. Then the overall coupling constant κ2 in front
of the Einstein-Hilbert action is equal to 8π only.

2 The MGD protocol

This section is devoted to introducing the main ingredients
(equations as well as basic formalism) to be used in the con-
text of the well-known GD by MGD approach [39,40]. Thus,

we shall review the classical Einstein’s field equations and,
subsequently, we shall move to the GD by means of MGD
technique.

2.1 Einstein equations

In canonical coordinates, the space–time geometry of a spher-
ically symmetric and static manifold, is given by

ds2 = eν(r) dt2 − eλ(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
. (1)

Taking into account this general representation (1) and the
Einstein field equations

Gμν ≡ Rμν − 1

2
gμνR = −8πTμν, (2)

one gets the following coupled system of equations

8πρ(r) = 1

r2 − e−λ(r)
[

1

r2 − λ′(r)
r

]
, (3)

8πpr (r) = − 1

r2 + e−λ(r)
[

1

r2 + ν′(r)
r

]
, (4)

8πp⊥(r) = 1

4
e−λ(r)

[
2ν′′(r) + ν′2(r) − λ′(r)ν′(r)

+ 2
ν′(r) − λ′(r)

r

]
. (5)

On the left-hand side of Eqs. (3)–(5), the quantities {ρ(r);
pr (r); p⊥(r)} refer to the density and to the radial and
transverse pressures, respectively. Please note that we
are considering one of the simplest cases, specifically
when the energy-momentum tensor is characterized as
T ν

μ≡diag{ρ(r), pr (r), p⊥(r), p⊥(r)}. In more intricate sce-
narios, the anisotropic nature of certain sources must be
accounted by introducing an additional parameter: viscosity.
For simplicity, our analysis will be confined to an anisotropic
fluid, albeit with no contribution from viscosity. The energy–
momentum tensor satisfies the following conservation equa-
tion

∇μ Tμν = 0 ⇒ dpr (r)

dr
+ ν′(r)

2

[
ρ(r) + pr (r)

]

− 2

r

[
p⊥(r) − pr (r)

]
= 0. (6)

In the framework of GD, we assume that the energy–
momentum tensor can be written as a linear combination
of different fluids, namely

Tμν ≡ T̃μν + αθμν, (7)

where T̃μν is a known source, the so-called seed energy–
momentum tensor, and θμν is a certain unknown generic
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fluid, the so-called decoupling fluid. Please observe that the
parameter α is introduced artificially to regulate the impact
of the seed source on the isotropic background.

It is worth mentioning that, the above set of Eqs. (3)–(5)
is described in terms of effective thermodynamic quantities,
encoded in the energy–momentum tensor Tμν . Thus, on the
one hand, the effective energy-momentum defined by Eq. (7)
contains six unknown functions: (i) three coming from T̃μν ,
i.e., {ρ(r), pr (r), p⊥(r)}, and (ii) three coming from θμν ,
i.e., {θ0

0 (r), θ1
1 (r), θ2

2 (r)}. On the other hand, we have two
metric potentials {ν(r), λ(r)} coming from the gravitational
part, completing the eight unknown quantities. In this case,
the inclusion of the θ -sector in principle introduces mathe-
matical complications in the resolution of the system (3)–(5)
by increasing the number of degrees of freedom. However,
as we will clarify shortly, the inclusion of these new terms
leads to new solutions to Einstein’s field equations, with cer-
tain ingredients whose physical interpretation is relevant. All
these things considering the seed space–time and the GD
method. So, at this point it becomes evident that these equa-
tions require a supplementary condition to close the system.

2.2 GD via MGD method

As said before, the GD by means of MGD approach allows
to solve the complex set of Eqs. (3)–(5) analytically. This
elegant technique opens a new window in the construction
of analytic solutions of non-linear system of equations. The
main aim of this technique is to split the single complex sys-
tem (3)–(5) into two different sectors, allowing to explore
their corresponding solutions, where the final solution is
being the combination of solutions for each individual sys-
tem. The division of this complex system of equations occurs
in such a way that the field equations corresponding to the
so-called seed matter content and the new source θμν appear
in disjoint sections. To implement this protocol, one needs
to introduce the following transformation onto the metric
potentials of the space–time (1)

ξ(r) → ν(r) = ξ(r) + αg(r), (8)

μ(r) → e−λ(r) = μ(r) + α f (r). (9)

Notice that the functions ξ(r) and μ(r) are the metric poten-
tials when the contribution θμν is vanishing. Thus, the metric
in such case takes the form

ds2 = eξ(r) dt2 − dr2

μ(r)
− r2

(
dθ2 + sin2 θ dφ2

)
. (10)

It should be noted that the radial dependency of both g(r)
and f (r) is in order to assure the spherical symmetry and
staticity of the solution. The specific MGD case corresponds
to the particular case where g(r) = 0 such that gtt (r) =
eν(r) is always the same and all the effects coming from the

decoupling-sector lie on the radial metric potential, grr (r) =
eλ(r) [39,40].

Now, plugging the transformations (8) into (3)–(5) under
the mentioned considerations, one gets

8πρ̃(r) = 1

r2 − μ(r)

r2 − μ′(r)
r

, (11)

8π p̃r (r) = − 1

r2 + μ(r)

[
1

r2 + ξ ′(r)
r

]
, (12)

8π p̃⊥(r) = μ(r)

4

[
2ξ ′′(r) + ξ ′2(r) + 2ξ ′(r)

r

]

+ μ′(r)
4

[
ξ ′(r) + 2

r

]
, (13)

along with the conservation equation

d p̃r (r)

dr
+ ξ ′(r)

2

[
ρ̃(r) + p̃r (r)

] − 2

r

[
p̃⊥(r)− p̃r (r)

] = 0,

(14)

which is a linear combination of Eqs. (11)–(13).
On the other hand, for the second set of equations cor-

responding to the additional gravitational source θμν one
obtains

−8π θ0
0 (r) = f (r)

r2 + f ′(r)
r

, (15)

−8π θ1
1 (r) = f (r)

[
1

r2 + ξ ′(r)
r

]
, (16)

−8π θ2
2 (r) = f (r)

4

[
2ξ ′′(r) + ξ ′2(r) + 2

ξ ′(r)
r

]

+ f ′(r)
4

[
ξ ′(r) + 2

r

]
. (17)

The conservation equation for the θ -sector explicitly reads

[
θ1

1 (r)
]′ − ξ ′(r)

2

[
θ0

0 (r) − θ1
1 (r)

]

−2

r

[
θ2

2 (r) − θ1
1 (r)

]
= 0. (18)

At this stage, some observations are in order:

1. The Eqs. (11)–(13) are those corresponding to the GR
theory, that is, when α = 0. This system is already solved
by the seed solution characterized by line element given
by (10) with energy–momentum T̃μν . It should be noted
that, this energy–momentum tensor can be arbitrary, that
is, a perfect fluid, anisotropic fluid, charged fluid, etc.

2. Since the set of Eqs. (11)–(13) is closed or solved by
the seed space–time, the remaining one, that is (15)–(17),
should be solved in order to obtain the final space–time
and its matter distribution (this system appears when α �=
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0). To close the θ -sector one has a wide range of possibil-
ities, potentially leading to a solution of physical interest.
Nevertheless, as it is observed, the system (15)–(17) has
four unknowns, namely {θ0

0 (r), θ1
1 (r), θ2

2 (r), f (r)} and
only three equations. So, it is evident that extra informa-
tion is necessary to close the θ -sector. In this regard, as
the set (15)–(17) has four unknowns, one needs at least
one extra condition. This condition could be for example
a well-motivated relation among the θ -sector components
(a type of equation of state), some constraint on the space–
time scalar curvature R(r), to name a few.

3. The set of Eqs. (15)–(17) look very similar to the standard
spherically symmetric Einstein’s field equations for an
“anisotropic” fluid with energy–momentum tensor θν

μ =
diag

(
ρθ (r) = θ0

0 (r), pθ
r (r) = −θ1

1 (r), pθ⊥(r) = −θ2
2 (r)

)
,

whose corresponding metric would be given by

ds2 = eξ(r) dt2 − dr2

f (r)
− r2

(
dθ2 + sin2 θ dφ2

)
. (19)

However, the right hand side of Eqs. (15)–(17) are not
the standard expressions for the Einstein tensor compo-
nents Gt

t and Gr
r , since there is a missing −1/r2 in both.

So, these equation are referred to the literature as quasi-
Einstein field equations [39].

4. The expression (18), is a linear combination of Eqs. (15)–
(17). As can be seen, both sectors are separately conserved
(see Eqs. (14) and (18). This occurs because

∇μT
μν = ∇μ

(
T̃μν + αθμν

)
= 0

⇒ ∇μT̃
μν = ∇μθμν = 0, (20)

meaning that there is no exchange of energy between the
seed energy–momentum tensor T̃μν and the correspond-
ing for the extra source, θμν . They only interact gravita-
tionally, thus ensuring in this way that Bianchi’s identities
are satisfied.

5. Once the θ -sector is solved, the resulting space–time will
be

ds2 = eξ(r) dt2 − dr2

μ(r) + α f (r)

−r2
(
dθ2 + sin2 θ dφ2

)
, (21)

where the matter distribution shall be characterized by the
energy–momentum tensor (7).

3 From black holes to wormholes

To generate black hole and wormhole solutions, we shall start
considering the particular line element in Schwarszchild-like

coordinates subject to the condition |gtt (r)| = |g−1
rr (r)| ≡

h(r), given by

ds2 = h(r)dt2 − dr2

h(r)
− r2d�2, (22)

where from now on we shall use the usual notation d�2 to
denote the two sphere dθ2 + sin2 θ dφ2.

Before to solve the problem to generate new solutions, it is
instructive to analyze in general how the resulting geometric
structure of the seed black hole is affected by the introduction
of the decoupler function f (r). So, taking into account the
whole explanation given above of how the method works,
and how the final space–time is expressed. Then following
Eq. (21), the line element (22) reads

ds2 = h(r)dt2 − dr2

h(r) + α f (r)
− r2d�2. (23)

Of course, the general Schwarzschild form |gtt (r)| =
|g−1

rr (r)| is not longer valid, instead here we have a mini-
mally deformed black hole solution or a non-Schwarzschild
black hole where |gtt (r)| �= |g−1

rr (r)|. It is clear that under
the assumption α = 0 the condition |gtt (r)| = |g−1

rr (r)| and
the whole original properties of the seed space–time can be
recovered.

In general, to find out the critical points of the metric
(event horizons), one needs to focus on the simple zeros of
the deformed metric potential g−1

rr (r) = 0 and its singular
points.1

Under the condition |gtt (r)| = |g−1
rr (r)|, it is obvious that

the critical points of one metric potential, are the critical
points of the another. Nevertheless, when MGD is applied, it
is clear that there are additional critical points and both met-
ric potentials are not satisfying the previous condition, i.e.,
|gtt (r)| �= |g−1

rr (r)|. Hence, in principle the critical points
for each metric potential are different. However, one virtue
of this scheme is that the original critical points, remain being
critical points for the deformed metric potential. Another
interesting feature of this method is that the decoupler func-
tion contains the original metric potential. In this way, both
potentials have the same simple zeros and singular points
(the original ones only). In next sections, we shall clarify all
these points in a detailed way.

As was pointed out in [41], to preserve the original causal
structure of outer static observers, once MGD is performed
the new critical points should be hidden by the original event
horizon, if they represent an essential singularity, in order to
avoid naked singularities. On the other hand, if the critical
points correspond to the coordinate singularities, in order to
avoid new event horizons and change in sign in the signature

1 This is an important point, since new simple zeros in principle could
represent new horizons (event or Cauchy horizons) and potential sin-
gular points, new real singularities besides the original one.
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of space–time, these points must be discarded. To do so, we
can consider, e.g., that the size of this surface is smaller than
the size of the essential singularity. To further clarify this
point, suppose that the original event horizon of the black
hole is rH and the essential singularity is located at rS , then
by solving

h(r∗) + α f (r∗) = 0, (24)

we determine that r∗
H is a coordinate singularity (a new event

horizon). On the other hand, the new potential curvature sin-
gularities can be detected, as usual, by exploring the behavior
of some invariants at that point. Now, considering the case
where r∗

H < rS , then only one event horizon corresponds to
the seed solution, that is rH . In such a case, r∗

H is not relevant
from the physical point of view. Although it is not mandatory
at all, as said before, it would be good to preserve the outer
causal structure. So, in case r∗

H is not discarded, one can dis-
place it behind the original event horizon, and the former one
becomes a Cauchy horizon (see below for further details). So,
one ends at most with a black hole space–time with: (i) an
event horizon rH , (ii) Cauchy horizon r∗

H , (iii) a central singu-
larity at rS = 0 and finally, (iv) an extra curvature singularity
r∗
S > rS . Notice that black holes with multiple horizons (and

multiple singularities) are allowed beyond Einstein’s gravity
[97], precisely as occurs in our case.

Under the aforementioned conditions, it is clear that a
Lorentzian traversable wormhole solution is forbidden. So,
instead of hiding or discarding the new critical coordinate
points, we shall redefine the validity range for the radial coor-
dinate to be r ∈ [r∗

H ,+∞), assuming that r∗
H > rH > r∗

S .
In this way, r∗

H shall represent the location of the worm-
hole throat (see below for more details) and not an event
horizon. Again, besides the temporal component gtt (r) shall
not nullify at r∗

H , so the solution shall have no infinite red-
shift surface, representing in principle a traversable worm-
hole space–time. Notwithstanding, we cannot assure at all
that the deformed space–time shall be asymptotically flat.
Although this last condition can be relaxed, as long as a
geodesically complete space–time is obtained.

Generally, in applying GD utilizing MGD, most of the
original properties of the seed space–time are preserved. It
does not matter whether one is working with stellar interiors,
black holes or wormholes, rather what is more important is
that when MGD is present in the system as a working tech-
nique, new features and interesting ingredients with physi-
cal meaning are coming out. In view of the good properties
that this methodology has, it is quite relevant to determine
the new functions {θμν; f (r)} using reasonable prescriptions
endowed with pertinent physical meaning. Among all possi-
bilities, one can relate the components of the θ -sector among
them or restrict them using the initial data, i.e., the compo-
nents of the seed energy-momentum tensor. These prescrip-
tions are known as mimic constraints [39,40]. In principle,

this form to close the θ -sector was proposed in the com-
pact stellar distribution realm. The mimic constraints can
also be understood if we perform a simple dimensional anal-
ysis. Motivated by that, we can introduce a suitable ansatz for
the tensor θμν . In the context of black holes, this approach
could lead to some trivial solutions. Of course, it depends on
the selected mimic constraint and also the form of the seed
energy–momentum tensor. The original mimic constraints
proposed in [39,40], were

θ0
0 (r) = ρ̃(r) and θ1

1 (r) = p̃r (r). (25)

it should be noted that when T̃μν correspond to an empty
matter distribution, that is T̃μν = 0, it is clear that from
Eqs. (15)–(16) one obtains trivial solutions, when (25) are
used. Then, this approach does not work to produce new
black hole solutions, unless the seed solution has a non-zero
energy-momentum tensor.

Here, as an example to implement the above outline, we
shall consider as a seed space–time the well-known exterior
Schwarzschild solution of GR, given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2d�2,

(26)

being M the mass of the black hole.
To generate black hole and wormhole solutions, we are

going to employ the mimic constraint procedure. However, to
overcome the mentioned situation about mimic constraints,
here we impose a new one. This new mimic constraint is
based on the total pressure, that is

1

3

[
p̃r (r) + 2 p̃⊥(r)

] = 1

3

[
θ1

1 (r) + 2θ2
2 (r)

]
. (27)

As p̃r (r) = p̃⊥(r) = 0 for the Schwarzschild space–time,
then the above equation becomes

θ1
1 (r) + 2θ2

2 (r) = 0. (28)

The above Eq. (28), provides us a first order differential
equation in f (r), given by

f ′(r) +
[
2 + r

(
ξ ′(r)

(
4 + rξ ′(r)

) + 2rξ ′′(r)
)]

r [2 + rξ ′(r)]
f (r) = 0.

(29)

From (26), the function ξ(r) reads

ξ(r) = ln

(
1 − 2M

r

)
, (30)

So, plugging the above expression into (29), one gets the
following deformation function f (r)

f (r) =
(

c1

r − M

)
eξ(r), (31)
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with c1 an integration constant with units of length. As
can be seen, the function f (r) is linear with respect to the
Schwarzschild metric potential. Now, the fullscale space–
time is given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

(
1 + l

r−M

) dr2 − r2d�2, (32)

where l ≡ αc1 is a constant with units of length.
In the following section, we are going to analyze under

what conditions, the space–time (32) describes either a black
hole (BH) or wormhole (WH) solution.

4 Analysis and discussion

In this section, we are going to discuss in detail all properties
of the minimally deformed Schwarzschild space–time (32),
in order to describe either a BH or WH space–time.

4.1 BH solution

Let’s start by discussing the general properties that the
expression (32) must have to represent a proper BH. So, to
have a proper BH space–time one needs to at least demand
that the causal horizon coincides with the Killing horizon,
ı.e., rH = r∗

H [41]. Nevertheless, in some cases, the original
event horizon rH = 2M becomes an essential (real) sin-
gularity for the deformed BH, which is not hidden inside a
large horizon, but rather arising a naked singularity. In this
particular case, from (32) we recognize two features: (i) the
function g−1

rr (r) contains the simple zeros from the classical
solution, and (ii) a new zero point directly related to the MGD
protocol, i.e.,

g−1
rr (r) = 0 ⇒

(
1 − 2M

r

) (
1 + l

r − M

)
= 0

⇒ rH = 2M, r1 = M − l.

(33)

However, be aware and notice that grr (r) has two extra crit-
ical points: the first one, a trivial point located at r = 0, and
the second one located at r2 = M . Now, we shall investigate
the role played by the simple zero r1 and the critical point r2,
and also rH , because there is a possibility that the latter one
becomes a real singularity for the deformed solution.

First of all, we examine if the above points are essen-
tial singularities. To do so, we compute some scalar invari-
ants such as R(r), Rμν(r)Rμν(r), Rμνγ δ(r)Rμνγ δ(r). So,
we have

R(r) = − Ml

(r − M)2 r2
, (34)

Rμν(r)R
μν(r) =

(
5M2 − 6Mr + 3r2

)
l2

2 (r − M)4 r4
, (35)

Rμνγ δ(r)Rμνγ δ(r) = 1

(r − M)4 r6

[
48M6 + 6r4l2

−96M5 (2r + l) − 8Mr3 (3r + 5l) l

+8M4
(

36r2 + 41rl + 6l2
)

− 8M3r(24r2

+49rl + 17l2) + M2r2(48r2 + 184rl

+125l2)

]
. (36)

As can be appreciated from expressions (34)–(36), aside
the original real singularity rS = 0, the point r2 = r∗

S = M
is also a real singularity whereas the original event horizon
rH = 2M and point r1 are not. Now, the causal structure of
an exterior observer is preserved if and only if rH ≥ r∗

H = r1,
i.e.,

l ≥ −M. (37)

At this point, we can distinguish three different situations,
namely:

1. −M < l < 0: In this case, the BH solution (32) has an
inner horizon, Cauchy horizon (C), given by r∗

H = r∗
C =

M − l and an event horizon given by rH = 2M .
2. l > 0: In this case, the point r∗

H is not physically relevant,
since in this case r∗

H < r∗
S . Hence, the space–time (32)

only has the event horizon given by the original one rH =
2M .

3. l = −M : In this case, when the condition (37) is saturated,
i.e., when the constant l depends directly on M , we have
a degenerated event horizon at rH = r∗

H = 2M .

Now, in considering point 1 above, it is well-known that
the presence of a Cauchy horizon is associated with instabil-
ities, what is more, the predictability of physics breaks down
beyond the Cauchy horizon [98]. Although we are not inter-
ested in exploring this particular problem, it is important to
mention that under certain conditions imposed on the new
parameter l, those are leading to minimally deformed BH
with non-trivial causal structure inside the event horizon. On
the other hand, point 3 above, said that for a minimal value
of the mass parameter M compatible with l, both rH and r∗

H
merge generating a degenerated event horizon at 2M . This
case could be identified as extremal-like BH as happens in
the Reissner–Nordström space–time when M = Q [98].

So, we have obtained an asymptotically flat BH space–
time (32) characterized by the mass M and a hair l. Nev-
ertheless, for the extremal-like BH case, l becomes a sec-
ondary hair, since it depends upon the values of the mass
M . In Fig. 1 the metric potential grr (r) for the three cases
mentioned above is shown. Besides, Fig. 2 it is displayed a
schematic picture of the solution (32), when −M < l < 0,
specifically for l = −1/2 [km]. In this case, the event horizon
rH is located at 2M (black solid circle), the Cauchy horizon
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Fig. 1 The minimally deformed metric potential g−1
rr (r) = grr (r), for

different values of the hair l = {−1/2; 1; −1} [km] (in order, magenta,
black, cyan) and M = 1 [km], against the radial coordinate r

Fig. 2 A schematic representation of the space–time (32). Inside out:
the central singularity rS = 0, the singular shell r∗

S = M (blue waved
circle), the Cauchy horizon r∗

C = 1.5M (red solid circle) and the event
horizon rH = 2M (black solid circle), for M = 1 [km]

r∗
C at 1.5M (red solid circle), the singular shell at r∗

S at M
(blue waved circle) and the central singularity at rS = 0.
Notice that, for exterior solutions (black holes), one is inter-
ested in the region r = 2M .

Next, we are going to analyze the behavior of the main
thermodynamic functions to the solution (32). So, the expres-
sions for the density ρ(r), the radial pressure pr (r) and trans-
verse pressure p⊥(r), are given by

ρ(r) = αθ0
0 (r) = − Ml

8π (r − M)2 r2
, (38)

pr (r) = −αθ1
1 (r) = − l

8π (r − M) r2 , (39)

p⊥(r) = −αθ2
2 (r) = − l

16π (r − M) r2 . (40)

In general, it is clear from (38) that the density shall be
positive defined when the hair l is taking negative values (the
same for the transverse pressure (40)). On the other hand, the
radial pressure (39) shall be positive if l < 0. In this scenario,
it is not hard to see from Eqs. (38) and (39), that the magni-
tude of the radial pressure is greater than the magnitude of the
density. Therefore, it is evident that this BH solution is trans-
gressing the so-called energy conditions (ECs). Even when
l > 0, because in this case from (38) one obtains ρ(r) < 0.
In this regard, as far as we know in the classical regime, states
with negative density are forbidden. So, the case where the
new simple zeros of the function grr (r) (r1 = M − l) are not
taken into account, cannot be considered as an admissible
black hole solution.

As it is well-known, the ECs are a set of restrictions
imposed on the energy–momentum tensor in order to prevent
nonphysical/exotic matter distribution behavior [99]. From
the classical point of view, some solutions such as wormhole
space–times, are exceptions to this rule, i.e., to support these
structures the presence of exotic matter violating at least the
null energy condition (NEC) is necessary [100–102]. More-
over, in the cosmological scenario, it has been proven that the
strong energy condition (SEC) is violated [103]. In consid-
ering the quantum regime, the violation of these conditions
and the presence of states with negative density are allowed.
As an example of a system violating energy conditions at the
quantum level we have the well-known Casimir effect [102].

In the context of black hole solutions, it becomes impos-
sible to ensure/guarantee that all energy conditions will be
satisfied (beyond the event horizon). The reason for this is
due to the fact that the event horizon is a global definition
different from the energy conditions, which are point-wise
restrictions. Nevertheless, as pointed out in [104], in order
to have a black hole space–time satisfying the condition
gtt (r)grr (r) = −1, the energy-momentum tensor must, at
least, satisfy (minimally) the NEC, i.e., the system should
saturate this condition everywhere. In this concern, in the GR
scenario, a few well-known energy-momentum tenors meet
these conditions, those are: (i) the vacuum, (ii) the Maxwell
field and (iii) cosmological constant. In this particular case,
as we are filling the vacuum Schwarzschild space–time with
the θμν source and deforming the radial metric potential only,
it is clear that the above condition is not valid here anymore.
To further investigate the consequences introduced by the θ -
sector, it is mandatory to analyze the behavior (at least) of
the NEC and weak energy condition (WEC).

So, the NEC and WEC, in general, for anisotropic matter
distributions read as

NEC : ρ(r) + pi (r) ≥ 0, i = r,⊥, (41)

WEC : ρ(r) ≥ 0, ρ(r) + pi (r) ≥ 0, i = r,⊥ . (42)
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0 0

Fig. 3 The null (NEC) and weak (WEC) energy conditions against the radial coordinate r for the black hole solution (32). To build these plots we
considered M = 1 [km] and l = {−1/2; 1; −1} [km] from left to right

In Fig. 3 are displayed the NEC and WEC for the space–
time (32) when it represents a BH solution. In this partic-
ular situation, in all cases shown in Fig. 3 both, the NEC
and WEC, are violated at some points. Being the worst case
when l > 0 (in this case r∗

H is not relevant from the physical
point of view), this is so because the density is not posi-
tively defined as it is, when r∗

H is a Cauchy horizon (see the
magenta line in the left panel of Fig. 3) or when r∗

H coincides
with rH (see the magenta line in the right panel of Fig. 3).
However, let us reinforce that the satisfaction of energy con-
ditions is not mandatory, and the only exception is the pos-
itiveness of the density at classical levels. Be aware and
notice that when the energy conditions are satisfied we could
expect a well-defined physical solution. However, one still
can get well-defined solutions with physical interest when
such conditions are violated. Thus, the ECs could be under-
stood as a basic test of some solutions, but it is not conclusive.
On the other hand, if one wants to define some topological
properties of black holes, such as the event horizon topol-
ogy, it is necessary the satisfaction of the so-called domi-
nant energy condition (DEC) at the event horizon location
(point-wise condition). As it was proven in [8], the event
horizon topology of a black hole is spherical if and only if
the DEC is satisfied at this point. In general, the DEC reads
as

DEC : ρ(r) ≥ 0, −ρ(r) ≤ pi (r) ≤ ρ(r),

i = r,⊥ . (43)

So, taking into account the expressions (38)–(40) evaluated
at rH = 2M , it is easy to see that (43) is fulfilled for the
cases −M < l < 0 and l = −M , being ruled out the
case l > 0. In addition, when the model (32) has inner
and outer horizons and the extremal-like case, the outer
most horizon (the event horizon) has spherical topology as
defined in [8], contrary to what happens when l > 0 where
(43) is violated at 2M . Thus, as can be appreciated under
certain conditions, the presence of the θ -sector introduces
some topological changes in considering the event horizon
shape.

4.2 WH solution

Taking into account the critical point r1, instead of hiding it
behind the original causal horizon rH = 2M , new structures
such as WH solutions can be obtained. Obviously, the essen-
tial singularity r2 cannot be considered. In general, to build up
a WH space–time, some ingredients should be satisfied (for
further details see Morris-Thorne seminal work [100,101]
and Visser’s book [102]). In Schwarzschild like-coordinates,
the most general line element representing a WH structure is
given by [100,101]

ds2 = e�dt2 − dr

1 − b
r

− r2d�2, (44)

where � = �(r) and b = b(r) are purely radial functions
and, are known as the redshift and shape functions, respec-
tively.

Now, comparing the line elements (23) and (44), we can
do the following general identification

�(r) = ln |h(r)|, (45)

and

b(r) = r [1 − h(r) − α f (r)] . (46)

Particularly, for the space–time (32), one gets for the red-
shift function

�(r) = ln

∣∣∣∣1 − 2
M

r

∣∣∣∣ , (47)

and for the shape function

b(r) = r

[
1 −

(
1 − 2

M

r

)(
1 + l

r − M

)]
. (48)

It is evident from (48), that at rH = 2M and r1 = M − l,
the shape function is equal to r . Therefore, both rH and r1

satisfy the wormhole throat condition. Nevertheless, it is clear
that r0 = rH = 2M cannot be considered as the wormhole
throat, because �(2M) = 0, leading to an infinite redshift
surface. To further corroborate this point, we need to ensure
that rH = 2M or r1 = M − l are global minima of the
function r = r(L) (being L the proper radial distance). So,
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Fig. 4 Left panel: The radial coordinate r behavior against the proper
radial distance L . The red line shows the wormhole throat location for
the model (53) when the free parameter l is equal to − 2 [km]. Mid-
dle panel: The trend of the main geometric properties of the wormhole
solution (53) versus the radial coordinate r. The inverse metric potential
g−1
rr (r) (black line), the temporal metric potential gtt (r) (red line) and

the flare-out condition at the throat (orange line) and beyond it (blue
line). It should be noted that the vertical axis for the flare-out condition
(blue line) has units of length. Right panel: The NEC and WEC for the
model (53). All these plots were obtained by considering the following
space parameter: {M; l} = {1; −2} [km]

the candidate critical points of dr(L)/dL to be maxima or
minima are

dr(L)

dL
= ±

√
1 − b(r)

r
= 0 ⇒ rH = 2M, r1 = M − l.

(49)

Now, computing the second derivative one has

d2r(L)

dL2 = 1

2r

[
b(r)

r
− b′(r)

]

= 1

2r

(
2M

r
+ l (2M − r)

r (r − M)
+ Ml

(r − M)2

)
. (50)

So, to prove that the mentioned points are global minima
the above expression must be strictly greater than zero at rH
or r1. First, we evaluate at rH = 2M to obtain

1

4M

(
1 + l

M

)
> 0 ⇔ l > −M. (51)

Now, evaluation at r1 = M − l, we have

(
1

2M − 2l

)(
1 + M

l

)
> 0 ⇔

⎧⎨
⎩

if i) 0 < l < M,

if i i) l < −M.

(52)

Remembering that the wormhole condition is r1 > rH ,
providing l < −M . It is clear that (51) rules out rH as the
wormhole throat. Furthermore, as was pointed out before,
the point rH leads to an infinite redshift surface. There-
fore, under this condition, the WH structure shall be ill-
defined. So, it is evident that the wormhole throat location
is at r0 = r1 = M − l, as shown in (52) case (ii), since (i)
yields an incompatibility with the condition r1 > rH . In the
left panel of Fig. 4 we have shown the behavior of the radial
coordinate has a global minimum when L . As can be appre-
ciated, the radial coordinate has a global maximum when
L = 0, determining the wormhole throat location and its
size (r0 = 3 [km] for l = −2 [km]). Moreover, as r moves

from r0 to ∞, L is changing from 0 to ±∞ as required for a
WH space–time.

In summary, we have obtained a WH space–time starting
from a minimally deformed BH (32), where the new critical
point r1 plays an important role in determining the WH throat,
making sure that the structure is well defined. Besides, the
resulting WH has a non-trivial redshift, given by the original
Schwarzschild metric potential.

Specifically, the line element of this WH solution is given
by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

(
1 + l

r−M

) dr2 − r2d�2, (53)

however, the radial coordinate r belongs to the interval
[r1,+∞).

To further support the WH solution (53), we have corrob-
orated the fulfillment of some geometrical properties, neces-
sary for the WH to exist. One of them is the so-called flare-out
condition. This condition is necessary to maintain the WH
open. In general, this condition reads

b(r) − rb′(r)
2b2(r)

> 0. (54)

The above expression evaluated at r = r0 gives the fol-
lowing information

b′(r0) < 1. (55)

For the space–time (53), the flare-out condition at r0 is

− Ml

(r0 − M)2 < 1, (56)

leading to l < −M when r0 = r1 = M − l.
In the middle panel of Fig. 4 are displayed the behavior

of the flare-out condition for both at r = r0 (orange line)
and for all r > r0 (blue line). Besides, in the same panel the
g−1
rr (r) metric potential (black line) and the redshift function
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�(r) (red line) are shown. As can be seen, the inverse of the
radial metric potential is everywhere positive and vanishes at
the wormhole throat r0 = r1 = 3 [km]. On the other hand,
the temporal metric potential gtt (r) = e�(r) is also positive
defined and does not vanish at the throat as required to avoid
an infinite redshift surface.

Besides the mentioned features of the space–time (53),
another relevant characteristic corresponds to the type of
matter threading the structure. As it is well-known, worm-
hole solutions are supported by exotic matter distribution,
i.e., matter violating energy conditions (at least NEC and
WEC). In the context of GR theory, this condition cannot
be avoided. However, as we are beyond Einstein’s gravity,
in principle it should be possible to get a wormhole struc-
ture supported by a normal matter distribution. In this case,
as we are starting from an empty space–time, all the matter
sector relies on the θ -sector, so in principle, one can manage
the output to get a normal matter distribution and at the same
time the satisfaction of the flare-out condition. Here, we have
obtained a WH violating both the NEC and WEC along the
radial direction, although with a positively defined density
(see black line in the right panel of Fig. 4). This resembles
us to the Phantom field [105,106], where for a positive den-
sity the radial pressure is negative since the equation of state
(EOS) parameter obeys ωPhantom < −1. Moreover, the radial
pressure superpass the density, thus violating the NEC and
WEC.

In our case, the EOS of the model is a non-linear barotropic
EOS given by

pr (ρ) = ωrρ ⇒ pr (ρ) = 1

2

⎛
⎝ρ −

√
1 + 4

√
2√
ρ

ρ

⎞
⎠ . (57)

The trend of the radial pressure pr (ρ) versus the density
ρ, is shown in the Fig. 5 (black line). Interestingly, expanding
(57) around the throat r0 and keeping terms up to first order
in ρ, the relation between pr (ρ) and ρ is linear (see magenta
line in Fig. 5) which can be provided as

pr (ρ) = −1

9
− 7

5

(
ρ − 1

18

)
+ O(ρ2). (58)

Also notice that the parameter ωr in the EOS is not a con-
stant anymore, varying with the radial coordinate r . Figure 6
is displayed its behavior against the radial coordinate r . As
can be observed, the EOS parameter ωr lies on the Phantom
region. What is more, at r0 its numerical value is -2. These
sorts of WHs dominated by Phantom field with a varying
EOS parameter have been studied in [107,108]. Neverthe-
less, one of the main features of our model and the one given
in [107] is that in the latter one, the WH is dominated by two
different kinds of exotic matter distributions. The first one
is a Phantom regime and the second one is a Quintessence
regime, i.e., the WH has a mixed energy dependence. In the

Fig. 5 The EOS for the model (53) (black line) and its linear approx-
imation around the WH throat (magenta line)

Fig. 6 The trend of the EOS parameter ωr (magenta dashed line)
against the radial coordinate r . The light-blue region represents the
Quintessence regime, the dashed blue line the dark energy (or cosmo-
logical constant) and the light-yellow region the Phantom regime

present case, the WH solution is immersed only in a Phantom
field regime. Another difference is that in [107] the WH has
a finite size, whilst here the WH extends to infinity, imply-
ing that the whole space–time is filled with an exotic matter
distribution. Of course, to cure this pathology we can use the
well-known junction condition process [100,102], by pasting
our model with the outer Schwarzschild solution to confine
the exotic matter in a finite region, keeping the asymptoti-
cally flat behavior and filling the space–time far away the
WH with a usual matter distribution.

To wind up this section, we want to reinforce the idea
of using GD by MGD to obtain WH solutions from mini-
mally deformed BH driven by normal matter distributions or
small amounts of exotic matter. However, this point deserves
a deeper and more exhaustive analysis that shall be studied
elsewhere, as well as the stability of the model.

5 Conclusion

In the present paper, we have investigated for the first time,
the transition from a minimally deformed BH to a WH in
the context of GD by means of MGD approach. Assuming
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Schwarzschild-like coordinates and a spherically symmetric
background, we have obtained the effective Einstein field
equations. Subsequently, with the help of a new constraint for
the anisotropic sector (27), we have obtained the decoupler
function f (r) (31), determining in this way the minimally
deformed Schwarzschild space–time (32).

We observe that the function g−1
rr (r) of the solution (32)

has one additional critical point r1 = M − l and one extra
real singularity r∗

S = M , both missing in the original GR
solution, i.e., the exterior Schwarzschild space–time. To get
insights regarding the singularities of our solution, the stan-
dard invariants, R(r), Rμν(r)Rμν(r), Rμνγ δ(r)Rμνγ δ(r)
were computed (see Eqs. (34)–(36)), where it is clear that
r∗
S = M is an essential singularity. In this case, as r∗

S > rS
(with rS = 0) the curvature singularity r∗

S is a shell of radius
M . This is so because, in this way, the spherical symmetry of
the solution is preserved. Therefore, we obtained a BH solu-
tion with two curvature singularities. Furthermore, the origi-
nal causal structure of an external static observer is preserved
iff l ≥ −M , which implies a constraint on the parameter l.
In principle, the parameter l can be considered as a primary
hair. Then the space–time (32) is being characterized by the
mass M and the hair l. In this concern, when both surfaces
rH = 2M and r∗

H = M − l coincide (in the extremal-like
case), the hair l becomes a secondary hair, depending on the
mass M parameter. So, depending on the magnitude and sign
of l, the inner region of the BH is changing (see Fig. 1). On
the other hand, another interesting feature of the space–time
(32) is that it preserves the asymptotically flat behavior of
the original space–time. Although this is not a mandatory
feature for a space–time being a BH.

Regarding the effective density (38) and pressures (39)–
(40), their behavior depends on the sign of l. Subsequently,
the energy conditions are investigated and, according to our
results, both the NEC and WEC are violated (see Fig. 3). In
principle, the violation of energy conditions occurs because
we are beyond GR (for the Schwarzschild solution, these
conditions are satisfied). Therefore, one cannot warrant their
satisfaction at all unless some conditions are being imposed
at the level of the field equations or a different closure for the
θ -sector be employed. At least, when r∗

H becomes a Cauchy
horizon or when r∗

H merges with rH , the density is positive
defined everywhere (see left and right panels of Fig. 3). This
is a remarkable feature since as far as we know, states with
negative density are forbidden at the classical level. Then, it
is not plausible at all to drop out or discard the possible new
horizons appearing after solving the θ -sector. Notwithstand-
ing, as pointed out, in order to keep the original outer causal
structure, at most this new horizon can be a Cauchy horizon
or should be merged with the original event horizon, leading
in this last case to the extremal-like BH.

Now, moving us to the WH space–time (53) and perform-
ing the MGD transformation, we observe that the two critical

points satisfy the WH throat condition (49). To falsify if our
WH solution is well-defined, it is necessary to check which of
them leads to global minima of the function r(L) (50). This
analysis reveals that r∗

H corresponds to the WH throat r0 (see
left panel of Fig. 4). However, to be a proper WH structure,
one needs to impose r∗

H > rH . In this way, only grr (r) has a
singular behavior at r = r0 and not gtt (r). Moreover, to be a
traversable WH space–time, the flare-out condition must be
satisfied. This condition is fulfilled at the throat and beyond
it (see middle panel of Fig. 4). Besides, the NEC and WEC
have been depicted in the right panel of Fig. 4, where it is
clear that those conditions are violated as required for WH
space–times.

Last but not least, we briefly discuss the EOS of the model
when it represents a WH space–time. This is a non-linear
barotropic EOS (57). In Fig. 5 it is displayed the trend of
the EOS and in Fig. 6 the EOS parameter ωr . An interesting
point to be observed here is that this parameter is not a con-
stant, what is more, it takes negative values corresponding
to the Phantom regime. Therefore, the WH space–time (53)
is driven by a Phantom field. Interestingly, the asymptotic
behavior of (57) around r0, shows a linear behavior. Hence,
at r0 the EOS corresponds to a linear Phantom barotropic
EOS with a constant EOS parameter ωr = −2.

To close our conclusion part, it is pertinent to mention that
there are some open questions regarding the construction of
WH space–times, starting from a minimally deformed BH
solution. For instance, is the space–time (53) stable under
scalar, vector, or tensor perturbations? Is the solution (53) a
humanely traversable WH? Since we are beyond Einstein’s
gravity, is it possible from a minimally deformed BH to obtain
a WH that simultaneously satisfies the energy and flare-out
conditions? In this respect, all these issues shall be analyzed
elsewhere. However, although these questions are only of the-
oretical interest, once again GD through MGD has proven to
be a very versatile tool to obtain new and innovative analyt-
ical solutions.
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