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ABSTRACT The phylum Gemmatimonadota comprises mainly uncultured microorgan­
isms that inhabit different environments such as soils, freshwater lakes, marine sedi­
ments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one 
of the most frequently retrieved Gemmatimonadota in marine samples. However, its 
physiology and ecological roles are completely unknown since, to date, not a single 
PAUC43f isolate or metagenome-assembled genome (MAG) has been characterized. 
Here, we carried out a broad study of the distribution, abundance, ecotaxonomy, 
and metabolism of PAUC43f, for which we propose the name of Palauibacterales. This 
group was detected in 4,965 16S rRNA gene amplicon datasets, mainly from marine 
sediments, sponges, corals, soils, and lakes, reaching up to 34.3% relative abundance, 
which highlights its cosmopolitan character, mainly salt-related. The potential metabolic 
capabilities inferred from 52 Palauibacterales MAGs recovered from marine sediments, 
sponges, and saline soils suggested a facultative aerobic and chemoorganotrophic 
metabolism, although some members may also oxidize hydrogen. Some Palauibacterales 
species might also play an environmental role as N2O consumers as well as suppliers 
of serine and thiamine. When compared to the rest of the Gemmatimonadota phylum, 
the biosynthesis of thiamine was one of the key features of the Palauibacterales. Finally, 
we show that polysaccharide utilization loci (PUL) are widely distributed within the 
Gemmatimonadota so that they are not restricted to Bacteroidetes, as previously thought. 
Our results expand the knowledge about this cryptic phylum and provide new insights 
into the ecological roles of the Gemmatimonadota in the environment.

IMPORTANCE Despite advances in molecular and sequencing techniques, there is still a 
plethora of unknown microorganisms with a relevant ecological role. In the last years, the 
mostly uncultured Gemmatimonadota phylum is attracting scientific interest because of 
its widespread distribution and abundance, but very little is known about its ecological 
role in the marine ecosystem. Here we analyze the global distribution and potential 
metabolism of the marine Gemmatimonadota group PAUC43f, for which we propose 
the name of Palauibacterales order. This group presents a saline-related character and 
a chemoorganoheterotrophic and facultatively aerobic metabolism, although some 
species might oxidize H2. Given that Palauibacterales is potentially able to synthesize 
thiamine, whose auxotrophy is the second most common in the marine environment, 
we propose Palauibacterales as a key thiamine supplier to the marine communities. This 
finding suggests that Gemmatimonadota could have a more relevant role in the marine 
environment than previously thought.
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O ver the last three decades, the development of culture-independent techniques 
has allowed the study of many microbial taxa that had remained hidden due to 

culture limitations. Among these taxa, the phylum Gemmatimonadota was discovered 
in 2001 by two independent studies that used 16S rRNA gene clone libraries to explore 
the microbial diversity of a reactor sludge and coastal marine sediments (1, 2). Formerly 
designated as “candidate division BD” (or KS-B), this phylum was renamed in 2003 
when the strain T-27T was isolated from a wastewater treatment plant and named 
Gemmatimonas aurantiaca (3). The phylum contains seven classes based on 16S rRNA 
gene phylogeny (Gemmatimonadetes, Longimicrobia, PAUC43f marine benthic group, 
BD2-11 terrestrial group, S0134 terrestrial group, AKAU4049, and MD2902-B12), but 
only the Gemmatimonadetes and Longimicrobia have cultured representatives. In fact, 
approximately 86% of all 16S rRNA gene sequences of Gemmatimonadota deposited in 
the SILVA database have been retrieved from uncultured members of the phylum.

Previous studies based on 16S rRNA gene sequences have highlighted Gemmatimo­
nadota as a cosmopolitan phylum, as diverse as Actinobacteria or Proteobacteria (4), 
which maybe indicating a broad physiological diversity allowing this group to colonize 
a great variety of environments. Accordingly, Gemmatimonadota are present in many 
types of soils, where they constitute one of the eight most abundant phyla, accounting 
for up to 6.5% of total 16S rRNA gene sequences (5, 6). Recently, Bay and coworkers 
suggested the metabolic potential of soil Gemmatimonadota MAGs to oxidize CH4 and 
reduce N2O, both potent greenhouse gases (7). Indeed, in vitro experiments with G. 
aurantiaca had previously confirmed its ability to reduce N2O (8, 9). Gemmatimonadota 
are also present in the water column and sediments of freshwater lakes (10–13). These 
environments harbor both chemoorganotrophic and photoheterotrophic Gemmatimo­
nadota, as revealed by cultures (14, 15) and metagenomics (10, 11). A recent study 
in Czechia and Switzerland’s freshwater lakes estimated that Gemmatimonadota could 
represent up to 1% of the planktonic microbial community, with the highest relative 
abundances in the hypolimnion (11). Finally, Gemmatimonadota have also been found in 
marine environments, such as seawater (16, 17), marine sediments (18–21), and sponges 
(4, 22, 23). Due to this ubiquity in marine environments, Hanada and Sekiguchi, in 2014, 
suggested that Gemmatimonadota may play an important role, albeit still unexplored, in 
the oceans (4).

PAUC43f is one of the most frequently detected classes of Gemmatimonadota in 
marine environments (4). However, although the first 16S rRNA gene sequence assigned 
to this class was discovered 20 yr ago (24, 25), and it is the third largest class of Gemma­
timonadota in the SILVA database, very little is known about its ecology and physiol­
ogy. Indeed, to date, PAUC43f members have been detected only through 16S rRNA 
gene sequences, and there is not a single isolate or metagenome-assembled genome 
(MAG) affiliated with this group. Published data suggest that PAUC43f members are 
salt-adapted, present in marine sediments, hydrothermal vents, sponges, and corals (19, 
26–31) and also in ephemeral saline lake sediments (32, 33), although their phylogenetic 
breadth, metabolic potential, and ecological role remain unexplored.

In this work, we aim to fill the gap of information about the distribution, abun­
dance, physiology, and ecological role of the Gemmatimonadota PAUC43f group. For 
this purpose, we retrieved all the PAUC43f 16S rRNA gene sequences from SILVA r138 
and performed an extensive search for the group in 189,104 publicly available 16S 
rRNA gene amplicon datasets from the Sequence Read Archive (SRA). Several databases 
were also screened for PAUC43f MAGs that had been previously overlooked. Our results 
confirmed the widespread distribution of PAUC43f in salt-related environments (brackish 
to hypersaline, with the highest abundances in sponges and marine sediments) and 
also in soils. Based on 16S rRNA gene sequences, 16 new genera were defined and 
linked to different ecological niches. The characterization of the metabolic potential of 
some members of PAUC43f indicated that they may reduce N2O and thus be helpful for 
mitigating the harmful effects of this potent greenhouse gas. In addition, the potential 
capability to synthesize serine and vitamin B1 (thiamine) was found in most PAUC43f 
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MAGs, suggesting that they might play an important role by supplying these compounds 
to the community.

MATERIALS AND METHODS

PAUC43f 16S rRNA gene analyses

A dataset was built with complete and partial 16S rRNA gene sequences, classified 
as “PAUC43f marine benthic group” retrieved from SILVA r138 database (34), marine 
invertebrates (corals and sponges from the Mediterranean Sea (35)), and sediments from 
the Mar Menor lagoon (SE, Spain (36)). For the following bioinformatic analyses, default 
settings were used unless otherwise noted. Sequences were aligned using SINA (37), in 
the ARB software (38), and introduced by parsimony into the SILVA 16S rRNA tree to 
check their taxonomy. Only 3,686 sequences, clustering within the PAUC43f group, were 
kept for further analyses. To avoid redundancy, sequences were clustered with cd-hit-est 
v4.8.1 (39) at 97% of identity, a threshold commonly used for species delineation (40), 
and 90% of coverage (-c 0.95 -aS 0.9). As a result, 384 groups were generated, and 
the longest sequence of each group was selected as the representative for subsequent 
analyses. The map with the global distribution of PAUC43f (Fig. 1A) was drawn in R 
with the ggplot2 v3.3.5 (41) and tidyverse v1.3.1 (42) packages, based on the type of 
environment and geographic coordinates provided in the 179 sequences, out of the 384 
representatives, for which metadata were available.

The presence of PAUC43f in different environments was estimated using the IMNGS 
software (43). The abovementioned 384 representative sequences were searched in a 
total of 189,104 16S rRNA gene amplicon datasets, available in the SRA repository, 
from 16 different environments (air, coral, estuary, fish, freshwater, human gut, human 
not gut, hydrothermal, hypersaline, marine sediment, marine sediment mat, seawater, 
oyster, skin, soil, and sponge) using a 97% identity cutoff. To obtain a more precise 
value of PAUC43f relative abundances, estimated by the percentage of total 16S 
rRNA gene sequences, those SRA datasets where PAUC43f was detected by IMNGS 
(4,965 datasets corresponding to 11 environments) were downloaded, BLASTN-queried 
(-outfmt “6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send 
evalue bitscore qlen slen”) against the 384 representative sequences, and only best hits 
(BlastTab.best_hit_sorted.pl) above 97% identity and 70% coverage were considered 
(awk “{if($4/$13>=0.7 && $3>=97)print$0}”). Since the sequences not meeting these 
criteria were not used for calculating PAUC43f relative abundance, the calculated values 
likely underestimate the true abundance of this group in the abovementioned environ­
ments.

For precise taxonomic studies, the 66 sequences longer than 800 bp (from the 384 
representative sequences) were analyzed in the ARB software v6.0.6. SINA was used to 
align the sequences and, to exclude highly variable positions, a base frequency filter 
was applied prior to the tree construction. First, the tree was constructed with the 45 
sequences longer than 1,200 bp with both neighbor-joining (Jukes-Cantor correction) 
and maximum likelihood (PHYML) algorithms (1,000 bootstraps). Then, 21 sequences, 
between 800 and 1,200 bp, were added by parsimony. Sequences from classes BD2-11, 
MD2902-B12, and Gemmatimonadetes were used as outgroups. A cluster representing 
a genus was defined when at least two sequences were monophyletic in both neighbor-
joining and maximum likelihood trees (44, 45) and their identities were above 94.5% of 
the threshold for genus delineation (46). Finally, iTOL was employed to draw the tree 
(47). The environmental frequency and abundance of each genus were estimated as 
explained above for the 384 representative sequences. The frequency of each genus in 
each environment was defined as the number of samples where the genus was detected 
with respect to the total number of samples with presence of PAUC43f.
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Metagenome-assembled genome analyses

MAGs belonging to Gemmatimonadota were searched in the GTDB release 207 (48) 
and GEM databases (49) as well as in other public sources (https://data.ace.uq.edu.au/
public/sponge_mags/; (22, 23, 50)) and Mar Menor sediments samples described in (36). 
DNA from Mar Menor sediments (stations 2, 3, 5, 10, 13, 20, and 21) was extracted 
with the DNeasy PowerSoil kit (Qiagen) following the manufacturer’s indications, and 
metagenomes were sequenced on an Illumina Novaseq 6000 2×150 bp run in the 
CNAG (Barcelona, Spain). Raw reads were quality filtered and adapters removed using 
Trimmomatic v0.36 (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) (51) and 
then, megahit v1.2.9 (52) was used to assemble reads. Then, contigs (>2 Kb) were binned 
using MaxBin2 v2.2.7 (53) and MetaBAT2 v2.15 (54) and, finally MAGs were refined with 
DAS_Tool v1.1.3 (55).

To identify PAUC43f MAGs from the pool of Gemmatimonadota genomes and MAGs, 
16S rRNA gene sequences were extracted and classified in the online SILVA ACT 
service (https://www.arb-silva.de/aligner/). MAGs carrying a 16S rRNA gene sequence 
of PAUC43f were classified, using the whole genome classifier tool GTDB-tk v2.1.1 r207 
(classify_wf) (48), within the order KS3-K002, in the Gemmatimonadetes class. For this 
reason, all Gemmatimonadota MAGs lacking a 16S rRNA gene sequence but assigned to 
order KS3-K002 were considered as PAUC43f.

MAGs considered as PAUC43f were manually curated by removing contigs with 
different sequencing depths or incongruent taxonomic affiliation of proteins, as 
previously proposed (56). To calculate sequencing depth, the metagenomic reads were 
mapped against the MAGs by BLASTn (-outfmt “6 qseqid sseqid pident length mismatch 
gapopen qstart qend sstart send evalue bitscore qlen slen”), hits were filtered by 
best hit, 70% coverage breadth, and 95% identity, and finally the BlastTab.seqdepth.pl 
script of Enveomics calculated the sequencing depth values. Contigs with more than 
twofold change with respect to the mean sequencing depth were removed. Regard­
ing the taxonomic affiliation, MAG’s proteins were queried against the nr database 
using DIAMOND BLASTp v0.9.21.122 (-outfmt “6 qseqid sseqid pident length mismatch 
gapopen qstart qend sstart send evalue bitscore qlen slen stitle”), retaining only the 
best hit for each protein. The most common taxonomic classification was determined 
by visual inspection, and contigs that do not present proteins classified to these taxa 
were removed. Completeness and contamination were estimated using CheckM 1.1.3 
(lineage_wf) (57). To calculate the estimated genome size, MAG assembly size was 
divided by CheckM completeness (ranging from 0 to 1) (58). ANOVA was used to 
test for statistically significant differences in genome size with regard to the origin 
using the aov function (R stats) and the HSD.test function of the agricolae package 
(unbalanced=TRUE, group=FALSE) (59). Phylogenomic tree for the 441 genomes and 
MAGs classified as Gemmatimonadota, which includes the orders Gemmatimonadales, 
Longimicrobiales, PAUC43f (=Palauibacterales), JACCXV01, and the classes Glassbacteria 
and GCA-2686955, was then constructed with PhyloPhlAn v3.0.58 (60) using Robigini­
talea biformata HTCC2501 as outgroup. Phylogeny was inferred from the alignment 
of 400 marker genes by the RAxML maximum-likelihood algorithm. To calculate MAG 
abundances, metagenomic reads were mapped by BLASTn (-outfmt “6 qseqid sseqid 
pident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen”), hits 
were filtered by best hit using the enveomics script BlastTab.best_hit_sorted.pl, coverage 
> 70%, and identity > 95% (awk “{if($4/$13>=0.7 && $3=95)print$0}”). Normalized 
abundance was calculated as the number of mapped reads divided by metagenome and 
genome size. Metabolic reconstruction was carried out using the annotation provided by 
KofamScan v1.3.0 (61) and Interproscan v5.57–90.0 (-appl CDD, Pfam, SMART, TIGRFAM) 
(62–66). Secondary metabolite biosynthetic gene clusters (BGCs) were identified by 
antiSMASH v6.1.1 (67) with the “strict” detection level. CAZymes were annotated against 
dbCAN V11 (68) by DIAMOND BLASTp v0.9.21.122 (identity > 40%, coverage > 50%) and 
HMMER v3.3.1 (e-value < 1e-15, coverage > 0.35) (69), considering only hits reported by 
both strategies. Statistically significant differences in abundance among environments 
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and between the number of CAZymes and susCD genes per order were tested in R using 
the Kruskal-Wallis (kruskal.test) and Wilcoxon (pairwise.wilcox.test) tests. For the latter, 
p-values were corrected by Bonferroni afnd, to avoid biased results due to small group 
size, only groups with more than 16 samples were evaluated, as previously indicated (70).

To identify genomic and metabolic differences between the Gemmatimonadales, 
Longimicrobiales, and Palauibacterales orders, the 415 available Gemmatimonadota 
genomes and MAGs were dereplicated at 95% ANI (species threshold (71)) using dRep 
v3.2.2 (72), and only those with completeness above 80% and contamination below 5% 
were considered (dereplicate -comp 80 -con 5 -sa 0.95). As a result, 215 genomes and 
MAGs were obtained and analyzed by Anvi’o 7.1 to get the enriched KEGG modules 
(-module-completion-threshold 0.8 and qvalue < 0.01) (73).

Fluorescence in situ hybridization (FISH)

To get experimental information (presence, activity, morphology, and size) about 
PAUC43f, PCR primers and FISH probes were designed using DECIPHER (74) and 
PrimerQuest Design Tool (IDT, https://eu.idtdna.com/PrimerQuest/Home/Index). Since 
Mar Menor sediment samples (Murcia, Spain; 37°45'N 0°47'W), where PAUC43f had 
been previously detected, were readily accessible to our lab, we designed primers 
and probes against the 16S rRNA gene sequences of PAUC43f retrieved from these 
sediments (36). In silico quality control was performed using the OligoAnalyzer Tool (IDT, 
https://eu.idtdna.com/pages/tools/oligoanalyzer), searching for secondary structures 
and dimerization, while probe specificity was checked with TestProbe against the SILVA 
database (34). As a result, the probe PAUC43f_826 (5′- AGGGTCAATCCTCCCAACACCTAG­
TAC-3′), which covered 32.7% of the PAUC43f sequences from SILVA, was selected 
as the best candidate. To test the probe, a sediment sample from the Mar Menor 
lagoon (37°40'02.8"N 0°48'55.2"W) was collected in the summer of 2021 and fixed with 
4% formaldehyde at 4°C for 4 h. Before hybridization, the presence of PAUC43f in 
these samples was confirmed by PCR with specific primers for this group (272F: 5′-
GTAAGTCGGGTGTGAAATTC-3′; and 393R: 5′-TTCCCGATATCTACGCATTC-3′) which covered 
11.2% of SILVA’s PAUC43f sequences. The hybridization was carried out on a filter, as 
previously described (75), and the probe was optimized using six different formamide 
concentrations (10%, 20%, 30%, 40%, 50%, and 60%). Briefly, hybridization was done at 
46°C for 4 h, followed by two washing steps at 48°C for 15 min. Then, filters were stained 
with DAPI (1 mg/mL), washed with milli-Q water, dehydrated with absolute ethanol 
(1 min each step), and finally visualized in the Zeiss LSM800 confocal laser scanning 
microscope.

RESULTS AND DISCUSSION

Ecological distribution of PAUC43f

PAUC43f 16S rRNA gene sequences were detected in several marine environments (such 
as sediments, sediment mats, corals, sponges, oysters, estuaries, seawater, and hydro­
thermal vents), hypersaline lake sediments, and soils (Fig. 1A). A large proportion of the 
sequences (89 out of 179) were recovered from marine sediment samples. Regarding 
geographical distribution, PAUC43f has been detected around the world in almost every 
latitude and longitude, and in both shallow and deep aquatic environments.

To get more insights into the PAUC43f ecological distribution, its relative abundance 
(as a percentage of PAUC43f 16S reads from the total 16S reads) was estimated for 
each environment (Fig. 1B). PAUC43f was detected in 4,965 of the 189,104 16S rRNA 
gene amplicon datasets analyzed, mainly from the marine environment, supporting 
the definition of PAUC43f as an essentially “salt-related” group (see Table S1 for the 
available salinity values). The group is also present in soils, some of them saline. However, 
since metadata for most soil samples were not available, the presence of PAUC43f in 
non-saline soils cannot be ruled out. The highest mean relative abundances were in 
sponges, marine sediments, and soils, while the lowest values were found in seawater 
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and hydrothermal vent samples (Fig. 1B; Table S2). The extremely high relative abun­
dance of PAUC43f in some samples is remarkable, such as an arid saline soil in China 
(76) and petroleum-impacted sediments from a saline lake in the Egyptian Red Sea (77), 
reaching up to 34.3% and 19.3%, respectively.

Since PAUC43f reached significantly higher relative abundances in sponges, marine 
sediments, and soils (Table S2), its distribution in these environments was explored 
more deeply. PAUC43f was detected in at least 30 different sponge species, found most 
frequently in Coscinoderma matthewsi (87 samples, where it accounted for up to 5.4% of 
the 16S rRNA gene sequences), Xestospongia spp. (71 samples), Rhopaloeides odorabile 
(32 samples), and Suberites spp (16 samples). Regarding marine sediments, no clear 

FIG 1 Ecological distribution and abundance of PAUC43f based on 16S rRNA gene sequences. (A) Worldwide distribution and environments where PAUC43f 

sequences have been detected. (B) Boxplot, in logarithmic scale, of PAUC43f relative abundances in different environments, measured as the percentage 

of PAUC43f 16S rRNA gene sequences with respect to the total number of 16S sequences (see P-values for Wilcoxon pairwise comparisons in Table S2). 

Colors correspond to the sampled environment. Values above and below each boxplot indicate the maximum and minimum abundance, respectively, in each 

environment. Number of datasets per environment: sponge, n = 324; marine sediment, n = 1,997; soil, n = 1,049; estuary, n = 295; oyster, n = 63; coral, n = 195; 

marine sediment mat, n = 28; fish, n = 41; hypersaline, n = 6; seawater, n = 930; and hydrothermal, n = 30.
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pattern of distribution was observed in relation to latitude, water temperature, or water 
column depth above the sediment (Fig. S1A through C). However, the depth along the 
sediment did seem to be important since PAUC43f abundances were highest at the 
surface and they decreased with depth (Fig. S1D). For soils, the highest abundances 
were found in middle latitudes in the Northern Hemisphere (Fig. S2A), although it must 
be noted that this hemisphere presents a higher proportion of land than the Southern 
Hemisphere. As for sediments, the abundance of PAUC43f in soils was also higher at the 
surface (Fig. S2B). These observations were not influenced by the different number of 
samples available for each depth (Fig. S3).

Ecotaxonomy

The 16S-based phylogenetic tree revealed 16 PAUC43f genera, supported by both 
neighbor-joining and PHYML algorithms (Fig. 2), which included 62% of the total tree 
sequences. These genera, altogether with the rest of the sequences included in the 
tree (except AB305477.1.916), belong to the same order and the same family, based on 
previously proposed thresholds for these taxonomic ranks (82.0% and 86.5% identity of 
16S rRNA gene sequence, respectively (46)).

To analyze the ecological distribution of these genera, their frequencies and 
abundances in different environments were calculated. As shown in Fig. 3A, the 
detection frequency of each genus differed across environments. Some genera, such 
as 1, 3, 4, 6, and 9, were generalists, displaying a wide environmental distribution, 
while others, such as genera 10, 11, 12, and 13, were more limited to a few environ­
ments and samples. All genera were detected in corals, seawater, marine sediments, 
and soils, whereas only a few were found in fish, hydrothermal vents, hypersaline lake 
sediments, and marine sediment mats. According to their relative abundances (Fig. 3B), 

FIG 2 Maximum-likelihood tree based on 66 PAUC43f 16S rRNA gene sequences longer than 800 bp. 

Monophyletic clusters in both NJ and maximum-likelihood trees with identities above 94.5%, the 

threshold for delineating genera, are displayed with different colors and numbers. The external grey 

circle indicates the sequences targeted by the FISH probe. The 16S rRNA gene sequences from MAGs 

are marked with stars. Star A: 3300025554_5; Star B: Bin_M15_27; Star C: 3300026127_2; and Star D: 

RHO2_bin_49.
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PAUC43f genera might be included in the rare biosphere of many environments (relative 
abundances <0.1% (78)). However, in certain samples, some genera showed moderate to 
high relative abundances (>0.1%). For example, genera 6 and 10 were significantly more 
abundant in marine sediments and soils than in the other samples (Table S2). Genus 
16, mostly host-associated, had significantly higher abundances in corals and sponges 
(Table S2), and genera 7 and 9 displayed abundances above 0.1% in hydrothermal vents 
and marine sediments. These observations suggest that each genus might be better 
adapted to specific environments, which implies that at least some genera could be 
genuine members of microbiomes of corals, sponges, marine sediments, hypersaline 
lake sediments, and soils. Other genera, due to their low abundances and frequencies 

FIG 3 Ecological distribution of 16 PAUC43f genera. (A) Percentage of samples per environment where each genus is detected with respect to the total number 

of samples where PAUC43f is present. Highest values are displayed in green and lowest in white. Beside each environment name, in parentheses, there are the 

numbers of samples where PAUC43f genera were detected out of the total number of samples analyzed for that environment. (B) Relative abundance of each 

genus in each environment, as percentage of PAUC43f 16S rRNA gene sequences with respect to the total number of 16S sequences. The horizontal dashed line 

indicates a relative abundance of 0.1%, as a threshold for abundant and rare biospheres. (see p-values for Wilcoxon pairwise comparisons in Table S2).
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in fish, marine sediment mats, and oysters, might likely be transient inhabitants of these 
environments.

Phylogenomic analyses and description of order Palauibacterales

The search of genomes/MAGs in databases (GEM & GTDB r207) and recent publications 
(22, 23, 50) led to the identification of 37 PAUC43f MAGs: 19 from GTDB, 8 from the 
GEM database, and 10 from recent publications. Fifteen additional MAGs were recovered 
from Mar Menor sediments (see Methods). Out of these 52 PAUC43f MAGs (Table S3), 
45 could be considered of good quality according to the published criteria (complete­
ness above 80% and contamination below 5% [56, 71]); 15 of them also carried 16S 
rRNA genes (Table S3). The estimated MAG sizes ranged from 1.9 to 4.3 Mb, with GC 
contents between 52.8% and 71.7%. Regarding their origins, the MAGs were obtained 
from marine sediments, sponges, saline soils, sea water and ground waters (26, 21, 3, 1, 
and 1 MAGs, respectively, Suppl. Table 3). A statistically supported relationship between 
MAG origin and estimated genome size was observed, with the smallest genomes found 
in marine sediments and the largest in sponges (Suppl. Figure 4), independently of their 
completeness. In terms of relative abundance, most MAGs accounted for more than 0.1% 
(and up to 12.52%, Suppl. Table 3) of total reads in their original metagenomes and thus, 
belonged to the abundant biosphere.

A phylogenomic tree using all available Gemmatimonadota genomes and MAGs 
supported the monophyletic origin of PAUC43f within this phylum. Contrary to the SILVA 
and in agreement with GTDB classification, PAUC43f (=KS3-K002) is likely a new order 
within class Gemmatimonadetes rather than a new Gemmatimonadota class (Fig. 4A). 
Within the order, PAUC43f MAGs recovered from marine sediments, sponges, and saline 
soils clustered in three different subbranches, respectively. A similar result was obtained 
when the AAI among these MAGs was calculated (Fig. 4B). Thus, PAUC43f MAGs clustered 
according to their origin, in concordance with the 16S-based ecotaxonomy (Fig. 2 and 3). 
Indeed, the classification of 16S rRNA gene sequences retrieved from MAGs also showed 
that some genera were associated with specific environments (Fig. 2), supporting the 
specialization of these MAG lineages on specific ecological niches.

Both the phylogenomic tree and AAI values (Fig. 4B) indicated that the 52 MAGs 
represented 24 different species (AAI ≥ 95% (71, 79)), 10 of which were recovered at least 
twice from different metagenomes. MAGs from sponges belonged to 10 different species 
within the same genus, while the 14 species from saline soils and marine sediments fell 
into 8 different genera (AAI ≤ 65% (71)).

Based on these results and following the instructions of the recently published code 
for prokaryotes nomenclature from sequence data (SeqCode (80)), we propose renaming 
PAUC43f (=KS3-K002) as order Palauibacterales, in reference to the Republic of Palau, 
where the first 16S rRNA gene sequence of this group was retrieved. Thus, hereinafter, we 
will refer to PAUC43f as Palauibacterales. Additionally, we propose a name for the 7 
genera and 16 species that meet the criteria of the SeqCode (Table 1; Table S3, SeqCode 
draft register list URL: seqco.de/r:0hkazsoc).

Core and niche-specific metabolic pathways in Palauibacterales MAGs

To shed light on the ecological role of Palauibacterales, the potential metabolic capabili­
ties of each species were explored (Fig. 5; Fig. S5; Table S3). MAG annotation indicated 
that Palauibacterales coded for typical gram-negative cell walls, as expected, and lacked 
the genes for flagella assembly (except species 18). Regarding central carbon metabo­
lism, complete or almost complete glycolysis and tricarboxylic acid cycle (TCA) pathways 
were found in almost all species, as well as sugar transporters, pointing to Palauibacter­
ales as a chemoorganotrophic bacteria. In good agreement, genes related to carbon 
fixation or photosynthetic metabolism were not found. However, species from sediments 
and saline soils presented 1 c and 1 f hydrogenases (81), so they may potentially shift 
between chemoorganotrophy and chemolithotrophy. It is worth noting that 
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hydrogenotrophy has been recently demonstrated in other Gemmatimonadota members 
(82).

Members of the Palauibacterales are most likely facultative aerobes since genes for complex 
IV cytochrome oxidase, which transfers electrons to oxygen, were detected in almost all species. 
In addition, most of them also encoded genes for nitrate, nitrite, and/or nitrous oxide respiration, 
while the species retrieved from sponges were predicted to be able to respire thiosulfate, and 
species from sediments and saline soils might carry out acetate fermentation. The potential to 
reduce N2O by sediment and saline soils MAGs is in agreement with previous observations in 
other representatives of the phylum (8, 9, 83) and highlights Palauibacterales ecological 
relevance. Nitrous oxide is a potent greenhouse gas, which, due to human activities such as 
agricultural fertilization and combustion of fossil fuels (84), is increasing its atmospheric 
concentrations at a rate of 0.8 ppb per year (85), with some of the highest concentrations 
measured in coastal and estuarine waters (86, 87). Thus, N2O reducers, such as some Palauibac­
terales species may be, play a key role in mitigating the harmful effects of this gas. Furthermore, 
the Palauibacterales might have another restoring effect on the environment. In a recent study of 
Mar Menor (Spain) marine sediments, we observed a high relative abundance of PAUC43f in 
heavy-metal contaminated sediments (36). The most abundant PAUC43f OTU in these 
sediments shared 99.3% identity to the 16S rRNA gene sequence found in Carthagonibacter 
metallireducens (Sp. 11), which encodes for the hyaABCD NiFe hydrogenase that could act in 
hydrogenotrophic respirations using metals as electron acceptors, as previously described for 
Geobacter sulfurreducens (88). These observations suggest that some Palauibacterales species 
might obtain an ecological advantage by means of the respiration of metals, allowing them to 
thrive in these extreme environments. Furthermore, these species may be potential bioreme­
diation agents in metal-contaminated areas.

With respect to amino acid biosynthesis, it is noteworthy that species from sponges 
were potentially able to synthesize more amino acids (12–15) than species from sedi­
ments and saline soils (5–12). The most common putative auxotrophies were found for 
lysine, tyrosine, phenylalanine, leucine, isoleucine, valine, and histidine. However, for 
some species these auxotrophies might be circumvented by acquiring amino acids from 
the environment using specific transporters (i.e., branched-chain amino acid transporters 
or transporters for oligopeptides). Since serine auxotrophy has been demonstrated for 
key marine microbes, such as Pelagibacter ubique (89), Palauibacterales may play a 
relevant ecological role in providing serine to the marine community.

Regarding the potential for vitamin B production, core biosynthetic genes for 
thiamine (vitamin B1) (thiC, thiG, and thiE), a cofactor of several essential enzymes (90), 

TABLE 1 Proposed taxonomic classification for Palauibacterales ordera

Order Family Genera Species Species name

Palauibacterales Palauibacteraceae Palauibacter Sp. 1 Palauibacter polyketidifaciens
Sp. 2 Palauibacter ramosifaciens
Sp. 3 Palauibacter denitrificans
Sp. 4T Palauibacter soopunensis
Sp. 5 Palauibacter irciniicola
Sp. 6 Palauibacter rhopaloidicola
Sp. 7 Palauibacter australiensis
Sp. 8 Palauibacter scopulicola
Sp. 9 Palauibacter poriticola

Carthagonibacter Sp. 11 Carthagonibacter metallireducens
Benthicola Sp. 13T Benthicola marisminoris

Sp. 15 Benthicola azotiphorus
Humimonas Sp. 17T Humimonas hydrogenitrophica
Caribbeanibacter Sp. 18T Caribbeanibacter nitroreducens
Kutchimonas Sp. 22T Kutchimonas denitrificans
Indicimonas Sp. 23T Indicimonas acetifermentans

aProtologue description can be found in Table S3.
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FIG 4 Taxonomic classification of Palauibacterales MAGs. (A) Phylogenomic tree with all available Gemmatimonadota MAGs. In Palauibacterales, the external 

circle indicates the environment where the MAG was recovered. The genome of Robiginitalea biformata HTCC2501 was used to root the tree. (B) Heatmap based 

on average amino acid identity (AAI) values for the Palauibacterales MAGs. Values above 95% of AAI, the threshold for species delimitation, are highlighted in 

dark blue. At the bottom, genera colors indicate the environment where the MAG was recovered following the same color schema as in A.
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were detected in most species. Since B1 auxotrophy has been proposed as the second 
most common auxotrophy in marine environments (91), affecting both eukaryotes and 
prokaryotes (92–94), Palauibacterales might also be important suppliers of B1 to the 
marine communities. Genes for the complete biosynthetic operon of riboflavin (vitamin 
B2), a precursor of coenzymes FAD and FMN (95), and niacin (vitamin B3), a coenzyme in 
redox reactions, were also found in most species. The pathways for pantothenate 
(vitamin B5), a precursor of coenzyme A, and folate (vitamin B9), an important molecule 
in anabolic reactions, were partially present in these MAGs. If we assume that missing 
genes are a result of MAG incompleteness, Palauibacterales might also be capable of 
synthesizing these two vitamins. Biosynthetic pathways for vitamins B6, B7, and B12 were 
not found, and the presence of the bioY gene, which encodes a biotin (vitamin B7) 
transporter (96), and btuF and btuB, which are part of the cobalamin (vitamin B12) 
transporter (97), suggest that Palauibacterales may import these vitamins from the 
extracellular environment.

Secondary metabolites are usually involved in growth, development, and defense 
(98), and they are interesting molecules for medicine due to their potential uses as 
antibiotics, and antitumoral and cholesterol-lowering drugs. The search for BGCs with 
antiSMASH (67) revealed that sponge MAGs presented a higher number and diversity of 
BGCs (2, 9 BGCs per MAG) than those from sediments and saline soils (1, 2 BGCs per MAG) 
(Fig. S6A; Table S3). Despite the fact that most of the detected BGCs had no similarity 
to previously described BGCs, some T1PKS were similar to those known to synthetize 
azinomycin B, a potent antibiotic with antitumor activity (99, 100); cyphomycin, an 
antifungal compound (101); and vazabitide A and funisamine, both compounds with 
unknown biological properties (102, 103).

FIG 5 Heatmap showing the presence/absence of metabolic pathways within the 24 Palauibacterales species. A pathway was considered present if at least 80% 

of genes were detected. More detailed information can be found in Fig. S5 and Table S3. MR: Metal resistance.
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CAZymes involved in biosynthesis, degradation, or modification of poly- and 
oligosaccharides showed clear differences in both abundance and composition between 
marine sediments, sponges, and saline soils MAGs (Fig. 6B and C). For example, families 
GH29 and GH95, both acting on fucose, a common polysaccharide in the marine 
environment, were detected only in marine sediment species. These differences in 
CAZymes composition might be related to the adaptation of Palauibacterales to the 
variety of niches they inhabit.

In addition, Palauibacterales MAGs encoded antibiotic resistance genes such as 
β-lactamases, tetracycline/H+ antiporters, and fosmidomycin and macrolide efflux 
pumps. Heavy metal resistance genes were also detected in sediment and saline soil 
species, including genes encoding efflux pumps for As3+, Zn2+, and Fe2+and bacterioferri­
tin, an iron storage protein which protects cells from reactive Fe2+.

Order specific traits within the Gemmatimonadetes class

In an attempt to correlate the phylogeny with their metabolic potential, the main 
differences among the three largest Gemmatimonadetes orders (Gemmatimonadales, 
Longimicrobiales, and Palauibacterales) were explored. Notably, our results (Fig. 6) 
highlighted Palauibacterales as thiamine-producing bacteria, a trait with much less 
prevalence in the two other orders (Fig. 6A). This finding suggests either a higher 
limitation in the environment or a more relevant role of thiamine in Palauibacterales 
habitat. This vitamin is a coenzyme implicated in central metabolic processes such 
as the TCA cycle or the pentose-phosphate pathway and thus is essential for most 
living organisms (90). However, as mentioned above, previous studies have pointed to 
B1-auxotrophy as the second most common in the marine environment (91). About 
25% of marine bacterial species require exogenous vitamin B1, a value that is notably 
higher in relevant marine taxa such as Flavobacteriales (76%) or Rhodobacterales (50%) 
(91). Furthermore, the number of B1 vitamin-requiring enzymes per genome is higher 
than for other vitamins, such as B7 or B12 (91), which is in agreement with the higher 
B1 uptake rates observed in coastal microbial communities (104). In addition (105), 
pointed out marine sediments, one of the main habitats of Palauibacterales, as sources of 
thiamine to the water column (105). Therefore, the literature highlights the relevance of 
B1-producing bacteria, such as Palauibacterales may be, in ecosystem functioning.

A second difference among the three orders was the presence in the Palauibacter­
ales of BGC of ranthipeptide, betalactone, and proteusin, which were absent or less 
frequent in the other orders (Fig. 6B). Furthermore, polyketide synthase clusters were 
rare in Gemmatimonadales, whereas T1PKS were common in both Palauibacterales and 
Longimicrobiales and T3PKS in Longimicrobiales. These observations point to Palauibac­
terales as an interesting source of novel bioactive compounds with potential biotechno­
logical applications.

Finally, the third main difference among orders has to do with the presence of 
polysaccharide utilization loci (PULs). These PULs are genomic loci that encode the 
necessary proteins to bind a given polysaccharide to the cell surface, cleaving it to 
oligosaccharides and importing them into the periplasmic region for their degrada­
tion to monosaccharides (106). They are typically composed of susCD genes, which 
transport the oligosaccharides from the extracellular to the periplasmic space, and 
CAZymes that catalyze polysaccharide degradation. Although PULs were thought to 
be restricted to Bacteroidetes, they were also observed in a few cultured genomes of 
Gemmatimonadota (106). Here, we show that PULs are widely distributed within this 
phylum and are not a rarity, as previously believed (Fig. 6C Fig. S7). The prevalence of 
PULs (based on the number of CAZymes and susCD genes) is significantly higher in the 
genomes of Gemmatimonadales and Longimicrobiales than in Palauibacterales (Fig. 6C). 
This observation might indicate that Palauibacterales present less potential for importing 
and degrading polysaccharides than its sister orders within the phylum.
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Visualization of active Palauibacterales in marine sediments

To visualize Palauibacterales cells and evaluate their metabolically active state in the 
environment, a FISH probe was designed and tested. In silico analyses indicated that the 
probe matched 32% of the Palauibacterales sequences deposited in the SILVA database 
and sequences of genera 2, 3, 4, 5, 6, 7, and 8 (Fig. 2). Thus, the probe does not 
target the whole Palauibacterales order but rather a set of closely related sequences, 
mostly associated with marine sediments and saline soils. Since the probe also matched 
16S rRNA gene sequences from MAGs recovered from Mar Menor sediments, FISH was 
performed with sediment samples from this lagoon. The best hybridization was obtained 
with 40% formamide and, as shown in Fig. 7, Palauibacterales cells displayed a small 
but wide rod morphology. Considering that the number of hybridized cells seemed 
to be higher than the cells stained with DAPI, we suspected DAPI might have been 
quenched by the probe fluorophore or by pigments present in the cells. With this assay, 
we provide experimental evidence of the presence and metabolically active state of the 
order Palauibacterales in marine sediments.

Final remarks

Based on the ubiquity of the Gemmatimonadota phylum in the marine environment, 
Hanada and Sekiguchi noted that this phylum may play an important but still unknown 
ecological role (4). The results presented here highlight the ecological relevance of a key 
unexplored order in that phylum, the Palauibacterales, within marine environments. This 
cosmopolitan order within the Gemmatimonadetes class displays a salt-related charac­
ter and presents interesting potential metabolic features, such as N2O reduction and 
serine and thiamine biosynthesis, with the latter as a probable key trait of the group. 
The presence of PULs in most Gemmatimonadetes expands the capability for complex 

FIG 6 Differences in the potential metabolic and biosynthetic capabilities inferred from genomic data between the orders Gemmatimonadales (n = 134), 

Longimicrobiales (n = 61), and Palauibacterales (n = 20). (A) Frequency of KEGG modules with a minimum completeness of 80% displaying statistically significant 

differences between orders. Colors indicate the percentage of genomes/MAGs of each order that codify a given module. (B) Percentage of genomes/MAGs of 

each order that carry BGC. (C) Boxplot of the number of CAZymes and susCD proteins, markers of PULs, in the genomes/MAGs of each order. Only statistically 

significant differences (P-value < 0.05) reported by Wilcoxon test are shown.
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polysaccharide degradation beyond the well-known Bacteroidetes and Verrucomicrobia. 
With this work, we provide evidence that the influence of Gemmatimonadota on marine 
ecosystem functioning, despite having been overlooked to date, may be more significant 
than previously supposed.
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Table S1 (mSystems.00215-23-s0008.xlsx). Metadata of the 16S rRNA gene amplicon 
datasets where PAUC43f was detected.
Table S2 (mSystems.00215-23-s0009.xlsx). First worksheet, pairwise Wilcoxon test 
between the abundance of PAUC43f in different environments (see Figure 1). P-values 
were corrected by Bonferroni. Only groups with more than 16 samples were tested to 
avoid biased results due to small sample size. Second and following worksheets, pairwise 
Wilcoxon test for the abundance of each PAUC43f genus in different environments (see 
Figure 3). P-values were corrected by Bonferroni. Only groups with more than 16 samples 
were tested to avoid biased results due to small sample size.
Table S3 (mSystems.00215-23-s0010.xlsx). First worksheet, general characteristics of 
Palauibacterales MAGs. aStrain heterogeneity. bMAG abundance is shown as a percent­
age of recruited reads from the total metagenome reads. CMAG normalized abundance 
is shown as the number of recruited reads divided by metagenome and genome size. 
Second worksheet, protologue for the new described taxa within the Palauibacterales 
order. Third and following worksheets, annotation of predicted proteins from MAGs 
using the KEGG KO, Pfam, CDD, SMART, TIGRFAM, and AntiSMASH.
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