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A B S T R A C T   

This paper proposes several task space control approaches for complex on-orbit high degrees of 
freedom robots. These approaches include redundancy resolution and take the non-linear dy
namic model of the on-orbit robotic systems into account. The suitability of the proposed task 
space control approaches is explored in several on-orbit servicing operations requiring visual 
servoing tasks of complex humanoid robots. A unified open-source framework for space-robotics 
simulations, called OnOrbitROS, is used to evaluate the proposed control systems and compare 
their behaviour with state-of-the-art existing ones. The adopted framework is based on ROS and 
includes and reproduces the principal environmental conditions that eventual space robots and 
manipulators could experience in an on-orbit servicing scenario. The architecture of the different 
software modules developed and their application on complex space robotic systems is presented. 
Efficient real-time implementations are achieved using the proposed OnOrbitROS framework. The 
proposed controllers are applied to perform the guidance of a humanoid robot. The robot dy
namics are integrated into the definition of the controllers and an analysis of the results and 
practical properties are described in the results section.   

1. Introduction 

The utilisation of robotic systems in space opens up new possibilities and applications for various in-orbit tasks. Space robots play a 
crucial role in numerous operations conducted in space, including servicing, assembly, and manufacturing. Ongoing missions like 
Astroscale Elsa-D [1] and Clearspace-1 [2] are already showcasing the necessary technologies for approaching and manipulating 
cooperative and uncooperative objects in space. Spacecraft such as the Northrop Grumman’s Mission Extension Vehicle-1 (MEV-1) [3] 
have proven the viability of commercial on-orbit servicing and life extension in GEO. Future missions, such as the DARPA’s Robotic 
Servicing of Geosynchronous Satellites (RSGS) [4], NASA’s On-orbit Servicing, Assembly and Manufacturing – 1 (OSAM-1) [5] will 
heavily rely on multiple robotic arms and autonomous systems to perform intricate tasks such as in-orbit satellite repairs, assembly, 
and manufacturing. 

The development and testing of robotic systems for space often necessitate an iterative approach that, together with the technical 
difficulties of reproducing space conditions in ground-based test facilities and the high costs associated with these tests, discourage the 
utilisation of hardware-based approaches in the earlier stages of the design [6]. Consequently, software-based simulations offer sig
nificant advantages in terms of cost, versatility, and the ability to rapidly model and test space robotic systems. In cases where specific 
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on-orbit phenomena cannot be easily or fully reproduced in ground-based facilities, software simulations become essential. For 
instance, reproducing the coupling between relative orbit dynamics and gravity gradient effects, atmospheric drag interactions, and 
sun-radiation pressure effects is generally challenging using flat table-based facilities like [7,8], or robotic systems [9]. In such situ
ations, simulations represent the only option to get a representative and quantitative idea of the overall behavior of the robotic systems 
in space conditions. 

This paper presents a unified open-source framework for space-robotics simulations called OnOrbitROS. The adopted framework is 
based on Robot Operating System (ROS) and includes and reproduces the principal environmental conditions that eventual space 
robots and manipulators could experience in an on-orbit servicing scenario. 

In order to showcase the capabilities of the new framework, the paper includes a specific test case analysis that focuses on 
comparing different task space control strategies specifically designed for the purpose. Space robots operate in inherently non- 
deterministic environments and subject to various disturbances. These robots possess redundant degrees of freedom (DOFs), mean
ing they have more DOFs than what is strictly necessary for their tasks. This redundancy in DOFs allows the robot to operate in un
predictable workspaces and carry out multiple tasks concurrently or sequentially. Compliant task space control approaches are 
employed to ensure safety and robust disturbance rejection. These approaches effectively address the redundancy of the robot, 
allowing for appropriate torque control actions. By resolving the redundancy, the robot determines the optimal joint configuration 
while performing the task, maximising its effectiveness in the given context. 

In this framework, the paper not only introduces various task space control approaches but also examines their suitability for 
complex high degrees of freedom robots operating in the on-orbit environment. Sensor-based approaches are utilised, which involve 
utilising data from robot sensors to plan guidance strategies based on workspace information. One of the most promising sensor-based 
approaches for OOS applications is the visual servoing method [10]. In this case, the robot is guided by leveraging image information 
captured by a camera. Specifically, the paper focuses on applying the proposed task space control approaches to enable visual servoing 
of a sophisticated on-orbit humanoid robot within an on-orbit servicing scenario. 

The remaining sections of the paper are organised as follows: the state-of-the-art on both simulation tools for in-orbit operations 
and tasks space controls applied to space robotics operation scenarios is presented in Section 2. Section 3 introduces and describes the 
proposed unified open-source framework for space-robotic simulations, OnOrbitROS. Section 4 details the suitability of different task 
space control approaches for complex high DOF robots. This section proposes velocity-based, acceleration-based and force-based 
approaches for on-orbit manipulators, and it ends with the description of a new direct position-based approach based on the previ
ous task-based control systems. Section 5 presents the simulation results. Specifically, the OnOrbitROS framework simulations are 
compared against published flight mission data from some experiments carried on by NASDA in the frame of the ETS-VII mission. After 
this validation, the task-based approaches and the proposed visual servoing system are simulated using a humanoid robot to assess the 
performance of the proposed control systems in an OnOrbitROS simulated environment. Finally, Section 6 summarises the main 
concluding remarks associated with this study. 

2. Related works 

This section describes the related works and synthesises the main paper’s contribution to the state-of-the-art. The paper’s primary 
contribution, as outlined in the introduction, is the establishment of a unified open-source framework for space robotics based on ROS. 
Different teams within the space community have carried on numerous attempts to develop simulation tools. These include ad-hoc 
build libraries and simulation tools, some of them openly available online, such as SpaceDyn [11], and others that have been com
mercialised, such as DCAP [12,13]. On the other hand, numerous research papers have presented methodologies and algorithms 
suitable for developing ad-hoc simulation tools to analyse and design control algorithms for on-orbit robotic operations. These tools are 
often used to simulate space-based test cases with specific robot configurations and investigate various effects such as structural 
flexibility [14–16], sloshing effects [17], contact dynamics, and impacts [18]. In most cases, ad-hoc tools are developed to test control 
strategies for space manipulators: among the vast literature, it is worth mentioning the works related to the reaction null control [19], 
the virtual manipulator strategies [20], image-based control strategies [21] and impedance control to mitigate contact dynamics 
effects in space [22]. However, these studies often rely on ad-hoc built simulation tools that are not standardised, open-source, or 
rigorously verified. This lack of standardisation and accessibility hampers the development and implementation of versatile robotic 
systems and algorithms for space robotics. In contrast, using simulation tools like ROS and Gazebo has become common practice for 
testing and developing control algorithms for ground-based robotic systems [23–25]. Nevertheless, the use of ROS/Gazebo in the space 
community is not yet widely accepted due to the inability to fully and realistically simulate space conditions such as microgravity and 
frictionless environments. 

Keeping in mind this panorama, the solution proposed in this paper moves towards developing a unified open-source tool for space- 
robotic simulations. This tool is called OnOrbitROS and is freely available in [26]. The adopted framework is based on ROS, an 
open-source meta-operative system to develop robot applications, combined with Gazebo, a tool to simulate populations of robots in 
customised environments. These tools have been modified to incorporate and replicate the primary environmental conditions that 
space robots and manipulators may encounter in an OOS scenario. This solution facilitates the simulation of complex space robotic 
systems while leveraging the extensive range of packages already available in ROS for control, vision, teleoperation, and modeling 
tools. By utilising ROS and Gazebo in this way, the framework provides a powerful and versatile platform for developing and testing 
space robotics applications. By adhering to the ROS principle of "Don’t reinvent the wheel", the framework avoids the need to create a 
new platform from scratch and instead builds upon existing ROS infrastructure to simulate OOS applications. This paper presents a 
description of the architecture of the different software modules. It shows the key features of the developed tool, with a particular focus 
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on the customisation of the simulations, eventual possibilities of further expansion of the tool, and implementation of task space 
controllers (and visual servoing tasks). The proposed OnOrbitROS architecture has the potential to be used by open source platforms 
such as AWS RoboMaker [27]. Gazebo is the default simulation tool for AWS RoboMaker. Consequently, by using Gazebo and 
OnOrbitROS, AWS RoboMaker users can create complex OOS simulations in the cloud, eliminating the requirement for 
high-performance local machines and with physical parameters closer to the real orbit condition. To ensure the authenticity of the 
results in space conditions, the paper presents the validation of the simulator suite. This validation process involves comparing the 
simulations against published flight mission data from experiments conducted by NASDA during the ETS-VII mission [28,29]. By 
validating the simulator against actual mission data, the paper demonstrates the accuracy and reliability of the simulation results in 
replicating space conditions. 

The paper introduces a novel direct position-based visual servoing system designed specifically for complex high DOF on-orbit 
robots. Specifically, this control strategy is applied to different task space control approaches in an OOS scenario. The proposed 
system includes velocity-based, acceleration-based, and force-based controllers tailored for guiding complex and redundant space 
robots. These controllers take into account the specific conditions of robots in an OOS scenario, including their dynamics and per
turbations. A comparative analysis is conducted to determine the most adequate controller during the tracking of trajectories. Efficient 
real-time implementations are achieved using the proposed OnOrbitROS framework, which, among the other features, allows for the 
integration of the robot dynamics in the characterisation of the proposed controllers. From the previous analysis, the more promising 
task space controller is extended to obtain a new direct position-based visual servoing controller. This approach utilises image in
formation and takes into consideration the system dynamics and environmental perturbations, such as gravity gradient torques, during 
the robot’s guidance. By incorporating these factors, the controller enhances the precision and stability of the visual servoing process in 
challenging on-orbit conditions. 

Visual servoing methods can be categorised as image-based visual servoing, where the control law is defined in the image space [30], 
and in position-based visual servoing, where image features are extracted from the captured image, and this information is used to 
determine the pose of the target with respect to the frame attached to the camera. Vision-based navigation approaches, such as those 
described in [31], often employ 3D model-based tracking. It is also worth mentioning the work presented in [32], where stereo vision is 
used to perform the pose estimation for the final phase of the rendezvous and docking of non-cooperative satellites. Similarly, [33] 
presents a relative navigation method for rendezvous and docking of an unknown tumbling object utilising a monocular camera and 
Kalman filters. Specifically, two extended Kalman filters with different models are used for relative orbit estimation in far range and 
relative position and attitude estimation in close range. This approach has been used in OOS applications such as [34,35]. In [34] a 
monocular camera is used to determine the target pose estimation required to perform the relative navigation for space rendezvous and 
proximity operations. In [34], the vision-based navigation of SPHERES satellites is presented for the microgravity environment of the 
International Space Station (ISS). All these previous approaches are considered indirect position-based visual servoing systems, where 
the control action is specified in terms of velocity applied to the robot without considering the system dynamics. 

On the other hand, in direct controllers, the control actions are directly computed in terms of forces and torques applied to the robot 
joints. Previous studies show the necessity to integrate robot dynamics in the visual servoing systems using a direct approach [36]. 
Previous works by the authors, such as [37,38], proposed direct image-based visual servoing to guide free-floating robotic manipu
lators and to perform spacecraft rendezvous manoeuvres, respectively. In contrast with these previous approaches, a new direct 
position-based control law in this paper has been designed in the task space that includes redundancy resolution. This approach is 
extended for the guidance of a redundant humanoid robot. Classical indirect position-based visual servoing approaches do not take 
into account the system dynamics. In order to take into account the non-linear dynamic model of the humanoid, a new direct 
position-based visual servoing control is proposed. This control is suitable when the robot performs fast and accurate movements. A 
comparison of the proposed direct position-based visual servoing system with previous position-based visual servoing systems [39] is 
also included in the results section and evaluated in the on-orbit scenario. 

3. OnOrbitROS architecture 

ROS [40] is an open-source framework providing a collection of tools to develop complex robotic software systems. It was initially 
developed at Stanford’s AI lab in 2007. It has been widely accepted by research communities and it collects open-source contributions 
from robotics communities all over the world. ROS follows a publisher-subscriber model using peer-to-peer communication that allows 
efficient inter-node communication via messages over ROS topics. It acts as a middleware offering a hardware abstraction layer. 

The ROS ecosystem comprises ROS packages, each active package representing a module in the software architecture. A ROS 
package is composed of one or more C++ or Python nodes. Together, these nodes exchange data over ROS topics, allowing for a 
coherent modular system that is easier to extend and debug. As the ROS community has expanded, many useful tools have been 
developed in the form of ROS packages to benefit both users and developers. ROS inherently provides visualisation plugins like RQT 
[41] that allow real-time inspection and monitoring of the system. It also allows utilising various communication interfaces using ROS 
services and actionlib to perform request-response-based tasks. The advantage of an open-source framework like ROS is that with easy 
access to the internal functioning of the system, debugging becomes easy across all levels. The ROS code developed for this study acts as 
a solution for the simulation of complex on-orbit space robotic systems. 

In addition to ROS, Gazebo has been chosen as the simulation environment for the project. Gazebo is a simulation tool specifically 
designed for fast and efficient test development. Originally, Gazebo was conceived as a tool for 3D simulation of multi-robot envi
ronments with the ability to recreate complex and customisable environments. Similar to ROS, Gazebo is open-source and freely 
available. Gazebo is selected as a complement to ROS in the OnOrbitROS framework because it can simulate complex 3D environments 
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where each element possesses properties such as mass, velocity, and friction. This aligns with the project’s objective to create a realistic 
simulation of on-orbit conditions. By utilising Gazebo along with ROS, the framework can provide a comprehensive simulation 
environment that accurately represents the dynamics and interactions of space robots in complex 3D settings. There are certain aspects 
for which Gazebo has been selected as a complement to ROS for OnOrbitROS:  

• High integration of Gazebo within ROS. The Gazebo simulations are generated from an XML file based on the SDF description 
language, which is an extension of the URDF used in ROS for robot description. This allows for quickly creating and configuring 
new environments without programming modifications.  

• Possibility to include additional plugins. Gazebo offers the possibility to extend its functionality through plugins. As it is described 
throughout the paper, OnOrbitROS includes the required plugins to simulate the on-orbit-specific conditions. Additionally, Gazebo 
integrates interfaces to use multiple physics engines such as Open Dynamics Engine, Bullet, Simbody, Dynamic Animation and 
Robotics Toolkit (DART).  

• Gazebo and ROS have been widely used in the simulation and development of new robots for Terrestrial applications. This aspect 
allows the possibility to use a great number of software libraries and tools that help in the building of robot applications. 

However, Gazebo lacks a simulation environment for on-orbit robotics applications. OnOrbitROS provides features and packages 
that allow setting and simulating OOS applications. The proposed library presents a ROS and Gazebo architecture so that all the 
control, visualisation, sensors, etc. packages already available in the standard ROS/Gazebo suite can be used to develop complex 
experiments for on-orbit space robotics. 

OnOrbitROS serves as a foundational platform for the study and development of OOS applications, leveraging the powerful 
combination of ROS and Gazebo for hyper-realistic simulations. Fig. 1 illustrates the main structure and packages of OnOrbitROS. This 
structure includes the two main elements of an OOS application: the target spacecraft (target) and the servicing spacecraft (chaser). The 
chaser spacecraft hosts the robot or serves as the robot itself, with both models defined using Simulation Description Format (SDF) 
definitions. Multi-robot applications can also be simulated by incorporating multiple instances of simulated robots. OnOrbitROS 
consists of two packages. The first package, depicted in blue in Fig. 1, generates spacecraft trajectories, as will be elaborated in Section 
3.2. The second package, represented in orange, extends and modifies the physics engines to align with the conditions of an OOS 
application, as explained in more detail in Section 3.3. From this basic structure, complex OOS robotics applications can be simulated 
where elements such as force sensors, cameras, laser sensors, etc. can be integrated. At the same time, robots with numerous DOFs, 
such as humanoid robots, can be integrated while keeping the physics engine options in the simulation as close as possible to orbital 
conditions. 

The results section explores several of the capabilities of OnOrbitROS in different scenarios. The first scenario simulates the ETS-VII 
operations, as described in [28,29], and validates them by comparing them with data from past experiments in orbit. Additionally, 
several other scenarios are defined to assess the ability of OnOrbitROS to simulate new controllers for on-orbit robot manipulators and 
more complex robotic scenarios, incorporating sensor systems and humanoid robots. Hence, the presented architecture and simulation 
system can be used for the simulation of future OOS applications such as collaborative multi-robot applications in space debris 
removal, trajectory control in formation flights close to a reference orbit, on-orbit manufacturing, etc. 

Fig. 1. Main packages and architecture of OnOrbitROS.  
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3.1. Definition of reference frames 

This section defines the main coordinates frames considered throughout the paper. Fig. 2 provides a visual representation of these 
coordinate frame and their transformations. The spacecraft to be serviced is named as target spacecraft, and the corresponding co
ordinate frame, Ft, is located at its centre of mass. The servicing spacecraft is called chaser and its coordinate frame, Fc, is located at its 
centre of mass too. The chaser may have a robotic manipulator to perform OOS of the target. The Earth-Centered Inertial frame (ECI) is 
denoted as Fi with its origin located at the centre of the Earth with its x axis going from the centre of the Earth passing along the vernal 
equinox, the z axis coincides with the axis of rotation of the Earth, and pointing to the north pole, finally the y axis completes the 
orthogonal triad. 

A Local Vertical Local Horizontal (LVLH) reference frame is used to define the position of any object with respect to a specific 
orbital position. This reference frame is denoted by Fl in Fig. 2. In this frame, the x axis corresponds to the direction of the radial vector 
that goes from the center of the Earth to the spacecraft, the y axis, which together with the x axis forms the orbital plane pointing this in 
the direction of the spacecraft movement. Finally, the z axis completes the triad being normal to the orbital plane. As shown in Fig. 2, 
the matrices Rl and tl represent the rotation and translation of the LVLH frame with respect the inertial frame. The Orbit module 
computes both matrices, shown in blue in Fig. 1, which calculates the theoretical orbit of the target spacecraft (see Section 3.2 for 
details). 

The Gazebo simulation environment has its own reference frame, which is denoted by Fg. The proposed framework assumes that 
the orientation of Fg and Fi are coincident, but the origin of Fg is the same as the origin of Fl. In this way, we can simulate the proximity 
dynamics of the chaser around the target, assuming that the latter is moving along its orbit and the relative orientation between Fl and 
Fg is given by Rl, calculated by the Orbit module. Finally, the rotation and translation matrices gRc and gtc describe the relative attitude 
and position of the chaser frame Fc, with respect to the Gazebo frame Fg. 

3.2. Orbit package 

This section describes the modules that compose the Orbit package. Fig. 3 illustrates the main components of the Orbit module. The 
main function of this module, implemented as a ROS publisher node, is to generate the orbital trajectories of the bodies that compose 
the simulation. At the time of writing this paper, the Orbit module has three submodules:  

• Simple Orbit. This module can be used for the generation of trajectories that describe Keplerian orbits. This module is described in 
greater detail in Appendix A because it is the default option for OnOrbitROS and it does not require any external library.  

• SGP4 adaptor. This module can be used for the propagation of other kinds of orbits (this module incorporates the third-party library 
by Spacetrack [42,43]). This module creates an interface to the library so that it can obtain the parameterisation from the ROS 
parameter server while publishing the position and orientation of the reference frame Fl.  

• Custom Path. This module can be used to model user-defined trajectories that do not fall in the previous two cases. This last module 
uses the external library Kinematics and Dynamics Library (KDL) [44] to generate trajectories based on a series of points by 
interpolating them by splines. In this case, a series of points are introduced by the user in the ROS parameter server (a data structure 
composed of a set of positions, velocities and accelerations, and the time instant in seconds to achieve each pose), and the Custom 
Path module generates the interpolated trajectory. 

The user defines the orbit or trajectory that best fits the trajectory to be modelled in the launch file, and the Publisher Node in
stantiates the corresponding object. The Publisher Node provides the timing to the corresponding object, and the object generates the 

Fig. 2. Coordinate frames in OnOrbitROS.  
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values Rl, tl and νl of the generated orbit or trajectory. Different parameters are required depending on the orbit or trajectory to be 
generated. For example, for the Simple Orbit module, parameters such as the semi-major axis, a, eccentricity, e, argument of periapsis, 
ω, right ascension of ascending node, Ω, inclination, i, and instant of time of perigee passage, tp should be defined. When the SGP4 
adaptor is used, the Two Lines Elements (TLE) should be given as input. Finally, for defining a custom trajectory, initial, final, and 
intermediate positions, velocities, accelerations and times should be provided. This information is indicated by the user in the YAML 
configuration file and stored in the ROS Parameter Server. The ROS Parameter server is common to all nodes and allows sharing of 
parameters between different nodes. 

3.3. OORplugin package 

This module in OnOrbitROS is responsible for modifying the parameters of the physics engines used by Gazebo to create a realistic 
simulation environment for OOS applications. It eliminates effects like gravity, wind, and magnetism, typically applied in simulations 
assuming they occur on the Earth’s surface. Instead, this module applies the relevant torques and forces specific to OOS scenarios. 

Gazebo provides two main features that are utilised in the simulation generation. First, simulations are described and para
meterised using the Simulation Description Format (SDF), an XML file loaded by the simulator at start-up. The SDF description allows 
for defining the target spacecraft, chaser spacecraft, their respective orbits, and other relevant details (Model Target, Model Chaser and 
World in Fig. 1). The second feature of Gazebo used to simulate OOS applications is the possibility of extending the Gazebo func
tionality through plugins. These plugins have access to all the simulation elements, being able to consult the state of these and, at the 
same time, to act with them. So, all the links of the simulated spacecraft will be subject to the forces and torques that we will describe in 
the next two sections (perturbation from gravity gradient and forces generated by the relative motion to an elliptical orbital). 

The current version of OnOrbitROS simulates the relative dynamics and the perturbation due to gravity gradient. There are 
considered among the main effects characterising the dynamics in the near-Earth space region. Other perturbations, such as aero
dynamic drag, solar radiation pressure and effects of the third-body will be included in the next versions of the tool. 

3.3.1. Perturbation from gravity gradient 
This section describes the main perturbing torques caused by the gravity gradient and simulated in OnOrbitROS. These torques vary 

in the different parts of each rigid body that form the chaser spacecraft. Fig. 4 represents the main transformation matrices used to 
compute the gravity gradient perturbing torques. The position and orientation of each rigid body with respect to the reference frame Fg 

can be easily obtained from the robot kinematics. The translation matrix from Fg to the center of mass of each link is represented as 
gtc,k, where k = 0 for the base of the spacecraft and k = 1 to ne represents the k link of the robot (being ne the DOF of the manipulator). 
Therefore, the distance between any robot element and the ECI frame is the sum of the distances between Fi and Fg (represented by the 
vector tl) and gtc,k: 

tc,k=
gtc,k + tl (1) 

Fig. 3. Orbit Publisher detail.  
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As already commented in Section 3.1, Fg and Fi have the same orientation, being Rl the rotation matrix from Fl to Fi or Fg. As 
shown in Fig. 4, the relative orientation of each of the robot links with respect to Fg is represented as gRc,k where k = 0 for the base of 
the spacecraft and k = 1 to ne represents the k link of the robot. Specifically, to compute the gravity gradient, the vector pointing from 
the centre of the Earth to the centre of mass of each link must be known. Given the definition of the reference frames in Section 3.1, this 
last vector corresponds with the x axis of the LVLH reference frame defined by the first column of Fl. Therefore, the corresponding unit 
vector is: 

r(x)c,k =
[gRc,kRT

l

]

⎡

⎢
⎣

1
0
0

⎤

⎥
⎦ (2) 

The corresponding torques of the gravity gradient of each link read as: 

τgrav,k =
3μ⊕

t3
c,k

sk
(
r(x)c,k

)
Ic,k r(x)c,k (3)  

where Ic,k is the inertia matrix of each link, μ⊕ is the Earth gravitational constant and sk() ∈ ℜ3x3 is the skew-symmetric matrix. Once 
the gravity gradient torques have been calculated, they are applied in each iteration of the simulation by the module Gazebo OOR
plugin. 

Fig. 4. Main transformations to compute the perturbing torques.  
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3.3.2. Relative motion with respect to an elliptical orbit 
In this section, we show the method used to compute the apparent forces due to the relative motion with respect to the reference 

frame describing the orbit, Fl, in OnOrbitROS. These forces are of great importance in operations where a chaser satellite flies in 
proximity of a target. The first step for computing such kind of forces is the calculation of the angular momentum of the reference orbit. 
This can be obtained as h = tl × vl (both the position tl and linear velocity vl calculated in the orbit node of OnOrbitROS, see Section 
3.2), and its corresponding absolute value is equal to h = ‖ tl × vl‖. The position of each link of the chaser satellite with respect to the 
Fl reference frame is denoted as ltc,k (

ltc,kz ,
ltc,ky ,

ltc,kz ) and its linear velocity as l ṫc,k (
l ṫc,kx ,

l ṫc,ky ,
l ṫc,kz ), where k = 0 for the base of the 

spacecraft and k = 1 to ne represents the k link of the manipulator. Both position and velocity can be obtained as ltc,k = RT
l

gtc,k and l ṫc,k =

RT
l

g ṫc,k, respectively. Using the linearised version of the equations of relative orbital motion as in [45], and by defining the mass of each 
link as mk, the three components of the apparent forces due to the relative motion to be applied to each link can be calculated as 
follows: 

fform,kx = mk

((
2μ⊕

t3
l

+
h2

t4
l

)
ltc,kx −

2
(
tl.tl

⋅ )
h

t4
l

ltc,ky + 2
h
t2
l

ltc,ky

⋅ )

(4)  

fform,ky = mk

(

−

(
μ⊕

t3
l
−

h2

t4
l

)
ltc,ky +

2
(
tl.tl

⋅ )
h

t4
l

ltc,kx + 2
h
t2
l

ltc,kx

⋅ )

(5)  

fform,kz = mk

(

−
μ⊕

t3
l

ltc,kz

)

(6) 

Such forces are calculated and applied to each body of the OOS scenario, alongside the gravity gradient forces, by the module 
Gazebo OORplugin at each iteration of the simulation. 

4. Cartesian controllers for space manipulators 

This section presents different task space control approaches for complex DOF robots and describes their application to a visual 
servoing task in an OOS scenario. For the controller’s description, an anthropomorphic robotic arm with ne degrees of freedom located 
in a base spacecraft is considered. The different coordinate frames represented in Fig. 2 are considered. With respect to the system 
kinematics, the servicing spacecraft configuration can be defined by the position and attitude of the base spacecraft, tb and ϕb (both 
with respect the inertia frame), and by the joint configuration of the manipulator’s arm, qT ∈ R

ne. The full kinematics of the spacecraft 
kinematics is defined by the vector [tTb ,ϕ

T
b , qT]

T . 
The system dynamics provide a relationship between the acceleration and forces and torques in both the base satellite and 

manipulator. Specifically, the system dynamics relate to the linear and angular accelerations of the base spacecraft v̇b = [ẗTb , ω̇
T
b ]

T
∈ R

6 

expressed in the Inertial coordinate frame, the joint accelerations of the manipulator’s arm, q̈, with the forces and torques exerted on 
the base of the servicing spacecraft, hb ∈ R

6, and the torques applied on the robot manipulator joints, τ ∈ R
ne. This relationship can 

be defined as: 

[hb

τ

]

=

[
Mbb Mbm

MT
bm Mmm

][ v̇b

q̈

]

+

[ cb

cm

]

(7)  

where Mbb ∈ R
6 × 6 is the inertia matrix of the base spacecraft, Mbm ∈ R

6 × ne is the coupled inertia matrix of the base spacecraft 
and the manipulator’s arm, Mmm ∈ R

ne × ne is the inertia matrix of the manipulator’s arm, cb, and cm, ∈ ℜ6 are a velocity/ 
displacement-dependant, non-linear terms for the base spacecraft and manipulator arm, respectively. 

Eq. (7) can be extended by including the gravity gradient torques and rewritten in the following form: 

M∗q̈ + C∗ = τ + τgrav (8)  

where τgrav ∈ R
ne are the gravity gradient torques, M∗ ∈ R

ne × ne is the generalised inertia matrix, C∗ ∈ R
ne is the generalised Coriolis 

and centrifugal vector for the manipulator arm, defined explicitly as: 

M∗ = Mmm − MT
bmM− 1

bb Mbm (9)  

C∗ = cm − MT
bmM− 1

bb cb (10) 

The linear and angular momenta of the system [l T,ΨT]
T

∈ R
6 are defined as: 

[
l

Ψ

]

= Mbbvb + Mbmq̇ (11)  
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vb = [ṫTb ,ωT
b ]

T
∈ R

6 denotes the linear and angular velocities of the base spacecraft expressed in the inertial coordinate frame, and q̇ ∈

R
ne represents joint speeds of the arm. The relationship between the joint speeds and the corresponding end-effector’s absolute linear 

and angular velocities can be expressed through differential kinematics: 

ṗ = Jmq̇ + Jbvb (12)  

where ṗ ∈ R
6 is the linear and angular velocity of the manipulator end-effector in the inertial frame, Jm ∈ R

6 × ne is the manipulator 
Jacobian matrix, and Jb ∈ R

6 × 6 is the Jacobian matrix of the robot. Combining Eq. (12) with Eq. (11) yields an equation that directly 
relates the joint speeds and end-effector motion of the robot manipulator: 

ṗ = Jgq̇ + JbM− 1
bb

[
l

Ψ

]

(13)  

Jg = Jm − JbM− 1
bb Mbm (14)  

where Jg is the Generalised Jacobian Matrix for the manipulator. The second derivative of Eq. (13) can be expressed as: 

p̈ = Jgq̈ + J̇gq̇ + v̇gm (15)  

where vgm = JbM− 1
bb

[
l

Ψ

]

. 

4.1. Velocity-based control 

This section defines a velocity-based controller for the guidance of an OOS manipulator. The velocity-based controller presents a 
velocity command in the Cartesian space. Therefore, in this case, the Cartesian reference can be expressed as: 

ṗr = ṗd + Kp(pd − p) (16)  

where pd, ṗd represent the desired position and velocity corresponding to the Cartesian trajectory to be tracked, and Kp is a matrix 
containing the gains for building a proportional feedback. In this case, the reference joint velocities can be obtained from the previous 
Cartesian reference as: 

q̇r = J+
g

(
ṗr − vgm

)
− α

(
I − J+

g Jg

)
υv (17)  

where α is a positive constant, and υv is considered as a null space cost function. A simple optimisation criterion for redundancy is 
considered in joint space, which pulls the joins, q, toward a given configuration, qs: 

υv = Kps(qs − q) (18)  

where Kps is a positive definite matrix containing gains for proportional feedback of the joint variables. Considering the reference 
Cartesian velocities ṗr and the reference joint velocities q̇r obtained in Eqs. (16) and (17), the velocity-based control law can be defined 
using the dynamics equation given by Eq. (8): 

τ = M∗q̈r + C∗ + Kd(q̇r − q̇) − τgrav (19)  

where Kd is a positive definite matrix containing gains for building the derivative feedback term of the joint variables. When the 
velocity-based controller is applied, the reference joint accelerations can be obtained by differentiation of the reference joint velocities 
given in Eq. (17) as: 

q̈r =
d
dt

q̇r ≅
q̇r(t) − q̇r(t − Δt)

Δt
(20)  

where Δt is the sampling period. By considering the definition of the Cartesian reference in Eq. (16), integrating its derivative in the 
control action given in Eq. (19) and by noting that q̈r = q̈d + J+

g Kp(ṗd − ṗ)+ J̇+

g Kp(pd − p), the following expression can be obtained for 
the velocity-based controller: 

τ = M∗

(

q̈d + J+
g Kp(ṗd − ṗ)+ J̇+

g Kp(pd − p)
)

+ C∗ + Kd(q̇d − q̇) + KdJ+
g Kp(pd − p) − τgrav (21) 

The closed-loop behaviour can be obtained as: 

M∗q̈ = M∗

(

q̈d + J+
g Kp(ṗd − ṗ)+ J̇+

g Kp(pd − p)
)

+ Kd(q̇d − q̇) + KdJ+
g Kp(pd − p) (22) 
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By pre-multiplying Jg(M∗)
− 1 to both sides of Eq. (22), the closed loop behaviour can be simplified in: 

(

p̈d − p̈
)

+ Kp(ṗd − p⋅ ) +
(

Jg(M∗)
− 1KdJ+

g Kp + JgJ̇+

g Kp

)
(pd − p) = − Jg(M∗)

− 1Kd(q̇d − q⋅ ) (23) 

These controllers are simple to implement, and the results show that a good overall performance is obtained. However, from the 
error dynamics analysis, several problems should be highlighted. On the one side, the control law ignores information about the target 
accelerations and it requires numerical differentiation of the joint reference velocities. Additionally, the proportional gain Kp appears 
as a task space damping gain, affecting the term multiplying the error velocity; therefore, the task space stiffness and damping cannot 
be controlled independently. Both issues limit the tracking and impedance performance of such control strategy. 

4.2. Acceleration-based control 

To solve the aforementioned issues, other two approaches based on acceleration are proposed in this section. 

4.2.1. Acceleration-based controller with inertia matrix pre-multiplication 
The acceleration-based controller presented in this section generates an acceleration command in the Cartesian space. Therefore, in 

this case, the reference can be expressed as: 

p̈r = p̈d + Kd(ṗd − ṗ) + Kp(pd − p) (24)  

where pd, ṗd represent the desired position and velocity corresponding to the Cartesian trajectory to be tracked, and Kp and Kd are 
proportional and derivative positive definite matrices, respectively. The acceleration-based control action can be obtained considering 
the system dynamics defined in (8): 

τ = M∗q̈r + C∗ − τgrav (25)  

where q̈r can be obtained from (15): 

q̈r = J+
g

(

p̈r − J
⋅

gq̇ − v̇gm

)

+
(

I − J+
g Jg

)
υa (26)  

and: 

υa = Kps(qs − q) − Kdsq̇⋅ (27) 

This controller introduces a null space projection with damping term in joint space. This controller achieves asymptotic tracking in 
operational space since the following behaviour is obtained in closed loop: 

p̈d − p̈ + Kd(ṗd − ṗ) + Kp(pd − p) (28)  

4.2.2. Acceleration-based controller without inertia matrix pre-multiplication 
The final control law obtained in Section 4.2.1 can be summarised in: 

τ = M∗J+
g

(

p̈r − J̇gq̇ − v̇gm

)

+ M∗
(

I − J+
g Jg

)
υa + C∗ − τgrav (29) 

In the simulations, we noted that the pre-multiplication of the null space optimisation term by the inertia matrix M∗ can be 
problematic if the inertia matrix has modeling inaccuracies. To avoid this problem, the following variation of the controller is 
proposed: 

τ = M∗J+
g

(

p̈r − J̇gq̇ − v̇gm

)

+
(

I − J+
g Jg

)
υa + C∗ − τgrav (30)  

so that the closed loop behaviour can be obtained as: 

M∗q̈ = M∗J+
g

(

p̈r − J̇gq̇ − v̇gm

)

+
(

I − J+
g Jg

)
υa (31) 

By pre-multiplying Jg(M∗)
− 1 to both sides of Eq. (31), the closed loop behaviour can be simplified in: 

p̈d − p̈ + Kd(ṗd − ṗ) + Kp(pd − p) = Jg(M∗)
− 1
(

I − J+
g Jg

)
υa (32) 

This last equation shows that the null space projection interferes in the asymptotic tracking in the operational space. However, good 
practical results are obtained in the application of this controller, as indicated in the results section. 

J.L. Ramón et al.                                                                                                                                                                                                       



Simulation Modelling Practice and Theory 127 (2023) 102790

11

4.3. Force-based control 

This section proposes a force-based controller where the reference is given as a command. This information is employed directly to 
generate the manipulator joint torques. Based on the framework proposed by Khatib [46], the desired task dynamics can be expressed 
as: 

M
∼

(p)p̈ + C
∼

(p, ṗ) = F (33)  

where: 

M̃ =
(

Jg(M∗)
− 1JT

g

)− 1
(34)  

C̃ =
(

Jg(M∗)
− 1JT

g

)− 1(
Jg(M∗)

− 1C∗ − J̇gq̇
)

(35) 

Considering the desired dynamics imposed by Eq. (33), the control action can be formulated as: 

F = M
∼

p̈r + C
∼

(36)  

where p̈ris the cartesian reference that can be obtained as in the acceleration-based controllers using Eq. (24). Therefore, the final 
control law that generates the joint torques is: 

τ = JT
g F +

(

I − JT
g J
∼T

g

)

υf − τgrav (37)  

where υf can be considered as in Eq. (27) equal to Kps(qs − q) − Kdsq̇, and J
∼

g is the inertia-weighted pseudo-inverse: 

J
∼

g = (M∗)
− 1JT

g

(
Jg(M∗)

− 1JT
g

)− 1
(38) 

As it can be seen in Eq. (37), the operational space part of the controller is decoupled with respect the null space dynamics. 
Additionally, this controller achieves asymptotic tracking in operational space since the following behaviour is obtained in closed loop: 

p̈d − p̈ + Kd(ṗd − ṗ) + Kp(pd − p) (39) 

Table 1 summarises the proposed Cartesian controllers that will be evaluated and compared in the results section using 
OnOrbitROS. 

4.4. Visual servoing 

This paper proposes the use of OnOrbitROS to extend the controllers presented in the previous section to perform the guidance of a 
humanoid robot in a realistic scenario by using visual servoing. Specifically, a robotic extravehicular activity for the maintenance of 
the International Space Station (ISS) has been modeled and simulated. A visual servoing strategy guide the arms of a humanoid robot. 
Therefore, the robot arms will be guided by the visual information extracted by the camera located at the robot head. Fig. 5 illustrates 
the resulting modeled scenario where the ISS and the humanoid robot are shown. The humanoid robot has two arms with seven 
degrees of freedom each and robot hands at their end-effectors; the joint coordinates of both arms are denoted as q1, q2 ∈ R

ne, where 
ne= 7. The head of the robot hosts a range camera, which is used to determine the positions of the grasping points. Different handrails 
are located on the exterior of the ISS, as shown in Fig. 5. The main kinematics and dynamics parameters of the humanoid robot are 
detailed in the results section (Table 3). This section shows how to extend the Cartesian controllers presented in the previous sections to 
guide the robot arm to perform the grasping of a given handrail. 

As it can be seen in Fig. 5, an Aruco marker is located in the workspace. The Aruco codes are markers widely used for camera 
localisation in augmented reality, virtual reality and even some applications in on-orbit space applications [47]. This code will be used 
to obtain the pose of the marker with respect to the robot frame, rTm, by using the camera located at the robot head. In order to perform 
such an operation the algorithm described in [48] is used. In addition, the transformation between the Aruco marker and the grasping 

Table 1 
Proposed Cartesian controllers.  

Controller Control action 

Velocity-based controller (1) τ = M∗(q̈d + J+
g Kp(ṗd − ṗ) + J̇+

g Kp(pd − p))+ C∗ + Kd(q̇d − q̇)+ KdJ+
g Kp(pd − p) − τgrav 

Acceleration controller with inertia matrix pre-multiplication (2) τ = M∗(J+
g (p̈r − J̇gq̇ − v̇gm) + (I − J+

g Jg)υa)+ C∗ − τgrav 

Acceleration controller without inertia matrix pre-multiplication (3) τ = M∗J+
g (p̈r − J̇gq̇ − v̇gm)+ (I − J+

g Jg)υa + C∗ − τgrav 

Force-based controller (4) τ = JT
g (M

∼

p̈r + C
∼

)+ (I − JT
g J
∼T

g )υf − τgrav  
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pose, mTp, is fixed and known. Therefore, both transformations can be jointly used to determine the grasping and target pose for the 
robot hand with respect to the robot frame, rTp. As an example of implementation of a direct position-based visual servoing approach 
from the task-controllers proposed in Sections 4.1, 4.2 and 4.3, Fig. 6 illustrates the implementation of a position-based visual servoing 
system considering the acceleration controller without inertia matrix pre-multiplication. The path planning module provides the 
desired trajectory (p̈d,ṗd,pd). Due the free-floating conditions, the desired Cartesian trajectory to be tracked must be updated depending 
on the target grasping location for the robot arm (rTp, obtained using the camera). The visual feedback computes a quintic spline as the 
desired Cartesian trajectory between the current pose of the robot manipulator end, and the target position computed by the camera. 
This last will be the desired Cartesian trajectory to be tracked by the Cartesian controller. 

5. Simulation results 

This section summarises the main simulation results obtained using OnOrbitROS in different free-floating robotics scenarios. 
The first simulation is used for validating the dynamics implemented in OnOrbitROS. Specifically, the dynamics of the ETS-VII 

robotic experiment is simulated, and results will be compared to the actual flight data obtained from the mission, which can be 
found in [28,29]. The main kinematic and dynamic parameters of the ETS-VII robotic system are shown in Table 2. 

The second scenario is used to show the capabilities of OnOrbitROS as a tool for assessing the performance of the afore-developed 
task space controllers. In this case, a robotic extravehicular activity is simulated, as shown in Fig. 5. Table 3 summarises the main 
dynamic parameters of the robot used in this second scenario. This table lists the moment of inertia, the mass, and the dimensions of the 
main body of the robot and the links of both arms. It is assumed that the two arms are symmetric and have the same dynamic 
parameters. 

Finally, a third simulation is presented to show the OnOrbitROS capabilities in simulating complex tasks, with inputs received by 
simulated sensors, as in the case of the visual servoing control applied to the humanoid robot as previously described in Section 4.4. 
The reference orbit is supposed to be circular and with a radius of rorb = 6878 km. In the current version of OnOrbitROS only the 
relative dynamic and the gravity gradient are included in the simulations. Even if other perturbations, such as the drag and the solar 
radiation pressure effects are not considered, the simulations can still be considered a reasonably good approximation of the real 
conditions. Indeed, given the very low area-to-mass ratio that strongly characterises the robots (7,19,569 e-3 m2Kg− 1for the humanoid 

Fig. 5. (a) ISS Gazebo simulation. (b) Simulated humanoid robot with an eye-to-hand camera.  

Fig. 6. Control scheme of the position-based visual servoing using the acceleration controller without inertia matrix pre-multiplication.  
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robot and 4,898,119 e-4 m2Kg− 1 the ETS-VII robotic system), the effects of atmospheric drag are negligible with respect to gravity 
effects. 

5.1. Scenario 1. ETS-VII gravity gradient simulation 

This section considers the same scenario presented in [28,29] to validate the proposed simulation system based on Gazebo, ROS 
and OnOrbitROS. The ETS-VII flight data will be compared with the one obtained by using OnOrbitROS for the same trajectories. 
Specifically, in [28] a ETS-VII trajectory is presented with the joint evolution represented in Fig. 7. The 3D representation obtained 
using Gazebo and OnOrbitROS is shown in Fig. 8. Fig. 8a represents the initial robot pose and Fig. 8b the final one. Fig. 9 illustrates the 
attitude behavior of the robot base, represented by the three Euler angles roll, pitch and yaw, when applying the joint trajectory 
indicated in Fig. 7. Fig. 9a represents the attitude of the base in the case the gravity gradient effect is not considered. As the robot does 
not receive any external forces or moments, the attitude at the beginning and the end of the trajectory is the same, as expected from the 
conservation of the angular momentum. As described in Section 3.3, OnOrbitROS allows for simulating more realistic scenarios that 
take the gravity gradient effect into consideration. Fig. 9b represents the attitude of the base of the robotic system in the case of a 
simulation that includes the gravity gradient effect. The effects of such disturbance are evident in this figure, where the roll angle 
reaches a slightly lower value and the pitch angle a higher value compared to the simulation without gravity gradient. The same effects 

Table 2 
Mass and inertia parameters of the ETS-VII robot.  

Base Inertia (kg•m2) 
Mass (Kg) Ixx Iyy Izz Ixy Ixz Iyz 

2552 6206 3541 7087 48.16 78.52 − 29.22  

Arm Inertia (kg•m2)    
Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

Mass (kg) 35.01 22.45 21.89 16.54 26.00 18.49 
Inertia Izz (kg•m2) 1.69 3.75 2.53 0.072 0.129 0.259  

Table 3 
Mass and inertia parameters of the humanoid robot.  

Body Mass Height (m) Inertia (kg•m2)     
(kg) Ixx Iyy Izz Ixy Ixz Iyz  

93 0.843 18.6 15.4 4.1 -0.008 -0.027 0.058 
Arms Mass Length (m) Inertia (kg•m2)     

(kg) Ixx Iyy Izz Ixy Ixz Iyz 

Link 1 2.741 0.28 0.0124 0.0042 0.0136 3.6e-05 7.1e-05 -0.0002 
Link 2 2.425 0.144 0.013 0.0138 0.0049 1.2e-05 -0.0032 -0.0001 
Link 3 2.209 0 0.007 0.0069 0.0039 -0.0001 0.0007 0.0004 
Link 4 0.877 0.274 0.0025 0.0027 0.0012 0.0001 -0.0003 0.0004 
Link 5 1.878 0.265 0.0035 0.0044 0.0023 1.3e-05 1.03e-05 -9.7e-05 
Link 6 0.409 0 0.0001 0.00014 0.00015 -8.9e-08 -4.4e-08 4.2e-07 
Link 7 0.308 0 0.0003 0.0002 0.00017 -1.6e-06 1.7e-06 -1.2e-05  

Fig. 7. ETS-VII joint trajectory described in [28].  
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Fig. 8. 3D trajectory of the robot. (a) Initial robot pose. (b) Final robot pose.  

Fig. 9. (a) Base attitude without considering gravity gradient effect. (b) Base attitude considering gravity gradient effect.  

Fig. 10. 3D trajectory of the robot. (a) Initial pose. (c) Intermediate pose. (c) Final pose.  
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and trends are also observed in the real data of the ETS-VII robot presented in [29]. The comparison of the results obtained by the 
proposed simulation system shows very good agreement with the real flight data indicated in [29], and this provides a tangible 
validation of the gravity gradient simulation tools in OnOrbitROS. 

5.2. Scenario 2. Control of the robot arm of a humanoid robot 

This section evaluates the performance of the four proposed controllers, whose final expression is indicated in Table 1, during the 
tracking of the trajectory represented in Fig. 10. This last figure represents the robot at the initial, intermediate, and final configu
rations. This trajectory is performed in 10.2 s. The proportional and derivative matrices used in these simulations are indicated in 
Table 4, where diag() ∈ ℜ7 × 7 is a matrix with diagonal elements equal to the argument of the function. 

Fig. 11 represents, the desired trajectory (black) and the one obtained during the tracking for each controller (red). All four 
controllers reach the desired final pose by tracking the desired trajectory. To highlight more clearly the differences between each 
controller, Fig. 12 represents the control error, pd(t) − p(t), for each controller during the tracking and Fig. 13 represents the control 
actions (joint torques) during the tracking. Although the torques remain low during the tracking, some differences can be observed in 
the behaviors of the four proposed controllers. Among all the controllers, the acceleration-based controller without inertia matrix pre- 
multiplication (controller 3) is the most promising approach in terms of tracking task performance, ease of parameter tuning, and 
general robustness and compliance. The experimental results demonstrate the effectiveness of this controller in face of inevitable 
modeling errors. On the other hand, other velocity/acceleration/force-based controllers had several performance problems, as will be 
described in the next paragraphs. 

The proposed velocity-based controller was straightforward to implement and achieved overall good performance. However, as 
indicated in Section 4.1, it ignores information about the target acceleration. Additionally, there is a practical limitation in the choice 
of the proportional gain because the task space position gain is also included as a task space damping gain. This effect implies that an 
increase in the position gain also increases the damping gain. Therefore, the proportional gain cannot be increased without affecting 
the stability of the system. The damping behaviour is indeed affected by the proportional gain and this behaviour becomes difficult to 
tune. As it can be seen in Fig. 12, small oscillations appear during the tracking when the velocity-based controller is applied, while 
acceleration and force-based controllers present smoother behaviors. 

Two acceleration-based approaches have been proposed in Section 4.2 (with and without inertia matrix pre-multiplication). As 
already mentioned, the second approach, the acceleration-based controller without inertia matrix pre-multiplication, presents an 
excellent and robust tracking performance. From an empirical point of view, the pre-multiplication of the null space optimisation term 
by the inertia matrix can introduce tracking errors due to the inevitable modeling inaccuracies. This aspect has motivated the 
implementation of the new acceleration-based controller without inertia matrix pre-multiplication. As indicated in Section 4.2.2, the 
null space projection interferes with the asymptotic tracking in the operational space. However, a lower tracking error is obtained by 
using this approach with a smoother behaviour in the joint space. 

As described in Section 4.3, the force-based controller uses the inertia-weighted pseudo-inverse and it allows the decoupling be
tween null space dynamics and the operational control. However, a better behaviour is obtained in accelerations-based approaches. 
This effect should be due to possible inaccuracies in the computations of the inertia matrix and its inversed that is used in many 
different terms of the proposed control law. 

5.3. Scenario 3. Visual servoing using a complex humanoid robot 

This third scenario shows different possibilities of OnOrbitROS for on-orbit sensor-based applications. In this case, the direct 
position-based visual servoing system described in Section 4.4 is used for the guidance of the arms of a humanoid robot in a grasping 
application. To illustrate the implementation of this control approach, the grasping trajectory shown in Fig. 14 is considered. Fig. 15a 
represents the pose of the Aruco marker with respect to the robot frame, rTm, by using the camera located at the robot head. This pose 
changes during the grasping task due to the free-floating conditions. The end-effector trajectory during the tracking is represented in 
Fig. 15b. To achieve the desired grasping point while the manipulator-end tracks the desired trajectory, an acceleration controller 
without inertia matrix pre-multiplication is applied, and the control actions represented in Fig. 15c are obtained. The tracking error is 
represented in Fig. 15d. As it can be seen in this last figure, the tracking error remains low during the trajectory, allowing accurate 
tracking with the eye-to-hand camera feedback. Table 5 shows the mean error obtained during the tracking when different direct 
position-based visual servoing systems are applied based on the proposed task space controllers. This table also shows the mean error 
obtained by using previous indirect position-based visual servoing systems [39]. It is worth noting that lower tracking errors are 
obtained when the proposed controller based on the acceleration controller without inertia matrix pre-multiplication is applied. 

Table 4 
Cartesian controllers’ gains.  

Controller Kp Kd 

Velocity-based controller (1) diag(0.1) diag(0.5)
Acceleration controller with inertia matrix pre-multiplication (2) diag(0.5) diag(10)
Acceleration controller without inertia matrix pre-multiplication (3) diag(0.5) diag(10)
Force-based controller (4) diag(

̅̅̅̅̅̅̅
0.5

√
) diag(

̅̅̅̅̅̅
10

√
)
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Finally, Fig. 16 shows a detail of the robot hand in the grasping position, where we can observe that the achieved location allows the 
correct grasping of the handrail. The OnOrbitROS-Gazebo simulation of this experiment can be seen in [49]. 

6. Conclusions 

The paper presented the architecture of the different software modules of OnOrbitROS, a framework to simulate complex space 
robotic systems, also taking advantage of the number of packages already developed in ROS for control, vision, teleoperation, and 
modelling tools. The tool was validated by directly comparing the simulations and the flight data of the ETS-VII robot experiment. 

In order to show the different applications of such tools, the paper also offers a case study where several task space control strategies 
were developed and traded off in an OOS scenario with a humanoid robot performing extravehicular operations around the ISS. 
Different velocity-based, acceleration-based and force-based approaches were evaluated. In contrast with classical position-based 
visual servoing systems, a direct position-based visual servoing scheme was proposed to integrate robot dynamics and sensor 

Fig. 11. Desired (black) and obtained 3D trajectory (red) during the tracking. (a) Velocity-based controller. (b) Acceleration controller with inertia 
matrix pre-multiplication. (c) Acceleration controller without inertia matrix pre-multiplication. (d) Force-based controller. 
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measurements within the controllers. An acceleration controller without inertia matrix pre-multiplication was selected as the basis for 
implementing the proposed visual servoing system, given its more accurate performance in the simulation results compared to the 
other presented controllers. 

Couplings between the relative orbit dynamics and the gravity gradient effects have been included in the simulation system. 
However, we are working on adding new features to OnOrbitROS to increase the realism of the simulations. Within these new features, 
it is worth mentioning the inclusion of other perturbations into the physical engine, such as the implementation of differential drag 
effects in the simulation. Additionally, in future works, the implementation of reinforcement learning approaches for robot guidance 
will also be considered. 

Appendix A 

This Appendix describes the implementation of the Simple Orbit module. This module obtains the frame position and orientation of 
Fl with respect the inertial frame, tl and Rl, and its linear velocity, νL, as a function of the typical Kepler parameters that define an orbit. 
Simple orbit is valid for elliptical orbits with eccentricity values equal to 0 ≤ e < 1. Earth orbits are considered, so the following 
constants are used in the calculations: the Kepler constant is defined as μ = 3.986004415 × 105 Km3

s2 , the radius of the Earth is re =

6378 Km, its angular velocity is defined as ome = 2π 3600 × 24 rad
s and the spherical harmonic coefficient of second degree is j2 =

0.0010826269 × 10− 3. On the other hand, through the ROS Parameter Server the user can define the simulated orbit by indicating 

Fig. 12. Control error during the tracking. (a) Velocity-based controller. (b) Acceleration controller with inertia matrix pre-multiplication. (c) 
Acceleration controller without inertia matrix pre-multiplication. (d) Force-based controller. 
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the following parameters corresponding to the described orbit {a, e, ω, Ω, i, tp}. These parameters are the semi major axis, a, ec
centricity, e, argument of periapsis, ω, right ascension of ascending node, Ω, inclination, i, and instant of time of perigee passage, tp. 
Fig. 17 represents the notation of the main orbit parameters considered throughout the paper, where Θ is the true anomaly. 

This module publishes, at each simulation time, the position, tl, velocity, velocity, νL, and orientation Rl, corresponding to the orbit 
parameters indicated by using the ROS Parameter Server. To offer a greater flexibility, two different time parameters, tp and t0, can also 
be indicated by using the ROS Parameter Server. The first one, tp, is the time instant of passage through the perigee, and the second one, 
t0, is an offset which corresponds to the duration, in seconds, from the theoretical passage of the satellite through perigee to the instant 
when the simulation starts. On the other hand, the time instant, ta, is considered as the current simulation time. The relationship 
between the simulation time and the real time is configurable, so that it offers the possibility to simulate both, long periods of time in a 
few instants, as well as simulations of a few seconds at very high sampling and integration frequencies. The relationship between real 
and simulated time takes place in the physics engine so it is outside the scope of this module, but the parameter update frequency must 
be configured accordingly. 

From the previously indicated parameters describing the orbit and the timing parameters (defined by the user in the ROS Parameter 
Server), the module Simple Orbit publishes, at each simulation time, the position, tl, velocity, νL, and orientation Rl, corresponding to 
the orbit parameters. To do this, first, the values necessary for the propagation of the orbit that do not depend on the time are 

Fig. 13. Control actions during the tracking. (a) Velocity-based controller. (b) Acceleration controller with inertia matrix pre-multiplication. (c) 
Acceleration controller without inertia matrix pre-multiplication. (d) Force-based controller. 
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Fig. 14. OnOrbitROS simulation of the visual servoing task of a humanoid robot.  

Fig. 15. (a) Position of the Aruco marker with respect the robot frame, rTm. (b) End-effector trajectory during the tracking. (c) Control actions 
during the tracking. (d) Tracking error. 
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calculated when the node is created. This allows the use of this information in successive iterations for code optimisation. The mean 
orbital velocity, n, is obtained by using the following expression: 

n =

̅̅̅̅̅
μ
a3

√

(40) 

To compensate for the difference between the real shape of the Earth with respect to a perfect sphere, the second harmonic j2 
compensation has been introduced. Based on this a value closer to the real one of Ω and ω can be obtained. The ellipse semi-parameter 
and the time derivative of these last previous variables, Ω̇ and ω̇, can be obtained as: 

ρ = a
(
1 − e2) (41)  

Ω̇ = −
3
2

J2
re

ρ
2
cosi n (42)  

ω̇ =

⎧
⎪⎪⎨

⎪⎪⎩

0 e ≤ 1 × 10− 4

3
2

J2

e
(re

ρ

)2 2 −
5
2

sin2in e > 1 × 10− 4 (43) 

Table 5 
Mean error obtained using different position-based visual servoing approaches.  

Direct position-based visual servoing based on Mean error (m) 

Velocity-based controller 1.5E − 2 
Acceleration controller with inertia matrix pre-multiplication 2.5E − 3 
Acceleration controller without inertia matrix pre-multiplication 1.1E − 3 
Force-based controller 4.2E − 3 
Indirect position-based visual servoing 4.7E − 2  

Fig. 16. Detail of the robot hand in the grasping position.  
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After obtaining the parameters that do not vary over time, the time-depending computations are iteratively performed as is 
described in the next paragraphs. The simulation time, ta, is obtained from the simulation clock. This fact is very important to syn
chronise the simulations when the simultaneous simulations of several spacecraft are performed. Therefore, the current mean 
anomaly, m(t), is: 

m(t) = m(t0) + n
(
ta − tp

)
(44)  

where m(t0) is the initial mean anomaly. The method used to obtain the eccentric anomaly ϵ(t) is the one described in [50] which is 
mainly based on the Kepler expression: 

m(t) = ϵ(t) − e sinϵ(t) (45) 

Eq. (45) is a transcendental equation, so the value of ϵ(t) should be iteratively obtained. This method is based on starting from an 
initial value (as approximate as possible) and then iteratively approaching it more and more to its real value. A simple approximation 
would be to consider that for values of eccentricity close to zero, the value of ϵ(t) will be equal to m(t) . Function (45) is redefined to 
obtain values closer to the real one in an iterative way: 

ϵk(t) = m(t) + e sinϵk− 1(t) (46)  

considering then ϵ0(t) = m(t) and were ϵ1(t) = m(t) + e sinm(t) and continue iterating until the following expression is obtained: 

ϵ(t) = m(t) + e sin m(t) + e2sin m(t)cos m(t) +
1
2

e3sin m(t)
(
3cos2 m(t) − 1

)
(47) 

Once an initial value has been obtained, an iterative method should be defined that tries to minimise the error ε in the approxi
mation of ϵ(t), that relates ϵk(t) = ϵk− 1(t) − ε. In order to get ϵ(t) to converge more quickly, it is used the first three terms of the Taylor 
series of the function f(x) = x − esinx − m(t) about x = ϵ(t), where f(ϵ(t)) = (x − ε) − esin(x − ε) − m(t). In this way we use as initial 
value of x0 the value of ϵ(t) obtained in the expression (47) and the next values are obtained from xk = xk− 1 − εk and the values of εk 

comes from the first three terms of the Taylor series: 

εk+1 =
xk − esinxk − m(t)

1 − ecosxk −
1
2

(
esinxk −

1
3 ecosxk εk

)
εk

(48) 

When the error εk is lower than a defined threshold, the algorithm ends by returning the value of ϵt with which the true anomaly 
value, Θt is obtained by using the well know expression: 

Fig. 17. Orbit parameters.  
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Θt = tan− 1

⎛

⎜
⎜
⎝

sinϵt
̅̅̅̅̅̅̅
1− e2

√

1− ecosϵt
cosϵt − e

1− ecosϵt

⎞

⎟
⎟
⎠ (49) 

The distance between the centre of the Earth and the current position of the spacecraft is defined as tl whose module is equal to: 

‖ tl‖= a (1 − ecosϵt) (50) 

To position the vector tl in the orbital plane, the angle at which it is located with respect to the initial perigee is defined as: 

ξ(t) = θ(t) + ω0 + ω̇
(
ta − tp

)
(51) 

Where Cartesian coordinates of tl in the orbital plane are as follows: 

xp = ‖ tl ‖cosξ(t) (52)  

yp = ‖ tl ‖sinξ(t) (53) 

The corresponding velocity based on angular momentum is equal to: 

h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ a (1 − e2)

√
(54)  

ẋp =
μ
h
− sinθ(t) (55)  

ẏp =
μ
h
(cosθ(t)+ e

)
(56) 

From the previous position and velocity obtained in the orbital plane, it is possible to obtain the value of Rl and tl applying the 
required rotations. To do this, first, the resulting rotation matrix from Ω and i can be computed as: 

Rp = Rz(Ω)Rx(i) (57) 

From this rotation matrix, the translation of the LVLH frame, tl, and the linear velocity, νl, is: 

tl = Rp

⎡

⎢
⎢
⎣

xp

yp

0

⎤

⎥
⎥
⎦ (58)  

vl = Rp

⎡

⎢
⎢
⎣

ẋp

ẏp

0

⎤

⎥
⎥
⎦ (59) 

Finally, the rotation matrix that represents the attitude of Fl with respect the inertial frame is equal to: 

Rl = RpRξ (60)  
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