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Abstract 24 

The southeastern section of Iran, especially the province of Khuzestan, experience 25 

severe air pollution levels, such as high values of Surface Dust Mass Concentration 26 

(SDMC). The province lacks accurate and well-placed ground observational 27 

stations, therefore the only viable approach for evaluating SDMC is via remote 28 

sensing. In this study, meteorological, hydrological and geological data on 11 input 29 

variables from Modern-Era Retrospective analysis for Research and Applications 30 

Version (MERRA-2), Global Precipitation Measurement (GPM) and Global Land 31 

Data Assimilation System (GLDAS) for the year 2018 are used for prediction of the 32 

SDMC values, also obtained from MERRA-2. For real-time prediction, Pearson’s 33 

Correlation Coefficient (PCC) analysis shows that wind-related variables – surface 34 

wind speed, surface aerodynamic conductivity and surface pressure – are those with 35 

the highest correlation with SDMC. Using the Gradient Boosting Regression (GBR) 36 

algorithm, these three variables can simulate SDMC with good accuracy (𝐶𝐶 =37 

0.815 , 𝑁 − 𝑅𝑀𝑆𝐸 = 0.605). Future forecasting of SDMC requires knowledge of 38 

both wind-related and heat-related variables. However, SDMC predictions can be 39 

obtained with the GBR algorithm with adequate accuracy (𝐶𝐶 = 0.640 . 𝑁𝑅𝑀𝑆𝐸 =40 

0.781) by just considering the surface pressure value observed four days before the 41 

forecasted day. This study shows that robust predictions of SDMC can be obtained 42 

using exclusively remote sensing data, without ground-based observations.  43 

 44 
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1. Introduction 51 

Recent reports by the World Health Organization (WHO) revealed that nearly seven 52 

million people die in the world due to high levels of air pollution every year (WHO, 53 

2014). Major air pollutants are carbon monoxide, sulfur, nitrogen dioxide, and 54 

surface-level ozone (Chen et al., 2007, Council, 1992, Duan et al., 2019, Sunyer et 55 

al., 2003). Particulate Matter (PM) is also highlighted by WHO as the thirteenth 56 

mortality cause around the world, which makes it further hazardous (Anderson et 57 

al., 2012). PM is a mixture of microscopic particles and liquid substances such as 58 

metals, organic materials, acids and dust (Planning, 1996, USEPA, 2019). PM can 59 

cause significant health problems, such as blood pressure, lung cancer, and 60 

cardiovascular diseases (Brook & Rajagopalan, 2009, Hamanaka & Mutlu, 2018, 61 

Raaschou-Nielsen et al., 2016), therefore monitoring its concentration is critical for 62 

health and environmental purposes.  63 

Numerous studies have been conducted on PM concentration measurement, using 64 

various sampling approaches and instruments (Amaral et al., 2015, Kwasny et al., 65 

2010, Nakata et al., 2013). Ground-based measurement, mostly done with 66 

monitoring stations, is the most commonly employed method. However, while the 67 

direct sampling approach is considered as the most accurate, it is neither cost- nor 68 

time-efficient, and station numbers are typically limited and station spatial 69 

distribution in generally irregular (M. Lee et al., 2016, D. Liu & Li, 2015).  70 

Recently, to overcome the disadvantages of direct sampling, Remote Sensing (RS) 71 

methods have become increasingly utilized for forecasting of hydrological and 72 

meteorological phenomena (Asadollah et al., 2021, Ghozat et al., 2022, Shiru et al., 73 

2022). RS covers a wide range of spatial and temporal data observations that can 74 

particularly benefit regions that lack direct observation stations (Campbell & 75 

Wynne, 2011, Davis & Swain, 1978), as in the case of Iran. To the authors' 76 
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knowledge, there are no useful historical ground-based datasets regarding the 77 

concentration of air pollutants in any province of Iran. 78 

Early satellite versions were unable to record near-surface PM concentration and 79 

instead provided a substitute parameter called Aerosol Optical Depth or AOD (Diao 80 

et al., 2019). Considering a ray of light being radiated from a satellite source, the 81 

AOD is defined as the decay level of that light reflection from the surface, which is 82 

mainly caused by the presence of particles in the air column (Van Donkelaar et al., 83 

2010). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) 84 

method, used in conjunction with the satellite-based sensor Moderate Resolution 85 

Imaging Spectroradiometer (MODIS), is widely used for predicting the AOD over 86 

different regions around the globe. (A. Chudnovsky et al., 2013) evaluated the 87 

applicability of the MAIAC algorithm by comparing its predictions with ground-88 

based PM2.5 observations from 84 monitoring stations across New England in the 89 

United States over the period 2002-2008. The results indicated that the AOD 90 

obtained from the MAIAC is correlated with the observed PM2.5 surface 91 

concentration. This research also showed that the MAIAC-AOD shows a better 92 

correlation with the in-situ PM2.5 compared to conventional MODIS-AQUA 93 

products. 94 

Several studies focused on finding the relation between the AOD and ground-level 95 

PM concentration. (H. J. Lee et al., 2012) developed a statistical method to predict 96 

the concentration of daily PM2.5 by combining the satellite AOD data with the 97 

ground-based ones. Specifically, the MODIS satellite outputs were used together 98 

with the observed data from the U.S. Environmental Protection Agency (EPA). The 99 

authors evaluated two groups of days consisting of days with or without satellite data 100  

availability during the period 2000-2008 for the New England. With a Pearson’s 101  

Correlation Coefficient (PCC) of 0.91, their predictions were showed this to be a 102  
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suitable approach, especially in urban areas. (A. A. Chudnovsky et al., 2014) 103  

predicted the Fine Particulate Matter (FPM) in the air using high-resolution aerosol 104  

data obtained with the MAIAC algorithm using MODIS satellite observations. 105  

Several meteorological parameters (e.g., speed of wind and relative humidity), as 106  

well as the land use, were utilized to predict the daily-based FPM over New England. 107  

After calibrating the FPM satellite data with ground-based observation originated 108  

from the EPA, they used a novel interpolation approach, the Inverse Probability 109  

Weighting (IPW), to complete the prediction task. Their proposed model predicted 110  

real-time FPM with high accuracy. Analogously, (Just et al., 2015) used the MODIS 111  

daily AOD values to predict PM2.5 over Mexico City from 2004 to 2014 using 112  

statistical modeling. With a correlation coefficient R value of 0.85, their model 113  

proved to be an accurate tool for predicting PM2.5 concentration an subcategory of 114  

AOD. (X. Zhang et al., 2018) employed the MAIAC-MODIS satellite outputs to 115  

extract the AOD records and developed a multi-input statistical model based on 116  

geographical properties, climate variables (air temperature, wind speed, and 117  

visibility), and land use data to predict the ground-measured PM2.5 concentrations 118  

over Texas in the United States, between the years 2008 and 2013. Their proposed 119  

model provided accurate predictions with a correlation coefficient of 0.79~0.83.  120  

In the last decade, technological advancement has led Artificial Intelligence (AI) to 121  

become the dominant regression and classification approach in many research fields 122  

(Mehdizadeh et al., 2017, Nourani et al., 2014, W.-C. Wang et al., 2009). Compared 123  

to statistical and numerical methods, AI can achieve the desired target in a much 124  

faster and easier manner (Al-Othman et al., 2022, Karandish & Šimůnek, 2016). 125  

Benchmark AI algorithms such as Artificial Neural Network (ANN) and Adaptive 126  

Neuro-Fuzzy Inference System (ANFIS) have been widely used for prediction in 127  

earth sciences. (Mirzaei et al., 2019) investigated the relationship between the 128  
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satellite-originated AOD values and ground measured PM2.5 concentrations over 129  

Tehran in Iran. A model known as Geographically and Temporally Weighted 130  

Regression (GTWR) was used to assess this relationship between the years of 2011 131  

and 2017 and convert MODIS-AOD values to PM2.5 surface concentrations. 132  

Comparison of four different AI algorithms reveal that the Generalized Regression 133  

Neural Network (GRNN) algorithm performed better than its alternatives, ANN and 134  

ANFIS. 135  

More advanced AI methods, based on Machine Learning (ML), generally provide 136  

better prediction performance compared to “classic” AI algorithms. The MLs show 137  

better task in reducing the prediction associated bias and variances, have better 138  

overfitting-elusive procedures and can be manually tuned more easily (Khanzode & 139  

Sarode, 2020, Müller & Guido, 2016, Wuest et al., 2016). While the early ML 140  

models, such as Support Vector Machine (SVM) and Multivariate Adaptive 141  

Regression Splines (MARS) demonstrated acceptable performance, newer models 142  

called ensemble algorithms have shown superior applicability. Ensemble algorithms 143  

such as Ada-boost, Random Forest (RF), and Extreme Tree Regression (ETR) were 144  

successfully applied in various studies, outperforming the classic AI algorithms (F. 145  

Wang et al., 2021, J. Zhang et al., 2019, Zhu et al., 2021). 146  

The literature review by (Chu et al., 2016) shows that multiple studies have adopted 147  

AI algorithms to predict aerosol levels over different regions of the world. For 148  

example, (Di et al., 2016) predicted the AOD over the Unites States using ANN 149  

algorithms. (Nguyen et al., 2015) employed Support Vector Regression (SVR) and 150  

Multiple linear regression (MLR) to simulate the organic carbon concentrations in 151  

Gosan, South Korea, between the years 2011 and 2012. Another related study (Lary 152  

et al., 2014) utilized a machine learning regression to predict the worldwide aerosol 153  

concentration from 1997 to 2014. (Nabavi et al., 2018) compared the performance 154  
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of several ML algorithms for the prediction of monthly AOD in the western region 155  

of Asia using the MODIS outputs. They used wind characteristics, soil temperature, 156  

rainfall, drought index, and several other parameters as ML initial predictors, while 157  

the MODIS AOD value was used as the target variable. (Kianian et al., 2021) 158  

employed RF as an ensemble ML algorithm to predict the spatial distribution of 159  

PM2.5, especially in regions that are prone to gaps in AOD coverage. They also used 160  

a statistical approach known as Lattice Kriging. Like many previous studies, they 161  

first calibrated the MODIS outputs with the EPA ground-based observations. 162  

Surface pressure, wind components, temperature, rainfall, relative humidity, 163  

radiation flux and many other variables were investigated as the meteorological 164  

parameters for PM2.5 prediction. 165  

While the majority of the previous studies used the AOD data obtained from the 166  

MODIS satellite, few have investigated other satellite-based aerosol diagnosis 167  

outputs such as those from the Modern-Era Retrospective analysis for Research and 168  

Applications Version 2, known as MERRA-2 (Gelaro et al., 2017). (Sun et al., 2019) 169  

compared the AOD outputs from MERRA-2 and MODIS and evaluated them 170  

against ground-based observations at 12 stations in China. Their findings suggested 171  

that the MERRA-2 outputs are in good agreement with both MODIS-based and 172  

ground-based values. (Gueymard & Yang, 2020) focused on global AOD data for a 173  

period of 15 years and showed that MERRA-2 performs better than the European 174  

Centre for Medium-Range Weather Forecasts (ECMWF)'s Copernicus Atmosphere 175  

Monitoring Service (CAMS). Besides AOD diagnosis outputs, MERRA-2 provides 176  

data on ambient air pollutants such as sulfate and dust concentration at the surface 177  

level. 178  

This study focuses on surface dust, which is one of the main PM components, and 179  

aims to forecast the Surface Dust Mass Concentration (SDMC). The dust-related 180  
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output of MERRA-2 was selected as the target parameter in this study, as done in 181  

several other studies too (Ukhov et al., 2020, Veselovskii et al., 2018, Xu et al., 182  

2020, Yao et al., 2020). The Gradient Boosting Regression (GBR) was used here, 183  

because it is a robust and effective ensemble-based prediction algorithm (Johnson et 184  

al., 2018, Srivastava et al., 2018, Y. Zhang & Haghani, 2015). Differently from 185  

previous investigations, this study uses exclusively remote sensing data for dust 186  

concentration prediction. This study also presents, for the first time, a comprehensive 187  

analysis of correlation between various meteorological, hydrological, and geological 188  

variables with SDMC, and successfully forecasts SDMC few days in advance. 189  

 190  

2. Materials and Methods 191  

2.1. Study Area 192  

Dust bowl-like storms have a significant socio-environmental impact in Iran (Salami 193  

et al., 2021). Several studies investigated short- and long-term AOD patterns over 194  

Iran (Arkian & Nicholson, 2018, Sabetghadam et al., 2018, Salami et al., 2021, 195  

Yousefi et al., 2020). Nearly all these studies pinpoint the province of Khuzestan as 196  

the region with the highest dust concentration. For example, (Rezaei et al., 2019) 197  

evaluated Iran based on its spatial and temporal dust aerosol patterns utilizing the 198  

MODIS outputs between 2006 to 2015. Their results show that the Khuzestan and 199  

Sistan provinces are the most affected provinces among others. Similar results were 200  

obtained by (Mirakbari & Ebrahimi Khusfi, 2020) and (Dadashi-Roudbari & 201  

Ahmadi, 2020), which makes the Khuzestan province a good case study for 202  

evaluating the SDMC. 203  

As shown in Figure 1, the Khuzestan province is located in the southwestern region 204  

of Iran. It has an approximate area of 63,000 km2 and 4 million inhabitants. Based 205  
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on the digital elevation map in Figure 1, Khuzestan’s elevation below and above the 206  

sea level ranges between -105  and 3741 meters, respectively. This is associated with 207  

great diversity in climate conditions, from the cold temperatures in the north to 208  

tropical conditions in the south. Khuzestan’s summer months are considered those 209  

from April to September, while October to March are the winter months. The annual 210  

average maximum and minimum temperature of this province are 50°𝐶 and 9°𝐶 in 211  

July and March, respectively. The annual precipitation rate varies from ~200 𝑚𝑚 212  

(sea coast in the south) to ~1050 𝑚𝑚 (near the Zagros mountains in the north). The 213  

dominant wind direction in this province is from west to east and northwest to 214  

southeast (Zarasvandi et al., 2011). 215  

[Figure 1] 216  

Dust storms, affecting air quality and impacting social life and economy, have 217  

become increasingly frequent in Khuzestan. These storms mainly happen in the 218  

summer months and originate from neighboring countries such as Iraq, with west 219  

winds into Iran (Daniali & Karimi, 2019). Based on reports from the Khuzestan 220  

meteorological stations, just in the year 2008 total of 1035 dust storm events were 221  

reported, which is considered a significant number (Zarasvandi, 2009). 222  

 223  

2.2. Satellite Data 224  

2.2.1. Modern-Era Retrospective Analysis for Research and Applications 225  

Version 2 (MERRA-2) 226  

Due to the high improvement in assimilation structure, The MERRA-2 replaced the 227  

original MERRA. It has a more advanced system including hyperspectral radiance 228  

and microwave examination. It also includes the Goddard Earth Observing System 229  

(GEOS-5) upgrade and ozone samplings of NASA, which makes it an applicable 230  
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climate evaluation tool (Gelaro et al., 2017). MERRA-2 benefits from the 231  

employment of a Grid-point Statistical Interpolation (GSI) climate analysis program, 232  

which is structured based on an additive analysis procedure that evaluate the 233  

incremental the meteorological data every 6 hours (Gelaro et al., 2017, MERRA, 234  

2AD). 235  

In this study, several types of MERRA-2 outputs were used, from different 236  

databases. First, the aerosol diagnosis from M2T1NXAER was used to extract 237  

surface dust mass concentration (
𝑚𝑔

𝑚3
) values over Iran. The M2T1NXAER has a 238  

temporal resolution of 1 hour and a spatial resolution is 0.5° × 0.625° longitude and 239  

latitude, respectively. M2T1NXAER records black carbon, dry dust, organic carbon, 240  

sea salt, and sulfate aerosols in the air (Randles et al., 2017). M2I1NXLFO, also 241  

used in this paper, mainly includes land surface data. It has a Same spatial and 242  

temporal resolution to M2T1NXAER and includes parameters such as surface layer 243  

height, pressure, air temperature, wind speed, and specific humidity (Reichle et al., 244  

2017). 245  

2.2.2. Global Land Data Assimilation System (GLDAS) 246  

GLDAS Version 2, used in this study, is structured in three components, GLDAS-247  

2.0, -2.1, and -2.2. The former, GLDAS-2.0 is completely in congruity with the 248  

Princeton meteorological observations and covers the period 1948 to 2014. The year 249  

2000 to present is covered by the 2.1 version. Unlike the two mentioned versions, 250  

the GLDAS-2.2 observations utilized data adjustment. GLDAS-2.1 has two major 251  

streams, one is associated with the Global Precipitation Climatology Project (GPCP) 252  

precipitation products, and one is operating without it. The reason behind this is the 253  

3 to 4-months postponement of GPCP, which forced version 2.1 to represent a 254  

temporary data without it called early products. Once the GPCP product become 255  
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accessible the GLDAS become synchronize with it and the early products become 256  

as archive. The data used in this study are from GLDAS-2.1 and have a temporal 257  

resolution of 3 hours and a spatial resolution of  0.25°. This product is simulated 258  

with version 7 of Land Information System (LIS) from model 3.6 of NOAH. In late 259  

2020 the 3-hourly and monthly GLDAS-2.0 products were re processed with the 260  

land mask data from MODIS-MOD44W which corrected the previous version issues 261  

such as data missing (Rodell et al., 2004). 262  

2.3. Gradient Boosting Regression (GBR) Algorithm 263  

The boosting technique is based on aggregating a set of simple predictors. This 264  

aggregation procedure is structured by focusing on errors originated in each step till 265  

a better predictor is constructed with the least outcome error (Nie et al., 2021). 266  

Considering 𝑌 as the target variable and 𝑋 = {𝑋1. 𝑋2 . ⋯ . 𝑋𝑛} as the input variables, 267  

the aim of the algorithm is to approximate 𝐺′(𝑋) as a branch of the original function 268  

𝐺(𝑋) to map 𝑋 to 𝑌, so that the loss function ℒ(𝑌. 𝐺(𝑋)) becomes minimum.  269  

 𝐺 ′(𝑋) = argmin ℒ𝑌.𝑋(𝑌. 𝐺(𝑋)) (1) 

By fitting the simple predictors to the ℒ at each step of the regression procedure, the 270  

Gradient Boosting (GB) algorithm tries to reduce the errors characterizing the 271  

preceding steps. This error correctional strategy increases the prediction accuracy 272  

and simultaneously decreases the bias of the prediction model. Acknowledging the 273  

𝑚 (𝑚 = 0. … . 𝑀) as the number of Stages which GB takes to properly train a tree, 274  

algorithm first employs an initial simple predictor 𝐺𝑚=0(𝑋) and then enforces a 275  

gradient so that the ℒ is minimized. This gradient is computed as follows: 276  

 𝑌𝑖
′ = − [

𝜕ℒ(𝑌𝑖 . 𝐺(𝑋𝑖))

𝜕𝐺(𝑋𝑖)
]

𝐺(𝑋)=𝐺𝑚−1(𝑋)

 (2) 
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Consider  Τ(𝑋𝑖 . 𝛼) as a regression tree and 𝛼 as the simple predictor, a new tree can 277  

be structured by solving Equation (3), where 𝛼𝑚 is the simple predictor parameter 278  

at each stage and Ψ is their corresponding weight: 279  

 𝛼𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑[𝑌𝑖
′ − Ψ × Τ(𝑋𝑖 . 𝛼)]2

𝑁

𝑖=1

 (3) 

 280  

Considering 𝛽𝑚  as each stage’s optimal length, the 𝐺𝑚(𝑋)  is updated at each 281  

iteration m as follows: 282  

 𝛽𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ℒ(𝑌𝑖 −  𝐺𝑚−1(𝑋𝑖) + 𝛽Τ(𝑋𝑖 . 𝛼𝑚) )

𝑁

𝑖=1

 (4) 

 𝐺𝑚(𝑋) = 𝐺𝑚−1(𝑋) + 𝛽𝑚Τ(𝑋𝑖 . 𝛼) (5) 

 283  

The iteration continues until the 𝛽𝑚 Τ(𝑋𝑖 , 𝛼)  term in Equation (5) becomes its 284  

minimum possible value (Friedman, 2001). Figure shows a flowchart of the GBR 285  

algorithm. 286  

[Figure 2] 287  

In this study the GB algorithm was implemented using the ensemble sub-category 288  

of the Scikit-learn library of the Python Programming language. The provided 289  

Gradient Boosting Regression (GBR) algorithm has several parameters that need to 290  

be “tuned” so that the algorithm performs as its maximum accuracy. Table 1 shows 291  

the default and optimal values for each parameter, obtained with an iterative process 292  

developed by the authors.  293  

 294  
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Table 1: Gradient Boosting Regression (GBR) parameters. 295  

Parameter Description 
Default 

Value 
Optimal Value 

loss Enhancement approach for the 

loss function 
Squared error Absolute error 

learning_rate 
This parameter reduces the 

value of each tree's 

contribution 

0.1 1.1 

n_estimators Number of boosting phases 

that must be accomplished 
100 498 

random_state 
At each boosting step, this 

parameter sets the random 

seed delivered to each tree 

None 34 

max_depth Individual regression 

estimators’ maximum depth 
3 1 

min_samples_leaf 
Number of minimum samples 

needed to consider a node a 

leaf node. 

1 45 

 296  

3. Results  297  

3.1. Selection of Year and Region of Focus 298  

MERRA-2-M2TMNXAER monthly SDMC data for Iran were downloaded from the 299  

NASA website for the period between 2009 and 2020 300  

(https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary?keywords=M2TMNXAER). This 301  

satellite provides monthly averaged aerosol diagnosis with spatial resolution of 302  

0.5° × 0.625°. Considering this resolution there were total of 1056 observational 303  

grid cross-section points over the Iran. By calculating the maximum value of SDMC 304  

among the 12 months in each specific year and at each of 1056 points, Figure 3 305  

shows the distribution of yearly maximum SDMC (𝑚𝑔/𝑚3) over Iran for the period 306  
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considered. For better understanding of each specific year ranking based on SDMC 307  

level, thier Annual Maximum (A.M.) has been noted in the figure. 308  

[Figure 3] 309  

Figure 3 shows that the southern and southeastern sections of Iran, including the 310  

provinces of Khuzestan and Hormozgan as well as Sistan and Baluchestan, are 311  

highly prone to large dust concentrations. The Khuzestan province appears to be the 312  

most impacted province and is the focus of this investigation. Over the 12-year 313  

period considered, Iran was overall characterized by minimum, mean and maximum 314  

SDMC values of 0.04, 0.295 and 1.36 𝑚𝑔/𝑚3 respectively. The year 2018, as the 315  

year with highest SDMC observed value (~1.36 𝑚𝑔/𝑚3) was selected as the study 316  

period in current study.  317  

3.2. Input Variable Correlation Analysis 318  

Having selected the year and region of focus, SDMC data for the year 2018 for the 319  

Khuzestan province was extracted based on outputs extracted from MERRA-2- 320  

M2T1NXADG 321  

(https://disc.gsfc.nasa.gov/datasets/M2T1NXADG_5.12.4/summary?keywords=M2T1NXADG), 322  

consisting of 1-hour time averaged aerosol diagnosis data with the same spatial 323  

resolution as MERRA-2-M2TMNXAER. 1-hour data was converted to daily data 324  

by taking the maximum value within each 24-hour period, therefore obtaining  365 325  

SDMC values. 326  

As mentioned, the Khuzestan province is characterized by different types of climate 327  

conditions due to its significant variation in land elevation; therefore 18 Research 328  

Points (RPs) were considered in this study, equally distributed across the province 329  

(with latitudinal and longitudinal spacing of 0.5° and 0.625°, respectively, same as 330  

https://disc.gsfc.nasa.gov/datasets/M2T1NXADG_5.12.4/summary?keywords=M2T1NXADG
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the resolution of MERRA2-M2T1NXADG). These include the cold region in the 331  

north as well as the extremely hot regions in the south.  332  

Then, several hydrological, meteorological and geological outputs from Global 333  

Precipitation Measurement (GPM), Global Land Data Assimilation System 334  

(GLDAS), MERRA-2-M2I1NXLFO and MERRA-2-M2T3NVASM with various 335  

spatial and temporal distribution were extracted. Table 2 lists these variables, which 336  

are the 11 input variables considered for SDMC prediction in this study, with their 337  

units and corresponding satellite. 338  

Table 2: Input variables considered for SDMC prediction. 339  

Satellite Variable Description Units 

GLDAS 

Acond Aerodynamic conductance 𝑚/𝑠 

Esoil Evaporation flux from soil 𝑘𝑔/𝑚2𝑠 

Qh Surface upward sensible heat flux 𝑊/𝑚3 

Evap Evapotranspiration 𝑘𝑔/𝑚2𝑠 

SoilMoist Surface soil moisture 𝑘𝑔/𝑚2 

MERRA-

2 

PS Surface pressure 𝑃𝑎 

TLML Surface air temperature 𝐾 

SPEEDLML Surface wind speed 𝑚/𝑠 

QLML Surface specific humidity − 

HLML Surface layer height 𝑚 

GPM Precip Precipitation rate 𝑚𝑚 

 340  

The Pearson’s Correlation Coefficient (PCC) was computed to quantify the 341  

correlation of each of the 11 variables in Table 2 with daily SDMC. While there are 342  

other alternatives, such as Spearman's or Kendall’s rank correlation, various studies 343  

found the efficiency and robustness of PCC, especially in handling data with non-344  
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apparent outliers and non-linearity (Chok, 2010, Hauke & Kossowski, 2011, 345  

Rebekić et al., 2015).  346  

Figure 4 contains the relative PCC heat map for the 18 RPs, including the average 347  

PCC values over all the RPs. The three parameters with the highest PCC value, 348  

surface wind speed SPEEDLML (𝑃𝐶𝐶 = 0.61), aerodynamic conductance ACOND 349  

( 𝑃𝐶𝐶 = 0.57 ) and surface pressure PS ( 𝑃𝐶𝐶 = 0.53 ), were selected as input 350  

variables for real-time daily SDMC prediction with the GBR algorithm. PS denotes 351  

the atmospheric surface pressure that directly controls the movement of air masses 352  

from regions with low pressure to regions with higher pressure (Gomis et al., 2008, 353  

Guo et al., 2011). The surface aerodynamic conductance (ACOND) describes the 354  

effect of surface roughness on the movement of air masses (S. Liu et al., 2007, 355  

Mallick et al., 2018). 356  

[Figure 4] 357  

From Figure 4, the hydrological parameters rainfall, relative humidity and 358  

evapotranspiration have the least correlation with SDMC in the Khuzestan province.  359  

3.3. Real-Time Prediction of SDMC 360  

The three input variables for prediction, known at the current time (day) “t”, were 361  

used in the GBR algorithm to predict the current time SDMC. This was done for all 362  

18 RPs and the prediction performance was evaluated using four indices, PCC, 363  

Nash-Sutcliffe Efficiency (NSE), Normalized-Root Mean Squared Error (N-RMSE) 364  

and Normalized Mean Absolute Error (N-MAE). Results of these metrics which 365  

have been widely used in earth and water research fields (Jodar-Abellan et al., 2019, 366  

Moriasi et al., 2007, Pardo et al., 2020), are shown in Table 3.  367  

 368  
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Table 3: SDMC real-time prediction performance for the 18 Research Points 369  

considered. 370  

RPs PCC NSE N-RMSE N-MAE 

P1 0.716 0.493 0.710 0.494 

P2 0.771 0.585 0.642 0.453 

P3 0.815 0.632 0.605 0.422 

P4 0.648 0.397 0.774 0.446 

P5 0.707 0.473 0.723 0.516 

P6 0.793 0.621 0.613 0.437 

P7 0.783 0.598 0.632 0.455 

P8 0.706 0.457 0.735 0.518 

P9 0.720 0.490 0.712 0.507 

P10 0.686 0.451 0.738 0.517 

P11 0.505 0.170 0.908 0.613 

P12 0.701 0.481 0.718 0.494 

P13 0.684 0.425 0.756 0.563 

P14 0.525 0.223 0.878 0.628 

P15 0.405 0.079 0.957 0.594 

P16 0.541 0.253 0.862 0.618 

P17 0.435 0.139 0.925 0.702 

P18 0.398 0.095 0.948 0.649 

 371  

Values in Table 3 vary across the RPs but, overall, the average PCC, NSE, N-RMSE 372  

and N-MAE are within an acceptable range. The P3 Research Point (𝐶𝐶 = 0.815,373  

𝑁𝑆𝐸 = 0.632 , 𝑁 − 𝑅𝑀𝑆𝐸 = 0.605 𝑎𝑛𝑑 𝑁 − 𝑀𝐴𝐸 = 0.422) is characterized by 374  

the best prediction performance. Figure 5 highlights a clear pattern of better 375  

prediction performance in the southern regions of the province. This figure has been 376  

obtained using the Inverse Distance Weighting (IDW) interpolation method over the 377  

Khuzestan province based on the calculated performance indices of 18 research 378  

points. 379  

[Figure 5] 380  

 381  

 382  
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3.4. Future Forecasting of SDMC  383  

For the P3 Research Point (best real-time SDMC prediction, see previous section), 384  

future forecasting of SDMC was considered for lead times of ‘t-2’, ‘t-4’, ‘t-6’ and 385  

‘t-8’ (input data from 2, 4, 6 and 8 days prior to the current time ‘t’ for which SDMC 386  

is forecasted). PCC values were calculated to quantify the correlation between the 387  

current time SDMC (at time “t”) and the 11 input variables from Table 2 for the four 388  

lead times. Figure 6 shows the PCC values in a circular bar chart.  389  

[Figure 6] 390  

From Figure 6 it can be seen that, analogously to the case of real-time prediction, 391  

precipitation and surface specific humidity have the lowest correlation with the 392  

SDMC. PS and surface upward sensible heat flux Qh and surface air temperature 393  

TLML correlations with SDMC show a significant increase when moving backward 394  

in time.   395  

Based on the PCC analysis and using a procedure based on progressive elimination 396  

of input variables with lower and lower PCC value, a procedure applied in other 397  

previous studies (Sharafati, Asadollah, & Hosseinzadeh, 2020, Sharafati, Asadollah, 398  

& Neshat, 2020), combinations of the 11 input variables from Table 2 were 399  

constructed for future forecasting of SDMC (lead times of ‘t-2’, ‘t-4’, ‘t-6’ and ‘t-400  

8’) using the GBR algorithm. The combinations considered are listed in Table 4. 401  

 402  

 403  

 404  

 405  

 406  
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Table 4: Input variable combinations for future forecasting of SDMC. 407  

Combination Input Variables 

C1 PS (t-4), PS (t-6), PS (t-2), PS (t-8), Qh (t-2), Qh (t-4) 

C2 PS (t-4), PS (t-6), PS (t-2), PS (t-8), Qh (t-2) 

C3 PS (t-4), PS (t-6), PS (t-2), PS (t-8) 

C4 PS (t-4), PS (t-6), PS (t-2) 

C5 PS (t-4), PS (t-6) 

C6 PS (t-4) 

C7 PS (t-2), Qh (t-2) 

C8 PS (t-4), Qh (t-4) 

C9 PS (t-6), TLML (t-6) 

C10 PS (t-8), TLML (t-8) 

 408  

Figure 7 summarizes the prediction performance of the GBR algorithm for future 409  

forecasting of SDMC using the ten input variable combinations in Table 4, evaluated 410  

based on the PCC, NSE, N-RMSE and N-MAE indices. 411  

[Figure 7] 412  

From Figure 7, the prediction performance decreases when moving from lead time 413  

‘t-2’ to ‘t-8’ for the input variables, as also observed in previous studies (Sharafati, 414  

Haji Seyed Asadollah, et al., 2020). The C1 input variable combination, including 415  

the highest number of input variables (six), is associated with the best prediction 416  

performance (𝑃𝐶𝐶 = 0.698 , 𝑁𝑅𝑀𝑆𝐸 = 0.733). However, the C6 input variable 417  

combination, including only one variable (PS (t-4)) shows only an 8% reduction in 418  

accuracy (𝑃𝐶𝐶 = 0.640 , 𝑁𝑅𝑀𝑆𝐸 = 0.781), which is considered an insignificant 419  

performance reduction. C6 is therefore the optimal input variable combination, 420  

because it only requires the knowledge of a single variable (PS). The preferable use 421  

of lead time ‘t-4’ is also confirmed by the high performance of the C8 input variable 422  

combination (𝑃𝐶𝐶 = 0.665 , 𝑁𝑅𝑀𝑆𝐸 = 0.759). 423  

 424  
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4. Discussion and Conclusion 425  

Being able to forecast Particulate Matter (PM) concentrations is essential, due to its 426  

effects on human life, economy and environment. This study aimed to simulate 427  

Surface Mass Dust Concentration using the Modern-Era Retrospective analysis for 428  

Research and Applications Version 2 (MERRA-2) aerosol satellite diagnosis. To do 429  

this, monthly SDMC data for the period 2009 to 2020 were downloaded from the 430  

MERRA-2 database.  431  

The monthly evaluation of air dust distribution in Iran showed that the southeastern 432  

regions are characterized by higher dust concentrations, negatively affecting air 433  

quality. The province of Khuzestan is the most impacted, as also confirmed by other 434  

investigations (Sabetghadam et al., 2018, Yousefi et al., 2020), and was therefore 435  

selected as the case study. The year 2018 was specifically considered, because it was 436  

characterized by high SDMC and has complete recorded satellite observations. 437  

SDMC hourly data were obtained from MERRA-2 for 2018 for the Khuzestan 438  

province.  439  

Pearson’s Correlation Coefficient (PCC) computation to evaluate the correlation 440  

between MERRA-2 SDMC and 11 meteorological, hydrological and geological 441  

parameters from Global Precipitation Measurement (GPM), Global Land Data 442  

Assimilation System (GLDAS) and another MERRA-2 database showed the wind-443  

related variables - surface wind speed (SPEEDLML), surface aerodynamic 444  

conductivity (ACOND) and surface pressure (PS) - to be the most correlated with 445  

SDMC. Combinations of these three parameters were evaluated for real-time 446  

prediction of SDMC using the Gradient Boosting Regression (GBR) algorithm at 18 447  

Research Points. The best prediction performance was obtained at  Research Point 3 448  

(𝐶𝐶 = 0.815 𝑎𝑛𝑑 𝑁 − 𝑅𝑀𝑆𝐸 = 0.605),  which was considered for the further 449  

forecasting analysis. The input variables are solely based on remote sensing (one of 450  
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the elements of novelty of this study), therefore the related errors and uncertainties 451  

are expected to affect the SDMC prediction performance, compared to models using 452  

ground-based measurements. However, while for some Research Points the GBR 453  

algorithm produced predictions with PCC value in the moderate acceptance range 454  

(0.3 ≤ 𝑃𝐶𝐶 ≤ 0.7) based on (Ratner, 2009), there are several Research Points where 455  

the prediction performance was strong (0.7 ≤ 𝑃𝐶𝐶 ≤ 1.0). This outcome confirms 456  

the prediction potential of ensemble algorithms when using data affected by errors 457  

and modelling processes characterized by non-linearity. Comparing this study’s 458  

results with those by (Nabavi et al., 2018) shows that the GBR algorithm 459  

outperforms both  SVM (𝑃𝐶𝐶 = 0.81) and MARS (𝑃𝐶𝐶 = 0.80). The GBR also 460  

appears to have better accuracy than ANN (𝑃𝐶𝐶 = 0.62), ANFIS (𝑃𝐶𝐶 = 0.70) and 461  

GRNN (𝑃𝐶𝐶 = 0.71) (Mirzaei et al., 2019). From a spatial point of view, our results 462  

highlighted a better prediction performance for the southern low lands of the 463  

Khuzestan province, when compared with the higher and mountainous lands in the 464  

north. Predictions were also better in marshlands compared with rocky soils. 465  

While the wind-related input variables govern the real time (‘t’) prediction of 466  

SDMC, the heat-related variables are also important for the future forecasting of 467  

SDMC (lead times of ‘t-2’ to ‘t-8’). Considering Research Point 3 for the analysis, 468  

the PS variable allows for the better forecasting, closely followed by surface upward 469  

sensible heat flux (Qh) and surface air temperature (TLML). It is worth mentioning 470  

that, as the lead time goes from ‘t-2’ to ‘t-8’, the influence of TLML on SDMC 471  

forecasting becomes stronger than that of Qh. The evaluation of input variable 472  

combinations for future SDMC forecasting revealed that the use of a single input 473  

variable, PS (t-4), with 𝑃𝐶𝐶 = 0.640 𝑎𝑛𝑑 𝑁 − 𝑅𝑀𝑆𝐸 = 0.781 , is the optimal 474  

approach (most cost-efficient and applicable). To the authors’ knowledge, there are 475  

no previous studies specifically aimed at forecasting future air pollutant 476  
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concentrations. The future forecasting performance obtained here with the GBR 477  

algorithm is comparable with previously presented real-time predictions. 478  
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 789  

Figure 1: Location of the Khuzestan province in Iran with (a) Research Point distribution and 790  

(b) Digital Elevation Model (DEM). 791  

 792  
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 795  

Figure 2: Flowchart of Gradient Boosting Regression. 796  
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 804  

Figure 3: Yearly maximum Surface Dust Mass Concentration (SDMC) between 2009 and 2020 805  

in Iran. 806  
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 807  

Figure 4: Heat map of Pearson’s Correlation Coefficient (PCC) between the 11 input variables 808  

considered and daily SDMC for the 18 Research Points. 809  
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 811  

Figure 5: SDMC real-time prediction performance over the Khuzestan province. 812  
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 820  

Figure 6: Pearson’s Correlation Coefficient for correlation between the 11 input variables 821  

considered and SDMC for different lead times. 822  
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 823  

 824  

Figure 7: Prediction performance for future forecasting of SDMC for the ten input variable 825  

combinations considered. 826  

 827  

 828  

 829  

0
.6

9
8

0
.6

8
8

0
.6

3
9

0
.6

2
9 0

.6
5
3

0
.6

4
0

0
.6

3
4

0
.6

6
5

0
.6

3
9

0
.5

9
2

0.55

0.60

0.65

0.70

0.75

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Input variable combination

CC

0
.4

5
8

0
.4

4
2

0
.3

6
8

0
.3

6
4 0

.4
0

0

0
.3

8
4

0
.3

6
7

0
.4

1
9

0
.3

8
2

0
.3

1
1

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Input variable combination

NSE

0
.7

3
3

0
.7

4
4

0
.7

9
2

0
.7

9
4

0
.7

7
1

0
.7

8
1

0
.7

9
3

0
.7

5
9 0

.7
8
3

0
.8

2
7

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Input variable combination

N-RMSE
0
.5

0
5

0
.5

0
2

0
.5

3
4

0
.5

2
1

0
.5

1
6

0
.5

2
7

0
.5

0
5

0
.5

1
6 0
.5

3
3

0
.5

7
6

0.45

0.50

0.55

0.60

0.65

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Input variable combination

N-MAE


