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In this work we establish some results concerning the existence of external light rings in extremal black
hole spacetimes through the Newman-Penrose formalism. Specifically, assuming flat or (anti)–de Sitter
asymptotics, staticity and the null energy condition, we show that a sufficient condition for the existence of
external light rings is R < 2KG, where R, the curvature scalar of the spacetime and KG, the Gaussian
curvature of a spacelike two-surface, are both evaluated at the outermost event horizon, which can be
endowed with spherical, hyperbolic or planar geometry. Our results are valid for any metric gravity theory
where photons follow null geodesics.
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I. INTRODUCTION

The ringdown and shadow observables are of funda-
mental importance to provide information on black hole
geometry, which has been recently revealed by gravita-
tional wave observations [1,2] and shadow images [3–5].
They are both intimately connected to a special set of
bound null orbits for test particles [6,7] which, when planar,
are known as light rings, an extreme form of light deflection
consisting of closed paths.
The existence of null circular geodesics in generic

(nonextremal) asymptotically flat black holes was proved
in Ref. [8] for spherically symmetric hairy configurations
and for stationary axisymmetric black hole spacetimes [9].
The findings presented in Ref. [9] were extended to static
and spherically symmetric black holes not only with
asymptotically flat behavior, but also with (anti)–de
Sitter [(A)dS asymptotics] [10] and later to a general static
warped product spacetime [11]. A subsequent extension
for light rings in a stationary spacetime with an ergoregion
was presented in [12]. These recent works, mainly based
on topological and/or effective potential techniques, were
recently followed by a more geometric approach for
spherically symmetric, static and nonextremal spacetimes,
based on the Gauss and geodesic curvatures of the optical
metric [13–15]. Interestingly, although some universal
properties of light rings for stationary and axisymmetric
spacetimes, including the extension to the extremal case,
were recently reported [16], the static case remains essen-
tially open [17]. In this sense, we would like to mention that
the problem of the existence of light rings in static,
spherically symmetric and asymptotically flat extremal
black holes was considered in Ref. [18] within the

framework of general relativity, obtaining that it crucially
depends on the sign of the tangential pressure of the matter
sector.
In the present work we shall focus our attention on light

rings for general static and extremal black holes with
different horizon topologies and Minkowskian or (A)dS
asymptotics, irrespective of the underlying gravitational
theory. Therefore, our results will be valid for theories
beyond general relativity. The manuscript is organized as
follows: Sec. II is devoted to prove our main results using
the Newman-Penrose formalism, whose essentials are
introduced at this point. Discussions and final remarks
are left to Sec. III.

II. LIGHT RINGS THROUGH THE NEWMAN-
PENROSE CALCULUS

Here we will follow Penrose and Rindler’s conventions
[19]. Let us start from a spherically symmetric and static
geometry, written as ds2 ¼ fðrÞdt2 − gðrÞdr2 − r2dΩ2,
where dΩ2 ¼ dθ2 þ sin2 θdϕ2. After choosing the follow-
ing null tetrad:
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where lμnμ ¼ 1 and mμm̄μ ¼ −1, with the bar denoting
complex conjugation, the only nonvanishing Newman-
Penrose scalars for the considered spacetime (which will
be either Petrov type D or O due to spherical symmetry) are*pedro.bargueno@ua.es
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where Cabcd and Rab stand for the Weyl and Ricci
curvatures, respectively, and R ¼ gabRab.
In particular, for the geometry under consideration, we

obtain
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where the prime denotes derivative with respect to the
radial coordinate. Interestingly, in the case Φ00 ¼ Φ22 ¼ 0,
which implies fðrÞgðrÞ ¼ A (we always can take A ¼ 1 by
a reparametrization of the time coordinate) we can solve for
the metric potential and its derivatives in terms of the
Newman Penrose scalars, obtaining

f ¼ 1 − 2r2ðΛþΦ11 −Ψ2Þ
f0 ¼ −2rð2ΛþΨ2Þ
f00 ¼ 4ð−ΛþΦ11 þΨ2Þ: ð4Þ

At this point, let us introduce the light ring condition as
follows: a black hole has an external light ring located at rγ ,
where rγ > rh being rh the location of the outermost event
horizon, when

DðrγÞ ¼ rγf0ðrγÞ − 2fðrγÞ ¼ 0: ð5Þ

For our purposes, we rewrite theD-function appearing in
Eq. (5) as

DðrÞ ¼ −2þ 2r2ð2Φ11 − 3Ψ2Þ; ð6Þ

or

D
2r2

¼ −KG þ 2Φ11 − 3Ψ2

¼ −KG þ 2ðΦ11 þ 3ΛÞ − 3ðΨ2 þ 2ΛÞ; ð7Þ

where KG ¼ 1
r2 stands for the Gaussian curvature of the

angular sector of the spacetime (which is a 2-sphere in the
case here considered).
Let us remark that the function DðrÞ goes to −2 not only

for an asymptotically flat spacetime, but also for (A)dS
asymptotics (which are conformally flat), where Ψ2 ¼ 0.
The first of Eq. (4), which we refer to the Penrose-

Rindler equation, will be useful along the manuscript. It can
be expressed as

f
2r2

¼ KG

2
− Λ −Φ11 þΨ2

¼ KG

2
− ðΦ11 þ 3ΛÞ þ ðΨ2 þ 2ΛÞ: ð8Þ

At this point, a couple of comments are in order:
(i) The dominant (null) energy condition, together

with Einstein’s equations, imply Φ11 þ 3Λ ≥ 0
(Φ00 ≥ 0) [20].

(ii) KG
2
− ðΦ11 þ 3ΛÞ þ ðΨ2 þ 2ΛÞ ¼ 0 for both ex-

tremal or nonextremal black hole event horizons.
(iii) An extremal black hole is characterized by

f0ðrhÞ ¼ 0 which, in the Φ00 ¼ 0 case, is equivalent
to ðΨ2 þ 2ΛÞjrh ¼ 0.

(iv) KG
2
− ðΦ11 þ 3ΛÞ ¼ 0 for an extremal black hole

horizon.
Therefore, we can conclude that Djrh ¼

−3ðΨ2 þ 2ΛÞ2r2h > 0 for a nonextremal black hole.
Then, having into account the D → −2 asymptotic limit,
at least one external light ring is shown to exist. This results
generalizes previous findings [15] by including (A)dS
asymptotics.
Note that the condition D0ðrhÞ > 0 implies the existence

of at least one external light ring for extremal black holes,
which satisfy DðrhÞ ¼ 0. In fact, a straightforward calcu-
lation reveals that, for an extremal black hole horizon,

D0ðrhÞ ¼ 2rhð3Ψ2 þ 2Φ11Þjrh
¼ 4rhðΦ11 − 3ΛÞjrh
¼ 4rhð2KG − RÞjrh : ð9Þ

Therefore, we obtain the following:
Theorem 1.—Let us consider an asymptotically flat or

(A)dS, spherically symmetric, static and extremal black
hole spacetime with Φ00 ¼ 0. If RðrhÞ < 2KGðrhÞ, then
there is at least one external light ring.
In particular, the existence of external light rings for

extremal black holes with RðrhÞ ≤ 0 is guaranteed.
Our results can be extended to the Φ00 ≠ 0 case. Recall

that f0ðrhÞ ¼ 0 and g−1ðrhÞ ¼ 0 for an extremal black hole.
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In this case, by considering the near-horizon functional
behavior for the metric functions of an extremal black hole
[21], given by

f ∼ g−1 ∼ ðr − rhÞ2 þO½ðr − rhÞ3� ð10Þ

(which can be applied whatever the matter content of the
spacetime), we get from Eq. (3) that, at the horizon of an
extremal black hole,

ðΦ11 þ 3ΛÞjrh ¼
1

2r2h
þ g0ðrhÞ
4rhgðrhÞ2

Φ00jrh ¼
4g0ðrhÞ
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2
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−
f00ðrhÞ

fðrhÞgðrhÞ
; ð11Þ

and, therefore,

D0ðrhÞ ¼ rhf00ðrhÞ ¼
�
2KG þΦ00

2
− R

�
rjrh : ð12Þ

At this point, we take take advantage of a result by
Hayward concerning trapping horizons [22,23] which, in
the spherically symmetric case, can be restated as follows:
Signature law. If the null energy condition holds on a

spherically symmetric trapping horizon, rt, the horizon is
null if and only if Φ00ðrtÞ ¼ 0.
But, in the spherically symmetric and static case, both

event and trapping horizons coincide [24,25], rt ¼ rh.
Therefore, as any event horizon is null, the signature
law implies that, if the null energy condition holds
on rh, then Φ00ðrhÞ ¼ 0. Therefore, we can state the
following:
Theorem 2.—Let us consider an asymptotically flat or

(A)dS, spherically symmetric, static and extremal black
hole spacetime. If the null energy condition holds on the
outermost event horizon, rh, and RðrhÞ < 2KGðrhÞ, then
there is at least one external light ring. In particular, the
existence of this external light ring is guaranteed
if RðrhÞ ≤ 0.
Finally, we would like to point out that our results

can be easily extended to the case of hyperbolic and
planar horizons. The line element is written as ds2 ¼
fðrÞdt2 − gðrÞdr2 − r2ðdθ2 þ γ2ðθÞdϕ2Þ, where γðθÞ ¼
f1; sinh θ; sin θg for planar, hyperbolic and spherical hori-
zons, respectively. For these metrics, both lμ and nμ are
independent of the geometry of the angular sector,

but mμ ¼
�
0; 0;− 1ffiffi

2
p

r
; i
γðθÞ ffiffi

2
p

r

�
.

Within this general situation, a straightforward calcu-
lation reveals that Eq. (4) can be expressed as

f ¼ α − 2r2ðΛþΦ11 − βΨ2Þ
f0 ¼ −2rð2Λþ βΨ2Þ
f00 ¼ 4ð−ΛþΦ11 þ βΨ2Þ; ð13Þ

where ðα; βÞ is (0, 1), ð−1; 1Þ and (1, 1) for planar, hyper-
bolic and spherical horizons, respectively. Therefore, fol-
lowing the same arguments we can state the following:
Theorem 3.—Let us consider an asymptotically flat or

(A)dS, static and extremal black hole spacetime. If the null
energy condition holds on the outermost event horizon, rh,
and RðrhÞ < 2KGðrhÞ ¼ 2α

r2h
, then there is at least one

external light ring.

III. DISCUSSION AND FINAL REMARKS

At this point, the results we have obtained are valid for
any metric theory of gravity where photons follow null
geodesics. In the particular case of general relativity,
including a nonvanishing cosmological constant, λ, the
aforementioned sufficient condition reads

T <
KG

4π
−

λ

2π
; ð14Þ

where T stands for the trace of the energy-momentum
tensor. Note that the trace energy condition, the assertion
that the trace of the stress-energy tensor should (in mostly
minus signature) be non-negative it has now been com-
pletely abandoned and is no longer cited in the literature
[26]. In this sense, there are not restrictions of this kind with
respect to Eq. (14).
Finally, we can easily recover a very recent result [18]

concerning light rings in extremal, static and spherically
symmetric black holes within the framework of general
relativity under the dominant energy condition.
Specifically, if the dominant energy condition holds, then
Φ00ðrhÞ ¼ 0. Then, if the Einstein equations are assumed,
2KGðrhÞ − RðrhÞ > 0 implies −8πðρðrhÞ − prðrhÞ−
2ptðrhÞÞ < 2

r2h
. Note thatΦ00ðrhÞ ¼ 0 implies, by Einstein’s

equations, ρðrhÞ þ prðrhÞ ¼ 0 and, therefore, we get
prðrhÞ þ ptðrhÞ > 1

8πr2H
. But, as shown in Ref. [21],

1 − 8πr2hprðrhÞ ¼ 0 for an extremal black hole. Then,
RðrhÞ < 2KGðrhÞ implies ptðrhÞ < 0, which coincides
with the main result of Ref. [18] when our mostly minus
signature is switched to the mostly plus choice of [18].
Summarizing, we have successfully employed the

Newman-Penrose formalism to tackle the problem of the
existence of external light rings in static an extremal black
holes with planar, hyperbolic and spherical horizons,
deriving a sufficient condition expressed in terms of the
scalar curvature of the whole spacetime and the Gaussian
curvature of the horizon. We have extended previous results
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in spherical symmetry by including (A)dS asymptotics and,
although our results do not depend on the underlying metric
gravitational theory, we have recovered very recent results
concerning extremal black holes within general relativity
using the Newman-Penrose formalism.
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