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Abstract
Let E and F be complexBanach spaces,U be an open subset of E and 1 ≤ p ≤ ∞.We
introduce and study the notion of a Cohen strongly p-summing holomorphic mapping
from U to F, a holomorphic version of a strongly p-summing linear operator. For
such mappings, we establish both Pietsch Domination/Factorization Theorems and
analyse their linearizations from G∞(U ) (the canonical predual ofH∞(U )) and their
transpositions on H∞(U ). Concerning the space DH∞

p formed by such mappings

and endowed with a natural norm dH∞
p , we show that it is a regular Banach ideal of

bounded holomorphic mappings generated by composition with the ideal of strongly
p-summing linear operators. Moreover, we identify the space (DH∞

p (U , F∗), dH∞
p )

with the dual of the completion of tensor product space G∞(U ) ⊗ F endowed with
the Chevet–Saphar norm gp.
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Introduction

The linear theory of absolutely summing operators between Banach spaces was initi-
ated by Grothendieck [11] in 1950 with the introduction of the concept of 1-summing
operator. In 1967, Pietsch [22] defined the class of absolutely p-summing operators
for any p > 0 and established many of their fundamental properties.

The nonlinear theory for such operators started with Pietsch [23] in 1983. Since
then, the idea of extending the theory of absolutely p-summing operators to other
settings has been developed by various authors, namely, the polynomial, multilinear,
Lipschitz and holomorphic settings (see, for example, [1, 2, 7, 8, 19, 27, 28]).

Summability for holomorphic mappings was first considered by Matos in a series
of papers (see e.g. [13, 14]). Our approach in this paper is different from that of Matos.
Moreover, strong p-summability in the sense of Dimant [7] was also addressed for
subspaces of holomorphic mappings as polynomials and multilinear mappings under
the name of factorable strongly p-summing (see [20, 24, 25]). In these papers, it
was proved that the ideal of factorable strongly p-summing polynomials (multilinear
mappings) coincides with the ideal formed by composition with p-summing linear
operators. Ideals of polynomial mappings were also studied by Floret and García [9,
10].

In 1973, Cohen [5] introduced the concept of a strongly p-summing linear operator
to characterize those operators whose adjoints are absolutely p∗-summing operators,
where p∗ denotes the conjugate index of p ∈ (1,∞]. Influenced by this class of
operators, we introduce and study a new concept of summability in the category of
bounded holomorphic mappings, which yields the called Cohen strongly p-summing
holomorphic mappings.

We now describe the contents of the paper. Let E and F be complex Banach
spaces, U be an open subset of E and 1 ≤ p ≤ ∞. We denote by H∞(U , F) the
Banach space of all bounded holomorphic mappings from U to F, equipped with the
supremum norm. In particular, H∞(U ) stands for the space H∞(U ,C). It is known
thatH∞(U ) is a dual Banach space whose canonical predual, denoted G∞(U ), is the
norm-closed linear subspace of H∞(U )∗ generated by the evaluation functionals at
the points of U .

In Sect. 1, we fix the notation and recall some results on the space H∞(U , F),

essentially, a remarkable linearization theorem due to Mujica [16] which is a key tool
to establish our results.

In Sect. 2, we show that the space of all Cohen strongly p-summing holomorphic
mappings denotedDH∞

p and equipped with a natural norm dH∞
p , is a regular Banach

ideal of bounded holomorphic mappings. Furthermore, DH∞
1 = H∞ with dH∞

1 =
‖·‖∞ .

The elements of the tensor product of two linear spaces can be viewed as linear
mappings or bilinear forms (see [26, Section 1.3]). Following this idea, in Sect. 3 we
introduce the tensor product �(U ) ⊗ F as a space of linear functionals on the space
H∞(U , F∗), and equip this space with the known Chevet–Saphar norms gp and dp.
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Section 4 addresses the duality theory: the space (DH∞
p (U , F∗), dH∞

p ) is canon-
ically isometrically isomorphic to the dual of the completion of the tensor product
space G∞(U ) ⊗gp F . In particular, we deduce that H∞(U , F∗) is a dual space.

Pietsch [22] established a Domination/Factorization Theorem for p-summing lin-
ear operators between Banach spaces. Characterizing previously the elements of the
dual space of �(U ) ⊗gp F, we present for Cohen strongly p-summing holomorphic
mappings both versions of Pietsch Domination Theorem and Pietsch Factorization
Theorem in Sects. 5 and 6, respectively.

Moreover, in Sect. 5, we prove that a mapping f : U → F is Cohen strongly p-
summing holomorphic if and only if Mujica’s linearization T f : G∞(U ) → F is a
strongly p-summing operator. Several interesting applications of this fact are obtained.

In addition, we show that the idealDH∞
p is generated by composition with the ideal

Dp of strongly p-summing linear operators, that is, every mapping f ∈ DH∞
p (U , F)

admits a factorization in the form f = T ◦ g, for some complex Banach space
G, g ∈ H∞(U ,G) and T ∈ Dp(G, F). Moreover, dH∞

p ( f ) coincides with
inf{dp(T ) ‖g‖∞}, where the infimum is extended over all such factorizations of f ,
and, curiously, this infimum is attained at Mujica’s factorization of f . We also show
that every f ∈ DH∞

2 (U , F) factors through a Hilbert space whenever F is reflexive,
and establish some inclusion and coincidence properties of spaces DH∞

p (U , F).

These results represent advances in the research program initiated by Aron et al.
[4] on the factorization of bounded holomorphic mappings in terms of an element of
an operator ideal and a bounded holomorphic mapping.

Finally,we analyse holomorphic transposition of their elements and prove that every
member ofDH∞

p (U , F) has relatively weakly compact range that becomes relatively
compact whenever F is reflexive. We thus contribute to the study of holomorphic
mappingswith relatively (weakly) compact range, begun byMujica [16] and continued
in [12].

1 Notation and preliminaries

Throughout this paper, unless otherwise stated, E and F will denote complex Banach
spaces and U an open subset of E .

Wefirst introduce some notation. As usual, BE denotes the closed unit ball of E . For
two vector spaces E and F, L(E, F) stands for the vector space of all linear operators
from E into F . In the case that E and F are normed spaces, L(E, F) represents the
normed space of all bounded linear operators from E to F endowed with the canonical
norm of operators. In particular, the algebraic dual L(E,K) and the topological dual
L(E,K) are denoted by E ′ and E∗, respectively. For each e ∈ E and e∗ ∈ E ′, we
frequently will write 〈e∗, e〉 instead of e∗(e).We denote by κE the canonical isometric
embedding of E into E∗∗ defined by 〈κE (e), e∗〉 = 〈e∗, e〉 for e ∈ E and e∗ ∈ E∗.
For a set A ⊆ E, co(A) denotes the convex hull of A.

We now recall some concepts and results of the theory of holomorphic mappings
on Banach spaces.
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Theorem 1.1 (See [18, 7 Theorem] and [15, Theorem 8.7]) Let E and F be complex
Banach spaces and letU be an open set in E .For amapping f : U → F, the following
conditions are equivalent:
(i) For each a ∈ U , there is an operator T ∈ L(E, F) such that

lim
x→a

f (x) − f (a) − T (x − a)

‖x − a‖ = 0.

(ii) For eacha ∈ U , there exist an openball B(a, r) ⊆ U anda sequence of continuous
m-homogeneous polynomials (Pm,a)m∈N0 from E into F such that

f (x) =
∞∑

m=0

Pm,a(x − a),

where the series converges uniformly for x ∈ B(a, r).
(iii) f is G-holomorphic (that is, for all a ∈ U and b ∈ E, the map λ �→ f (a + λb)

is holomorphic on the open set {λ ∈ C : a + λb ∈ U }) and continuous. ��
A mapping f : U → F is said to be holomorphic if it verifies the equivalent

conditions in Theorem 1.1. The mapping T in condition (i) is uniquely determined by
f and a, and is called the differential of f at a and denoted by Df (a).

A mapping f : U → F is locally bounded if f is bounded on a suitable neighbor-
hood of each point of U . Given a Banach space E, a subset N ⊆ BE∗ is said to be
norming for E if the function

N (x) = sup
{∣∣x∗(x)

∣∣ : x∗ ∈ N
}

(x ∈ E)

defines the norm on E .

If U ⊆ E and V ⊆ F are open sets, H(U , V ) will represent the set of all holo-
morphic mappings from U to V . We will denote by H(U , F) the linear space of
all holomorphic mappings from U into F and by H∞(U , F) the subspace of all
f ∈ H(U , F) such that f (U ) is bounded in F . When F = C, then we will write
H∞(U ,C) = H∞(U ).

It is easy to prove that the linear space H∞(U , F), equipped with the supremum
norm:

‖ f ‖∞ = sup {‖ f (x)‖ : x ∈ U } (
f ∈ H∞(U )

)
,

is a Banach space. Let G∞(U ) denote the norm-closed linear hull inH∞(U )∗ of the
set {δ(x) : x ∈ U } of evaluation functionals defined by

〈δ(x), f 〉 = f (x)
(
f ∈ H∞(U )

)
.

In [16, 17], Mujica established the following properties of G∞(U ).
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Theorem 1.2 [16, Theorem 2.1] Let E be a complex Banach space and let U be an
open set in E .

(i) H∞(U ) is isometrically isomorphic to G∞(U )∗, via the evaluation mapping
JU : H∞(U ) → G∞(U )∗ given by

〈JU ( f ), γ 〉 = γ ( f )
(
γ ∈ G∞(U ), f ∈ H∞(U )

)
.

(ii) The mapping gU : U → G∞(U ) defined by gU (x) = δ(x) is holomorphic with
‖gU (x)‖ = 1 for all x ∈ U .

(iii) For each complex Banach space F and eachmapping f ∈ H∞(U , F), there exists
a unique operator T f ∈ L(G∞(U ), F) such that T f ◦ gU = f . Furthermore,∥∥T f

∥∥ = ‖ f ‖∞ .

(iv) The mapping f �→ T f is an isometric isomorphism from H∞(U , F) onto
L(G∞(U ), F).

(v) [16, Corollary 4.12] (see also [17, Theorem 5.1]). G∞(U ) consists of all func-
tionals γ ∈ H∞(U )∗ of the form γ = ∑∞

i=1 λiδ(xi ) with (λi )i≥1 ∈ �1 and
(xi )i≥1 ∈ UN. Moreover, ‖γ ‖ = inf

{∑∞
i=1 |λi |

}
where the infimum is taken over

all such representations of γ. ��

2 Cohen strongly p-summing holomorphic mappings

Let E and F be Banach spaces and 1 ≤ p ≤ ∞. Let us recall [6] that an operator
T ∈ L(E, F) is p-summing if there exists a constant C ≥ 0 such that, regardless of
the natural number n and regardless of the choice of vectors x1, . . . , xn in E, we have
the inequalities:

(
n∑

i=1

‖T (xi )‖p

) 1
p

≤ C sup
x∗∈BE∗

(
n∑

i=1

∣∣x∗(xi )
∣∣p
) 1

p

if 1 ≤ p < ∞,

max
1≤i≤n

‖T (xi )‖ ≤ C sup
x∗∈BE∗

(
max
1≤i≤n

∣∣x∗(xi )
∣∣
)

if p = ∞.

The infimum of such constants C is denoted by πp(T ) and the linear space of all
p-summing operators from E into F by 	p(E, F).

The analogous notion for holomorphic mappings could be introduced as follows.

Definition 2.1 Let E and F be complex Banach spaces, letU be an open subset of E,

and let 1 ≤ p ≤ ∞. A holomorphic mapping f : U → F is said to be p-summing if
there exists a constant C ≥ 0 such that for all n ∈ N and x1, . . . , xn ∈ U , we have

(
n∑

i=1

‖ f (xi )‖p

) 1
p

≤ C sup
g∈BH∞(U )

(
n∑

i=1

|g(xi )|p
) 1

p

if 1 ≤ p < ∞,

max
1≤i≤n

‖ f (xi )‖ ≤ C sup
g∈BH∞(U )

(
max
1≤i≤n

|g(xi )|
)

if p = ∞.
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We denote by πH∞
p ( f ) the infimum of such constants C, and by 	H∞

p (U , F) the set
of all p-summing holomorphic mappings from U into F .

p-Summing holomorphic mappings are of little interest to us as 	H∞
p (U , F) =

H∞(U , F) with πH∞
p ( f ) = ‖ f ‖∞ for all f ∈ 	H∞

p (U , F), and furthermore the
subclass of p-summing holomorphicmappings thatwewill study in this paper includes
this case.

Let 1 ≤ p ≤ ∞ and let p∗ denote the conjugate index of p given by

p∗ =
⎧
⎨

⎩

p
p−1 if 1 < p < ∞,

∞ if p = 1,
1 if p = ∞.

In [5], Cohen introduced the following subclass of p-summing operators between
Banach spaces: an operator T ∈ L(E, F) is strongly p-summing if there exists a
constant C ≥ 0 such that for all n ∈ N, x1, . . . , xn ∈ E and y∗

1 , . . . , y
∗
n ∈ F∗, we

have

n∑

i=1

∣∣〈y∗
i , T (xi )

〉∣∣ ≤ C

(
n∑

i=1

‖xi‖
)

sup
y∗∗∈BF∗∗

(
max
1≤i≤n

∣∣y∗∗(y∗
i )
∣∣
)

if p = 1,

n∑

i=1

∣∣〈y∗
i , T (xi )

〉∣∣ ≤ C

(
n∑

i=1

‖xi‖p

) 1
p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

if 1 < p < ∞,

n∑

i=1

∣∣〈y∗
i , T (xi )

〉∣∣ ≤ C

(
max
1≤i≤n

‖xi‖
)

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣
)

if p = ∞.

The infimum of such constants C is denoted by dp(T ), and the space of all strongly
p-summing operators from E into F by Dp(E, F). If p = 1, we have D1(E, F) =
L(E, F).

We now introduce a version of this concept in the setting of holomorphic mappings.

Definition 2.2 Let E and F be complex Banach spaces, letU be an open subset of E,

and let 1 ≤ p ≤ ∞. A holomorphic mapping f : U → F is said to be Cohen strongly
p-summing if there exists a constant C ≥ 0 such that for all n ∈ N, λ1, . . . , λn ∈ C,

x1, . . . , xn ∈ U and y∗
1 , . . . , y

∗
n ∈ F∗, we have

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣ ≤ C

(
n∑

i=1

|λi |
)

sup
y∗∗∈BF∗∗

(
max
1≤i≤n

∣∣y∗∗(y∗
i )
∣∣
)

if p = 1,

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣ ≤ C

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

if 1 < p < ∞,

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣ ≤ C

(
max
1≤i≤n

|λi |
)

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣
)

if p = ∞.



Cohen strongly p-summing holomorphic mappings on Banach spaces Page 7 of 31    44 

We denote by dH∞
p ( f ) the infimum of such constants C, and byDH∞

p (U , F) the set
of all Cohen strongly p-summing holomorphic mappings from U into F .

The introduction of the scalars λi in the previous definition is justified by the
assertion (v) of Theorem 1.2. Proposition 2.5 shows that DH∞

1 = H∞.

The concept of an ideal of bounded holomorphic mappings is inspired by the anal-
ogous one for bounded linear operators between Banach spaces [26, Section 8.2].

Definition 2.3 An ideal of bounded holomorphic mappings (or simply, a bounded-
holomorphic ideal) is a subclass IH∞

of the class H∞ of all bounded holomorphic
mappings such that for each complex Banach space E, each open subset U of E and
each complex Banach space F, the components

IH∞
(U , F) := IH∞ ∩ H∞(U , F)

satisfy the following properties:

(I1) IH∞
(U , F) is a linear subspace of H∞(U , F),

(I2) For any g ∈ H∞(U ) and y ∈ F, the mapping g · y : x �→ g(x)y from U to F is
in IH∞

(U , F),

(I3) The ideal property: If H ,G are complex Banach spaces, V is an open subset of
H , h ∈ H(V ,U ), f ∈ IH∞

(U , F) and S ∈ L(F,G), then S ◦ f ◦ h is in
IH∞

(V ,G).

A bounded-holomorphic ideal IH∞
is said to be normed (Banach) if there exists a

function ‖·‖IH∞ : IH∞ → R
+
0 such that for every complex Banach space E, every

open subsetU of E and every complex Banach space F, the following conditions are
satisfied:

(N1) (IH∞
(U , F), ‖·‖IH∞ ) is a normed (Banach) space with ‖ f ‖∞ ≤ ‖ f ‖IH∞ for

all f ∈ IH∞
(U , F),

(N2) ‖g · y‖IH∞ = ‖g‖∞ ‖y‖ for every g ∈ H∞(U ) and y ∈ F,

(N3) If H ,G are complex Banach spaces, V is an open subset of H , h ∈ H(V ,U ),

f ∈ IH∞
(U , F) and S ∈ L(F,G), then ‖S ◦ f ◦ h‖IH∞ ≤ ‖S‖ ‖ f ‖IH∞ .

A normed bounded-holomorphic ideal IH∞
is said to be regular if for any f ∈

H∞(U , F),we have that f ∈ IH∞
(U , F)with ‖ f ‖IH∞ = ‖κF ◦ f ‖IH∞ whenever

κF ◦ f ∈ IH∞
(U , F∗∗).

The following class of bounded holomorphic mappings appears involved in Defi-
nition 2.3.

Lemma 2.4 Let g ∈ H∞(U ) and y ∈ F . The mapping g · y : U → F, given by
(g · y)(x) = g(x)y, belongs toH∞(U , F) with ‖g · y‖∞ = ‖g‖∞ ‖y‖ . ��

We are now ready to establish the main result of this section.

Proposition 2.5 (DH∞
p , dH∞

p ) is a regular Banach ideal of bounded holomorphic

mappings. Furthermore, DH∞
1 = H∞ with dH∞

1 = ‖·‖∞ .
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Proof We will only prove the case 1 < p < ∞. The cases p = 1 and p = ∞ follow
similarly.

(N1) We first show thatDH∞
p (U , F) ⊆ H∞(U , F) with ‖ f ‖∞ ≤ dH∞

p ( f ) for all

f ∈ DH∞
p (U , F). Indeed, given f ∈ DH∞

p (U , F), we have

∣∣〈y∗, f (x)
〉∣∣ ≤ dH

∞
p ( f ) sup

y∗∗∈BF∗∗

∣∣y∗∗(y∗)
∣∣ = dH

∞
p ( f )

∥∥y∗∥∥

for all x ∈ U and y∗ ∈ F∗. By Hahn–Banach Theorem, we obtain that ‖ f (x)‖ ≤
dH∞
p ( f ) for all x ∈ U . Hence f ∈ H∞(U , F) with ‖ f ‖∞ ≤ dH∞

p ( f ).

Let f1, f2 ∈ DH∞
p (U , F). Given n ∈ N, λ1, . . . , λn ∈ C, x1, . . . , xn ∈ U and

y∗
1 , . . . , y

∗
n ∈ F∗, we have

n∑

i=1

|λi |
∣∣〈y∗

i , f1(xi )
〉∣∣ ≤ dH

∞
p ( f1)

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

,

n∑

i=1

|λi |
∣∣〈y∗

i , f2(xi )
〉∣∣ ≤ dH

∞
p ( f2)

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

.

Using the two inequalities above, we obtain

n∑

i=1

|λi |
∣∣〈y∗

i , ( f1 + f2)(xi )
〉∣∣ ≤

n∑

i=1

|λi |
∣∣〈y∗

i , f1(xi )
〉∣∣ +

n∑

i=1

|λi |
∣∣〈y∗

i , f2(xi )
〉∣∣

≤
(
dH

∞
p ( f1) + dH

∞
p ( f2)

)( n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

.

This tells us that f1+ f2 ∈ DH∞
p (U , F)with dH∞

p ( f1+ f2) ≤ dH∞
p ( f1)+dH∞

p ( f2).

Let λ ∈ C and f ∈ DH∞
p (U , F). Given n ∈ N, λi ∈ C, xi ∈ U and y∗

i ∈ F∗ for
i = 1, . . . , n, we have

n∑

i=1

|λi |
∣∣〈y∗

i , (λ f )(xi )
〉∣∣ = |λ|

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣

≤ |λ| dH∞
p ( f )

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

,

and thus λ f ∈ DH∞
p (U , F) with dH∞

p (λ f ) ≤ |λ|dH∞
p ( f ). This implies that

dH∞
p (λ f ) = 0 = |λ| dH∞

p ( f ) if λ = 0. For λ �= 0, we have dH∞
p ( f ) =

dH∞
p (λ−1(λ f )) ≤ |λ|−1 dH∞

p (λ f ), hence |λ| dH∞
p ( f ) ≤ dH∞

p (λ f ), and so

dH∞
p (λ f ) = |λ| dH∞

p ( f ).
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Moreover, if f ∈ DH∞
p (U , F) and dH∞

p ( f ) = 0, then ‖ f ‖∞ = 0 by (N1), and so

f = 0. Thus,
(
DH∞

p (U , F), dH∞
p

)
is a normed space.

To prove that
(
DH∞

p (U , F), dH∞
p

)
is complete, it suffices to prove that every

absolutely convergent series is convergent. So let ( fn)n∈N be a sequence in
DH∞

p (U , F) such that
∑

n∈N dH∞
p ( fn) is convergent. Since ‖ fn‖∞ ≤ dH∞

p ( fn) for
all n ∈ N and (H∞(U , F), ‖·‖∞) is a Banach space, then

∑
n∈N fn converges in

(H∞(U , F), ‖·‖∞) to a function f ∈ H∞(U , F). Given m ∈ N, x1, . . . , xm ∈ U ,

y∗
1 , . . . , y

∗
m ∈ F∗ and λ1, . . . , λm ∈ C, we have

m∑

k=1

|λk |
∣∣∣∣∣

〈
y∗
k ,

n∑

i=1

fi (xk)

〉∣∣∣∣∣

≤ dH
∞

p

(
n∑

i=1

fi

)(
m∑

k=1

|λk |p
) 1

p

sup
y∗∗∈BF∗∗

(
m∑

k=1

∣∣y∗∗(y∗
k )
∣∣p∗

) 1
p∗

≤
(

n∑

i=1

dH
∞

p ( fi )

)(
m∑

k=1

|λk |p
) 1

p

sup
y∗∗∈BF∗∗

(
m∑

k=1

∣∣y∗∗(y∗
k )
∣∣p∗

) 1
p∗

for all n ∈ N, and by taking limits with n → ∞ yields

m∑

k=1

|λk |
∣∣〈y∗

k , f (xk)
〉∣∣ ≤

( ∞∑

n=1

dH
∞

p ( fn)

)(
m∑

k=1

|λk |p
) 1

p

sup
y∗∗∈BF∗∗

(
m∑

k=1

∣∣y∗∗(y∗
k )
∣∣p∗

) 1
p∗

.

Hence f ∈ DH∞
p (U , F) with πH∞

p ( f ) ≤ ∑∞
n=1 d

H∞
p ( fn). Moreover, we have

dH
∞

p

(
f −

n∑

i=1

fi

)
= dH

∞
p

( ∞∑

i=n+1

fi

)
≤

∞∑

i=n+1

dH
∞

p ( fi )

for all n ∈ N, and thus f is the dH∞
p -limit of the series

∑
n∈N fn .

(N2)Let g ∈ H∞(U ) and y ∈ F . If y = 0, there is nothing to prove.Assume y �= 0.
By Lemma 2.4, g · y ∈ H∞(U , F). Given n ∈ N, x1, . . . , xn ∈ U , y∗

1 , . . . , y
∗
n ∈ F∗

and λ1, . . . , λn ∈ C, we have

n∑

i=1

|λi |
∣∣〈y∗

i , (g · y)(xi )
〉∣∣

=
n∑

i=1

|λi | |g(xi )|
∣∣〈y∗

i , y
〉∣∣

≤ ‖g‖∞ ‖y‖
n∑

i=1

|λi |
∣∣∣∣

〈
y∗
i ,

y

‖y‖
〉∣∣∣∣
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≤ ‖g‖∞ ‖y‖
(

n∑

i=1

|λi |p
) 1

p
(

n∑

i=1

∣∣∣∣

〈
y∗
i ,

y

‖y‖
〉∣∣∣∣

p∗) 1
p∗

= ‖g‖∞ ‖y‖
(

n∑

i=1

|λi |p
) 1

p
(

n∑

i=1

∣∣∣∣

〈
κF

(
y

‖y‖
)

, y∗
i ,

〉∣∣∣∣
p∗) 1

p∗

≤ ‖g‖∞ ‖y‖
(

n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

by applying theHölder inequality, and therefore g·y ∈ DH∞
p (U , F)withdH∞

p (g·y) ≤
‖g‖∞ ‖y‖ . Conversely, by applying what was proved in (N1), we have ‖g‖∞ ‖y‖ =
‖g · y‖∞ ≤ dH∞

p (g · y).
(N3)Let H ,G be complexBanach spaces,V be anopen subset of H ,h ∈ H(V ,U ),

f ∈ DH∞
p (U , F) and S ∈ L(F,G). We can suppose S �= 0. Given n ∈ N,

x1, . . . , xn ∈ U , y∗
1 , . . . , y

∗
n ∈ G∗ and λ1, . . . , λn ∈ C, we have

n∑

i=1

|λi |
∣∣〈y∗

i , S( f (h(xi )))
〉∣∣

=
n∑

i=1

|λi |
∣∣〈y∗

i ◦ S, f (h(xi ))
〉∣∣

≤ dH
∞

p ( f )

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i ◦ S)

∣∣p∗
) 1

p∗

= ‖S‖ dH∞
p ( f )

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣∣∣

(
y∗∗ ◦ S∗

‖S‖
)

(y∗
i )

∣∣∣∣
p∗) 1

p∗

≤ ‖S‖ dH∞
p ( f )

(
n∑

i=1

|λi |p
) 1

p

sup
z∗∗∈BG∗∗

(
n∑

i=1

∣∣z∗∗(y∗
i )
∣∣p∗

) 1
p∗

and therefore S ◦ f ◦ h ∈ DH∞
p (V ,G) with dH∞

p (S ◦ f ◦ h) ≤ ‖S‖ dH∞
p ( f ).

We now prove that the ideal DH∞
p is regular. Let f ∈ H∞(U , F) and assume

that κF ◦ f ∈ DH∞
p (U , F∗∗). Given n ∈ N, x1, . . . , xn ∈ U , y∗

1 , . . . , y
∗
n ∈ F∗ and

λ1, . . . , λn ∈ C, we have

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣

=
n∑

i=1

|λi |
∣∣〈κF ( f (xi )), y

∗
i

〉∣∣
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=
n∑

i=1

|λi |
∣∣〈κF∗(y∗

i ), κF ( f (xi ))
〉∣∣

≤ dH
∞

p (κF ◦ f )

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∗∗∈BF∗∗∗∗

(
n∑

i=1

∣∣y∗∗∗∗(κF∗(y∗
i ))

∣∣p∗
) 1

p∗

≤ dH
∞

p (κF ◦ f )

(
n∑

i=1

|λi |p
) 1

p

sup
y∗∗∈BF∗∗

(
n∑

i=1

∣∣y∗∗(y∗
i )
∣∣p∗

) 1
p∗

,

and thus f ∈ DH∞
p (U , F) with dH∞

p ( f ) ≤ dH∞
p (κF ◦ f ). The reverse inequality

follows from (N3).
Finally, we have seen in (N1) that DH∞

1 (U , F) ⊆ H∞(U , F) with ‖ f ‖∞ ≤
dH∞
1 ( f ) for all f ∈ DH∞

1 (U , F). For the converse, let f ∈ H∞(U , F). If f = 0,
there is nothing to prove. Assume f �= 0.Given n ∈ N, x1, . . . , xn ∈ U , y∗

1 , . . . , y
∗
n ∈

F∗ and λ1, . . . , λn ∈ C, we have

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣ = ‖ f ‖∞

n∑

i=1

|λi |
∣∣∣∣

〈
κF

(
f (xi )

‖ f ‖∞

)
, y∗

i

〉∣∣∣∣

≤ ‖ f ‖∞

(
n∑

i=1

|λi |
)

max
1≤i≤n

(
sup

y∗∗∈BF∗∗

∣∣y∗∗(y∗
i )
∣∣
)

= ‖ f ‖∞

(
n∑

i=1

|λi |
)

sup
y∗∗∈BF∗∗

(
max
1≤i≤n

∣∣y∗∗(y∗
i )
∣∣
)

,

and therefore f ∈ DH∞
1 (U , F) with dH∞

1 ( f ) ≤ ‖ f ‖∞ . ��

3 The tensor product1(U) ⊗ F

We introduce �(U ) ⊗ F as a space of linear functionals on H∞(U , F∗).

Definition 3.1 Let E and F be complex Banach spaces and let U be an open subset
of E . For each x ∈ U , let δ(x) : H∞(U ) → C be the linear functional defined by

〈δ(x), f 〉 = f (x)
(
f ∈ H∞(U )

)
.

Let �(U ) be the linear subspace ofH∞(U )′ spanned by the set {δ(x) : x ∈ U } .

For any x ∈ U and y ∈ F, let δ(x)⊗ y : H∞(U , F∗) → C be the linear functional
given by

(δ(x) ⊗ y) ( f ) = 〈 f (x), y〉 (
f ∈ H∞(U , F∗)

)
.
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Wedefine the tensor product�(U )⊗F as the linear subspace ofH∞(U , F∗)′ spanned
by the set

{δ(x) ⊗ y : x ∈ U , y ∈ F} .

We say that δ(x)⊗ y is an elementary tensor of �(U )⊗ F . Note that each element
u in�(U )⊗ F is of the form u = ∑n

i=1 λi (δ(xi )⊗ yi ),where n ∈ N, λi ∈ C, xi ∈ U
and yi ∈ F for i = 1, . . . , n. This representation of u is not unique. It is worth noting
that each element u of �(U ) ⊗ F can be represented as u = ∑n

i=1 δ(xi ) ⊗ yi since
λ(δ(x) ⊗ y) = δ(x) ⊗ (λy).

As a straightforward consequence from Definition 3.1, we describe the action of a
tensor u in �(U ) ⊗ F on a function f inH∞(U , F∗):

Lemma 3.2 Let u = ∑n
i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F and f ∈ H∞(U , F∗). Then

u( f ) =
n∑

i=1

λi 〈 f (xi ), yi 〉 .

�

The following characterization of the zero tensor of�(U )⊗F follows immediately
from [26, Proposition 1.2].

Proposition 3.3 If u = ∑n
i=1 δ(xi ) ⊗ yi ∈ �(U ) ⊗ F, the following are equivalent:

(i) u = 0.
(ii)

∑n
i=1 g(xi )φ(yi ) = 0 for every g ∈ BH∞(U ) and φ ∈ BF∗ . �

ByDefinition 3.1,�(U )⊗F is a linear subspace ofH∞(U , F∗)′. In fact, we have:

Proposition 3.4 〈�(U ) ⊗ F,H∞(U , F∗)〉 forms a dual pair,where the bilinear form
〈·, ·〉 associated to the dual pair is given by

〈u, f 〉 =
n∑

i=1

λi 〈 f (xi ), yi 〉

for u = ∑n
i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F and f ∈ H∞(U , F∗).

Proof Since 〈u, f 〉 = u( f ) by Lemma 3.2, it is immediate that 〈·, ·〉 is a well-
defined bilinear map from (�(U ) ⊗ F) × H∞(U , F∗) to C. On the one hand, if
u ∈ �(U ) ⊗ F and 〈u, f 〉 = 0 for all f ∈ H∞(U , F∗), then u = 0 follows eas-
ily from Proposition 3.3, and thus H∞(U , F∗) separates points of �(U ) ⊗ F . On
the other hand, if f ∈ H∞(U , F∗) and 〈u, f 〉 = 0 for all u ∈ �(U ) ⊗ F, then
〈 f (x), y〉 = 〈δ(x) ⊗ y, f 〉 = 0 for all x ∈ U and y ∈ F, this means that f = 0 and
thus �(U ) ⊗ F separates points of H∞(U , F∗). ��

Since 〈�(U ) ⊗ F,H∞(U , F∗)〉 is a dual pair, we can identify H∞(U , F∗) with
a linear subspace of (�(U ) ⊗ F)′ as follows.
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Corollary 3.5 For each f ∈ H∞(U , F∗), the functional �0( f ) : �(U ) ⊗ F → C,

given by

�0( f )(u) =
n∑

i=1

λi 〈 f (xi ), yi 〉

for u = ∑n
i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F, is linear. We will say that �0( f ) is the

linear functional on �(U ) ⊗ F associated to f . Furthermore, the map f �→ �0( f )
is a linear monomorphism fromH∞(U , F∗) into (�(U ) ⊗ F)′.

Proof Let f ∈ H∞(U , F∗). Note that �0( f )(u) = 〈u, f 〉 for all u ∈ �(U ) ⊗ F .

It is immediate that �0( f ) is a well-defined linear functional on �(U ) ⊗ F and
that f �→ �0( f ) from H∞(U , F∗) into (�(U ) ⊗ F)′ is a well-defined linear map.
Finally, let f ∈ H∞(U , F∗) and assume that �0( f ) = 0. Then 〈u, f 〉 = 0 for all
u ∈ �(U )⊗ F . Since �(U )⊗ F separates points ofH∞(U , F∗) by Proposition 3.4,
it follows that f = 0 and this proves that �0 is one-to-one. ��

Given two linear spaces E and F, the tensor product space E ⊗ F equipped with a
norm α will be denoted by E⊗α F, and the completion of E⊗α F by E⊗̂αF . If E and
F are normed spaces, a cross-norm on E⊗F is a normα such thatα(x⊗y) = ‖x‖ ‖y‖
for all x ∈ E and y ∈ F .

Given two normed spaces E and F, the projective norm π on E ⊗ F (see [26,
Chapter 2]) takes the following form on �(U ) ⊗ F :

π(u) = inf

{
n∑

i=1

|λi | ‖yi‖ : u =
n∑

i=1

λiδ(xi ) ⊗ yi

}
(u ∈ �(U ) ⊗ F),

where the infimum is taken over all the representations of u as above.
We next see that, on the space�(U )⊗F, the projective norm and the norm induced

by the dual norm of the supremum norm ofH∞(U , F∗) coincide.

Theorem 3.6 The linear space �(U ) ⊗ F is contained in H∞(U , F∗)∗. Moreover,
π(u) = H(u) for all u ∈ �(U ) ⊗ F, where H is the norm on �(U ) ⊗ F defined by

H(u) = sup
{|u( f )| : f ∈ H∞(U , F∗), ‖ f ‖∞ ≤ 1

}
(u ∈ �(U ) ⊗ F) .

Proof Let λ ∈ C, x ∈ U and y ∈ F . Since λδ(x) ⊗ y is a linear map onH∞(U , F∗)
and

|(λδ(x) ⊗ y)( f )| = |λ 〈 f (x), y〉| ≤ |λ| ‖ f (x)‖ ‖y‖ ≤ |λ| ‖ f ‖∞ ‖y‖

for all f ∈ H∞(U , F∗), then λδ(x) ⊗ y ∈ H∞(U , F∗)∗ with ‖λδ(x) ⊗ y‖ ≤
|λ| ‖y‖ , and thus �(U ) ⊗ F ⊆ H∞(U , F∗)∗.
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Let u ∈ �(U ) ⊗ F and let
∑n

i=1 λiδ(xi ) ⊗ yi be a representation of u. Since u is
linear and

|u( f )| =
∣∣∣∣∣

n∑

i=1

λi 〈 f (xi ), yi 〉
∣∣∣∣∣ ≤

n∑

i=1

|λi | ‖ f (xi )‖ ‖yi‖ ≤ ‖ f ‖∞
n∑

i=1

|λi | ‖yi‖

for all f ∈ H∞(U , F∗),we deduce that H(u) ≤ ∑n
i=1 |λi | ‖yi‖ . Since this holds for

each representation of u, it follows that H(u) ≤ π(u). Hence, H ≤ π. To prove that
the reverse inequality, suppose by contradiction that H(u0) < 1 < π(u0) for some
u0 ∈ �(U ) ⊗ F . Denote B = {u ∈ �(U ) ⊗ F : π(u) ≤ 1}. Clearly, B is a closed
and convex set in �(U ) ⊗π F . Applying the Hahn–Banach Separation Theorem to B
and {u0}, we obtain a functional η ∈ (�(U ) ⊗π F)∗ such that

1 = ‖η‖ = sup{Re η(u) : u ∈ B} < Re η(u0).

Define f : U → F∗ by 〈 f (x), y〉 = η (δ(x) ⊗ y) for all y ∈ F and x ∈ U . It is easy
to prove that f is well defined and f ∈ H∞(U , F∗) with ‖ f ‖∞ ≤ 1. Moreover,
u( f ) = η(u) for all u ∈ �(U ) ⊗ F . Therefore H(u0) ≥ |u0( f )| ≥ Re u0( f ) =
Re η(u0), so H(u0) > 1 and this is a contradiction. ��

We now will define the Chevet–Saphar norms on the tensor product E ⊗ F . Let E
and F be normed spaces and let 1 ≤ p ≤ ∞. Given u = ∑n

i=1 xi ⊗ yi ∈ E ⊗ F,

denote

‖(x1, . . . , xn)‖�np(E) =
{(∑n

i=1 ‖xi‖p
) 1
p if 1 ≤ p < ∞,

max1≤i≤n ‖xi‖ if p = ∞,

and

‖(y1, . . . , yn)‖�
n,w
p (F) =

{
supy∗∈BF∗

(∑n
i=1 |y∗(yi )|p

) 1
p if 1 ≤ p < ∞,

supy∗∈BF∗
(
max1≤i≤n |y∗(yi )|

)
if p = ∞.

If E = F = C, we write �np(E) = �np and �
n,w
p∗ (F) = �

n,w
p∗ . According to [26,

Section 6.2], the Chevet–Saphar norms are defined on E ⊗ F by

dp(u) = inf
{
‖(x1, . . . , xn)‖�

n,w

p∗ (E) ‖(y1, . . . , yn)‖�np(F)

}
,

gp(u) = inf
{
‖(x1, . . . , xn)‖�np(E) ‖(y1, . . . , yn)‖�

n,w

p∗ (F)

}
,

the infimum being taken over all representations of u as u = ∑n
i=1 xi ⊗ yi ∈ E ⊗ F .

Since ‖δ(x)‖ = 1 for all x ∈ U , the norm gp on �(U ) ⊗ F takes the form:

gp(u) = inf

{
‖(λ1, . . . , λn)‖�np

‖(y1, . . . , yn)‖�
n,w

p∗ (F) : u =
n∑

i=1

λiδ(xi ) ⊗ yi

}
.
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Notice that gp is a cross-norm on �(U ) ⊗ F .

We next show that g1 on �(U ) ⊗ F is just the projective tensor norm π.

Proposition 3.7 g1(u) = π(u) for all u ∈ �(U ) ⊗ F .

Proof Let u ∈ �(U )⊗ F and let
∑n

i=1 λiδ(xi )⊗ yi be a representation of u. We have

π(u) ≤
n∑

i=1

|λi | ‖yi‖ =
n∑

i=1

|λi |
(

sup
y∗∈BF∗

∣∣y∗(yi )
∣∣
)

≤
n∑

i=1

|λi | max
1≤i≤n

(
sup

y∗∈BF∗

∣∣y∗(yi )
∣∣
)

= ‖(λ1, . . . , λn)‖�n1
‖(y1, . . . , yn)‖�

n,w∞ (F) ,

and taking the infimum over all representations of u gives π(u) ≤ g1(u). For the
reverse inequality, notice that g1(λδ(x) ⊗ y) ≤ |λ| ‖y‖ for all λ ∈ C, x ∈ U and
y ∈ F . Since g1 is a norm on �(U ) ⊗ F, it follows that

g1(u) = g1

(
n∑

i=1

λiδ(xi ) ⊗ yi

)
≤

n∑

i=1

g1 (λiδ(xi ) ⊗ yi ) ≤
n∑

i=1

|λi | ‖yi‖

and taking the infimum over all representations of u yields g1(u) ≤ π(u). ��

4 Duality for Cohen strongly p-summing holomorphic mappings

We now show that the duals of the tensor product G∞(U )⊗̂gp F can be canonically
identified as spaces of Cohen strongly p-summing holomorphic mappings.

Theorem 4.1 Let 1 ≤ p ≤ ∞. Then DH∞
p (U , F∗) is isometrically isomorphic to

(G∞(U )⊗̂gp F)∗, via the mapping � : DH∞
p (U , F∗) → (G∞(U )⊗̂gp F)∗ defined by

�( f )(u) =
n∑

i=1

λi 〈 f (xi ), yi 〉

for f ∈ DH∞
p (U , F∗) and u = ∑n

i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F . Furthermore, its
inverse is given by

〈
�−1(ϕ)(x), y

〉
= 〈ϕ, δ(x) ⊗ y〉

for ϕ ∈ (G∞(U )⊗̂gp F)∗, x ∈ U and y ∈ F .

Proof We prove it for 1 < p ≤ ∞. The case p = 1 is similarly proved.
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Let f ∈ DH∞
p (U , F∗) and let �0( f ) : �(U ) ⊗ F → C be its associate linear

functional. We claim that �0( f ) ∈ (�(U ) ⊗gp F)∗ with ‖�0( f )‖ ≤ dH∞
p ( f ).

Indeed, given u = ∑n
i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F, we have

|�0( f )(u)| =
∣∣∣∣∣

n∑

i=1

λi 〈 f (xi ), yi 〉
∣∣∣∣∣ ≤

n∑

i=1

|λi | |〈κF (yi ), f (xi )〉|

≤ dH
∞

p ( f ) ‖(λ1, . . . , λn)‖�np
sup

y∗∗∗∈BF∗∗∗

(
n∑

i=1

∣∣y∗∗∗(κF (yi ))
∣∣p∗

) 1
p∗

≤ dH
∞

p ( f ) ‖(λ1, . . . , λn)‖�np
sup

y∗∈BF∗

(
n∑

i=1

∣∣y∗(yi )
∣∣p∗

) 1
p∗

= dH
∞

p ( f ) ‖(λ1, . . . , λn)‖�np
‖(y1, . . . , yn)‖�

n,w

p∗ (F) ,

and taking infimum over all the representations of u, we deduce that |�0( f )(u)| ≤
dH∞
p ( f )gp(u). Since u was arbitrary, then �0( f ) is continuous on �(U )⊗gp F with

‖�0( f )‖ ≤ dH∞
p ( f ), as claimed.

Since �(U ) is a norm-dense linear subspace of G∞(U ) and gp is a cross-norm
on G∞(U ) ⊗ F, then �(U ) ⊗ F is a dense linear subspace of G∞(U ) ⊗gp F and
therefore also of its completion G∞(U )⊗̂gp F . Hence there is a unique continuous
mapping �( f ) from G∞(U )⊗̂gp F to C that extends �0( f ). Further, �( f ) is linear
and ‖�( f )‖ = ‖�0( f )‖ .

Let � : DH∞
p (U , F∗) → (G∞(U )⊗̂gp F)∗ be the mapping so defined. Since the

mapping �0 : DH∞
p (U , F∗) → (�(U ) ⊗ F)′ is a linear monomorphism by Corol-

lary 3.5, it follows easily that � is so. To prove that � is a surjective isometry, let
ϕ ∈ (G∞(U )⊗̂gp F)∗ and define fϕ : U → F∗ by

〈
fϕ(x), y

〉 = ϕ(δ(x) ⊗ y) (x ∈ U , y ∈ F) .

Given x ∈ U , the linearity of both ϕ and the product tensor in the second variable
yields that the functional fϕ(x) : F → C is linear, and since

∣∣〈 fϕ(x), y
〉∣∣ = |ϕ(δ(x) ⊗ y)| ≤ ‖ϕ‖ gp(δ(x) ⊗ y) ≤ ‖ϕ‖ ‖y‖

for all y ∈ F,we deduce that fϕ(x) ∈ F∗ with ‖ fϕ(x)‖ ≤ ‖ϕ‖ . Since x was arbitrary,
we have that fϕ is bounded with

∥∥ fϕ
∥∥∞ ≤ ‖ϕ‖ .

We now prove that fϕ : U → F∗ is holomorphic. To this end, we first claim that,
for every y ∈ F, the function fy : U → C defined by

fy(x) = ϕ(δ(x) ⊗ y) (x ∈ U )
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is holomorphic. Let a ∈ U . Since gU : U → G∞(U ) is holomorphic by Theorem 1.2,
there exists DgU (a) ∈ L(E,G∞(U )) such that

lim
x→a

δ(x) − δ(a) − DgU (a)(x − a)

‖x − a‖ = 0.

Consider the function T (a) : E → C given by

T (a)(x) = ϕ(DgU (a)(x) ⊗ y) (x ∈ E) .

Clearly, T (a) ∈ E∗ and since

fy(x) − fy(a) − T (a)(x − a)

= ϕ(δ(x) ⊗ y) − ϕ(δ(a) ⊗ y) − ϕ(DgU (a)(x − a) ⊗ y)

= ϕ ((δ(x) − δ(a) − DgU (a)(x − a)) ⊗ y) ,

it follows that

lim
x→a

fy(x) − fy(a) − T (a)(x − a)

‖x − a‖ = lim
x→a

ϕ ((δ(x) − δ(a) − DgU (a)(x − a)) ⊗ y)

‖x − a‖
= lim

x→a
ϕ

(
δ(x) − δ(a) − DgU (a)(x − a)

‖x − a‖ ⊗ y

)

= ϕ(0 ⊗ y) = ϕ(0) = 0.

Hence, fy is holomorphic at a with Dfy(a) = T (a), and this proves our claim. Now,
notice that the set {κF (y) : y ∈ BF } ⊆ BF∗∗ is norming for F∗ since

∥∥y∗∥∥ = sup
{∣∣y∗(y)

∣∣ : y ∈ BF
} = sup

{∣∣κF (y)(y∗)
∣∣ : y ∈ BF

}

for every y∗ ∈ F∗, and that κF (y) ◦ fϕ = fy for every y ∈ F since

(κF (y) ◦ fϕ)(x) = κF (y)( fϕ(x)) = 〈
fϕ(x), y

〉 = ϕ(δ(x) ⊗ y) = fy(x)

for all x ∈ U .

We are now ready to show that fϕ : U → F∗ is holomorphic. Indeed, let a ∈ U and
b ∈ E .Denote V = {λ ∈ C : a + λb ∈ U } .Clearly, themapping h : V → U given by
h(λ) = a+λb is holomorphic. Since fϕ ◦h is locally bounded and κF (y)◦ ( fϕ ◦h) =
fy ◦ h is holomorphic on the open set V ⊆ C for all y ∈ F, Proposition A.3 in [3]
assures that fϕ ◦ h is holomorphic. This means that fϕ is G-holomorphic but since
it is also locally bounded, we deduce that fϕ is continuous by [15, Proposition 8.6].
Now, we conclude that fϕ is holomorphic by Theorem 1.1.

We now prove that fϕ ∈ DH∞
p (U , F∗). To see this, take n ∈ N, λi ∈ C, xi ∈ U

and y∗∗
i ∈ F∗∗ for i = 1, . . . , n. Let ε > 0 and consider the finite-dimensional

subspaces V = lin{y∗∗
1 , . . . , y∗∗

n } ⊆ F∗∗ and W = lin{ fϕ(x1), . . . , fϕ(xn)} ⊆ F∗.
The principle of local reflexivity [6, Theorem 8.16] gives us a bounded linear operator
T(ε,V ,W ) : V → F such that
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(i) T(ε,V ,W )(y∗∗) = y∗∗ for every y∗∗ ∈ V ∩ κF (F),

(ii) (1 − ε) ‖y∗∗‖ ≤ ∥∥T(ε,V ,W )(y∗∗)
∥∥ ≤ (1 + ε) ‖y∗∗‖ for every y∗∗ ∈ V ,

(iii)
〈
y∗, T(ε,V ,W )(y∗∗)

〉 = 〈y∗∗, y∗〉 for every y∗∗ ∈ V and y∗ ∈ W .

Using (iii) and taking yi = T(ε,V ,W )(y∗∗
i ), we first have

∣∣∣∣∣

n∑

i=1

λi
〈
y∗∗
i , fϕ(xi )

〉
∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

λi
〈
fϕ(xi ), T(ε,V ,W )(y

∗∗
i )

〉
∣∣∣∣∣

=
∣∣∣∣∣

n∑

i=1

λi
〈
fϕ(xi ), yi

〉
∣∣∣∣∣

=
∣∣∣∣∣ϕ

(
n∑

i=1

λiδ(xi ) ⊗ yi

)∣∣∣∣∣

≤ ‖ϕ‖ gp
(

n∑

i=1

λiδ(xi ) ⊗ yi

)

≤ ‖ϕ‖ ‖(λ1, . . . , λn)‖�np
‖(y1, . . . , yn)‖�

n,w

p∗ (F) .

Since

‖(y1, . . . , yn)‖�
n,w

p∗ (F) = sup
y∗∈BF∗

(
n∑

i=1

∣∣y∗(yi )
∣∣p∗

) 1
p∗

= sup
y∗∈BF∗

(
n∑

i=1

∣∣〈y∗, T(ε,V ,W )(y
∗∗
i )

〉∣∣p∗
) 1

p∗

= sup
y∗∈BF∗

(
n∑

i=1

∣∣〈κF (T(ε,V ,W )(y
∗∗
i )), y∗〉∣∣p∗

) 1
p∗

≤ ∥∥κF ◦ T(ε,V ,W )

∥∥ sup
y∗∈BF∗

(
n∑

i=1

∣∣〈y∗∗
i , y∗〉∣∣p∗

) 1
p∗

= ∥∥T(ε,V ,W )

∥∥ sup
y∗∈BF∗

(
n∑

i=1

∣∣〈κF∗(y∗), y∗∗
i

〉∣∣p∗
) 1

p∗

≤ (1 + ε) sup
y∗∗∗∈BF∗∗∗

(
n∑

i=1

∣∣y∗∗∗(y∗∗
i )

∣∣p∗
) 1

p∗

= (1 + ε)
∥∥(y∗∗

1 , . . . , y∗∗
n )

∥∥
�
n,w

p∗ (F∗∗) ,
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it follows that

∣∣∣∣∣

n∑

i=1

λi
〈
y∗∗
i , fϕ(xi )

〉
∣∣∣∣∣ ≤ ‖ϕ‖ ‖(λ1, . . . , λn)‖�np

(1 + ε)
∥∥(y∗∗

1 , . . . , y∗∗
n )

∥∥
�
n,w

p∗ (F∗∗) .

By the arbitrariness of ε, we deduce that

∣∣∣∣∣

n∑

i=1

λi
〈
y∗∗
i , fϕ(xi )

〉
∣∣∣∣∣ ≤ ‖ϕ‖ ‖(λ1, . . . , λn)‖�np

∥∥(y∗∗
1 , . . . , y∗∗

n )
∥∥

�
n,w

p∗ (F∗∗) ,

and this implies that fϕ ∈ DH∞
p (U , F∗) with dH∞

p ( fϕ) ≤ ‖ϕ‖ .

For any u = ∑n
i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F, we get

�( fϕ)(u) =
n∑

i=1

λi
〈
fϕ(xi ), yi

〉 =
n∑

i=1

λiϕ(δ(xi ) ⊗ yi ) = ϕ

(
n∑

i=1

λiδ(xi ) ⊗ yi

)
= ϕ(u).

Hence �( fϕ) = ϕ on a dense subspace of G∞(U )⊗̂gp F and, consequently, �( fϕ) =
ϕ, which shows the last statement of the theorem. Moreover, dH∞

p ( fϕ) ≤ ‖ϕ‖ =∥∥�( fϕ)
∥∥ and the theorem holds. ��

In particular, in view of Theorem 4.1 and taking into account Propositions 2.5, 3.6
and 3.7, we can identify the space H∞(U , F∗) with the dual space of G∞(U )⊗̂H F .

Corollary 4.2 H∞(U , F∗) is isometrically isomorphic to (G∞(U )⊗̂H F)∗, via the
mapping � : H∞(U , F∗) → (G∞(U )⊗̂H F)∗ given by

�( f )(u) =
n∑

i=1

λi 〈 f (xi ), yi 〉

for f ∈ H∞(U , F∗) and u = ∑n
i=1 λiδ(xi ) ⊗ yi ∈ �(U ) ⊗ F . Furthermore, its

inverse is given by

〈
�−1(ϕ)(x), y

〉
= 〈ϕ, δ(x) ⊗ y〉

for ϕ ∈ (G∞(U )⊗̂H F)∗, x ∈ U and y ∈ F . ��
Remark 4.3 It is known (see [26, p. 24]) that if E and F are Banach spaces, then
L(E, F∗) is isometrically isomorphic to (E⊗̂π F)∗, via � : L(E, F∗) → (E⊗̂π F)∗
given by

〈
�(T ),

n∑

i=1

xi ⊗ yi

〉
=

n∑

i=1

〈T (xi ), yi 〉
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for T ∈ L(E, F∗) and
∑n

i=1 xi ⊗ yi ∈ E ⊗ F . Notice that the identification � in
Corollary 4.2 is just � ◦ �0, where �0 : f �→ T f is the isometric isomorphism from
H∞(U , F∗) onto L(G∞(U ), F) given in Theorem 1.2.

5 Pietsch domination for Cohen strongly p-summing holomorphic
mappings

In [22], Pietsch established a domination theorem for p-summing linear operators
between Banach spaces. To present a version of this theorem for Cohen strongly p-
summing holomorphic mappings on Banach spaces, we first characterize the elements
of the dual space of �(U ) ⊗gp F .

Theorem 5.1 Let ϕ ∈ (�(U )⊗F)′,C > 0 and 1 < p ≤ ∞. The following conditions
are equivalent:
(i) |ϕ(u)| ≤ Cgp(u) for all u ∈ �(U ) ⊗ F .

(ii) For any representation
∑n

i=1 λiδ(xi ) ⊗ yi of u ∈ �(U ) ⊗ F, we have

n∑

i=1

|ϕ(λiδ(xi ) ⊗ yi )| ≤ Cgp(u).

(iii) There exists a Borel regular probability measure μ on BF∗ such that

|ϕ(λδ(x) ⊗ y)| ≤ C |λ| ‖y‖L p∗ (μ)

for all λ ∈ C, x ∈ U and y ∈ F, where

‖y‖L p∗ (μ) =
(∫

BF∗

∣∣y∗(y)
∣∣p∗

dμ(y∗)
) 1

p∗
.

Proof (i) ⇒ (ii): Let u ∈ �(U ) ⊗ F and let
∑n

i=1 λiδ(xi ) ⊗ yi be a representation
of u. It is elementary that the function T : Cn → C defined by

T (t1, . . . , tn) =
n∑

i=1

tiϕ(λiδ(xi ) ⊗ yi ), ∀(t1, . . . , tn) ∈ C
n

is linear and continuous on (Cn, ‖·‖�n∞) with ‖T ‖ = ∑n
i=1 |ϕ(λiδ(xi ) ⊗ yi )| .

For any (t1, . . . , tn) ∈ C
n with ‖(t1, . . . , tn)‖�n∞ ≤ 1, by (i) we have

|T (t1, . . . , tn)| =
∣∣∣∣∣

n∑

i=1

tiϕ(λiδ(xi ) ⊗ yi )

∣∣∣∣∣ =
∣∣∣∣∣ϕ

(
n∑

i=1

tiλiδ(xi ) ⊗ yi

)∣∣∣∣∣

≤ Cgp

(
n∑

i=1

tiλiδ(xi ) ⊗ yi

)
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≤ C ‖(t1λ1, . . . , tnλn)‖�np
‖(y1, . . . , yn)‖�

n,w

p∗ (F)

≤ C ‖(λ1, . . . , λn)‖�np
‖(y1, . . . , yn)‖�

n,w

p∗ (F) ,

and, therefore,

n∑

i=1

|ϕ(λiδ(xi ) ⊗ yi )| ≤ C ‖(λ1, . . . , λn)‖�np
‖(y1, . . . , yn)‖�

n,w

p∗ (F) .

Taking infimum over all the representations of u, we deduce that

n∑

i=1

|ϕ(λiδ(xi ) ⊗ yi )| ≤ Cgp(u).

(ii) ⇒ (iii): Let P be the set of all Borel regular probability measures μ on BF∗ .
Clearly, it is a convex compact subset of (C(BF∗)∗, w∗). Assume first 1 < p < ∞.

Let M be set of all functions from P to R of the form

f((λi )ni=1,(xi )
n
i=1,(yi )

n
i=1)

(μ) =
n∑

i=1

|ϕ(λiδU (xi ) ⊗ yi )|

−
(
C

p

∥∥(λi )ni=1

∥∥p
�np

+ C

p∗
n∑

i=1

‖yi‖p∗
L p∗ (μ)

)
,

where n ∈ N, λi ∈ C, xi ∈ U and yi ∈ F for i = 1, . . . , n.

It is easy check that M satisfies the three conditions of Ky Fan’s Lemma (see [6,
9.10]):

(a) Each f((λi )ni=1,(xi )
n
i=1,(yi )

n
i=1)

∈ M is convex and lower semicontinuous.
(b) If g ∈ co(M), there is f((λi )ni=1,(xi )

n
i=1,(yi )

n
i=1)

∈M with g(μ)≤ f((λi )ni=1,(xi )
n
i=1,(yi )

n
i=1)

(μ) for all μ ∈ P.

(c) Each f((λi )ni=1,(xi )
n
i=1,(yi )

n
i=1)

∈ M has a value less or equal than 0.

By Ky Fan’s Lemma, there is a μ ∈ P such that f (μ) ≤ 0 for all f ∈ M . In
particular, we have

f(tλ,x,t−1y)(μ) =
∣∣∣ϕ(tλδU (x) ⊗ t−1y)

∣∣∣ − C

p
t p |λ|p − C

p∗ t
−p∗ ‖y‖p∗

L p∗ (μ) ≤ 0

for all t ∈ R
+, λ ∈ C, x ∈ U and y ∈ F . It follows that

|ϕ(λδU (x) ⊗ y)| ≤ C

⎛

⎝ t p |λ|p
p

+
t−p∗ ‖y‖p∗

L p∗ (μ)

p∗

⎞

⎠ ,
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and, applying again the aforementioned identity, we conclude that

|ϕ(λδU (x) ⊗ y)| ≤ C |λ| ‖y‖L p∗ (μ) .

The case p = ∞ is similarly proved but without applying the cited identity and taking
C/p = 0 and p∗ = 1.

(iii) ⇒ (i): Let u ∈ �(U ) ⊗ F and let
∑n

i=1 λiδ(xi ) ⊗ yi be a representation of
u. Using (iii) and the Hölder inequality, we obtain

|ϕ(u)| ≤
n∑

i=1

|ϕ (λiδ(xi ) ⊗ yi )| ≤ C
n∑

i=1

|λi | ‖yi‖L p∗ (μ)

≤ C ‖(λ1, . . . , λn)‖�np

(
n∑

i=1

‖yi‖p∗
L p∗ (μ)

) 1
p∗

= C ‖(λ1, . . . , λn)‖�np

(∫

BF∗

n∑

i=1

∣∣y∗(yi )
∣∣p∗

dμ(y∗)
) 1

p∗

≤ C ‖(λ1, . . . , λn)‖�np

(
sup

y∗∈BF∗

n∑

i=1

∣∣y∗(yi )
∣∣p∗

) 1
p∗

= C ‖(λ1, . . . , λn)‖�np
‖(y1, . . . , yn)‖�

n,w

p∗ (F) ,

and taking infimum over all the representations of u, we conclude that |ϕ(u)| ≤
Cgp(u). ��

We are now ready to present the announced result. Compare to [5, Theorem 2.3.1].

Theorem 5.2 (Pietsch Domination) Let 1 < p ≤ ∞ and f ∈ H∞(U , F). The
following conditions are equivalent:
(i) f is Cohen strongly p-summing holomorphic.
(ii) For any

∑n
i=1 λiδ(xi ) ⊗ y∗

i ∈ �(U ) ⊗ F∗, we have
∣∣∣∣∣

n∑

i=1

λi
〈
y∗
i , f (xi )

〉
∣∣∣∣∣ ≤ dH

∞
p ( f ) ‖(λ1, . . . , λn)‖�np

∥∥(y∗
1 , . . . , y

∗
n )
∥∥

�
n,w

p∗ (F∗) .

(iii) There is a constant C > 0 and a Borel regular probability measure μ on BF∗∗
such that

∣∣〈y∗, f (x)
〉∣∣ ≤ C

∥∥y∗∥∥
L p∗ (μ)

for all x ∈ U and y∗ ∈ F∗, where

∥∥y∗∥∥
L p∗ (μ)

=
(∫

BF∗∗

∣∣y∗∗(y∗)
∣∣p∗

dμ(y∗∗)
) 1

p∗
.
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In this case, dH∞
p ( f ) is the minimum of all constants C > 0 satisfying the preceding

inequality.

Proof (i) ⇒ (ii) is immediate from Definition 2.2.
(ii) ⇒ (iii): Clearly, κF ◦ f ∈ H∞(U , F∗∗). Appealing to Corollary 3.5,

consider its associate linear functional �0(κF ◦ f ) : �(U ) ⊗ F∗ → C. Given
u = ∑n

i=1 λiδ(xi ) ⊗ y∗
i ∈ �(U ) ⊗ F∗, we have

|�0(κF ◦ f )(u)| =
∣∣∣∣∣

n∑

i=1

λi
〈
(κF ◦ f )(xi ), y

∗
i

〉
∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

λi
〈
y∗
i , f (xi )

〉
∣∣∣∣∣

≤ dH
∞

p ( f ) ‖(λ1, . . . , λn)‖�np

∥∥(y∗
1 , . . . , y

∗
n )
∥∥

�
n,w

p∗ (F∗)

by (ii). Since it holds for each representation of u, we deduce that

|�0(κF ◦ f )(u)| ≤ dH
∞

p ( f )gp(u).

By Theorem 5.1, there exists a Borel regular probability measure μ on BF∗∗ such that

∣∣〈y∗, f (x)
〉∣∣ = ∣∣�0(κF ◦ f )(δ(x) ⊗ y∗)

∣∣ ≤ dH
∞

p ( f )

(∫

BF∗∗

∣∣y∗∗(y∗)
∣∣p∗

dμ(y∗∗)
) 1

p∗

for all x ∈ U and y∗ ∈ F∗. Moreover, dH∞
p ( f ) belongs to the set of all constants

C > 0 satisfying the inequality in (iii).
(iii) ⇒ (i): Given x ∈ U and y∗ ∈ F∗, we have

∣∣�0(κF ◦ f )(δ(x) ⊗ y∗)
∣∣ = ∣∣〈y∗, f (x)

〉∣∣ ≤ ∥∥y∗∥∥
L p∗ (μ)

by applying (iii). Now, Theorem 5.1 tells us that for any representation
∑n

i=1 λiδ(xi )⊗
y∗
i of u ∈ �(U ) ⊗ F∗, we have

n∑

i=1

|λi |
∣∣〈y∗

i , f (xi )
〉∣∣ =

n∑

i=1

|λi |
∣∣〈(κF ◦ f )(xi ), y

∗
i

〉∣∣ =
n∑

i=1

∣∣�0(κF ◦ f )(λiδ(xi ) ⊗ y∗
i )
∣∣

≤ Cgp(u) ≤ C ‖(λ1, . . . , λn)‖�np

∥∥(y∗
1 , . . . , y

∗
n )
∥∥

�
n,w

p∗ (F∗)
.

Hence f ∈ DH∞
p (U , F) with dH∞

p ( f ) ≤ C . This also shows the last assertion of the
statement. ��
Remark 5.3 Theorem 5.2 is mainly a particular case of Theorem 4.6 in [21] since a
Cohen strongly p-summing holomorphic mapping (1 < p < ∞) is an R1, R2 − S-
abstract (p, p∗)-summing mapping for R1 : [0, 1] ×U × C → [0,∞) defined by

R1(t, x, λ) = |λ|,
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R2 : BF∗∗ ×U × F∗ → [0,∞) given by

R2(y
∗∗, x, y∗) = |y∗∗(y∗)|,

and S : H∞(U , F) ×U × C × F∗ → [0,∞) defined by

S( f , x, λ, y∗) = |λ||〈y∗, f (x)〉|.

This unified abstract version of Pietsch Domination Theorem has been used by several
authors whenever trying to get a domination result in a very short way. Our proof is
also short and appeals directly to Ky Fan’s Lemma as it was made to establish such
an abstract version.

We now study the relationship between a Cohen strongly p-summing holomorphic
mapping from U to F and its associate linearization from G∞(U ) to F .

Theorem 5.4 Let 1 < p ≤ ∞ and f ∈ H∞(U , F). The following conditions are
equivalent:
(i) f : U → F is Cohen strongly p-summing holomorphic.
(ii) T f : G∞(U ) → F is strongly p-summing.

In this case, dp(T f ) = dH∞
p ( f ). Furthermore, the mapping f �→ T f is an isometric

isomorphism from (DH∞
p (U , F), dH∞

p ) onto (Dp(G∞(U ), F), dp).

Proof (i) ⇒ (ii): Assume that f ∈ DH∞
p (U , F).By Theorem 5.2, there is a constant

C > 0 and a Borel regular probability measure μ on BF∗∗ such that |〈y∗, f (x)〉| ≤
C ‖y∗‖L p∗ (μ) for all x ∈ U and y∗ ∈ F∗.

Let y∗ ∈ F∗ and γ ∈ G∞(U ). By Theorem 1.2, given ε > 0, we can take a
representation

∑∞
i=1 λiδ(xi ) of γ such that

∑∞
i=1 |λi | ≤ ‖γ ‖ + ε. We have

∣∣〈y∗, T f (γ )
〉∣∣ =

∣∣∣∣∣

〈
y∗,

∞∑

i=1

λi T f (δU (xi ))

〉∣∣∣∣∣ =
∣∣∣∣∣

〈
y∗,

∞∑

i=1

λi f (xi )

〉∣∣∣∣∣

≤
∞∑

i=1

|λi |
∣∣〈y∗, f (xi )

〉∣∣

≤ C
∥∥y∗∥∥

L p∗ (μ)

∞∑

i=1

|λi | ≤ C
∥∥y∗∥∥

L p∗ (μ)
(‖γ ‖ + ε) .

As ε was arbitrary, it follows that

∣∣〈y∗, T f (γ )
〉∣∣ ≤ C

∥∥y∗∥∥
L p∗ (μ)

‖γ ‖ .

Taking infimum over all such constants C, we have

∣∣〈y∗, T f (γ )
〉∣∣ ≤ dH

∞
p ( f )

∥∥y∗∥∥
L p∗ (μ)

‖γ ‖
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by Theorem 5.2. It follows that

sup
{∣∣〈y∗, T f (γ )

〉∣∣ : y∗ ∈ F∗,
∥∥y∗∥∥

L p∗ (μ)
≤ 1

}
≤ dH

∞
p ( f ) ‖γ ‖

for all γ ∈ G∞(U ). Therefore T f ∈ Dp(G∞(U ), F) with dp(T f ) ≤ dH∞
p ( f ) by

Pietsch Domination Theorem for strongly p-summing operators [5, Theorem 2.3.1].
(ii) ⇒ (i): Assume that T f ∈ Dp(G∞(U ), F). Given x ∈ U and y∗ ∈ F∗, we

have

∣∣〈y∗, f (x)
〉∣∣ = ∣∣〈y∗, T f (δU (x)

〉∣∣ ≤ dp(T f )
∥∥y∗∥∥

L p∗(μ)
‖δU (x)‖ = dp(T f )

∥∥y∗∥∥
L p∗(μ)

by [5, Theorem2.3.1] for someBorel regular probabilitymeasureμ on BF∗∗ . It follows
that f ∈ DH∞

p (U , F) with dH∞
p ( f ) ≤ dp(T f ) by Theorem 5.2.

Since dp(T f ) = dH∞
p ( f ) for all f ∈ DH∞

p (U , F), to prove the last assertion of

the statement, it suffices to show that the mapping f �→ T f from DH∞
p (U , F) to

Dp(G∞(U ), F) is surjective. Indeed, take T ∈ Dp(G∞(U ), F) and then T = T f

for some f ∈ H∞(U , F) by Theorem 1.2. Hence T f ∈ Dp(G∞(U ), F), and thus
f ∈ DH∞

p (U , F) by the above proof. ��
The equivalence (i) ⇔ (iii) of Theorem 5.2 admits the following reformulation.

Corollary 5.5 Let 1 < p ≤ ∞ and f ∈ H∞(U , F). The following conditions are
equivalent:
(i) f : U → F is Cohen strongly p-summing holomorphic.
(ii) There exists a complex Banach space G and an operator S ∈ Dp(G, F) such that

∣∣〈y∗, f (x)
〉∣∣ ≤ ∥∥S∗(y∗)

∥∥ (x ∈ U , y∗ ∈ F∗).

In this case, dH∞
p ( f ) is the infimum of all dp(S)with S satisfying (ii), and this infimum

is attained at T f (Mujica’s linearization of f ).

Proof (i) ⇒ (ii): If f ∈ DH∞
p (U , F), then T f ∈ Dp(G∞(U ), F) with dH∞

p ( f ) =
dp(T f ) by Theorem 5.4. From Theorem 1.2, we infer that

∣∣〈y∗, f (x)
〉∣∣ = ∣∣〈y∗, T f (δU (x)

〉∣∣ = ∣∣〈(T f )
∗(y∗), δU (x)

〉∣∣ ≤ ∥∥(T f )
∗(y∗)

∥∥

for all x ∈ U and y∗ ∈ F∗.
(ii) ⇒ (i): Assume that (ii) holds. Then S∗ ∈ 	p∗(F∗,G∗) with πp∗(S∗) =

dp(S) by [5, Theorem 2.2.2]. By Pietsch Domination Theorem for p-summing linear
operators (see [6, Theorem 2.12]), there is a Borel regular probability measure μ on
BF∗∗ such that

∥∥S∗(y∗)
∥∥ ≤ πp∗(S∗)

∥∥y∗∥∥
L p∗ (μ)
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for all y∗ ∈ F∗. For any x ∈ U and y∗ ∈ F∗, it follows that
∣∣〈y∗, f (x)

〉∣∣ ≤ ∥∥S∗(y∗)
∥∥ ≤ πp∗(S∗)

∥∥y∗∥∥
L p∗ (μ)

.

Hence, f ∈ DH∞
p (U , F) with dH∞

p ( f ) ≤ πp∗(S∗) = dp(S) by Theorem 5.2. ��
As a consequence of Theorem 5.4, an application of [4, Theorem 3.2] shows that

the Banach ideal DH∞
p is generated by composition with the Banach operator ideal

Dp, but we prefer to give here a proof to complete the information.

Corollary 5.6 Let 1 < p ≤ ∞ and f ∈ H∞(U , F). The following conditions are
equivalent:
(i) f : U → F is Cohen strongly p-summing holomorphic.
(ii) There is a complex Banach space G, g ∈ H∞(U ,G) and T ∈ Dp(G, F) so that

f = T ◦ g.

In this case, dH∞
p ( f ) = inf{dp(T ) ‖g‖∞},where the infimum is taken over all factor-

izations of f as in (ii), and this infimum is attained at T f ◦ gU (Mujica’s factorization
of f ).

Proof (i) ⇒ (ii): If f ∈ DH∞
p (U , F), we have f = T f ◦ gU , where G∞(U )

is a complex Banach space, T f ∈ Dp(G∞(U ), F) and gU ∈ H∞(U ,G∞(U )) by
Theorems 1.2 and 5.4. Moreover,

inf
{
dp(T ) ‖g‖∞

} ≤ dp(T f ) ‖gU‖∞ = dH
∞

p ( f ).

(ii) ⇒ (i): Assume f = T ◦ g with G, g and T being as in (ii). Since g = Tg ◦ gU
by Theorem 1.2, it follows that f = T ◦ Tg ◦ gU which implies that T f = T ◦ Tg, and
thus T f ∈ Dp(G∞(U ), F) by the ideal property of Dp. By Theorem 5.4, we obtain
that f ∈ DH∞

p (U , F) with

dH
∞

p ( f ) = dp(T f ) = dp(T ◦ Tg) ≤ kp(T )
∥∥Tg

∥∥ = dp(T ) ‖g‖∞ ,

and so dH∞
p ( f ) ≤ inf{dp(T ) ‖g‖∞} by taking the infimum over all factorizations of

f . ��
When F is reflexive, every f ∈ DH∞

2 (U , F) factors through a Hilbert space as we
see below.

Corollary 5.7 Let F be a reflexive complex Banach space. If f ∈ DH∞
2 (U , F), then

there exist a Hilbert space H , an operator T ∈ D2(H , F) and a mapping g ∈
H∞(U , H) such that f = T ◦ g.

Proof Assume that f ∈ DH∞
2 (U , F). By Theorem 5.4, T f ∈ D2(G∞(U ), F).Hence

(T f )
∗ ∈ 	2(F∗,G∞(U )∗) by [5, Theorem 2.2.2]. By [6, Corollary 2.16 and Exam-

ples 2.9 (b)], there exist a Hilbert space H and operators T1 ∈ 	2(F∗, H) and
T2 ∈ L(H ,G∞(U )∗) such that (T f )

∗ = T2 ◦ T1.
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On the one hand, we have (T f )
∗∗ = (T1)∗ ◦ (T2)∗, where (T1)∗ ∈ D2(H , F∗∗)

by [5, Theorem 2.2.2]. On the other hand, we have (T f )
∗∗ ◦ κG∞(U ) = κF ◦ T f with

κF being bijective (since F is reflexive). Consequently, we obtain f = T ◦ g, where
T = (κF )−1 ◦ (T1)∗ ∈ D2(H , F) and g = (T2)∗ ◦ κG∞(U ) ◦ gU ∈ H∞(U , H). ��

Applying Theorem 5.4 and [5, Theorem 2.4.1], we get useful inclusion relations.

Corollary 5.8 Let 1 < p1 ≤ p2 ≤ ∞. If f ∈ DH∞
p2 (U , F), then f ∈ DH∞

p1 (U , F)

and dH∞
p1 ( f ) ≤ dH∞

p2 ( f ). ��
These inclusion relations can become coincidence relations when F∗ has cotype 2

(see [6, pp. 217–221] for definitions and results on this class of spaces). Compare to
[6, Corollary 11.16].

Corollary 5.9 Let 2 < p ≤ ∞. If F∗ has cotype 2, thenDH∞
p (U , F) = DH∞

2 (U , F)

and dH∞
p ( f ) = dH∞

2 ( f ) for all f ∈ DH∞
p (U , F).

Proof By Corollary 5.8, we have DH∞
p (U , F) ⊆ DH∞

2 (U , F) with dH∞
2 ( f ) ≤

dH∞
p ( f ) for all f ∈ DH∞

p (U , F).

For the converse, let f ∈ DH∞
2 (U , F). Then T f ∈ D2(G∞(U ), F) with

d2(T f ) = dH∞
2 ( f ) by Theorem 5.4. Hence (T f )

∗ ∈ 	2(F∗,G∞(U )∗) with
π2((T f )

∗) = d2(T f ) by [5, Theorem 2.2.2]. Then, by [6, Corollary 11.16], (T f )
∗ ∈

	1(F∗,G∞(U )∗) with π1((T f )
∗) = π2((T f )

∗). Hence, (T f )
∗ ∈ 	p∗(F∗,G∞(U )∗)

with πp∗((T f )
∗) ≤ π1((T f )

∗) by [6, Theorem 2.8]. Then, by [5, Theorem 2.2.2],
T f ∈ Dp(G∞(U ), F) with dp(T f ) = πp∗((T f )

∗).
Finally, f ∈ DH∞

p (U , F) with dH∞
p ( f ) = dp(T f ) by Theorem 5.4, and therefore

dH∞
p ( f ) ≤ dH∞

2 ( f ). ��
Given f ∈ H∞(U , F), the transpose of f is the mapping f t : F∗ → H∞(U )

defined by

f t (y∗) = y∗ ◦ f (y∗ ∈ F∗).

It is known (see [12, Proposition 1.6]) that f t ∈ L(F∗,H∞(U ))with ‖ f t‖ = ‖ f ‖∞ .

Furthermore, f t = J−1
U ◦ (T f )

∗ with JU : H∞(U ) → G∞(U )∗ being the identifica-
tion established in Theorem 1.2.

The next result establishes the relation of a Cohen strongly p-summing holomor-
phic mapping f : U → F and its transpose f t : F∗ → H∞(U ). Compare to [5,
Theorem 2.2.2].

Theorem 5.10 Let 1 < p ≤ ∞ and f ∈ H∞(U , F). Then f ∈ DH∞
p (U , F∗) if and

only if f t ∈ 	p∗(F∗,H∞(U )). In this case, dH∞
p ( f ) = πp∗( f t ).

Proof Applying Theorem 5.4, [5, Theorem 2.2.2] and [6, 2.4 and 2.5], respectively,
we have

f ∈ DH∞
p (U , F∗) ⇔ T f ∈ Dp(G∞(U ), F)
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⇔ (T f )
∗ ∈ 	p∗(F∗,G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ 	p∗(F∗,H∞(U )).

In this case, dH∞
p ( f ) = dp(T f ) = πp∗((T f )

∗) = πp∗(JU ◦ f t ) = πp∗( f t ). ��

The study of holomorphic mappings with relatively (weakly) compact range was
initiated by Mujica [16] and followed in [12].

Corollary 5.11 Let 1 < p ≤ ∞.

(i) EveryCohen strongly p-summingholomorphicmapping f : U → F has relatively
weakly compact range.

(ii) If F is reflexive, then every Cohen strongly p-summing holomorphic mapping
f : U → F has relatively compact range.

Proof If f ∈ DH∞
p (U , F∗), then f t ∈ 	p∗(F∗,H∞(U )) by Theorem 5.10. Hence

the linear operator f t is weakly compact and completely continuous by [6, 2.17].
Since f t is weakly compact, this means that f has relatively weakly compact range
by [12, Theorem 2.7]. Since f t is completely continuous and F∗ is reflexive, it is
known that f t is compact and, equivalently, f has relatively compact range by [12,
Theorem 2.2]. ��

6 Pietsch factorization for Cohen strongly p-summing holomorphic
mappings

We devote this section to the analogue of Pietsch Factorization Theorem for
p-summing linear operators [6, Theorem 2.13] for the class of Cohen strongly p-
summing holomorphic mappings. Recall that, for every Banach space F, we have
the canonical isometric injections κF : F → F∗∗ and ιF : F → C (BF∗) defined,
respectively, by

〈
κF (y), y∗〉 = y∗(y)

(
y ∈ F, y∗ ∈ F∗) ,

〈
ιF (y), y∗〉 = y∗(y)

(
y ∈ F, y∗ ∈ BF∗

)
.

Moreover, if μ is a regular Borel measure on (BF∗∗ , w∗), jp denotes the canonical
map from C (BF∗) to L p (μ) .

Theorem 6.1 (Pietsch Factorization) Let 1 < p ≤ ∞ and f ∈ H∞(U , F). The
following conditions are equivalent:
(i) f : U → F is Cohen strongly p-summing holomorphic.
(ii) There exist a regularBorel probabilitymeasureμon (BF∗∗ , w∗),aclosed subspace

Sp∗ of L p∗(μ) and a bounded holomorphic mapping g : U → (Sp∗)∗ such that
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the following diagram commutes:

(Sp∗)∗
( jp∗ )∗

(ιF∗ (F∗))∗

(ιF∗ )∗

U

g

f
F

κF
F∗∗

In this case, dH∞
p ( f ) = ‖g‖∞ .

Proof (i) ⇒ (ii): Let f ∈ DH∞
p (U , F). Then f t ∈ 	p∗(F∗,H∞(U )) by The-

orem 5.10. By [6, Theorem 2.13], there exist a regular Borel probability measure
μ on (BF∗∗ , w∗), a subspace Sp∗ := jp∗ (iF∗ (F∗)) of L p∗(μ), and an operator
T ∈ L(Sp∗ ,H∞(U )) with ‖T ‖ = ‖ f t‖ such that the following diagram commutes:

ιF∗(F∗)
jp∗

Sp∗

T

F∗

ιF∗

f t H∞(U )

Dualizing, we obtain

U
f→ F

δU ↓ ↓ κF

H∞(U )∗ ( f t )∗→ F∗∗
T ∗ ↓ (ιF∗)∗ ↑
(Sp∗)∗

( jp∗ )∗→ (ιF∗(F∗))∗

Let g := T ∗ ◦ gU . Clearly, g ∈ H∞(U , (Sp∗)∗) with ‖g‖∞ ≤ ‖T ‖ , and thus

‖g‖∞ ≤ ‖ f t‖ = ‖ f ‖∞ ≤ dH
∞

p ( f ).

Moreover, since f t = T ◦ jp∗ ◦ ιF∗ , we have

κF ◦ f = ( f t )∗ ◦ gU = (ιF∗)∗ ◦ ( jp∗)∗ ◦ T ∗ ◦ gU = (ιF∗)∗ ◦ ( jp∗)∗ ◦ g.

(ii) ⇒ (i): Since κF ◦ f = (ιF∗)∗ ◦ ( jp∗)∗ ◦ g, it follows that f t ◦ (κF )∗ =
((ιF∗)∗ ◦ ( jp∗)∗ ◦ g)t . As (κF )∗ ◦ κF∗ = idF∗ , we obtain that

f t = ((ιF∗)∗ ◦ ( jp∗)∗ ◦ g)t ◦ κF∗ .

Since jp∗ ∈ 	p∗(ιF∗(F∗), Sp∗) (see [6, Examples 2.9]), then

( jp∗)∗ ∈ Dp((Sp∗)∗, (iF∗(F∗))∗)
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by [5, Theorem 2.2.2]. Hence (ιF∗)∗ ◦ ( jp∗)∗ ◦ g ∈ DH∞
p (U , F∗∗) with

dH
∞

p ((ιF∗)∗ ◦ ( jp∗)∗ ◦ g) ≤ dp((ιF∗)∗ ◦ ( jp∗)∗) ‖g‖∞ = πp∗( jp∗ ◦ ιF∗) ‖g‖∞

by the ideal property of Dp, Corollary 5.6 and [5, Theorem 2.2.2]. Applying Theo-
rem 5.10 and the ideal property of 	p, we deduce that f t = ((ιF∗)∗ ◦ ( jp∗)∗ ◦ g)t ◦
κF∗ ∈ 	p∗(F∗,H∞(U )). Again, Theorem 5.10 gives that f ∈ DH∞

p (U , F) with
dH∞
p ( f ) = πp∗( f t ). Moreover,

dH
∞

p ( f ) = πp∗(((ιF∗)∗ ◦ ( jp∗)∗ ◦ g)t ◦ κF∗)

≤ πp∗(((ιF∗)∗ ◦ ( jp∗)∗ ◦ g)t ) ‖κF∗‖
≤ dH

∞
p ((ιF∗)∗ ◦ ( jp∗)∗ ◦ g)

≤ πp∗( jp∗ ◦ ιF∗) ‖g‖∞
≤ πp∗( jp∗) ‖ιF∗‖ ‖g‖∞ ≤ ‖g‖∞ .
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