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Abstract

Let E and F be complex Banach spaces, U be an open subsetof Eand 1 < p < co. We
introduce and study the notion of a Cohen strongly p-summing holomorphic mapping
from U to F, a holomorphic version of a strongly p-summing linear operator. For
such mappings, we establish both Pietsch Domination/Factorization Theorems and
analyse their linearizations from G*° (U) (the canonical predual of H°(U)) and their
transpositions on H°(U). Concerning the space Z)’;;’oo formed by such mappings
and endowed with a natural norm dz{oc, we show that it is a regular Banach ideal of
bounded holomorphic mappings generated by composition with the ideal of strongly
p-summing linear operators. Moreover, we identify the space (Z)Z,‘(OO(U , F™), dz{oo)
with the dual of the completion of tensor product space G*°(U) ® F endowed with
the Chevet-Saphar norm g,,.
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Introduction

The linear theory of absolutely summing operators between Banach spaces was initi-
ated by Grothendieck [11] in 1950 with the introduction of the concept of 1-summing
operator. In 1967, Pietsch [22] defined the class of absolutely p-summing operators
for any p > 0 and established many of their fundamental properties.

The nonlinear theory for such operators started with Pietsch [23] in 1983. Since
then, the idea of extending the theory of absolutely p-summing operators to other
settings has been developed by various authors, namely, the polynomial, multilinear,
Lipschitz and holomorphic settings (see, for example, [1, 2, 7, 8, 19, 27, 28]).

Summability for holomorphic mappings was first considered by Matos in a series
of papers (see e.g. [13, 14]). Our approach in this paper is different from that of Matos.
Moreover, strong p-summability in the sense of Dimant [7] was also addressed for
subspaces of holomorphic mappings as polynomials and multilinear mappings under
the name of factorable strongly p-summing (see [20, 24, 25]). In these papers, it
was proved that the ideal of factorable strongly p-summing polynomials (multilinear
mappings) coincides with the ideal formed by composition with p-summing linear
operators. Ideals of polynomial mappings were also studied by Floret and Garcia [9,
10].

In 1973, Cohen [5] introduced the concept of a strongly p-summing linear operator
to characterize those operators whose adjoints are absolutely p*-summing operators,
where p* denotes the conjugate index of p € (1, oo]. Influenced by this class of
operators, we introduce and study a new concept of summability in the category of
bounded holomorphic mappings, which yields the called Cohen strongly p-summing
holomorphic mappings.

We now describe the contents of the paper. Let E and F be complex Banach
spaces, U be an open subset of £ and 1 < p < oco. We denote by H*°(U, F) the
Banach space of all bounded holomorphic mappings from U to F, equipped with the
supremum norm. In particular, H°°(U) stands for the space H° (U, C). It is known
that H°(U) is a dual Banach space whose canonical predual, denoted G*°(U), is the
norm-closed linear subspace of H*°(U)* generated by the evaluation functionals at
the points of U.

In Sect. 1, we fix the notation and recall some results on the space H*°(U, F),
essentially, a remarkable linearization theorem due to Mujica [16] which is a key tool
to establish our results.

In Sect. 2, we show that the space of all Cohen strongly p-summing holomorphic
mappings denoted Z)?,{oo and equipped with a natural norm d;’,{oo, is a regular Banach
ideal of bounded holomorphic mappings. Furthermore, D(IHOO = H® with d;HOO =
oo -

The elements of the tensor product of two linear spaces can be viewed as linear
mappings or bilinear forms (see [26, Section 1.3]). Following this idea, in Sect. 3 we
introduce the tensor product A(U) ® F as a space of linear functionals on the space
H>®(U, F*), and equip this space with the known Chevet—Saphar norms g, and d,.
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Section 4 addresses the duality theory: the space (Z)Z,{OO(U , F), d;f{oc) is canon-
ically isometrically isomorphic to the dual of the completion of the tensor product
space G (U) ®;, F. In particular, we deduce that H** (U, F*) is a dual space.

Pietsch [22] established a Domination/Factorization Theorem for p-summing lin-
ear operators between Banach spaces. Characterizing previously the elements of the
dual space of A(U) ®g, F, we present for Cohen strongly p-summing holomorphic
mappings both versions of Pietsch Domination Theorem and Pietsch Factorization
Theorem in Sects. 5 and 6, respectively.

Moreover, in Sect. 5, we prove that a mapping f: U — F is Cohen strongly p-
summing holomorphic if and only if Mujica’s linearization Ty: G*(U) — F isa
strongly p-summing operator. Several interesting applications of this fact are obtained.

In addition, we show that the ideal Z);’;{m is generated by composition with the ideal
D, of strongly p-summing linear operators, that is, every mapping f € DZ,"OO(U , F)
admits a factorization in the form f = T o g, for some complex Banach space
G, g € H®WU,G) and T € D,(G, F). Moreover, dz{oo(f) coincides with
inf{d,(T) |Igllo}, where the infimum is extended over all such factorizations of f,
and, curiously, this infimum is attained at Mujica’s factorization of f. We also show
that every f € Dg{w(U , F) factors through a Hilbert space whenever F is reflexive,
and establish some inclusion and coincidence properties of spaces D}’,{w (U, F).

These results represent advances in the research program initiated by Aron et al.
[4] on the factorization of bounded holomorphic mappings in terms of an element of
an operator ideal and a bounded holomorphic mapping.

Finally, we analyse holomorphic transposition of their elements and prove that every
member of Z);,HOo (U, F) has relatively weakly compact range that becomes relatively
compact whenever F' is reflexive. We thus contribute to the study of holomorphic
mappings with relatively (weakly) compact range, begun by Mujica [16] and continued
in [12].

1 Notation and preliminaries

Throughout this paper, unless otherwise stated, £ and F will denote complex Banach
spaces and U an open subset of E.

We first introduce some notation. As usual, Bg denotes the closed unit ball of E. For
two vector spaces E and F, L(E, F) stands for the vector space of all linear operators
from E into F. In the case that E and F are normed spaces, L(E, F) represents the
normed space of all bounded linear operators from E to F' endowed with the canonical
norm of operators. In particular, the algebraic dual L(E, K) and the topological dual
L(E,K) are denoted by E’ and E*, respectively. For each ¢ € E and ¢* € E’, we
frequently will write (e*, e) instead of e*(e). We denote by « g the canonical isometric
embedding of E into E** defined by (kg (e), e*) = (e*, e) fore € E and e* € E*.
Foraset A C E, co(A) denotes the convex hull of A.

We now recall some concepts and results of the theory of holomorphic mappings
on Banach spaces.

) Birkhauser



44 Page4of 31 A.Jiménez-Vargas et al.

Theorem 1.1 (See [18, 7 Theorem] and [15, Theorem 8.7]) Let E and F be complex
Banach spaces and let U be an open setin E. For amapping f: U — F, the following
conditions are equivalent:

(1) Foreacha € U, there is an operator T € L(E, F) such that

i SO~ f@-Tk—a) _
mm =

0.
x—a x —all
(i) Foreacha € U, thereexistanopenball B(a, r) C U and a sequence of continuous
m-homogeneous polynomials (Py, a)menN, from E into F such that

fx) = Z Pm,a(x —a),
m=0

where the series converges uniformly for x € B(a,r).
(iii) f is G-holomorphic (that is, for alla € U and b € E, the map . — f(a + \b)
is holomorphic on the open set {A € C: a + Ab € U}) and continuous. O

A mapping f: U — F is said to be holomorphic if it verifies the equivalent
conditions in Theorem 1.1. The mapping T in condition (i) is uniquely determined by
f and a, and is called the differential of f at a and denoted by Df (a).

A mapping f: U — F is locally bounded if f is bounded on a suitable neighbor-
hood of each point of U. Given a Banach space E, a subset N C Bpg= is said to be
norming for E if the function

N(x) =sup{|x*(0)| : x* € N} (x € E)

defines the norm on E.

If U C Eand V C F are open sets, H(U, V) will represent the set of all holo-
morphic mappings from U to V. We will denote by H (U, F) the linear space of
all holomorphic mappings from U into F and by H*>(U, F) the subspace of all
f € H(U, F) such that f(U) is bounded in F. When F = C, then we will write
H>®U,C)=H>*U).

It is easy to prove that the linear space H*° (U, F), equipped with the supremum
norm:

[ flle =sup{llf@) : x €U} (f € H®)),

is a Banach space. Let G°°(U) denote the norm-closed linear hull in H*°(U)* of the
set {§(x): x € U} of evaluation functionals defined by

), fl=f&x) (feHZW).
In [16, 17], Mujica established the following properties of G*°(U).

W Birkhauser
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Theorem 1.2 [16, Theorem 2.1] Let E be a complex Banach space and let U be an

open setin E.

(1) H(U) is isometrically isomorphic to G*(U)*, via the evaluation mapping
Jy: H®U) — G*®°(U)* given by

JuH)y)=v(H) (v eG>WU), feHTWU)).

(i1) The mapping gy : U — G*°(U) defined by gy (x) = 8(x) is holomorphic with
lgu )| =1forallx € U.

(iii) Foreach complex Banach space F and each mapping f € H* (U, F), there exists
a unique operator Ty € L(G™(U), F) such that Ty o gy = f. Furthermore,
ITr ]l =11flloo -

(iv) The mapping f +— Ty is an isometric isomorphism from H*(U, F) onto
LG>U), F).

(v) [16, Corollary 4.12] (see also [17, Theorem 5.1]). G*(U) consists of all func-
tionals y € H®U)* of the form y = Y 2, ,i8(x;) with (A)i>1 € €1 and
(xi)i=1 € UN. Moreover, ||y| = inf {Z?il I)»il} where the infimum is taken over
all such representations of y . O

2 Cohen strongly p-summing holomorphic mappings

Let E and F be Banach spaces and 1 < p < oo. Let us recall [6] that an operator
T € L(E, F) is p-summing if there exists a constant C > 0 such that, regardless of
the natural number n and regardless of the choice of vectors x1, ..., x, in E, we have
the inequalities:

1 1
n ? n ?
(Z ||T<x,»>||f’) <C sup (Z !x*(x»V”) if 1 < p < oo,
i=1

X*€Bpx \ ;1
max [|T(x;)|| <C sup | max |x*(x,~)| if p = o0.
1<i<n x*€Bpx 1<i<n

The infimum of such constants C is denoted by 7,(T) and the linear space of all
p-summing operators from E into F by I1,(E, F).
The analogous notion for holomorphic mappings could be introduced as follows.

Definition 2.1 Let E and F be complex Banach spaces, let U be an open subset of E,
and let I < p < oco. A holomorphic mapping f: U — F is said to be p-summing if
there exists a constant C > 0 such that for all » € N and x;, ..., x, € U, we have

1 1
<Z ||f<xi>||"> <C sup (Z |g<xi)|") if 1< p < oo,
i=1

gGBrHoO(U) i=1
max [ f(x)l <C  sup <m,ax |g(x,->|) if p = co.
1<i<n geBﬂw(U) I<i<n

) Birkhauser
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We denote by nz{oo (f) the infimum of such constants C, and by H(If{m (U, F) the set
of all p-summing holomorphic mappings from U into F.

p-Summing holomorphic mappings are of little interest to us as HZ{OO(U ,F) =

H®U, F) with 77 (f) = || fll for all f € I} (U, F), and furthermore the
subclass of p-summing holomorphic mappings that we will study in this paper includes
this case.

Let 1 < p < oo and let p* denote the conjugate index of p given by

= ifl <p<oo,

p—1
pF={o00 ifp=1,
1 if p = o0.

In [5], Cohen introduced the following subclass of p-summing operators between
Banach spaces: an operator T € L(E, F) is strongly p-summing if there exists a

constant C > 0 such that foralln € N, x1,...,x, € Eand y{,...,yi € F*, we
have
n n
Dol 7o) sC(Z ||xl-||> sup <max |y (y,>|> if p=1,
im N y**EBp** 1<i<n
n %
Yol Tea) < c (Z llx; ||”) sup (Z|y**<y )[° ) if 1<p<oo,
i=1 y**EBF** i=1

n
Zly,,T(x, I=Ye (max ||le|> sup (Zly**(yi*)|> if p=oc.
i=1 TeBpe \ izt

The infimum of such constants C is denoted by d,,(T'), and the space of all strongly
p-summing operators from E into F by D, (E, F). If p = 1, we have D (E, F) =
L(E, F).

We now introduce a version of this concept in the setting of holomorphic mappings.

Definition 2.2 Let E and F be complex Banach spaces, let U be an open subset of E,
andlet I < p < co. A holomorphic mapping f: U — F is said to be Cohen strongly
p-summing if there exists a constant C > 0 such that foralln € N, A1,..., 1, € C,
X1,...,xg € Uand yf, ..., yr € F*, we have

7**€BF**

; il (v, fa)| <€ (Z I)»i|) sup (lfg??n Y )‘) if p=1,

*"“

Z|xi||(yi*,f<xl <cC (ZW’) sup (Zly**(y,*)V’) if 1<p<oo,

sk
y GBF** i=1

Zwyl,f(x, | <c (magnl)»il) sup (Z|y**<yl>|) it p= oo

**EBF**

W Birkhauser
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We denote by dz{oo (f) the infimum of such constants C, and by Z)Z,{oo (U, F) the set
of all Cohen strongly p-summing holomorphic mappings from U into F'.

The introduction of the scalars A; in the previous definition is justified by the
assertion (v) of Theorem 1.2. Proposition 2.5 shows that Z)(IHOo = H>,

The concept of an ideal of bounded holomorphic mappings is inspired by the anal-
ogous one for bounded linear operators between Banach spaces [26, Section 8.2].

Definition 2.3 An ideal of bounded holomorphic mappings (or simply, a bounded-
holomorphic ideal) is a subclass 77 of the class H{*° of all bounded holomorphic
mappings such that for each complex Banach space E, each open subset U of E and
each complex Banach space F', the components

"W, F) .= 1" nH® W, F)

satisfy the following properties:

(1) 7H* (U, F) is a linear subspace of H*(U, F),

(I12) Forany g € H*(U) and y € F, the mapping g - y: x > g(x)y from U to F is
in 7" (U, F),

(I3) The ideal property: If H, G are complex Banach spaces, V is an open subset of
H, h e HV,U), f € TH*(WU,F)and S € L(F,G), then So f o h is in
">V, G).

A bounded-holomorphic ideal IH% is said to be normed (Banach) if there exists a
function ||-|| ypee : T H® R(‘f such that for every complex Banach space E, every

open subset U of E and every complex Banach space F, the following conditions are
satisfied:

(N1) ", F), [I-1l 774> ) is a normed (Banach) space with || f ||, < || f|| 7z for
all f e 7", F),
(N2) llg - yllyre = liglloo lyIl for every g € H*(U) and y € F,

(N3) If H, G are complex Banach spaces, V is an open subset of H, h € H(V,U),
f eI (WU, F)and S € L(F,G), then ||S o fohlizre < NSIIFIlgwee .

A normed bounded-holomorphic ideal I H* is said to be regular if for any f €
H>*®(U, F), we have that f € IH* (U, F) with I fll jre = llkF o fl jee whenever
kpo f eI W, F=).

The following class of bounded holomorphic mappings appears involved in Defi-
nition 2.3.

Lemma24 Let g € H®WU) and y € F. The mapping g - y: U — F, given by
(8- »)(x) = g(x)y, belongs to H*U, F) with [|g - Ylloo = lIgllec IVl - o

We are now ready to establish the main result of this section.
Proposition 2.5 (Z)?,{OO, dz{oo) is a regular Banach ideal of bounded holomorphic

mappings. Furthermore, D(IHOO = H® with d;HOO = oo -

) Birkhauser
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Proof We will only prove the case 1 < p < oo. The cases p = 1 and p = oo follow
similarly.

(N1) We first show that D™ (U, F) € H®(U, F) with || f | < d¥™ (f) forall
f € DI (U, F). Indeed, given f € D)™ (U, F), we have

v, f@) =dl () sup |y*oM|=d)T ) |y

V*¥*EBpkx

for all x € U and y* € F*. By Hahn—Banach Theorem, we obtain that || f(x)] <
d(H (f) forall x € U. Hence f € H*®(U, F) with || fl o Sdﬂ ).
Let fi, f» € D)"(U,F). Givenn € N, A1,.... % € C, x1,...,x, € U and

i ..., yn € F*, we have

*‘_‘

Z|x,~||<y;:f1<xi>>|sd;*m(fo(Zw’) sup <Z|y**<y,>|”> :

i=1 i=1 y*eBper \ ;o
1

Z|xi||<y;‘,fz(x,->>!sdfﬂfz)(pr) sup (Z\y**(yw’)

i=1 i=1 y*eBpe \ ;o

*"“

Using the two inequalities above, we obtain

Dol | G+ D) < D0 Il | AG)) + D Ial (v f200)]
i=1 i=1 i=1

1

1 L
s(d;f’°°<f1>+d;f’°°(fz>)<Z|w) sup (Zly**(m\”) :

i=1 **EBF** i=1

This tells us that £, + f, € DU, F) withd?™ (fi + f2) < dJ (f)+d7 (f).
LetA € Cand f € Z)zfoo(U, F).Givenn e N, A; € C, x; € U and y} € F* for
i=1,...,n, wehave

Dol [ )| = 11D Il |(vF £ )]

i=1 i=l1

1 1
n E 7
< Md () (Dw) sup (Z v oD|” ) :

i=1 )’**EBF**

d¥70f) = 0 = d)T(f) if A = 0. For A # 0, we have d7/"(f) =
d70710N) = IMTHATT ), hence (A dMT(f) < dJT(Lf). and so
AT f) = MM ().

and thus Af € DY (U, F) with d™(.f) < [x|d}"(f). This implies that

W Birkhauser
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Moreover, if f € D™ (U, F)and d}'™ (f) = 0, then || |, = 0 by (N1), and so
f = 0. Thus, <Z)([},{OO(U, F), d;f’oo) is a normed space.

To prove that (D([],{OO(U ,F), d;f{oo) is complete, it suffices to prove that every

absolutely convergent series is convergent. So let (f,),eny be a sequence in
Z)z;’oo(U, F) such that ZneN dZ'{w(f,,) is convergent. Since || fulloo < d;’oo(fn) for
all n € N and (H*(U, F), |I-ll») is a Banach space, then ), f, converges in
(H*®(U, F), ||Ills) to a function f € H*®(U, F). Givenm € N, x1,...,x, € U,
Vi ym € Frand Ay, ..., Ay € C, we have

<y/f7 Z fi(Xk)>‘

i=1

<2 (L) () s (Do
i=1 k=1 yeBpee \j—

1

1
5<Zd;§’°"(ﬁ-)) (Zm") sup (Z!y**(y;*)!”*)
i=1 k=1

y** GBF** k=1

m
> Il
k=1

p*

==

for all n € N, and by taking limits with n — oo yields

9]

1
D Il |y )] < (Zd,’f""(f@) (Dw) sup (Z Iy**(y;:>|”*>
k=1 k=1 Y k=1

Hok
n=1 EBF**

*|

p

Hence f € Z);’,'{M(U , F) with JTZ{OO( f) < thozl dz{m( fn). Moreover, we have

i (f—Zﬁ) =d)"” ( > ﬁ-) < Y a7

i=1 i=n-+1 i=n+1

foralln € N, and thus f is the d;f(m—limit of the series ), fa-

(N2)Letg € H*®°(U)andy € F.Ify = 0, there is nothing to prove. Assume y # 0.
ByLemma24,g-ye H®U,F).GivenneN, x1,...,x, €U, y{,...,y5 € F*
and A1, ..., A, € C, we have

Dol i (- @)

i=1

=D Iallgl [y )
i=1

b )

n
< llglloo Y11 124
i=1

) Birkhauser



44 Page 10 of 31 A.Jiménez-Vargas et al.
e

=l @W) (Z <y”||y||> ) 1
el €l Y

1 1
< ligloo Iy (Zw’) sup (Z FaCrold )

i=1 Y¥EBpes \j=)

by applying the Holder inequality, and therefore g-y € DZ{&(U , F) with d;’oo (gy) <
llglls I¥]l . Conversely, by applying what was proved in (N1), we have ||gllo |¥] =
g Yl <d¥ (g ).

(N3)Let H, G be complex Banach spaces, V be anopen subsetof H,h € H(V, U),
f € DZ’OO(U, F) and S € L(F,G). We can suppose S # 0. Given n € N,
XX €U, ¥, ..., yn € G and Ay, ..., A, € C, we have

D il |y, SCF )|

i=1

_ Z Al |(yf o S, f(h(xi))|

i=1

1 1
n » i
<d¥(f) (ZW’) sup (Z|y**<y, os>|”)
i=1 YHEBpex \j=i
S*
Yo )(y?")
( Isi)

< ISId}™ () (Z |Al-|P) sup (Z |z**(y;")|f’*)

*ok
i=1 Z EBG** i=1

L

P*> P*

= ISId}™ (f) (Z w’) sup (Z
y

i=1 **EBF** i=1

and therefore S o f o h € DI (V. G) withd?™ (S o f o h) < IS d%™ (f).
We now prove that the ideal Z);lf{ao is regular. Let f € H*°(U, F) and assume

that kp o f € DN (U, F*). Givenn € N, x1,...,x, € U, y{,....yi € F* and
A,y ..., Ay € C, we have

Dol £@))
i=1

= > il [{er (£, 37|

i=1

W Birkhauser
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= Z il [(kp (), kE (f i)

i=1

1
fdf%mf)(zl*fl”) sup (Z!y****<x *(y,»!”)

sk )
i=1 y GBI.**** i=1

*""

1 1
d,f’°°<xFof)(Z|A,-|P> sup (ZIy**(y,)V’) :

i=1 YEBpas \j=i

and thus f € Z)Z{Oc (U, F) with d;”oo (f) < d;’,{w (kF o f). The reverse inequality
follows from (N3).

Finally, we have seen in (N1) that Z)TIOO(U, F) € H*®(U, F) with ||flle <
d (f) forall f € DI (U, F). For the converse, let f € H®(U, F).If f =0,
there is nothing to prove. Assume f # 0.Givenn e N, x1,...,x, € U, y{,..., yi €

F*and)‘lw--,)»ne(c,wehave
Zlkl|y,,f(xz !—Ilf"ooZ'“ <”F<||f;)||h ) y*>

<Ifls (ZIMI) lrgggn< sup [y () |>

y**EBF**

= flls (Zlk I) sup (gﬁgﬂb**(y;*)l),

y** Bk

and therefore f € DT (U, F) with d?™ (f) < | fllo - .

3 The tensor product A(U) ® F

We introduce A(U) ® F as a space of linear functionals on H*(U, F*).

Definition 3.1 Let E and F be complex Banach spaces and let U be an open subset
of E. Foreach x € U, let §(x): H*(U) — C be the linear functional defined by

Bx). f)=fx) (feH®W).

Let A(U) be the linear subspace of H*°(U)’ spanned by the set {§(x): x € U}.
Foranyx e Uandy € F,let§(x) ® y: H® (U, F*) — C be the linear functional
given by

Y () =(f).y) (feH®U,F).

) Birkhauser
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We define the tensor product A(U)® F as the linear subspace of H*° (U, F*)’ spanned
by the set

{f(x)®y:xeU, yeF}.

We say that §(x) ® y is an elementary tensor of A(U) ® F. Note that each element
uin A(U)Q® Fisof the formu = Y| 4;(§(x;) ® yi), wheren € N, 4; € C, x; € U
and y; € F fori =1, ..., n. This representation of u is not unique. It is worth noting
that each element u of A(U) ® F can be represented as u = Y '_, 8(x;) ® y; since
MO0 ® y) = 8(x) ® (Ay).

As a straightforward consequence from Definition 3.1, we describe the action of a
tensor u in A(U) ® F on a function f in H*(U, F*):

Lemma3.2 Letu =) ; ; 28(x;) ®yi € A(U)® F and f € H®(U, F*). Then

u(f) =Y i (f(xi). v

i=1
|

The following characterization of the zero tensor of A(U) ® F follows immediately
from [26, Proposition 1.2].

Proposition3.3 Ifu =) !_, 8(x;) ® yi € A(U) ® F, the following are equivalent:

() u=0.

(i) D7, g(xi)¢(yi) = 0 for every g € By and ¢ € Bp=. O
By Definition 3.1, A(U) ® F is a linear subspace of H>° (U, F*)'. In fact, we have:

Proposition3.4 (A(U) ® F, H*(U, F*)) forms a dual pair, where the bilinear form
(-, -) associated to the dual pair is given by

ZA f(xi), yi)

foru=73"7"_28(x))®yi € AWU)® F and f € H®(U, F*).

Proof Since (u, f) = u(f) by Lemma 3.2, it is immediate that (-, -) is a well-
defined bilinear map from (A(U) ® F) x H® (U, F*) to C. On the one hand, if
ue€ A(U)Q® F and (u, f) = 0 forall f € H*(U, F*), then u = 0 follows eas-
ily from Proposition 3.3, and thus H°(U, F*) separates points of A(U) ® F. On
the other hand, if f € H*(U, F*) and (u, f) = O forallu € A(U) ® F, then
(f(x),y) =((x)®y, f) =0forall x € U and y € F, this means that f = 0 and
thus A(U) ® F separates points of H° (U, F*). O

Since (A(U) ® F, H*®(U, F*)) is a dual pair, we can identify H*° (U, F*) with
a linear subspace of (A(U) ® F)’ as follows.
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Corollary 3.5 For each f € H>®(U, F*), the functional Ao(f): A{U)® F — C,
given by

Ao(f)@) =D 2i (f(x). yi)
i=1

foru = Z?:l Lid(xi) @ yi € A(U) ® F, is linear. We will say that Ao(f) is the
linear functional on A(U) ® F associated to f. Furthermore, the map f — Ao(f)
is a linear monomorphism from H (U, F*) into (A(U) ® F)'.

Proof Let f € H™ (U, F*). Note that Ag(f)(u) = (u, f) forallu € A(U)® F.
It is immediate that Ag(f) is a well-defined linear functional on A(U) ® F and
that f — Ag(f) from H® U, F*) into (A(U) ® F)' is a well-defined linear map.
Finally, let f € H(U, F*) and assume that Ag(f) = 0. Then (u, f) = 0 for all
ue A(U)® F. Since A(U) ® F separates points of H*° (U, F*) by Proposition 3.4,
it follows that f = 0 and this proves that A is one-to-one. O

Given two linear spaces E and F', the tensor product space E ® F equipped with a
norm « will be denoted by E ®,, F, and the completion of E ®, F by EQq F. If E and
F are normed spaces, a cross-normon E® F isanorm « such thata (x®y) = || x| ||yl
forallx e Eandy € F.

Given two normed spaces E and F, the projective norm 7 on £ ® F (see [26,
Chapter 2]) takes the following form on A(U) ® F:

n n
w) =inf { Y Ialllyill iu =Y xd) @y (weAU)®F),
i=1 i=1
where the infimum is taken over all the representations of u as above.
We next see that, on the space A(U)® F, the projective norm and the norm induced

by the dual norm of the supremum norm of H*° (U, F*) coincide.

Theorem 3.6 The linear space A(U) ® F is contained in H (U, F*)*. Moreover,
w(u) = H(u) forallu € A(U) ® F, where H is the norm on A(U) ® F defined by

Hu) =sup {lu(f): feHOWU,F), Ifllo <1} (weAU)®F).

Proof Let. € C,x € U and y € F. Since Ad(x) ® y is a linear map on H*°(U, F*)
and

|A8(x) @ W) =12 (f ), ) < [AILFCON I < 1A flloo Y1l

fOl‘ all f € (}‘{OO(U, F*), then )\,8()(') (9] y e 7_.{00(U’ F*)* Wlth ”)LS(X) ®y” <
ALyl and thus A(U) ® F € H®(U, F*)*.
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Letu € A(U)® F and let Y 7, 1;8(x;) ® y; be a representation of u. Since u is
linear and

lu(H) =

D on @, v | < DLl < 1fllog Y Il il
i=1 i=1

i=1

forall f € H®(U, F*), we deduce that H (u) < > *_, [A;| [lyi|l . Since this holds for
each representation of u, it follows that H () < m(u). Hence, H < m. To prove that
the reverse inequality, suppose by contradiction that H (ug) < 1 < m(ug) for some
up € A(U) ® F.Denote B ={u € A(U)® F: w(u) < 1}. Clearly, B is a closed
and convex setin A(U) ®, F. Applying the Hahn—Banach Separation Theorem to B
and {ug}, we obtain a functional n € (A(U) ®, F)* such that

1 = |In|l = sup{Ren(u): u € B} < Ren(uo).

Define f: U — F*by (f(x),y) =n((x) ® y)forall y € F and x € U. It is easy
to prove that f is well defined and f € H*®(U, F*) with || f]o < 1. Moreover,
u(f) = n(u) for all u € A(U) ® F. Therefore H(up) > |uo(f)| > Reug(f) =
Re n(ug), so H(up) > 1 and this is a contradiction. O

We now will define the Chevet—Saphar norms on the tensor product £ @ F'. Let E
and F be normed spaces and let | < p < oo. Given u = Z?:l xXi®yi € EQF,
denote

1
n APNE
HCer - X len ey = (i) i l1P) 7 if1 < p<oo,
? maxi<j<y [lxill  if p = oo,

and

1 .
supyicp,. (Dio YFODIP)?  if1 < p < oo,

Nyis e Yl gy = .
P SUDy«¢ B« (maxlgign |y*()’i)|) if p = oo.

If E = F = C, we write ¢},(E) = ¢/, and ZZ’,}”(F) = ZZ’,}”. According to [26,
Section 6.2], the Chevet—Saphar norms are defined on £ ® F by

dp(@) = inf {1Ger. o2y 1013l |

s«

gp(u) = inf {”(xlv s xn)”@’p’(E) lyesenes Yn)HKZ**“’(F)] )

the infimum being taken over all representations of u asu =y '_,x; ® yi € E®Q F.
Since [|6(x)|| = 1 forall x € U, the norm g, on A(U) ® F takes the form:

n
gp(u) = inf [ ICAL, s A e 11 ~-~7yn)”[;;<w(F) tu = Z)\is(xi) ® yi} :
i=1
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Notice that g, is a cross-norm on A(U) ® F.
We next show that g1 on A(U) ® F is just the projective tensor norm 7.

Proposition 3.7 g1(u) = w(u) forallu € A(U) ® F.
Proof Letu € A(U)® F andlet ) ;| 1;8(x;) ® y; be arepresentation of u. We have

() < ZM Hyill = ZM |< sup |y (y»\)

V*EBpx

< 2|xi|lrgg§n< sup |y* (y»!) =101, - 2 ller 1O - ) oy »
1=

*eB F*
and taking the infimum over all representations of u gives w(u) < gi(u). For the

reverse inequality, notice that g{(A8(x) ® y) < |A||ly] forall A € C, x € U and
y € F. Since g1 isanorm on A(U) ® F, it follows that

giw) =g (ina(m ® yi) <) g id) @y = Y Il llyil
i=1 i=1 i=1

and taking the infimum over all representations of u yields g1 (#) < m(u). O

4 Duality for Cohen strongly p-summing holomorphic mappings

We now show that the duals of the tensor product G*° (U )®gpF can be canonically
identified as spaces of Cohen strongly p-summing holomorphic mappings.

Theorem 4.1 Let 1 < p < oo. Then Z)?,{“(U, F*) is isometrically isomorphic to
(G®(U)®g, F)*, via the mapping A: DI, F*) - (G®(U)®g, F)* defined by
n
ACH@) =D xi (f (i), i)

i=1

for f € D?,{“’(U, F*)yand u = Z?:l Lid(xi) ® yi € A(U) ® F. Furthermore, its
inverse is given by

<A—1(<p)(x), y> = (0, 8(x) ®y)

forg € (G¥(U)&,,F)*, x € Uandy € F.
Proof We prove it for 1 < p < oco. The case p = 1 is similarly proved.
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Let f € Z)Z,‘{C’O(U, F*) and let Ag(f): A(U) ® F — C be its associate linear
functional. We claim that Ag(f) € (A(U) ®,, F)* with [Ao(S)] < d)7(f).
Indeed, given u = Y ', 2;8(x;) ® yi € A(U) ® F, we have

< > Pl lcr (i), £ )

i=1

D o hi (), v

i=1

[Ao(f)w)] =

1
<d"”(f) IGors s M)l sup (Z\y***(;cp(y,))| )

sk
y GBF*** i=1

1
<A (O IG Al sup (Z v o0]” )
y

EBF* i=1

7_{00
=dpy (DN Al 1Oyl

and taking infimum over all the representations of u, we deduce that |[Ag(f)(u)| <
dfoo (f)gp(u). Since u was arbitrary, then Ag(f) is continuous on A(U) g, F with
1A0() < djf™ (f), as claimed.

Since A(U) is a norm-dense linear subspace of G*°(U) and g, is a cross-norm
on G*¥(U) ® F, then A(U) ® F is a dense linear subspace of G*(U) ®g, F and
therefore also of its completlon G )®g F. Hence there is a unique continuous
mapping A(f) from G*®° (U )®g F to C that extends Ag(f). Further, A(f) is linear
and [[A(HI = [Ao(HIl -

Let A: Z)Z,'(“’(U, F*) — (QOO(U)@)gP F)* be the mapping so defined. Since the
mapping Ag: Lf)}l;{oo (U, F*) — (A(U) ® F) is a linear monomorphism by Corol-
lary 3.5, it follows easily that A is so. To prove that A is a surjective isometry, let
¢ € (G™(U)®g, F)* and define f,: U — F* by

(fp(), y) =) ®Y) (xeU, yeF).

Given x € U, the linearity of both ¢ and the product tensor in the second variable
yields that the functional f,(x): F — C s linear, and since

[{fo ) ¥)| = o) @ V| < llell gp8(x) ® ) < lloll Iyl

forall y € F, we deduce that f,(x) € F* with | f,(x)|| < ll¢|l . Since x was arbitrary,
we have that f,, is bounded with || f,,| ., < lle]l.

We now prove that f,: U — F* is holomorphic. To this end, we first claim that,
for every y € F, the function fy: U — C defined by

) =9@x)®y) (xel)

W Birkhauser
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is holomorphic. Leta € U. Since gy : U — G*°(U) is holomorphic by Theorem 1.2,
there exists Dgy (a) € L(E, G*°(U)) such that

. §(x) —é8(a) — Dgy(a)(x —a)
1m =
x—a lx —all

0.

Consider the function 7'(a): E — C given by

T(a)(x) =¢(Dgy@(x)®y) ((xe€E).
Clearly, T (a) € E* and since
fyx) = fy(@) — T(@)(x —a)

=90B(x)®y) —¢((a)®y) —p(Dgy(a)(x —a) ®y)
=@ ((6(x) =8(a) — Dgy(a)(x —a)) ® ),

it follows that

- S — fi@-T@kx —a) @ ((6(x) —8(a) — Dgu(@)(x —a)) ® )

li = lim
x>a lx —all x—a lx —all
_ d(x) —d8(a) — Dgy(a)(x —a)
= lim ¢ ®y
x—a lx —all

=90 y) =¢0) =0.

Hence, f, is holomorphic at a with Df)(a) = T (a), and this proves our claim. Now,
notice that the set {k(y): y € B} C Bp++ is norming for F* since

[v*]l = sup {|y*)| : y € Br} = sup {|xr () ()| : y € Br}

for every y* € F*, and that k(y) o f, = f, forevery y € F since

(kr(y) o fo)(x) = kr(V) (fo(x) = (fp(x). y) = p(6(x) ® y) = [ (x)

forallx € U.

We are now ready to show that f,: U — F* is holomorphic. Indeed, leta € U and
b € E.Denote V ={A € C: a+ Ab € U}.Clearly, the mapping h: V — U given by
h(A) = a+ Ab is holomorphic. Since f, o is locally bounded and kg (y) o (fy0h) =
fy o h is holomorphic on the open set V C C for all y € F, Proposition A.3 in [3]
assures that f, o i is holomorphic. This means that f, is G-holomorphic but since
it is also locally bounded, we deduce that f;, is continuous by [15, Proposition 8.6].
Now, we conclude that f, is holomorphic by Theorem 1.1.

We now prove that f, € D[I;IOO(U, F*). To see this, taken € N, A; € C, x; € U
and y;" * e F¥ fori = 1,...,n. Let ¢ > 0 and consider the finite-dimensional
subspaces V = lin{y{™*, ..., yo*} € F* and W = lin{ f,(x1), ..., fo(xy)} C F*.
The principle of local reflexivity [6, Theorem 8.16] gives us a bounded linear operator
Te,v,wy: V — F such that
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(1) Tee,v,w)(y™) = y** forevery y** € V Nkp(F),
(i) (1 —&) [y < | Te.v.wy (9| < (1 + &) [y**|| for every y** € V,
(i) (y*, Te,v,w)(y*)) = (y**, y*) for every y** € V and y* € W.

Using (iii) and taking y; = T(e, v, w) (™), we first have

jzlki (i, foen)| = jzlxi {fo (x), T@,V,W)(yi**))'
= ijxi (fo i), vi)
= ¢<Xn:ki8(xi)®yi>‘
P
< el gp (ixia(m ® y,»)
P

= 1 [CRTPRRp 1 PPN TCERRR O] Py

Since

*"_‘

||(YIa-~-a)’n)||e’;;:”(F)= sup <Z|y (yz)|p>

y*EBF* i=1

1
n AV
— sup <Z|(y*,T(s,v,w>(yf‘*))|p>

)’*EBF*

i=1
n . o
= sup (Z|(KF(T(8,V,W)(yi**))’y*>|p)
y*eBpx i=1
L*
< |xr o Tevw| sup (Z}y, ) )
Y*EBpx i=1

*"_‘

~ Tewan] s (Zwml G )

yreBrx \j=i

1
<(+e sup (Zly***(y )|P)

y*** EBF***

= @+ o1 3 oy
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it follows that

< lellliGs oo An)llen (1 +2) ([CEAPP ]

Z)»i (¥, fo(xi)
i=1

)

By the arbitrariness of ¢, we deduce that

07, .9

n
Dok foD)| < el I, - Al ey o
i=1 i’

and this implies that f, € DI (U, F*) with d¥™ (f,) < ll¢] .
Foranyu =Y 1 2i8(x;)) ® yi € A(U) ® F, we get

AU @) =Y M fCxi), yi) = Y ki) @ yi) = ¢ (insm) ® yi) = o).
i=1 i=l i=l

Hence A(f,) = ¢ on a dense subspace of G* (U )®gp F and, consequently, A(fy,) =
¢, which shows the last statement of the theorem. Moreover, d;f{w( fo) =< el =
H A(fy) || and the theorem holds. O

In particular, in view of Theorem 4.1 and taking into account Propositions 2.5, 3.6
and 3.7, we can identify the space H° (U, F*) with the dual space of G®(U)®y F.

Corollary 4.2 H™(U, F*) is isometrically isomorphic to (G®(U)®y F)*, via the
mapping A: H® (U, F*) — (G®(U)®y F)* given by
n
ACH@) =1 (f (i), i)
i=1

for f € HOWU,F*)andu = Y} | 1,i8(x;) @ yi € A(U) ® F. Furthermore, its
inverse is given by

<A_l(<p)(x), y> = (0, 8(x) ®y)

for € (@°WU)@uF)*,x €Uandy € F. O
Remark 4.3 1t is known (see [26, p. 24]) that if E and F are Banach spaces, then

L(E, F*) is isometrically isomorphic to (E®y F)*, via ®: L(E, F*) — (EQy F)*
given by

<<I>(T>, > x® yi> =Y (T (), )

i=1 i=1
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for T € L(E,F*)and ) ;_, x; ® yi € E ® F. Notice that the identification A in
Corollary 4.2 is just ® o ®¢, where ®¢: f +> T is the isometric isomorphism from
H>® (U, F*) onto L(G*°(U), F) given in Theorem 1.2.

5 Pietsch domination for Cohen strongly p-summing holomorphic
mappings

In [22], Pietsch established a domination theorem for p-summing linear operators
between Banach spaces. To present a version of this theorem for Cohen strongly p-
summing holomorphic mappings on Banach spaces, we first characterize the elements
of the dual space of A(U) ®,, F

Theorem 5.1 Letgp € (A(U)®F)', C > 0and1 < p < 0o. The following conditions
are equivalent:

1) lew)| < Cgpu) forallu e A(U)® F.
(ii) For any representation ZL] Aid(xi) ® yi of u € A(U) ® F, we have

n
D lp0is(xi) ® i)l < Cgp(w).
i=1
(iii) There exists a Borel regular probability measure |t on Bp= such that
lp(8(x) @ V) < CIAIYIL . ()

forallh € C,x e Uandy € F, where

1
||y||Lp*w)=</B 0|7 dpy* )) .

Proof (i) = (ii): Letu € A(U) ® F and let Z?:l Xid(x;) ® y; be a representation
of u. It is elementary that the function 7 : C* — C defined by

n
T, tn) = ) i9(i8(x) ® yi), V(i1 ..., 1) € C"
i=1

is linear and continuous on (C", ||-|[;n ) with | T'|| = Yo le(hid(xi) @ yi)l -
Forany (11, ...,1,) € C" with [|(71, ..., tx)llgn, < 1, by (i) we have

(Zm a(x,>®y,)’

i=1

T, )| = Zw(x 5(xi) ® yi)

i=1

n
<Cgp (Zrixia(xi) ®y,->

i=1
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S C ”(tl)"ls D) tn)\n)”q') ||()7h ceey )’n)”[’;*w(F)

< CHGt e )l N1l

and, therefore,

n
21908 @yl < ClG - )l 11 - vl -

i=1

Taking infimum over all the representations of u, we deduce that

Y lp(is(xi) ® yi)l < Cgplu).

i=1

(i) = (iii): Let P be the set of all Borel regular probability measures p on Bp=.
Clearly, it is a convex compact subset of (C(Bg+)*, w*). Assume first 1 < p < oo.
Let M be set of all functions from # to R of the form

n
o, cor, oo (W) = Z lo(Xidy (x;) @ yi)l

=1
i=1
(S peomn + Sy
p 1A=l T s YL e uy | »
i=1

wheren e N, A; e C,x; e Uand y; € Ffori =1,...,n.
It is easy check that M satisfies the three conditions of Ky Fan’s Lemma (see [6,
9.10]):

(a) Each f((li)?:l,(xz‘)?:l,(yi)?:l) € M is convex and lower semicontinuous.

(b) If g € co(M), thereis fo,y e, iy €M With G0 = faay, ez, ooy
() forall u € P.

(¢) Each fiar , eyr, e, € M has avalue less or equal than 0.

i=1
By Ky Fan’s Lemma, there is a u € ¥ such that f(u) < O forall f € M. In
particular, we have

*
P

_ C C .
Finraty®) = |@Asy () @ t7'y)| — —tP AP — =P ||y|l} . <0
) p p* o (1)

forallt e R*, A € C, x e U and y € F. It follows that

_p* p*
tP |)\|P n tr ||)’||Lp*(m

lpAdyx) @ )| < C e
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and, applying again the aforementioned identity, we conclude that

lo(dy (x) @ V)| < CIAIYIL . ) -

The case p = oo is similarly proved but without applying the cited identity and taking
C/p=0and p* = 1.

(ili) = (i):Letu € A(U)® F andlet ) "_; 2;8(x;) ® y; be a representation of
u. Using (iii) and the Holder inequality, we obtain

n n
lp@)l < D lp (idx) @ y)l < € Y il Iyill .y

i=1 i=1

n
< ClGa s h) ey (Z ||yl~||ip*(m>
i=1

8-

R
P*

F* =1

*‘_‘

SCII(M,---,M)II@;,( sup Z!y*(yi)}”*>

™
y*eBpx i=1

= ClOw - Al 1Cyrs - vl -

and taking infimum over all the representations of u#, we conclude that |p(u)| <
Cgpu). i

We are now ready to present the announced result. Compare to [5, Theorem 2.3.1].

Theorem 5.2 (Pietsch Domination) Let | < p < oo and f € H™®U, F). The
following conditions are equivalent:

(1) f is Cohen strongly p-summing holomorphic.
(ii) Forany Y i_; %i8(x;) @ y} € A(U) ® F*, we have

<O 2l

Z A EED)
i=1

e

(iii) There is a constant C > 0 and a Borel regular probability measure (L on B
such that

% £ = €Il

forall x € U and y* € F*, where

L
£

o= ([ b0 anem)"
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In this case, dZ{OO (f) is the minimum of all constants C > 0 satisfying the preceding
inequality.

Proof (i) = (ii) is immediate from Definition 2.2.

(i) = (ii): Clearly, kg o f € H®U, F**). Appealing to Corollary 3.5,
consider its associate linear functional Ag(kr o f): A(U) ® F* — C. Given
u=>yr,28(x)®y" e A(U)® F*, we have

n

Z A (v f ()

i=1

O )

|Ao(cr o )| =D xi((cr o £)(xi), ¥})

i=1

<&y (OO, - 2l

O ()
by (ii). Since it holds for each representation of u, we deduce that
[Ao(kr o )| < d¥™ (f)gpw).
By Theorem 5.1, there exists a Borel regular probability measure @ on B g+ such that

1
|y**(y*)|p* du(y**))]

F

%, fF@)| = [Aolkr o HIE@) @ yH)| < d2™(f) (/B

for all x € U and y* € F*. Moreover, dz{w( f) belongs to the set of all constants
C > 0 satisfying the inequality in (iii).
(iii) = (1): Givenx € U and y* € F*, we have

[Aoter 0 HG@ ® Y| = [y, F) < [y, 0

by applying (iii). Now, Theorem 5.1 tells us that for any representation ) ;_; A;8(x;)®
yiofu e A(U)® F*, we have

Dol o) =D 1l [{Ger o G, Y7 = [Aolkr o (s (i) ® 37|

i=1 i=1 i=1

< Cgp@ = ClO, - Al [T o 7 ey -

Hence f € Z)?,L(oo (U, F) with d;’w (f) < C. This also shows the last assertion of the
Statement. O

Remark 5.3 Theorem 5.2 is mainly a particular case of Theorem 4.6 in [21] since a

Cohen strongly p-summing holomorphic mapping (1 < p < oo) is an Ry, Ry — S-

abstract (p, p*)-summing mapping for Ry : [0, 1] x U x C — [0, c0) defined by
Rl (t7 x7 )\') = |A'|?

) Birkhauser



44 Page 24 of 31 A.Jiménez-Vargas et al.

Ry: Bp++ x U x F* — [0, 0o0) given by
Ro(y™, x, ") = [y™ (y)I,

and §: H®(U, F) x U x C x F* — [0, c0) defined by

SCfyx, A, y%) = A", £E)I

This unified abstract version of Pietsch Domination Theorem has been used by several
authors whenever trying to get a domination result in a very short way. Our proof is
also short and appeals directly to Ky Fan’s Lemma as it was made to establish such
an abstract version.

We now study the relationship between a Cohen strongly p-summing holomorphic
mapping from U to F and its associate linearization from G*°(U) to F.

Theorem5.4 Let 1 < p < oo and f € H*®(U, F). The following conditions are
equivalent:

(1) f: U — F is Cohen strongly p-summing holomorphic.

(i) Ty: G*°(U) — F is strongly p-summing.

In this case, d,,(Ty) = dz{oo (f). Furthermore, the mapping f > Ty is an isometric
isomorphism from (D™ (U, F), d¥™) onto (D,(G®(U), F). d).

Proof (i) = (ii): Assume that f € Z)ﬁw (U, F).By Theorem 5.2, there is a constant
C > 0 and a Borel regular probability measure @ on Bp++ such that |[(y*, f(x))| <
C ”y*”Lp*(u) forall x € U and y* € F*.

Let y* € F* and y € G®°(U). By Theorem 1.2, given ¢ > 0, we can take a
representation Y .o; A;8(x;) of y such that > ;2 |A;] < [ly |l + &. We have

< Z Tf<<SU(xl~)>>'= <y*,ZA,~f(xl~)>‘
i=1 i=1

sZMly f@)|

(v Tr )]

o
<yl 2l = C Iy ], v+
i=1

As ¢ was arbitrary, it follows that
k . *
= TN = €yl g 1
Taking infimum over all such constants C, we have

v, Tr ) < a2 |1y* ], Lo 171

()
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by Theorem 5.2. It follows that

sup { [V Tr )] 2 v* € FY 1], L = 1} <d 0 I

for all y € G®°(U). Therefore Ty € D,(G>°WU), F) with d,(Ty) < d;f’oo(f) by

Pietsch Domination Theorem for strongly p-summing operators [5, Theorem 2.3.1].
(i) = (i): Assume that Ty € D,(G*°U), F). Givenx € U and y* € F*, we

have

5%, £ = 10" TG o)l = dpTp Iy* L, Iw ol = dpTp 7],

by [5, Theorem 2.3.1] for some Borel regular probability measure  on B+ . It follows
that f € D™ (U, F) with d}*™ (f) < d,(Ts) by Theorem 5.2.
Since d,,(Ty) = dz{oo (f) forall f € Z)Z,{OO(U, F), to prove the last assertion of

the statement, it suffices to show that the mapping f + Ty from Z)Z{w(U ,F) to
D, (G (U), F) is surjective. Indeed, take T € D,(G®°(U), F) and then T = Ty
for some f € H(U, F) by Theorem 1.2. Hence Ty € D,(G*°(U), F), and thus
fe Z)([}foo (U, F) by the above proof. O

The equivalence (i) <« (iii) of Theorem 5.2 admits the following reformulation.

Corollary5.5 Let 1 < p < oo and f € H>®(U, F). The following conditions are
equivalent:

(1) f: U — F is Cohen strongly p-summing holomorphic.
(ii) There exists a complex Banach space G and an operator S € D, (G, F) such that

Iy f@) = IS*OM| (xeU, y* e FY.

In this case, dZ{OO (f) is the infimum of all d , (S) with S satisfying (ii), and this infimum
is attained at Ty (Mujica’s linearization of f).

Proof (i) = (ii): If f € D} (U, F), then Ty € D,(G*(U), F) with d’'™ (f) =
d,(Tr) by Theorem 5.4. From Theorem 1.2, we infer that

[(y*, FO) = |y, TrGu@)| = |((TH* ), Su )] < |[(TH*H||

forall x € U and y* € F*.

(i) = (i): Assume that (ii) holds. Then S* € I1,+(F*, G*) with 7, (S*) =
d,(S) by [5, Theorem 2.2.2]. By Pietsch Domination Theorem for p-summing linear
operators (see [6, Theorem 2.12]), there is a Borel regular probability measure p on
Bp+ such that

I5* | < mp (5™ ”y*”Lp*(u)
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for all y* € F*. Forany x € U and y* € F*, it follows that

s f@N = 5700 = mp S 1y L -

Hence, f € DX (U, F) with d?/™ (f) < 7,+(S*) = d,(S) by Theorem 5.2. O

As a consequence of Theorem 5.4, an application of [4, Theorem 3.2] shows that
the Banach ideal D(ﬁw is generated by composition with the Banach operator ideal
D), but we prefer to give here a proof to complete the information.

Corollary5.6 Let 1 < p < oo and f € H>®(U, F). The following conditions are
equivalent:

(1) f: U — F is Cohen strongly p-summing holomorphic.

(ii) There is a complex Banach space G, g € H*(U,G) and T € D,(G, F) so that
f =To 8.

In this case, dZ'(OO (f) =inf{d,(T) llgll oo}, where the infimum is taken over all factor-

izations of f as in (i), and this infimum is attained at Ty o gy (Mujica’s factorization

of f).

Proof (i) = (ii): If f € DZ’OO(U, F), we have f = Tf o gy, where G*®(U)
is a complex Banach space, Ty € D,(G*°WU), F) and gy € H*(U,G*U)) by
Theorems 1.2 and 5.4. Moreover,

inf {dp(T) 18lloo} < dp(T) lIgullos = di* (1)

(ii)) = (i): Assume f = T og with G, g and T being as in (ii). Since g = T, 0 gy
by Theorem 1.2, it follows that f = T o T, o gy which implies that Ty = T o T, and
thus Ty € D,(G*(U), F) by the ideal property of D,. By Theorem 5.4, we obtain
that f € D} (U, F) with

d¥(f) = dp(Ty) = dp(T 0 Tg) < kp(T) |Tg| = dp(T) gl -

and so dg'(oo (f) < inf{dy(T) |Igll} by taking the infimum over all factorizations of

f. O

When F is reflexive, every f € Z)g{w (U, F) factors through a Hilbert space as we
see below.

Corollary 5.7 Let F be a reflexive complex Banach space. If f € Z)? (U, F), then
there exist a Hilbert space H, an operator T € Dy(H, F) and a mapping g €
H>®U, H) such that f =T o g.

Proof Assume that f € Z)goo(U, F).By Theorem 5.4, Ty € D,(G*°(U), F). Hence
(Ty)* e I (F*, G*(U)*) by [5, Theorem 2.2.2]. By [6, Corollary 2.16 and Exam-
ples 2.9 (b)], there exist a Hilbert space H and operators 7] € Ilp(F™*, H) and
T, € L(H,G*®(U)*) such that (Tf)* =T 0Tj.
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On the one hand, we have (Ty)** = (T1)* o (T>)*, where (T1)* € Dy (H, F*¥)
by [5, Theorem 2.2.2]. On the other hand, we have (T7)** o kg () = kr o Ty with
Kk r being bijective (since F is reflexive). Consequently, we obtain f = T o g, where
T = (kp) ' o(T1)* € Da(H, F)and g = (T2)* o kg 0 gu € HX(U, H). O

Applying Theorem 5.4 and [5, Theorem 2.4.1], we get useful inclusion relations.

Corollary5.8 Let 1 < p; < py < 00.If f € DN™(U. F), then f € D" (U. F)
and d™ (f) < d¥7(f). a)

These inclusion relations can become coincidence relations when F* has cotype 2
(see [6, pp. 217-221] for definitions and results on this class of spaces). Compare to
[6, Corollary 11.16].

Corollary 5.9 Let 2 < p < oo. If F* has cotype 2, then D}~ (U, F) = D} (U, F)
and 71" (f) = dJ" (f) for all f € D™ (U, F).

Proof By Corollary 5.8, we have D% (U, F) < D} (U, F) with &} (f) <
d¥” (f) forall f € D™ (U, F).

For the converse, let f € Z)Z{OO(U, F). Then Ty € Dy (G*(U), F) with
dr(Ty) = dzﬂw(f) by Theorem 5.4. Hence (Ty)* e I (F* G>(U)*) with
m((Tr)*) = do(Ty) by [5, Theorem 2.2.2]. Then, by [6, Corollary 11.16], (Tf)* €
I (F*, G*(U)*) with w1 ((Tr)*) = m2((T¢)*). Hence, (T)* € T p«(F*, G*(U)*)
with 7« ((Tr)*) < m((Tf)*) by [6, Theorem 2.8]. Then, by [5, Theorem 2.2.2],
Tr € D,(G™®W), F) withd,(Tr) = mp«((Ty)").

Finally, f € DZ‘(N(U , F) with dZ{OO (f) =dp(Ty) by Theorem 5.4, and therefore
A (f) < (f). O

Given f € H®(U, F), the transpose of f is the mapping f': F* — H>®U)
defined by

Ff{oM =y"of (" eF.

Itis known (see [12, Proposition 1.6]) that f* € L(F*, H*>U)) with || /|| = || fllso -
Furthermore, f! = J[jl o (Ty)* with Jy: H*®(U) — G*°(U)* being the identifica-
tion established in Theorem 1.2.

The next result establishes the relation of a Cohen strongly p-summing holomor-
phic mapping f: U — F and its transpose f': F* — H°(U). Compare to [5,
Theorem 2.2.2].

Theorem 5.10 Let | < p < oo and f € H®(U, F). Then f € Dy*(U, F*) if and
only if f' € I« (F*, H*®(U)). In this case, dz{oo(f) = 7, (7).

Proof Applying Theorem 5.4, [5, Theorem 2.2.2] and [6, 2.4 and 2.5], respectively,
we have

feDM=(U.F*) & Ty € D,(G®U). F)

) Birkhauser



44 Page 28 of 31 A.Jiménez-Vargas et al.

& (Tp)*" € Mp«(F*, G*(U))
& f1=Jy" o (Tp)* € My (F*, H®(U)).

In this case, d;(m(f) =dy(Ty) =y (T1)*) = mps(Ju o f1) = mpe(f1). o

The study of holomorphic mappings with relatively (weakly) compact range was
initiated by Mujica [16] and followed in [12].

Corollary 5.11 Let 1 < p < oo.

(i) Every Cohen strongly p-summing holomorphic mapping f: U — F has relatively
weakly compact range.

(ii) If F is reflexive, then every Cohen strongly p-summing holomorphic mapping
f: U — F has relatively compact range.

Proof If f € D;},{”O(U, F*), then f' € I1,«(F*, H*(U)) by Theorem 5.10. Hence
the linear operator f’ is weakly compact and completely continuous by [6, 2.17].
Since f7 is weakly compact, this means that f has relatively weakly compact range
by [12, Theorem 2.7]. Since f’ is completely continuous and F* is reflexive, it is
known that f! is compact and, equivalently, f has relatively compact range by [12,
Theorem 2.2]. O

6 Pietsch factorization for Cohen strongly p-summing holomorphic
mappings

We devote this section to the analogue of Pietsch Factorization Theorem for
p-summing linear operators [6, Theorem 2.13] for the class of Cohen strongly p-
summing holomorphic mappings. Recall that, for every Banach space F, we have
the canonical isometric injections kp: F — F** and tp: F — C (Bpx) defined,
respectively, by

(ke ¥y )=y") (yeF, y eF¥),
(tr.y*)=y*(») (y€F. y" €Bp).

Moreover, if  is a regular Borel measure on (Bp+, w*), j, denotes the canonical
map from C (Bp+) to L, (i) .

Theorem 6.1 (Pietsch Factorization) Let 1 < p < oo and f € H®(U, F). The
following conditions are equivalent:

(1) f: U — F is Cohen strongly p-summing holomorphic.
(ii) There exist a regular Borel probability measure . on (Bp+, w*), a closed subspace
Sp+ of Lp=() and a bounded holomorphic mapping g: U — (Sp+)* such that
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the following diagram commutes:

Upe)* .
(Sp=)* —————— (tp= (F))

ST l(lr*)*
f

KFr

U : F F**

In this case, dz{w (= lglw-

Proof (i) = (ii): Let f € Z)?”(U,F). Then f' € I« (F*, H>®(U)) by The-
orem 5.10. By [6, Theorem 2.13], there exist a regular Borel probability measure
w on (Bpw,w*), a subspace Sp+ = j,« (ipx (F*)) of L,+(u), and an operator
T € L(Sp+, H*®(U)) with [|T|| = || f*|| such that the following diagram commutes:

jp*

LF*(F*) SP*
Lp* \LT
% ! 00
F H>(U)
Dualizing, we obtain
U —f> F
Su | | kF
so gy )F -
H>®U)Y* — F
T* (tr)* 4
Gp)*

(Sp)* = (p=(F)*

Let g := T o gy. Clearly, g € H*(U, (Sp+)*) with ||glloc < T, and thus

lglloo < ILF 1 =1Flloo <d)T (£).
Moreover, since f' =T o Jp* o tpx, we have
kpof =(f)*ogu=(r) 0(p)* 0T ogy = (tr) o (jp) og.

(i) = (): Since kr o f = (tpx)* o (jp*)* o g, it follows that [’ o (kp)* =
((tFe)* 0 (jp)* 0 g)'. As (kF)* o kpx = idp+, we obtain that

ft = ((LF*)* © (]p*)* o g)t O KFx*.
Since jp« € Iy« (tps(F*), Sp+) (see [6, Examples 2.9]), then
(p)* € Dp((Sp)*, (ip=(F))™)

) Birkhauser



44 Page 30 of 31 A.Jiménez-Vargas et al.

by [5, Theorem 2.2.2]. Hence (17+)* o (j,*)* 0 g € DK™ (U, F**) with

d¥ () 0 (jp)* 0 8) < dp((tr)* 0 (jp) ) lIgllos = Tp+ Gipe 0 t7e) l1glloo

by the ideal property of D, Corollary 5.6 and [5, Theorem 2.2.2]. Applying Theo-
rem 5.10 and the ideal property of IT,, we deduce that f* = ((tp=)* o (jp*)* 0 g)' o
kpx € Tl (F*, Hoo(U)). Again, Theorem 5.10 gives that f € Z)Z,{OO(U, F) with
d;f’oo (f) = mp=(f"). Moreover,

d¥7(f) = e (o) 0 (jpo)* 0 ) 0 kpe)
< e ((tF+)* 0 (jp)* 0 ©)") llkp= |
< d;{w((tp*)* o (]p*)* og)
< e Gpr 0 17) 1811w
=

7o (pe) ler 118 lloo = 118 llo -

O
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