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Abstract: The control problem of the rotary double inverted pendulum (double Furuta pendulum) is
nontrivial because of underactuation and strong nonlinearities in the associated state-space model. The
system has three degrees of freedom (one actuated and two unactuated joints) while receiving only one
control input. In this article, a novel nonlinear optimal (H-infinity) control approach is developed for the
dynamic model of the rotary double inverted pendulum. First, the dynamic model of the double pendulum
undergoes approximate linearization with the use of first-order Taylor series expansion and through the
computation of the associated Jacobian matrices. The linearization process takes place at each sampling
instance around a temporary operating point which is defined by the present value of the system’s state
vector and by the last sampled value of the control inputs vector. At a next stage a stabilizing H-infinity
feedback controller is designed. To compute the controller’s feedback gains an algebraic Riccati equation
has to be solved at each time-step of the control algorithm. The global stability properties of the control
scheme are proven through Lyapunov analysis. To implement state estimation-based control without the
need to measure the entire state vector of the rotary double-pendulum the H-infinity Kalman Filter is used
as a robust state observer. The nonlinear optimal control method achieves fast and accurate tracking of
setpoints by all state variables of the rotary double inverted pendulum under moderate variations of the
control input.

Keywords: rotary double inverted pendulum, underactuated systems, approximate linearization, Taylor
series expansion, Jacobian matrices, H-infinity control, Riccati equation, global stability, Lyapunov analy-
sis.

1 Introduction

Nonlinear control for underactuated robotic systems is an elaborated task which has become the subject
of much research work during the last years [1-4]. In this domain, the double rotary pendulum (double
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Furuta pendulum) is a benchmark nonlinear dynamical system and the solution of the associated nonlinear
optimal control problem is challenging [5-9]. Actually, stabilization of the dynamics of the double rotary
pendulum is a nontrivial task because of the strong nonlinearities of the associated state-space model and
because of the model’s underactuation [46-12]. Out of the three joints of the pendulum only one receives
mechanical actuation, and this makes significantly difficult the control of the pendulum and its stabilization
at the swing-up position [13-15]. So far, several control approaches have been proposed for the model of the
double rotary pendulum. These include control based on LQR concepts and approaches based on Linear
Parameter Varying formulations of the system’s dynamics, as well as on the solution of state-dependent
Riccati equations [16-20]. One also finds sliding-mode and backstepping control approaches. Additionally,
there are optimal control concepts which often take the form of Model Predictive Control schemes [21-25].
It is noted that the solution of the nonlinear control problem for the rotary double inverted pendulum pro-
vides also an insight for the successful implementation of stabilizing feedback in several highly nonlinear
and underactuated robotic systems [26- 28].

In this article, a novel nonlinear optimal (H-infinity) control method is proposed for the complex dynam-
ics of the rotary double inverted pendulum [40]. First, the dynamic model of the rotary double inverted
pendulum undergoes approximate linearization around a temporary operating point which is updated at
each sampling instance. This operating point is defined at each sampling period by the present value of
the pendulum’s state vector and by the last sampled value of the control inputs vector. The linearization
process is based on first-order Taylor series expansion and on the computation of the associated Jacobian
matrices [41-43]. The model imprecision which is due to the truncation of higher-order terms from the
Taylor series expansion is treated as a perturbation which is asymptotically compensated by the robustness
of the control algorithm. For the approximately linearized model of the rotary double inverted pendulum
a stabilizing H-infinity feedback controller is designed. This controller achieves the solution of the optimal
control problem for the nonlinear dynamics of the rotary double inverted pendulum under model uncer-
tainty and external disturbances [2-4].

Actually, the H-infinity controller represents a min-max differential game which takes place between: (i) the
system’s control inputs that try to minimize a cost function which contains a quadratic term of the state
vector’s tracking error, (ii) the system’s disturbances and model uncertainty terms which try to maximize
this cost function. To select the feedback gains of the H-infinity controller an algebraic Riccati equation has
to be repetitively solved at each time-step of the control algorithm [1-4]. The global stability properties of
the control scheme are proven through Lyapunov analysis. First, it is demonstrated that the control loop
of the rotary double inverted pendulum satisfies the H-infinity tracking performance criterion [1-4],[44].
This signifies elevated robustness against model uncertainty and exogenous perturbations. Moreover, un-
der moderate conditions global asymptotic stability properties are proven [1-4]. To implement also state
estimation-based control without the need to measure the entire state-vector of the rotary double inverted
pendulum, the H-infinity Kalman Filter is proposed as a robust state observer. The article’s nonlinear op-
timal (H-infinity) control scheme achieves fast and accurate tracking of reference setpoints under moderate
variations of the control inputs. The control problem of rotary single and double inverted pendulum can
be used as a benchmark for testing linear and nonlinear control algorithms, and the results of the present
article confirm that the proposed nonlinear optimal control method is a meaningful contribution to the
research area of nonlinear control [29- 34]. The use of the article’s nonlinear optimal control method can
be extended to more nonlinear underactuated dynamical systems which have been the subject of control
systems research during the last years [35-39].

A comparison of the nonlinear optimal (H-infinity) control method against other linear and nonlinear con-
trol schemes for complex dynamical systems has shown the following: (1) unlike Lie algebra-based control,
the new nonlinear optimal control method does not rely on complicated transformations (diffeomorphisms)
of the system’s state variables. The control inputs that the nonlinear optimal control method computes
can be applied directly to the initial nonlinear dynamics of the system and are not used on its transformed
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equivalent description. The inverse transformations which are met in global linearization-based control are
avoided and consequently one does not come against singularity issues (2) unlike Model Predictive Control
and Nonlinear Model Predictive Control the nonlinear optimal control method is of proven global stability.
It is known that Model Predictive Control is a linear control method which if applied to systems with
complex nonlinear dynamics the stability of the control loop will be lost. Besides, in Nonlinear Model
Predictive Control the convergence of the iterative search for an optimum depends on initialization and
parameter values selection and consequently the global stability properties of the NMPC method cannot be
ensured either (2) unlike sliding-mode and backstepping control the nonlinear optimal control method does
not require the state-space description of the system to be found in a specific form. About sliding-mode
control it is known that when the controlled system is not found in the input-output linearized form, the
definition of the sliding surface can be an intuitive procedure. About backstepping control it is known that
it cannot be directly applied to a dynamical system if the related state-space model is not found in the
strict-feedback (backstepping integral) form (4) unlike PID control, the nonlinear optimal control method
is of proven global stability, the selection of the controller’s parameters does not rely on a heuristics-based
tuning procedure and the stability of the control loop is ensured in case of changes of operating points (5)
unlike multiple local models-based control, the nonlinear optimal control method uses only one lineariza-
tion point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback
gains of the controller. Equivalently, the nonlinear optimal control method does not require the solution of
complicated Linear Matrix Inequalities. Consequently, in terms of computation load the nonlinear optimal
control method is much more efficient.

The structure of the article is as follows: in Section 2 the dynamic model of the rotary double inverted
pendulum is formulated and the associated state-space description is obtained. In Section 3 the dynamic
model of the rotary double inverted pendulum is subjected to approximate linearization through first-order
Taylor series expansion and through the computation of the associated Jacobian matrices. In Section 4
an H-infinity controller is designed to stabilize the dynamics of the rotary double inverted pendulum. In
Section 5 the global stability properties of the nonlinear optimal (h-infinity) control scheme are proven
through Lyapunov analysis. In Section 6 the use of the nonlinear optimal control method is also extended
to the dynamic model of the parallel double inverted pendulum. In Section 7 the performance of the con-
trol loop for the rotary double inverted pendulum is confirmed through simulation experiments. Besides
the fine performance of the nonlinear optimal control method is also confirmed in the case of the parallel
double inverted pendulum. Finally, in Section 8 concluding remarks are stated.

2 Dynamic model of the double rotary pendulum

The diagram of the rotary double inverted pendulum is shown in Fig. 1. The state vector of the
system consists of the turn angles of the rigid links and of the associated angular velocities, that is
x = [θ0, θ̇0, θ1, θ̇1, θ2, θ̇2]

T . The rotary double inverted pendulum is underactuated since mechanical torque
is applied only to the first link. Thus the torques vector is τ = [T1, 0, 0]

T . Main parameters of the dy-
namic model of the rotary double inverted pendulum are: li, i = 0, 1, 2 which are the lengths of the links,
ri, i = 0, 1, 2 which are the distances between the joint at the basis of the links and the center of gravity of
the links and mi, i = 0, 1, 2 are the masses of the links. [5-9]. The dynamic model of the system is given
by

M(θ)θ̈ +H(θ, θ̇)θ̇ +G(θ) = τ (1)

The inertia matrix of the rotary double inverted pendulum is symmetric and positive definite and is given
by [5]
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Figure 1: Diagram of the rotary double inverted pendulum

M(θ) =





m11 m12 m13

m21 m22 m33

m31 m32 m33



 (2)

where m11 = J0+ (m1+m2)l
2
0 + (m1r

2
1 +m2l

2
1)sin

2(θ1)+ 2m2l1r2sin(θ1)sin(θ1+ θ2)+m2r
2
2sin

2(θ1 + θ2),
m12 = m21 = m1l0r1cos(θ1) + m2l0r2cos(θ1 + θ2) + m2l0l1cos(θ1), m13 = m31 = m2l0r2cos(θ1 + θ2),
m22 = J1+J2+m1r

2
1+m2l

2
1+m2r

2
2 +2m2l1r

2
2 +2m2l1r2cos(θ2), m23 = m32 = J2+m2r

2
2+m2l1r2cos(θ2),

m33 = J2 +m2r
2
2 .

The Coriolis forces vector of the system is given by C(θ, θ̇) = H(θ, θ̇)θ̇ where matrix H(θ, θ̇) is given by [5]

H(θ.θ̇) =





H11 H12 H13

H21 H22 H23

H31 H32 C̄2



 (3)

where the elements of matrix H(θ, θ̇) are [5]

H11 = m1r
2
1 θ̇1sin(2θ1) + 2m2l

2
1 θ̇1cos(θ1)sin(θ1)+

+2m2r
2
2 θ̇1cos(θ1 + θ2)sin(θ1 + θ2)+

+2m2r
2
2 θ̇0cos(θ1 + θ2)sin(θ1 + θ2)+

+2m2l1r2θ̇1cos(θ1)sin(θ1 + θ2)+

+2m2l1r2θ̇1cos(θ1 + θ2)sin(θ1)+

+2m2l1r2θ̇2cos(θ1 + θ2)sin(θ1) + C̄0

(4)
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H12 = −m1l0r1θ̇1sin(θ1)−m2l0l1θ̇1sin(θ1)−m2l0r2θ̇1sin(θ1 + θ2) (5)

H13 = −2m12l0r2θ̇1sin(θ1 + θ2)−m2l0r2θ̇2sin(θ1 + θ2) (6)

H21 = − 1
2m1r

2
1 θ̇0sin(2θ1)− 2m1r

2
2 θ̇0sin(2(θ1 + θ2))−

−m2l
2
1 θ̇0cos(θ1)sin(θ1)−m2l1r2θ̇0sin(2θ1 + θ2)

(7)

H22 = −2m2l1r2θ̇2sin(θ2) + C̄1 (8)

H23 = −m2l1r2θ̇2sin(θ2) (9)

H31 = − 1
2m2r

2
2 θ̇0sin(2(θ1 + θ2))−m2l1r2θ̇0sin(θ1)cos(θ1 + θ2) (10)

H32 = m2l1r2θ̇1sin(θ2) (11)

In particular, about the elements of the Coriolis forces vector it holds that

C(θ, θ̇) =





H11 H12 H13

H21 H22 H23

H31 H32 C2









θ̇1
θ̇2
θ̇3



⇒C(θ, θ̇) =





H11θ̇1 +H12θ̇2 +H13θ̇3
H21θ̇1 +H22θ̇2 +H23θ̇3
H31θ̇1 +H32θ̇2 +H33θ̇3



 (12)

In the previous equations m0, m1, m2 are the masses of the links, and J0, J1, J2 are moments of inertia.
Besides, l0, l1, l2 are the lengths of the links and r0, r1, r2 are the distance between the bases of the links
and their centers of gravity. Moreover, C̄0, C̄1, C̄2 are constants. About the gravitational forces vector one
has [5]

G(θ) =
(

0 g2(θ) g3(θ)
)T (13)

where the elements of the gravitational forces vector are g2(θ) = −g((m1r1 +m2l1)sin(θ1) +m2r2sin(θ1 +
θ2)) and g3(θ) = −m2gr2sin(θ1 + θ2). Consequently, the dynamic model of the rotary double inverted
pendulum is written as

M(θ)θ̈ +H(θ, θ̇)θ̇ +G(θ) = τ⇒

θ̈ = −M−1(θ)[C(θ, θ̇) +G(θ)] +M−1(θ)τ
(14)

The inverse of the inertia matrix M(θ) is denoted as

M(θ)−1 = 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33



 (15)

where the sub-determinants Mij i = 1, 2, 3 j = 1, 2, 3 are defined as: M11 = m22m33 − m32m23, M12 =
m21m33 − m31m23, M13 = m21m32 − m31m22, M21 = m12m33 − m32m13, M22 = m11m33 − m31m13,
M23 = m11m32−m31m12, M23 = m11m32−m31m12, M31 = m12m23−m22m13, M32 = m11m23−m21m13,
M33 = m11m22 −m21m12 and detM = m1M11 −m12M12 +m13M13.

Using Eq. (14) and Eq. (15) the dynamic model of the rotary double inverted pendulum becomes
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θ̈0
θ̈1
θ̈2



 = − 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33









C1(θ, θ̇) +G1(θ)

C2(θ, θ̇) +G2(θ)

C3(θ, θ̇) +G3(θ)



+ 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33









T1

0
0





(16)
or equivalently













θ̈0

θ̈1

θ̈2













=















−M11(C1(θ,θ̇)+G1(θ))+M21(C2(θ,θ̇)+G2(θ))−M31(C3(θ,θ̇)+G3(θ))
detM

M12(C1(θ,θ̇)+G1(θ))−M22(C2(θ,θ̇)+G2(θ))+M32(C3(θ,θ̇)+G3(θ))
detM

−M13(C1(θ,θ̇)+G1(θ))+M23(C2(θ,θ̇)+G2(θ))−M33(C3(θ,θ̇)+G3(θ))
detM















+













M11

detM

− M12

detM

M13

detM













T1 (17)

Next, by denoting the state vector of the rotary double inverted pendulum as x = [x1, x2, x3, x4, x5, x6]
T

that is x = [θ0, θ̇0, θ1, θ̇1, θ2, θ̇2]
T and the control inputs vector as u = T1 one has the state-space description

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=

















x2

f2(x)
x4

f4(x)
x6

f6(x)

















+

















0
g2(x)
0

g4(x)
0

g6(x)

















u (18)

which is a model in the nonlinear affine-in-the-input state-space form

ẋ = f(x) + g(x)u (19)

with x∈R6×1, f(x)∈R6×1, g(x)∈R6×1, and u∈R. About the elements of vectors f(x) and g(x) which
appear in this state-space model it holds that:

f1(x) = x2 g1(x) = 0

f2(x) =
−M11(C1(θ,θ̇)+G1(θ))+M21(C2(θ,θ̇)+G2(θ))−M31(C3(θ,θ̇)+G3(θ))

detM
g2(x) =

M11

detM

f3(x) = x4 g3(x) = 0

f4(x) =
M12(C1(θ,θ̇)+G1(θ))−M22(C2(θ,θ̇)+G2(θ))+M32(C3(θ,θ̇)+G3(θ))

detM
g4(x) = − M12

detM

f5(x) = x6 g5(x) = 0

f6(x) =
−M13(C1(θ,θ̇)+G1(θ))+M23(C2(θ,θ̇)+G2(θ))−M33(C3(θ,θ̇)+G3(θ))

detM
g6(x) =

M13

detM

(20)

3 Approximate linearization of the rotary double inverted pendulum

3.1 Linearization process

The dynamic model of the rotary double inverted pendulum undergoes approximate linearization around
the temporary operating point (x∗, u∗) at each sampling instance [2-4]. This operating point is defined
by x∗ which is the value of the state vector at the present sampling instance and by u∗ which is the last
sampled value of the control inputs vector. The linearization process is based on first-order Taylor series
expansion and on the computation of the associated Jacobian matrices. It brings the system from the
initial nonlinear state-space form:

ẋ = f(x) + g(x)u (21)

into the equivalent linearized state-space description
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ẋ = Ax+Bu+ d̃ (22)

where d̃ is the cumulative vector of disturbances which may incorporate (i) modelling errors due to the
truncation of higher-order terms from the Taylor series expansion, (ii) exogenous perturbations, (iii) sensor
measurement noise of any distribution. The disturbances’ effects will be compensated by the robustness
of the nonlinear optimal (H-infinity) control algorithm. The computation of the Jacobian matrices of the
system is as follows:

A = ∇x[f(x) + g(x)u] |(x∗,u∗) ⇒A = ∇x[f(x)] |(x∗,u∗) +∇x[g(x)]u |(x∗,u∗) (23)

B = ∇u[f(x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (24)

This linearization approach which has been followed for implementing the nonlinear optimal control scheme
results into a quite accurate model of the system’s dynamics. Consider for instance the following affine-in-
the-input state-space model

ẋ = f(x) + g(x)u⇒

ẋ = [f(x∗) +∇xf(x) |x∗ (x− x∗)] + [g(x∗) +∇xg(x) |x∗ (x − x∗)]u∗ + g(x∗)u∗ + g(x∗)(u − u∗) + d̃1⇒

ẋ = [∇xf(x) |x∗ +∇xg(x) |x∗ u∗]x+ g(x∗)u− [∇xf(x) |x∗ +∇xg(x) |x∗ u∗]x∗ + f(x∗) + g(x∗)u∗ + d̃1
(25)

where d̃1 is the modelling error due to truncation of higher order terms in the Taylor series expansion of
f(x) and g(x). Next, by defining A = [∇xf(x) |x∗ +∇xg(x) |x∗ u∗], B = g(x∗) one obtains

ẋ = Ax+Bu−Ax∗ + f(x∗) + g(x∗)u∗ + d̃1 (26)

Moreover by denoting d̃ = −Ax∗ + f(x∗) + g(x∗)u∗ + d̃1 about the cumulative modelling error term in the
Taylor series expansion procedure one has

ẋ = Ax+Bu+ d̃ (27)

which is the approximately linearized model of the dynamics of the system of Eq. (22). The term
f(x∗) + g(x∗)u∗ is the derivative of the state vector at (x∗, u∗) which is almost annihilated by −Ax∗.

3.2 Computation of Jacobian matrices

Computation of the elements of the Jacobian matrix ∇x[f(x)] |(x∗,u∗) is first carried out.

First row of the Jacobian matrix ∇x[f(x)] |(x∗,u∗):
∂f1(x)
∂x1

= 0, ∂f1(x)
∂x2

= 1, ∂f1(x)
∂x3

= 0, ∂f1(x)
∂x4

= 0, ∂f1(x)
∂x5

= 0

and ∂f1(x)
∂x6

= 0.

Second row of the Jacobian matrix ∇x[f(x)] |(x∗,u∗): It holds that f2(x) =
f2,num(x)
f2,den(x)

where f2,num(x) =

−M11(C1(θ, θ̇)+G1(θ))+M21(C2)(θ, θ̇+G2(θ))−M31(C3(θ, θ̇)+G3(θ)) and f2,den(x) = detM . Moreover,
one has that for i = 1, 2, · · · , 6

∂f2(x)
∂xi

=
∂f2,num(x)

∂xi
f2,den(x)−f2,num(x)

∂f2,den(x)

∂xi

f2,den(x)2
(28)

Moreover, it holds that for i = 1, 2, · · · , 6
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∂f2,num(x)
∂xi

= −∂M11

∂xi
(C1(θ, θ̇) +G1(θ))−M11(

∂C1(θ,θ̇)
∂xi

+ ∂G1(θ)
∂xi

)+

+∂M21

∂xi
(C2(θ, θ̇) +G2(θ)) +M21(

∂C2(θ,θ̇)
∂xi

+ ∂G2(θ)
∂xi

)−

−∂M31

∂xi
(C3(θ, θ̇) +G3(θ)) −M31(

∂C3(θ,θ̇)
∂xi

+ ∂G3(θ)
∂xi

)

(29)

∂f2,den(x)
∂xi

= ∂detM
∂xi

(30)

Third row of the Jacobian matrix ∇x[f(x)] |(x∗,u∗):
∂f3(x)
∂x1

= 0, ∂f3(x)
∂x2

= 0, ∂f3(x)
∂x3

= 0, ∂f3(x)
∂x4

= 1,
∂f3(x)
∂x5

= 0 and ∂f3(x)
∂x6

= 0.

Fourth row of the Jacobian matrix ∇x[f(x)] |(x∗,u∗): It holds that f4(x) =
f4,num(x)
f4,den(x)

where f4,num(x) =

M12(C1(θ, θ̇) +G1(θ))−M22(C2)(θ, θ̇ +G2(θ)) +M32(C3(θ, θ̇) +G3(θ)) and f4,den(x) = detM . Moreover,
one has that for i = 1, 2, · · · , 6

∂f4(x)
∂xi

=
∂f4,num(x)

∂xi
f4,den(x)−f4,num(x)

∂f4,den(x)

∂xi

f4,den(x)2
(31)

Moreover, it holds that for i = 1, 2, · · · , 6

∂f4,num(x)
∂xi

= ∂M12

∂xi
(C1(θ, θ̇) +G1(θ)) +M13(

∂C1(θ,θ̇)
∂xi

+ ∂G1(θ)
∂xi

)−

−∂M22

∂xi
(C2(θ, θ̇) +G2(θ))−M22(

∂C2(θ,θ̇)
∂xi

+ ∂G2(θ)
∂xi

)+

+∂M32

∂xi
(C3(θ, θ̇) +G3(θ)) +M32(

∂C3(θ,θ̇)
∂xi

+ ∂G3(θ)
∂xi

)

(32)

∂f4,den(x)
∂xi

= ∂detM
∂xi

(33)

Fifth row of the Jacobian matrix ∇x[f(x)] |(x∗,u∗):
∂f5(x)
∂x1

= 0, ∂f5(x)
∂x2

= 0, ∂f5(x)
∂x3

= 0, ∂f5(x)
∂x4

= 0, ∂f5(x)
∂x5

= 0

and ∂f5(x)
∂x6

= 0.

Sixth row of the Jacobian matrix ∇x[f(x)] |(x∗,u∗): It holds that f6(x) =
f6,num(x)
f6,den(x)

where f6,num(x) =

−M13(C1(θ, θ̇)+G1(θ))+M23(C2)(θ, θ̇+G2(θ))−M33(C3(θ, θ̇)+G3(θ)) and f6,den(x) = detM . Moreover,
one has that for i = 1, 2, · · · , 6

∂f6(x)
∂xi

=
∂f6,num(x)

∂xi
f6,den(x)−f6,num(x)

∂f6,den(x)

∂xi

f6,den(x)2
(34)

Moreover, it holds that for i = 1, 2, · · · , 6

∂f6,num(x)
∂xi

= −∂M13

∂xi
(C1(θ, θ̇) +G1(θ))−M13(

∂C1(θ,θ̇)
∂xi

+ ∂G1(θ)
∂xi

)+

+∂M23

∂xi
(C2(θ, θ̇) +G2(θ)) +M23(

∂C2(θ,θ̇)
∂xi

+ ∂G2(θ)
∂xi

)−

−∂M33

∂xi
(C3(θ, θ̇) +G3(θ)) −M33(

∂C3(θ,θ̇)
∂xi

+ ∂G3(θ)
∂xi

)

(35)

∂f6,den(x)
∂xi

= ∂detM
∂xi

(36)

Computation of the elements of the Jacobian matrix ∇x[g(x)] |(x∗,u∗) is also carried out.

First row of the Jacobian matrix ∇x[g(x)] |(x∗,u∗):
∂g1(x)
∂xi

= 0 for i = 1, 2, · · · , 6.

Second row of the Jacobian matrix ∇x[g(x)] |(x∗,u∗): It holds that for i = 1, 2, · · · , 6

∂g21
∂xi

=
dM11
dxi

detM−M11
ddetM
dxi

detM2
(37)
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Third row of the Jacobian matrix ∇x[g(x)] |(x∗,u∗):
∂g3(x)
∂xi

= 0 for i = 1, 2, · · · , 6.

Fourth row of the Jacobian matrix ∇x[g(x)] |(x∗,u∗): It holds that for i = 1, 2, · · · , 6

∂g41
∂xi

=
−

dM12
dxi

detM+M11
ddetM
dxi

detM2
(38)

Fifth row of the Jacobian matrix ∇x[g(x)] |(x∗,u∗):
∂g3(x)
∂xi

= 0 for i = 1, 2, · · · , 6.

Sixth row of the Jacobian matrix ∇x[g(x)] |(x∗,u∗): It holds that for i = 1, 2, · · · , 6

∂g61
∂xi

=
dM13
dxi

detM−M13
ddetM
dxi

detM2
(39)

Besides, the partial derivatives of the sub-determinants of the inertial matrix M are computed as follows:
For i = 1, 2, · · · , 6

∂M11

∂xi
= ∂m22

∂xi
m33 +m22

∂m33

∂xi
− ∂m32

∂xi
m23 −m32

∂m23

∂xi
(40)

∂M12

∂xi
= ∂m21

∂xi
m33 +m21

∂m33

∂xi
− ∂m31

∂xi
m23 −m31

∂m23

∂xi
(41)

∂M13

∂xi
= ∂m21

∂xi
m32 +m21

∂m32

∂xi
− ∂m31

∂xi
m22 −m31

∂m22

∂xi
(42)

∂M21

∂xi
= ∂m12

∂xi
m33 +m12

∂m33

∂xi
− ∂m32

∂xi
m13 −m32

∂m13

∂xi
(43)

∂M22

∂xi
= ∂m11

∂xi
m33 +m11

∂m33

∂xi
− ∂m31

∂xi
m13 −m31

∂m13

∂xi
(44)

∂M23

∂xi
= ∂m11

∂xi
m32 +m11

∂m32

∂xi
− ∂m31

∂xi
m13 −m31

∂m13

∂xi
(45)

∂M31

∂xi
= ∂m12

∂xi
m23 +m12

∂m23

∂xi
− ∂m22

∂xi
m13 −m22

∂m13

∂xi
(46)

∂M32

∂xi
= ∂m11

∂xi
m23 +m11

∂m23

∂xi
− ∂m21

∂xi
m13 −m21

∂m13

∂xi
(47)

∂M33

∂xi
= ∂m11

∂xi
m22 +m11

∂m22

∂xi
− ∂m21

∂xi
m12 −m21

∂m12

∂xi
(48)

About the partial derivative of the determinant of the inertia matrix M it holds that

∂detM
∂xi

= ∂m11

∂xi
M11 +m11

∂M11

∂xi
−

−∂m12

∂xi
M12 +m12

∂M12

∂xi
+

+∂m13

∂xi
M13 +m13

∂M13

∂xi

(49)

Moreover, about the partial derivatives mij , i = 1, 2, 3 and j = 1, 2, 3 which appear in the inertia matrix
it holds that:

∂m11

∂x1
= 0, ∂m11

∂x2
= 0, ∂m11

∂x3
= (m1r

2
1+m2l

2
2)2sin(x3)cos(x3)+2m2l1r2[cos(x3)sin(x3+x5)+sin(x3)cos(x3+

x5)] + m2r
2
32sin(x3 + x5)cos(x3 + x5),

∂m11

∂x4
= 0, ∂m11

∂x5
= 2m2l1r2sin(x3)cos(x3 + x5) + m2r

2
22sin(x3 +

x5)cos(x3 + x5),
∂m11

∂x6
= 0.
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∂m12

∂x1
= 0, ∂m12

∂x2
= 0, ∂m12

∂x3
= −m1l0r1sin(x3) − m2l0r2sin(x3 + x5) − m2l0l1sin(x3),

∂m12

∂x4
= 0, ∂m12

∂x5
=

−m2l0r2sin(x3 + x5),
∂m12

∂x6
= 0.

∂m13

∂x1
= 0, ∂m13

∂x2
= 0, ∂m13

∂x3
= −m21l0r2sin(x3 + x5),

∂m13

∂x4
= 0, ∂m13

∂x5
= −m2l0r2sin(x3 + x5),

∂m13

∂x6
= 0.

∂m21

∂x1
= 0, ∂m21

∂x2
= 0, ∂m21

∂x3
= −m1l0r1sin(x3) − m2l0r2sin(x3 + x5) − m2l0l1sin(x3),

∂m21

∂x4
= 0, ∂m21

∂x5
=

−m2l0r2sin(x3 + x5),
∂m21

∂x6
= 0.

∂m22

∂x1
= 0, ∂m22

∂x2
= 0, ∂m22

∂x3
= 0, ∂m22

∂x4
= 0, ∂m22

∂x5
= −m2l1r2sin(x5),

∂m22

∂x6
= 0.

∂m23

∂x1
= 0, ∂m23

∂x2
= 0, ∂m23

∂x3
= 0, ∂m23

∂x4
= 0, ∂m23

∂x5
= −m2l1r2sin(x5),

∂m23

∂x6
= 0.

∂m31

∂x1
= 0, ∂m31

∂x2
= 0, ∂m31

∂x3
= −m21l0r2sin(x3 + x5),

∂m31

∂x4
= 0, ∂m31

∂x5
= −m2l0r2sin(x3 + x5),

∂m31

∂x6
= 0.

∂m32

∂x1
= 0, ∂m32

∂x2
= 0, ∂m32

∂x3
= 0, ∂m32

∂x4
= 0, ∂m32

∂x5
= −m2l1r2sin(x5),

∂m32

∂x6
= 0.

∂m33

∂x1
= 0, ∂m33

∂x2
= 0, ∂m33

∂x3
= 0, ∂m33

∂x4
= 0, ∂m33

∂x5
= 0, ∂m33

∂x6
= 0.

Next, the partial derivatives of the elements of the Coriolis and centrifugal forces matrix C(θ, θ̇) are
computed. It holds that C1(θ, θ̇) = H11x2 + H12x4 + H13x6, C2(θ, θ̇) = H21x2 + H22x4 + H23x6, and
C3(θ, θ̇) = H31x2 +H32x4 +H33x6. Thus:

∂C1

∂x1
= ∂H11

∂x1
x2+

∂H12

∂x1
x4+

∂H13

∂x1
x6,

∂C1

∂x2
= [∂H11

∂x2
x2+H11]+

∂H12

∂x2
x4+

∂H13

∂x2
x6,

∂C1

∂x3
= ∂H11

∂x1
x3+

∂H12

∂x3
x4+

∂H13

∂x3
x6,

∂C1

∂x4
= ∂H11

∂x4
x2 + [∂H12

∂x4
x4 +H12] +

∂H13

∂x4
x6,

∂C1

∂x5
= ∂H11

∂x5
x2 +

∂H12

∂x5
x4 +

∂H13

∂x5
x6,

∂C1

∂x6
= ∂H11

∂x6
x2 +

∂H12

∂x6
x4 +

[∂H13

∂x1
x6 +H13].

∂C2

∂x1
= ∂H21

∂x1
x2+

∂H22

∂x1
x4+

∂H23

∂x1
x6,

∂C2

∂x2
= [∂H21

∂x2
x2+H21]+

∂H22

∂x2
x4+

∂H23

∂x2
x6,

∂C2

∂x3
= ∂H21

∂x1
x3+

∂H22

∂x3
x4+

∂H23

∂x3
x6,

∂C2

∂x4
= ∂H21

∂x4
x2 + [∂H22

∂x4
x4 +H22] +

∂H23

∂x4
x6,

∂C2

∂x5
= ∂H21

∂x5
x2 +

∂H22

∂x5
x4 +

∂H23

∂x5
x6,

∂C2

∂x6
= ∂H21

∂x6
x2 +

∂H22

∂x6
x4 +

[∂H23

∂x1
x6 +H23].

∂C3

∂x1
= ∂H31

∂x1
x2+

∂H32

∂x1
x4+

∂H33

∂x1
x6,

∂C3

∂x2
= [∂H31

∂x2
x2+H31]+

∂H32

∂x2
x4+

∂H33

∂x2
x6,

∂C3

∂x3
= ∂H31

∂x1
x3+

∂H32

∂x3
x4+

∂H33

∂x3
x6,

∂C3

∂x4
= ∂H31

∂x4
x2 + [∂H32

∂x4
x4 +H32] +

∂H33

∂x4
x6,

∂C2

∂x5
= ∂H21

∂x5
x2 +

∂H22

∂x5
x4 +

∂H23

∂x5
x6,

∂C3

∂x6
= ∂H31

∂x6
x2 +

∂H32

∂x6
x4 +

[∂H33

∂x1
x6 +H33].

About the partial derivatives of the terms Hij , i = 1, 2, 3 and j = 1, 2, 3 one has that ∂H11

∂x1
= 0, ∂H11

∂x2
= 0

∂H11

∂x3
= m1r

2
1x

2
42cos(2x3) + 2m2l

2
1x4[cos

2(x3)− sin2(x3)]+

+2m2r
2
2x4[cos

2(x3 + x5)− sin2(x3 + x5)]+
+2m2r

2
2x6cos(x3 + x5)sin(x3 + x5)+

+2m2l1r2x4[cos(x3)cos(x3 + x5)− sin(x3)sin(x3 + x5)]+
+2m2l1r2x4[cos(x3)cos(x3 + x5)− sin(x3)sin(x3 + x5)]+
+2m2l1r2x6[cos(x3 + x5)cos(x3)− sin(x3 + x5)sin(x3)]

(50)

∂H11

∂x4
= m1r

2
12x4sin(2x3) + 2m2l

2
1cos(x3)sin(x3)+

+2m2r
2
2cos(x3 + x5)sin(x3 + x5)+

+2m2l1r2cos(x3)sin(x3 + x5)+
+2m2l1r2cos(x3 + x5)sin(x3)

(51)
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∂H11

∂x5
= 2m2r

2
2x4[cos

2(x3 + x5)− sin2(x3 + x5)]+

+2m2r
2
2x6[cos

2(x3 + x5)− sin2(x3 + x5)]+
+2m3l1r2x4cos(x3)cos(x3 + x5)+
−2m2l1r2x4sin(x3 + x5)sin(x3)+
−2m2l1r2x6sin(x3 + x5)sin(x3)

(52)

∂H11

∂x6
= 2m2r

2
2cos(x3 + x5)sin(x3 + x5)+

+2m2l1r2x6sin(x3 + x5)sin(x3)
(53)

In an equivalent manner one finds ∂H12

∂x1
= 0, ∂H12

∂x2
= 0,

∂H12

∂x3
= −m1l0r1x4cos(x3)−m2l0l1x4cos(x3)−m2l0r2x4cos(x3 + x5) (54)

∂H12

∂x4
= −m1l0r1sin(x3)−m2l0l1sin(x3)−m2l0r2sin(x3 ++x5) (55)

∂H12

∂x5
= −m2l0r2x4cos(x3 + x5) (56)

and also ∂H12

∂x6
= 0. In a similar manner one obtains ∂H13

∂x1
= 0, ∂H13

∂x2
= 0 and also

∂H13

∂x3
= −2m1l0r2x4cos(x3 + x5)−m2l0r0x6cos(x3 + x5) (57)

∂H13

∂x4
= −2m1l0r0sin(x3 + x5) (58)

∂H13

∂x5
= −2m1l0r2x4cos(x3 + x5)−m2l0r2x6cos(x3 + x5) (59)

∂H13

∂x6
= −m2l0r2sin(x3 + x5) (60)

Additionally, one computes ∂H21

∂x1
= 0 and also

∂H21

∂x2
= − 1

2m1r
2
1sin(2x3)−

1
2m2r

2
2sin(2(x3 + x+ 5))−

−m2l
2
1cos(x3)sin(x3)−m2l1r2sin(2x3 + x5)

(61)

∂H21

∂x3
= − 1

2m1r
2
1x22cos(2x3)−

1
2m2r

2
2x22cos(2(x3 + x5))−

−m2l
2
1x2[cos

2(x3)− sin2(x3)]−m2l1r2x
2
2cos

2(2x3 + x5)
(62)

∂H21

∂x5
= − 1

2m2r
2
2x

2
2cos(2(x3 + x5))−m2l1r2x2cos(2x3 + x5) (63)

while it also holds ∂H21

∂x4
= 0 and ∂H21

∂x6
= 0. Additionally, one finds ∂H22

∂x1
= 0, ∂H22

∂x2
= 0, ∂H22

∂x3
= 0, ∂H22

∂x4
= 0

while it also holds that

∂H22

∂x4
= −2m2l1r2x6cos(x5) (64)

∂H22

∂x5
= −2m2l1r2x6sin(x5) (65)

In a similar manner one obtains ∂H23

∂x1
= 0, ∂H23

∂x2
= 0, ∂H23

∂x3
= 0, ∂H23

∂x4
= 0, and also

∂H23

∂x5
= −m2l1r2x6cos(x5) (66)

∂H23

∂x6
= −m2l1e2sin(x5) (67)
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Additionally, one finds ∂H31

∂x1
= 0 and also

∂H31

∂x2
= − 1

2m2r
2
2sin(2(x3 + x5))−m2l1r2sin(x3)cos(x3 + x5) (68)

∂H31

∂x3
= − 1

2m2r
2
2x22cos(2(x3 + x5))−

−m2l1r2x2[cos(x3)cos(x3 + x5)− sin(x3)sin(x3 + x5)]
(69)

∂H31

∂x5
= − 1

2m2r
2
2x2 − 2cos(2(x3 + x5))+

+m2l1r2x22sin(x3)sin(x3 + x5)
(70)

while it also holds that ∂H31

∂x4
= 0 and ∂H31

∂x6
= 0. Equivalently, one obtains ∂H32

∂x1
= 0, ∂H32

∂x2
= 0, ∂H32

∂x3
= 0,

∂H31

∂x6
= 0 and also

∂H32

∂x4
= m2l1r2sin(x5) (71)

∂H32

∂x5
= m2l1r2x4cos(x5) (72)

Finally it holds that ∂H32

∂x6
= 0 for i = 1, 2, · · · , 6.

Next, the partial derivatives of the elements of the gravitational forces vector are computed. About the
first element of the gravitational forces vector it holds that ∂g1

∂xi
= 0 for i = 1, 2, · · · , 6.

For the second element of the gravitational forces vector one has ∂g2
∂x1

= 0, ∂g2
∂x2

= 0, ∂g2
∂x4

= 0, ∂g2
∂x6

= 0, and
also

∂g2
∂x3

= −g(m1r1 +m2l1cos(x3) +m2r2cos(x3 + x5)) (73)

For the third element of the gravitational forces vector one has ∂g3
∂x1

= 0, ∂g3
∂x2

= 0, ∂g3
∂x4

= 0, ∂g3
∂x6

= 0, and
also

∂g3
∂x3

= −gm2r2cos(x3 + x5) (74)

∂g3
∂x5

= −gm2r2cos(x3 + x5) (75)

4 Design of an H-infinity nonlinear feedback controller

4.1 Equivalent linearized dynamics of the rotary double inverted pendulum

After linearization around its current operating point, the dynamic model for the rotary double inverted
pendulum is written as [2-4]

ẋ = Ax+Bu+ d1 (76)

Parameter d1 stands for the linearization error in the rotary double inverted pendulum’s model that was
given previously in Eq. (22). The reference setpoints for the state vector of the aforementioned dynamic
model are denoted by xd = [xd

1, · · · , x
d
6]. Tracking of this trajectory is achieved after applying the control

input u∗. At every time instant the control input u∗ is assumed to differ from the control input u appearing
in Eq. (76) by an amount equal to ∆u, that is u∗ = u+∆u

ẋd = Axd +Bu∗ + d2 (77)

The dynamics of the controlled system described in Eq. (76) can be also written as

12
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ẋ = Ax+Bu+Bu∗ − Bu∗ + d1 (78)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax+Bu+Bu∗ + d3 (79)

By subtracting Eq. (77) from Eq. (79) one has

ẋ− ẋd = A(x− xd) +Bu+ d3 − d2 (80)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as d̃ = d3 − d2, the
tracking error dynamics becomes

ė = Ae+Bu+ d̃ (81)

The above linearized form of the rotary double inverted pendulum can be efficiently controlled after ap-
plying an H-infinity feedback control scheme.

4.2 The nonlinear H-infinity control

The initial nonlinear model of the rotary double inverted pendulum is in the form

ẋ = f(x, u) x∈Rn, u∈Rm (82)

Linearization of the model of the rotary double inverted pendulum is performed at each iteration of the
control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent
of the system is described by

ẋ = Ax+Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (83)

where matrices A and B are obtained from the computation of the previously defined Jacobians and vector
d̃ denotes disturbance terms due to linearization errors. The problem of disturbance rejection for the
linearized model that is described by

ẋ = Ax+Bu+ Ld̃
y = Cx

(84)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical LQR control scheme is
applied. This is because of the existence of the perturbation term d̃. The disturbance term d̃ apart from
modeling (parametric) uncertainty and external perturbation terms can also represent noise terms of any
distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the system’s
state vector and simultaneous disturbance rejection, considering that the disturbance affects the system
in the worst possible manner. The disturbances’ effects are incorporated in the following quadratic cost
function [2-4]:

J(t) = 1
2

∫ T

0
[yT (t)y(t) + ruT (t)u(t)− ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (85)

The significance of the negative sign in the cost function’s term that is associated with the perturbation
variable d̃(t) is that the disturbance tries to maximize the cost function J(t) while the control signal u(t)
tries to minimize it. The physical meaning of the relation given above is that the control signal and the
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disturbances compete to each other within a min-max differential game. This problem of min-max opti-
mization can be written as minumaxd̃J(u, d̃).

The objective of the optimization procedure is to compute a control signal u(t) which can compensate for
the worst possible disturbance, that is externally imposed to the rotary double inverted pendulum. How-
ever, the solution to the min-max optimization problem is directly related to the value of the parameter
ρ. This means that there is an upper bound in the disturbances magnitude that can be annihilated by the
control signal.

4.3 Computation of the feedback control gains

For the linearized system given by Eq. (84) the cost function of Eq. (85) is defined, where the coefficient
r determines the penalization of the control input and the weight coefficient ρ determines the reward of
the disturbances’ effects. It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫

∞

0
d̃T (t)d̃(t)dt < ∞, (ii) matrices [A,B] and [A,L] are stabilizable, (iii) matrix

[A,C] is detectable. In the case of a tracking problem the optimal feedback control law is given by [2-4]

u(t) = −Ke(t) (86)

with e = x− xd to be the tracking error, and K = 1
r
BTP where P is a positive definite symmetric matrix.

As it will be proven in Section 5, matrix P is obtained from the solution of the Riccati equation [2-4]

ATP + PA+Q− P (2
r
BBT − 1

ρ2LL
T )P = 0 (87)

where Q is a positive semi-definite symmetric matrix. The worst case disturbance is given by

d̃(t) = 1
ρ2L

TPe(t) (88)

The solution of the H-infinity feedback control problem for the rotary double inverted pendulum and the
computation of the worst case disturbance that the related controller can sustain, comes from superposition
of Bellman’s optimality principle when considering that the rotary double inverted pendulum is affected
by two separate inputs (i) the control input u (ii) the cumulative disturbance input d̃(t). Solving the
optimal control problem for u, that is for the minimum variation (optimal) control input that achieves
elimination of the state vector’s tracking error, gives u = − 1

r
BTPe. Equivalently, solving the optimal con-

trol problem for d̃, that is for the worst case disturbance that the control loop can sustain gives d̃ = 1
ρ2L

TPe.

The diagram of the considered control loop for the rotary double inverted pendulum is depicted in Fig. 2.

5 Lyapunov stability analysis

5.1 Stability proof

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme assures
H∞ tracking performance for the rotary double inverted pendulum, and that in case of bounded disturbance
terms asymptotic convergence to the reference setpoints is achieved. The tracking error dynamics for the
rotary double inverted pendulum is written in the form

ė = Ae+Bu+ Ld̃ (89)

where in the rotary double inverted pendulum’s case L = ∈R6×6 to be the disturbance inputs gain matrix.
Variable d̃ denotes model uncertainties and external disturbances of the rotary double inverted pendulum’s
model. The following Lyapunov equation is considered [2-4]
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Figure 2: Diagram of the control scheme for the rotary double inverted pendulum

V = 1
2e

TPe (90)

where e = x− xd is the tracking error. By differentiating with respect to time one obtains

V̇ = 1
2 ė

TPe+ 1
2e

TP ė⇒V̇ = 1
2 [Ae+Bu+ Ld̃]TPe+ 1

2e
TP [Ae +Bu+ Ld̃]⇒ (91)

V̇ = 1
2 [e

TAT + uTBT + d̃TLT ]Pe+ 1
2e

TP [Ae+Bu+ Ld̃]⇒ (92)

V̇ = 1
2e

TATPe+ 1
2u

TBTPe+ 1
2 d̃

TLTPe+ 1
2e

TPAe+ 1
2e

TPBu+ 1
2e

TPLd̃ (93)

The previous equation is rewritten as

V̇ = 1
2e

T (ATP + PA)e+ (12u
TBTPe+ 1

2e
TPBu) + (12 d̃

TLTPe+ 1
2e

TPLd̃) (94)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a positive definite
matrix P , which is the solution of the following matrix equation

ATP + PA = −Q+ P (2
r
BBT − 1

ρ2LL
T )P (95)

Moreover, the following feedback control law is applied to the system

u = − 1
r
BTPe (96)

By substituting Eq. (95) and Eq. (96) one obtains

V̇ = 1
2e

T [−Q+ P (2
r
BBT − 1

ρ2LL
T )P ]e+ eTPB(− 1

r
BTPe) + eTPLd̃⇒ (97)

V̇ = − 1
2e

TQe+ 1
r
eTPBBTPe− 1

2ρ2 e
TPLLTPe

− 1
r
eTPBBTPe+ eTPLd̃

(98)
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which after intermediate operations gives

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+ eTPLd̃ (99)

or, equivalently

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+ 1
2e

TPLd̃+ 1
2 d̃

TLTPe (100)

Lemma: The following inequality holds

1
2e

TLd̃+ 1
2 d̃L

TPe− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (101)

Proof : The binomial (ρα− 1
ρ
b)2 is considered. Expanding the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0 ⇒ 1
2ρ

2a2 + 1
2ρ2 b

2 − ab ≥ 0 ⇒

ab− 1
2ρ2 b

2 ≤ 1
2ρ

2a2 ⇒ 1
2ab+

1
2ab−

1
2ρ2 b

2 ≤ 1
2ρ

2a2
(102)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous relation becomes

1
2 d̃

TLTPe+ 1
2e

TPLd̃− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (103)

Eq. (103) is substituted in Eq. (100) and the inequality is enforced, thus giving

V̇≤− 1
2e

TQe+ 1
2ρ

2d̃T d̃ (104)

Eq. (104) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇ from 0 to
T gives

∫ T

0
V̇ (t)dt≤ − 1

2

∫ T

0
||e||2Qdt+

1
2ρ

2
∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt≤2V (0) + ρ2

∫ T

0
||d̃||2dt

(105)

Moreover, if there exists a positive constant Md > 0 such that

∫

∞

0 ||d̃||2dt ≤ Md (106)

then one gets

∫

∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (107)

Thus, the integral
∫

∞

0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the definition of the
Lyapunov function V in Eq. (90) it becomes clear that e(t) will be also bounded since e(t) ∈ Ωe =
{e|eTPe≤2V (0) + ρ2Md}. According to the above and with the use of Barbalat’s Lemma one obtains
limt→∞ e(t) = 0.

After following the stages of the stability proof one arrives at Eq. (104) which shows that the H-infinity
tracking performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and
in particular to satisfy ρ2 < ||e||2Q/||d̃||

2 one has that the first derivative of the Lyapunov function is upper
bounded by 0. This condition holds at each sampling instance and consequently global stability for the
control loop can be concluded.
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5.2 Robust state estimation with the use of the H∞ Kalman Filter

The control loop has to be implemented with the use of information provided by a small number of sensors
and by processing only a small number of state variables. To reconstruct the missing information about the
state vector of the rotary double inverted pendulum it is proposed to use a filtering scheme and based on
it to apply state estimation-based control [2-4]. By denoting as A(k), B(k), C(k) the discrete-time equiv-
alents of matrices A, B, C which constitute the linearized state-space model of Eq. (22), the recursion of
the H∞ Kalman Filter, for the model of the rotary double inverted pendulum, can be formulated in terms
of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) +K(k)[y(k)− Cx̂−(k)]
(108)

Time update:

x̂−(k + 1) = A(k)x(k) +B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) +Q(k)

(109)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix P−(k)
−1

−
θW (k) +CT (k)R(k)−1C(k) will be positive definite. When θ = 0 the H∞ Kalman Filter becomes equiva-
lent to the standard Kalman Filter. One can measure only a part of the state vector of the rotary double
inverted pendulum, for instance state variables x1, x3 and x5 (turn angles of the joints) and can estimate
through filtering the rest of the state vector elements (x2, x4, and x6 (angular velocities. Moreover, the
proposed Kalman filtering method can be used for sensor fusion purposes.

6 Generalization of results for the parallel double inverted pendulum

6.1 Dynamic model of the double parallel pendulum

It will be shown that the proposed nonlinear optimal control method is not only suitable for the stabilization
of the rotary double inverted pendulum but can be also used in more underactuated nonlinear dynamical
systems. To this end, the parallel double inverted pendulum is used as a case study[45- 47]. The diagram
of the parallel double inverted pendulum is given in Fig. 3
The parameters of the dynamic model of the parallel double inverted pendulum are: (i) θp1 is the turn
angle of the first pendulum, lp1 is the length of the first pendulum, mp1 and Ip1 are the mass and the
moment of inertia of the first pendulum respectively, c1 is the first pendulum’s friction coefficient, (ii) θp2

is the turn angle of the second pendulum, lp2 is the length of the second pendulum, mp2 and Ip2 are the
mass and the moment of inertia of the second pendulum respectively, c2 is the second pendulum’s friction
coefficient. Finally, g is the acceleration of gravity. The dynamic model of the parallel double inverted
pendulum is given by

Ip1 θ̈p1 +mp1 lp1 ẍcos(θp1)−mp1glp1sin(θp1) + c1θ̇p1 = 0

Ip2 θ̈p2 +mp2 lp2 ẍcos(θp2)−mp2glp2sin(θp2) + c2θ̇p2 = 0
(110)

The control input of this dynamical system is taken to be the cart’s acceleration ẍ = u, thus one has

Ip1 θ̈p1 +mp1 lp1u·cos(θp1)−mp1glp1sin(θp1) + c1θ̇p1 = 0

Ip2 θ̈p2 +mp2 lp2u·cos(θp2)−mp2glp2sin(θp2) + c2θ̇p2 = 0
(111)

or equivalently
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Figure 3: Diagram of the parallel double inverted pendulum - System 1

θ̈p1 =
mp1

Ip1
glp1sin(θp1)−

c1
Ip1

θ̇p1 −
mp1

Ip1
lp1 ·cos(θp1)u

θ̈p2 =
mp2

Ip2
glp2sin(θp2)−

c2
Ip2

θ̇p2 −
mp2

Ip2
lp2 ·cos(θp2)u

(112)

The following state vector is defined x = [x1, x2, x3, x4]
T = [θp1 , θ̇p1 , θp2 , θ̇p2 ]

T . Thus, the dynamic model
of the parallel double inverted pendulum becomes:

ẋ1 = x2

ẋ2 =
mp1

Ip1
glp1sin(x1)−

c1
Ip1

x2 −
mp1

Ip1
lp1 ·cos(x1)u

ẋ3 = x4

ẋ4 =
mp2

Ip2
glp2sin(x3)−

c2
Ip2

x4 −
mp2

Ip2
lp2 ·cos(x3)u

(113)

In matrix form, the state-space model of the parallel double inverted pendulum becomes









ẋ1

ẋ2

ẋ3

ẋ4









=











x2
mp1

Ip1
glp1sin(x1)−

c1
Ip1

x2

x4
mp2

Ip2
glp2sin(x3)−

c2
Ip2

x4











+











0
−

mp1

Ip1
lp1 ·cos(x1)

0
−

mp2

Ip2
lp2 ·cos(x3)











u (114)

and finally, the dynamic model of the parallel double inverted pendulum can be written in the nonlinear
affine-in-the-input state-space form

ẋ = f(x) + g(x)u (115)

where x∈R4×1, f(x)∈R4×1, g(x)∈R4×1 and u∈R, The system is underactuated, and is differentially flat
for small turn angles of the poles, having the flat output y = x1 − x3.
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6.2 Approximate linearization of the parallel double inverted pendulum

The state-space model of the parallel double inverted pendulum undergoes approximate linearization
around the temporary operating point (x∗, u∗), where x∗ is the present value of the system’s state vector
and u∗ is the last sampled value of the control inputs vector. The linearization takes place at each sampling
instance through the computation of the system’s Jacobian matrices. The modelling error which is due
to the truncation of higher-order terms in the Taylor series, is considered to be a perturbation which is
asymptotically compensated by the robustness of the control algorithm. The linearization process allows
for substituting the initial nonlinear state-space model

ẋ = f(x) + g(x)u (116)

with the approximately linearized model

ẋ = Ax+Bu+ d̃ (117)

where A, B are the Jacobian matrices of the system which are given by

A = ∇x[f(x) + g(x)u] |(x∗,u∗) ⇒
A = ∇x[f(x)] |(x∗,u∗) +[∇xg(x)]u |(x∗,u∗)

(118)

B = ∇u[f(x) + g(x)u] |(x∗,u∗) ⇒
B = g(x) |(x∗,u∗)

(119)

while d̃ is the cumulative disturbance vector that may comprise (i) exogenous perturbations, (ii) modelling
errors due to higher-order terms in the Taylor series, (iii) sensor measurement noise of any distribution.

In this linearization process matrix A = ∇x[f(x) + g(x)u] |(x∗,u∗) is computed as follows:

A =











0 1 0 0
mp1

Ip1
glp1cos(x1) +

mp1

Ip1
lp1sin(x1)u − c1

Ip1
0 0

0 0 0 1
0 0

mp2

Ip2
glp2cos(x3) +

mp3

Ip3
lp3sin(x3)u − c2

Ip2











|(x∗,u∗)

(120)
while matrix B = ∇u[f(x) + g(x)u] |(x∗,u∗) is given by:

B =











0
−

mp1

Ip1
lp1 ·cos(x1)

0
−

mp2

Ip2
lp2 ·cos(x3)











|(x∗,u∗) (121)

7 Simulation tests

7.1 Control of the rotary double inverted pendulum

The global stability properties of the control method and the elimination of the state vector’s tracking
error which were previously proven through Lyapunov analysis are further confirmed through simulation
experiments. To implement the nonlinear optimal control scheme the algebraic Riccati equation of Eq.
(95) had to be solved at each time-step of the control method. The solution of the Riccati equation was
obtained with the use of Matlab’s aresolv() function. Indicative values for the parameters of the model
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of the rotary double inverted pendulum have been given in [5]. In the presented simulation tests the pa-
rameters of the rotary double inverted pendulum have been: (i) lengths of links l0 = 1.5m, l1 = 0.60m,
l2 = 0.65m, (ii) moments of inertia of the links J0 = 1.230kg·m2, J1 = 0.720kg·m2, J2 = 0.590kg·m2, (iii)
distances from the joint to the center of gravity of the links r1 = 0.065m, r2 = 0.040m, (iv) masses of the
links m1 = 1.60kg, m2 = 1.50kg, (v) viscous friction coefficients C̄0 = 6.000, C̄1 = 0.0058, C̄2 = 0.060.
The acceleration of gravity was g = 9.8m/sec2. The obtained results are depicted in Fig. 4 to Fig. 11. In
these diagrams the real values of the state variables of the rotary double inverted pendulum are shown in
blue colour, the estimated values which have been obtained with the use of the H-infinity Kalman Filter
are depicted in green while the associated setpoints are plotted in red.

The simulation experiments have confirmed that the proposed nonlinear optimal control method for the
rotary double inverted pendulum achieves fast and accurate tracking of reference setpoints under moderate
variations of the control inputs. The transient performance of the control method depends on the selection
of the parameters of the above-noted Riccati equation r, ρ and Q. For relatively small values of r the state
vectors’ tracking error is eliminated. For relatively large values of the diagonal elements of gain matrix Q
the speed of convergence of the state variables to the associated setpoints is raised. Moreover, the smallest
value of the attenuation coefficient ρ for which a valid solution is obtained from the Riccati equation in
the form of a positive definite and symmetric matrix P is the one that achieves maximum robustness for
the control loop.

To elaborate on the tracking performance and on the robustness of the proposed nonlinear optimal con-
trol method for the rotary double inverted pendulum the following Tables are given: (i) Table Ia which
provides information about the accuracy of tracking of the reference setpoints by the state variables of the
rotary double inverted pendulum’s state-space model, (iia) Table IIa which provides information about
the robustness of the control method to parametric changes in the model of the rotary double inverted
pendulum’s dynamics (change ∆a% in the moment of inertia J0 of the first link), (iii) Table IIIa which
provides information about the precision in state variables’ estimation that is achieved by the H-infinity
Kalman Filter, (iv) Table IVa which provides the approximate convergence times of the rotary double
inverted pendulum’s state variables to the associated setpoints.

Table Ia: rotary double inverted pendulum
Tracking RMSE for the rotary pendulum in the disturbance-free case×10−3

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6

test1 0.0233 0.0185 0.0001 0.0009 0.0012 0.0007
test2 0.0592 0.0241 0.0008 0.0014 0.0658 0.0223
test3 0.1010 0.0422 0.0014 0.0013 0.1145 0.0402
test4 0.0986 0.0424 0.0014 0.0014 0.1144 0.0400
test5 0.1009 0.0423 0.0014 0.0014 0.1143 0.0400
test6 0.0759 0.0517 0.0011 0.0013 0.0982 0.0320
test7 0.0410 0.0336 0.0006 0.0011 0.0470 0.0161
test8 0.0925 0.0377 0.0012 0.0013 0.1028 0.0359
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Figure 4: Tracking of setpoint 1 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Figure 5: Tracking of setpoint 2 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Figure 6: Tracking of setpoint 3 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Figure 7: Tracking of setpoint 4 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Figure 8: Tracking of setpoint 5 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Figure 9: Tracking of setpoint 6 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Figure 10: Tracking of setpoint 7 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)

0 20 40 60
0

1

2

3

time (sec)

x
1

0 20 40 60
−0.5

0

0.5

1

time (sec)

x
3

0 20 40 60
−0.1

0

0.1

0.2

0.3

time (sec)

x
3

0 20 40 60
−0.5

0

0.5

time (sec)

x
4

0 20 40 60
−0.4

−0.2

0

0.2

0.4

time (sec)

x
5

0 20 40 60
−0.5

0

0.5

time (sec)

x
6

0 20 40 60
−1.5

−1

−0.5

0

0.5

time (sec)

e
1
, 

e
3
, 

e
5

0 20 40 60
−10

−5

0

5

10

time (sec)

u

(a) (b)

Figure 11: Tracking of setpoint 8 for the rotary double inverted pendulum (double Furuta pendulum): (a)
convergence of state variable x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), and variations of the control u (torque τ) at
the first joint) (b) convergence of state variable x5 = θ2, x6 = θ̇2 to their reference setpoints (red line:
setpoint, blue line: real value, green line: estimated value), variation of tracking errors e1 (red), e3 (green),
e5 (blue) and variations of the control u (torque τ) at the first joint)
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Table IIa: rotary double inverted pendulum
Tracking RMSE for the rotary pendulum in the case of disturbances×10−3

∆a% RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6

0% 0.0592 0.0241 0.0008 0.0014 0.0658 0.0223
10% 0.0525 0.0249 0.0008 0.0013 0.0674 0.0239
20% 0.0459 0.0256 0.0009 0.0013 0.0691 0.0258
30% 0.0400 0.0265 0.0009 0.0012 0.0741 0.0277
40% 0.0353 0.0276 0.0009 0.0013 0.0722 0.0296
50% 0.0313 0.0287 0.0008 0.0014 0.0735 0.0352
60% 0.0287 0.0301 0.0009 0.0012 0.0747 0.0337

Table IIIa: rotary double inverted pendulum
RMSE for the estimation performed by the H-infinity KF×10−3

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6

test1 0.0200 0.0004 0.0208 0.2192 0.0438 0.9570
test2 0.0189 0.0004 0.0201 0.2194 0.0412 0.9562
test3 0.0191 0.0004 0.0172 0.2193 0.0389 0.9561
test4 0.0203 0.0004 0.0231 0.2190 0.0443 0.9576
test5 0.0214 0.0005 0.0206 0.2193 0.0389 0.9564
test6 0.0189 0.0004 0.0215 0.2193 0.0389 0.9564
test7 0.0189 0.0004 0.0234 0.2195 0.0409 0.9557
test8 0.0189 0.0004 0.0229 0.2195 0.0394 0.9557

Table IVa: rotary double inverted pendulum
Convergence time (sec) for state variables x1 to x6

Ts x1 Ts x2 Ts x3 Ts x4 Ts x5 Ts x6

test1 18.0 20.0 8.0 4.0 23.0 19.0
test2 15.0 13.0 8.0 3.0 21.0 18.0
test3 12.0 15.0 7.0 4.0 21.0 18.0
test4 16.0 15.0 9.0 4.0 21.0 19.0
test5 18.0 13.0 4.0 4.0 20.0 18.0
test6 12.0 15.0 6.0 4.0 21.0 18.0
test7 10.0 14.0 8.0 4.0 21.0 18.0
test8 16.0 13.0 4.0 4.0 20.0 11.0

7.2 Control of the parallel double inverted pendulum

Simulation experiments about the performance of the nonlinear optimal control method in the case of the
parallel double inverted pendulum are given in Fig. 12 to Fig. 19. The parameters of the dynamic model
of the parallel double inverted pendulum were: mp1 = 0.80kg, lp1 = 0.70m, Ip1 = 0.40kgm2, c1 = 0.12,
mp2 = 0.85kg, lp2 = 0.85m, , Ip2 = 0.54kgm2, c2 = 0.15 and g = 10m/sec2. Through the obtained results
it can be confirmed that the nonlinear optimal control method achieves fast stabilization of the parallel
double inverted pendulum under moderate variations of the control inputs.

To elaborate on the tracking performance and on the robustness of the proposed nonlinear optimal con-
trol method for the parallel double inverted pendulum the following Tables are given: (i) Table Ib which
provides information about the accuracy of tracking of the reference setpoints by the state variables of the
parallel double inverted pendulum’s state-space model, (ii) Table IIb which provides information about
the robustness of the control method to parametric changes in the model of the parallel double inverted
pendulum’s dynamics (change ∆a% in the friction coefficients c1, c2 of the parallel double inverted pen-
dulum), (iii) Table IIIb which provides information about the precision in state variables’ estimation that
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Figure 12: Tracking of setpoint 1 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 13: Tracking of setpoint 2 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 14: Tracking of setpoint 3 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 15: Tracking of setpoint 4 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 16: Tracking of setpoint 5 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 17: Tracking of setpoint 6 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 18: Tracking of setpoint 7 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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Figure 19: Tracking of setpoint 8 for the parallel double inverted pendulum (cart with double inverted
pendulum): (a) convergence of state variable x1 = θp1 , x2 = θ̇p1 , x3 = θ2, x4 = θ̇p2 to their reference
setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) variation of tracking
errors e1, e3, and variations of the control input u (acceleration of the cart)
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is achieved by the H-infinity Kalman Filter, (iv) Table IVb which provides the approximate convergence
times of the parallel double inverted pendulum’s state variables to the associated setpoints.

Table Ib: parallel double inverted pendulum
Tracking RMSE for the parallel pendulum in the disturbance-free case×10−6

RMSEx1 RMSEx2 RMSEx3 RMSEx4

test1 0.4317 0.1166 0.4318 0.1166
test2 0.4220 0.1162 0.4321 0.1162
test3 0.4314 0.1163 0.4315 0.1165
test4 0.4325 0.1163 0.4326 0.1163
test5 0.4315 0.1169 0.4316 0.1169
test6 0.4325 0.1167 0.4326 0.1167
test7 0.3985 0.1069 0.3985 0.1070
test8 0.2981 0.0777 0.2882 0.0777

Table IIb: parallel double inverted pendulum
Tracking RMSE for the parallel pendulum in the case of disturbances×10−5

∆a% RMSEx1 RMSEx2 RMSEx3 RMSEx4

0% 0.0431 0.0116 0.0431 0.0116
10% 0.0840 0.0208 0.0840 0.0208
20% 0.1403 0.0326 0.1403 0.0326
30% 0.2138 0.0472 0.2138 0.0472
40% 0.3064 0.0647 0.3063 0.0647
50% 0.4197 0.0352 0.4169 0.0852
60% 0.5564 0.1098 0.5583 0.1088

Table IIIb: parallel double inverted pendulum
RMSE for the estimation performed by the H-infinity KF×10−6

RMSEx1 RMSEx2 RMSEx3 RMSEx4

test1 0.6731 0.0340 0.7262 0.0519
test2 0.5715 0.0340 0.7832 0.0519
test3 0.7891 0.0341 0.8096 0.0519
test4 0.7732 0.0340 0.4383 0.0519
test5 0.6005 0.0341 0.7095 0.0519
test6 0.7819 0.0340 0.7099 0.0519
test7 0.9036 0.0340 0.5537 0.0519
test8 0.9088 0.0341 0.7757 0.0519

Table IVb: parallel double inverted pendulum
Convergence time (sec) for state variables x1 to x4

Ts x1 Ts x2 Ts x3 Ts x4

test1 10.0 4.0 10.0 4.0
test2 9.0 3.5 9.0 3.5
test3 12.0 4.0 12.0 4.0
test4 10.0 3.5 10.0 3.5
test5 12.0 3.5 12.0 3.5
test6 11.0 3.5 11.0 3.5
test7 10.0 3.5 10.0 3.5
test8 7.5 4.0 7.5 4.0
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Comparing to past approaches for treating the nonlinear optimal (H-infinity) control problem, the article’s
approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix.
Furthermore, it uses a new Riccati equation to compute the controller’s gains and follows a novel Lyapunov
analysis to prove global stability for the control loop. It is also noteworthy that the nonlinear optimal con-
trol method is applicable to a wider class of dynamical systems than approaches based on the solution
of State Dependent Riccati Equations (SDRE). The SDRE approaches can be applied only to dynamical
systems which can be transformed to the Linear Parameter Varying (LPV) form. Besides, the nonlinear
optimal control method performs better than nonlinear optimal control schemes which use approximation
of the solution of the Hamilton-Jacobi-Bellman equation by Galerkin series expansions. The stability prop-
erties of the Galerkin series expansion -based optimal control approaches are still unproven.

Moreover, to provide a comparison between the article’s nonlinear optimal control method and NMPC it
can be noted that the computational burden of NMPC comes from a sequential optimization procedure
which mostly relies on gradient-based algorithms. Therefore, the complexity for computing the control
inputs at each sampling instance may come from calculating the elements of Jacobian matrices and the as-
sociated gradient functions. However, the main flaw of NMPC is the lack of global stability proof. It is not
always ensured that NMPC’s iterative search for the optimum will be convergent. Often the performance
of this optimization procedure is based on initial conditions (multiple shooting methods) and on empirical
selection of coefficients for the cost function and the control inputs.

The article’s nonlinear optimal (H-infinity) control method is of proven global stability and its conver-
gence to the optimum is little dependent on parameter values selection. There are three parameters in
the method’s algebraic Riccati equation, namely gains r, ρ and Q which affect the accuracy of setpoints
tracking and transient performance, with variation ranges that can be selected on the basis of offline sim-
ulation experiments. The proposed nonlinear optimal control method is of global (and not local) stability
properties. This is explicitly proven through Lyapunov stability analysis. The article’s Lyapunov stability
proof makes use of the tracking error dynamics of the initial nonlinear system. The computed control
inputs are applied to the initial nonlinear model of the rotary double inverted pendulum and not to its
linear approximation. It is ensured that the linearization error due to truncation of higher-order terms in
the Taylor-series expansion remains small because the linearization process is performed at each sampling
period around the present value of the rotary double inverted pendulum’s state vector and not at a point
on the desirable trajectory. By taking the span between the linearization point and the system’s state
vector at each sampling period to be small one concludes that the model which is obtained from lineariza-
tion describes with precision the initial nonlinear dynamics of the pendulum. This is also proven in detail
through Eq. (25) to Eq. (27) which appear in subsection 3.1 of the article.

Finally, about the real-time implementation of the nonlinear optimal (H-infinity) control scheme this is
absolutely feasible because the solution of the method’s algebraic Riccati equation and the associated com-
putation of the optimal control inputs (with Matlab’s aresolv() function or with equivalent Riccati equation
solvers) is performed in a very small time-interval which is significantly smaller than the sampling period.
Shortening further the computation time of the nonlinear optimal control method during each time-step
of the control algorithm is dependent on more efficient Riccati equations solvers and this is even nowadays
an open research topic. Finally, about the performance of the H-infinity Kalman it can be noted that this
estimator performs better than the Extended Kalman Filter in terms of robustness and accuracy of the
provided state estimates under raised levels of measurement noise.

8 Conclusions

The rotary double inverted pendulum (double Furuta’s pendulum) is a benchmark nonlinear dynamical
system and the solution of the associated control problem provides significant insight towards treating also
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the nonlinear control problem in several underactuated robotic systems. The article has proposed a new
nonlinear optimal control method for the dynamic model of the double rotary pendulum. This control
problem exhibits high difficulty because of its highly nonlinear dynamic model, as well as because of under-
actuation. First, the dynamic model of the rotary double inverted pendulum has undergone linearization
with the use of first-order Taylor series expansion and through the computation of the associated Jacobian
matrices. The linearization process was taking place at each sampling instance, around a temporary oper-
ating point which was defined by the present value of the pendulum’s state vector and by the last sample
value of the control inputs vector. For the approximately linearized model of the system an H-infinity
feedback controller was designed.

This H-infinity controller offers a solution of the optimal control problem for the dynamic model of the
rotary double inverted pendulum under model uncertainty and external perturbations. Actually, it rep-
resents a min-max differential game taking place between the (i) the controller which tries to minimize a
cost function that contains a quadratic term of the state vector’s tracking error (ii) the model uncertainty
and exogenous perturbation terms which try to maximize this cost function. To select the feedback gains
of the H-infinity controller an algebraic Riccati equation had to be solved repetitively at each time-step of
the control algorithm. The global stability properties of the control scheme have been proven through Lya-
punov analysis. First, the H-infinity properties of the control have been proven which have demonstrated
the method’s robustness against model imprecision and disturbances. At a second stage global asymptotic
conditions for the control loop have been reached. To implement state estimation-based control without
the need to measure the entire state vector of the rotary double inverted pendulum, the H-infinity Kalman
Filter has been used as a robust state estimator. The nonlinear optimal control method retains the ad-
vantages of linear optimal control, that is fast and accurate tracking of reference setpoints under moderate
variations of the control inputs. The efficiency of the nonlinear optimal control method for a wide class of
underactuated nonlinear optimal control method has been also confirmed, with the parallel double inverted
pendulum to be another case study.

Declarations: The authors of this article confirm that (i) to their knowledge no conflict of interest exists
with third parties about the content of the present manuscript (ii) The contribution of the authors to this
research work is designated by their order of appearance in the article’s list of authors (iii) Computation
data for this manuscript are available by the corresponding author upon reasonable request.
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