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Abstract
Questions: Knowledge	 of	 how	 extreme	 drought	 events	 induce	 plant	 dieback	 and,	
eventually, plant mortality, may improve our forecasting of ecosystem change ac-
cording	to	future	climate	projections,	especially	in	Mediterranean	drylands.	In	them,	
shrublands are the main vegetation communities in transition areas from a subhu-
mid	 to	 semi-	arid	 climate.	This	 study	 analyzed	differences	 in	plant	dieback	 after	 an	
unusual drought in 2014 and identified their main underlying factors in relation to 
three	groups	of	explanatory	variables:	water	availability,	soil	properties	and	vegeta-
tion structure attributes.
Location: Four	Mediterranean	shrublands	along	a	climatic	gradient	in	SE	Spain.
Methods: At	each	experimental	field	site,	we	sampled	a	pool	of	vegetation	structure	
characteristics, soil depth and soil surface properties, and we also determined water 
availability by continuously monitoring soil moisture and the microclimate conditions.
Results: The	climatic	 analysis	 showed	 that	 there	was	an	extreme	drought	event	 in	
2014,	which	was	below	the	first	percentile	of	the	driest	years.	Under	such	conditions,	
vegetation dieback occurred at all the study sites. However, plant dieback differed 
between sites and plant biotypes. Subshrubs were the main affected biotype, with 
diebacks close to 60% at the driest sites, and up to 40% dieback for shrubs depend-
ing	on	 their	vertical	development.	Relative	extractable	water	and	bare	soil	 surface	
cover	were	the	best	explanatory	variables	of	plant	community	dieback	but	changed	
between	plant	biotypes.	Vegetation	structure	variables	related	to	plant	vertical	devel-
opment	(leaf	area	index	[LAI],	plant	height,	phytovolume)	were	significant	explanatory	
variables of plant dieback in shrubs, subshrubs and grasses. Consecutive dry days fit-
ted	the	best	model	to	explain	subshrub	dieback.
Conclusions: We found that rainfall pattern rather than total annual rainfall was the 
climatic	 factor	 that	 best	 determined	water	 availability	 for	 plants	 in	Mediterranean	
drylands. These results also pointed out the relevance of plant structure and soil 
properties	for	explaining	ecosystem	responses	to	extreme	drought.
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1  |  INTRODUC TION

“Ecological	 drought”	 is	 defined	 as	 an	 episodic	 water	 availability	
deficit that drives ecosystems beyond tipping points of vulnerabil-
ity	and	 impacts	ecosystem	health	 (Crausbay	et	al.,	2017; Tramblay 
et al., 2020).	Unusual	 intense	or	extensive	climatic	events,	such	as	
extreme	drought,	may	exceed	ecological	tipping	points	and	trigger	
critical shifts in ecosystems with impacts on ecosystem integrity and 
functioning, which hamper their resilience and ability to provide eco-
system	services	 (Scheffer	et	al.,	2001).	However,	extreme	drought	
events	 rarely	 elicit	 extreme	 ecological	 responses	 (Smith,	 2011a, 
2011b; Zhang et al., 2019). Worldwide there are several pieces of 
evidence for ecosystem critical responses to drought, such as large 
vegetation	 die-	off	 events	 (Donaldson,	1967;	 Faber-	Langendoen	 &	
Tester, 1993;	Van	Mantgem	et	al.,	2009; Lloret et al., 2015;	Anderegg	
et al., 2016; Greenwood et al., 2017).	Nevertheless,	our	mechanistic	
understanding of these phenomena is still scarce due to the marked 
complexity	 of	 ecosystem	 responses	 to	 drought,	 which	 leads	 to	 a	
lack	of	consistence	between	experimental	and	observational	stud-
ies	 (Leuzinger	 et	 al.,	2011; Knapp et al., 2017; Yuan et al., 2017). 
It is, therefore, necessary to better characterize and monitor the 
ecological	 responses	 triggered	by	natural	 extreme	drought	 events	
to	validate	experimental	findings,	and	to	help	to	disentangle	these	
complex	ecological	processes.

Water availability is the underlying driver of ecosystem respon-
siveness to drought, which has been widely associated with drought 
intensity	(Dracup	et	al.,	1980; Slette et al., 2019). However, the process 
is	a	complex	one.	Responses	to	real	water	availability	are	determined	
mainly by regional climate features, local geophysical aspects like soil 
properties, and particular ecosystem sensitivity to water resources, 
as determined basically by plant and soil biotic communities and 
the way they use water. Thus, rainfall patterns rather than the total 
amounts of annual rainfall have been able to determine water avail-
ability	in	water-	limited	ecosystems	(Le	Houerou	et	al.,	1988; Knapp & 
Smith, 2001;	Felton	et	al.,	2020). The timing and intensity of rainfall 
events are key aspects of the rainfall that drive ecological responses 
in arid ecosystems by conditioning the pulsed dynamics of soil mois-
ture	(Collins	et	al.,	2014). Soil moisture is the most direct water source 
for plants and soil microbials, and has been widely used as an indica-
tor	of	water	availability	and	drought	intensity	(Zargar	et	al.,	2011). In 
this regard, soil properties and microtopography features may also 
largely determine soil water availability by driving the infiltration 
and retention of rainfall water in soils. Soil surface properties, such 
as stoniness or litterfall cover, are key features of controlling rain-
fall water passing into soil by enabling its infiltration with increasing 
soil surface roughness and porosity, but by also providing protection 
from	evaporative	loss	(Tongway	&	Ludwig,	1997; Read et al., 2016). 
Soil depth, stoniness and rocky outcrops as a counterpart determine 

total	soil	water	storage	capability,	water	exposure	to	evapotranspira-
tion,	and	soil	water	losses	by	deep	percolation	and	runoff	(Seligman	
et al., 1992;	Hopp	&	McDonnell,	2009;	Mei	et	al.,	2018).

Shrublands are one of the main plant communities in 
Mediterranean	 drylands.	 In	 these	 water-	limited	 ecosystems	
dominated by shrubs and grasses, vegetation shows a patched 
spatial	 arrangement	by	determining	a	 source–	sink	pattern	 that	 in-
fluences	water	and	nutrient	dynamics	(Ludwig	et	al.,	2005; Bautista 
et al., 2007;	 Vásquez-	Méndez	 et	 al.,	 2010).	 Functional	 traits	 of	
dominant plant species also determine changes in community sen-
sitivity to water availability, such as plants' ability to withstand 
extreme	drought	events	 (Vilagrosa	et	al.,	2014; Rosas et al., 2019; 
Peguero-	Pina	 et	 al.,	2020).	 The	 rooting	 depth	 and	 leaf	 area	 index	
(LAI)	of	dominant	plant	species	may	be	two	relevant	morphological	
functional	traits	to	explain	ecosystem	responsiveness	to	drought	be-
cause	most	processes	at	the	ecosystem	level	(e.g.	net	primary	pro-
ductivity and nutrient cycling) rely on these dominant plant species 
(Felton	&	Smith,	2017; Smith et al., 2020).	A	diminishing	“mass	ratio	
effect”	of	dominant	plant	traits,	and	the	likely	increase	in	plant–	plant	
interactions,	may	lead	to	even	more	complex	ecosystem	responses	
to	drought	(Felton	&	Smith,	2017).	Indeed,	non-	linear	responses	to	
drought have been reported when plant species and functional rich-
ness	increase	in	drylands	(Gherardi	&	Sala,	2015;	Rodriguez-	Ramirez	
et al., 2017),	and	biodiversity	can	increase	the	complexity	of	the	bi-
otic aspect of water availability control in dryland ecosystems.

Climate change projections point out that a significant decrease in 
annual	rainfall	and	a	higher	mean	annual	air	temperature	are	expected	
in	these	Mediterranean	zones	(IPCC,	2021). By the end of the 21st 
century,	 the	 semiarid	 climate	 (200–	350 L m−2 year−1)	 is	 expected	 to	
shift	to	the	north,	replacing	the	dry–	subhumid	(400–	600 L m−2 year−1) 
with	 frequent	 years	 with	 annual	 rainfall	 below	 200 L m−2 year−1 in 
these	transition	areas	(Touhami	et	al.,	2015;	Moutahir,	2016). Such 
changes	may	increase	the	frequency	and	intensity	of	drought	events,	
with	impacts	on	soil	water	availability	to	plants	(Dai,	2011; Trenberth 
et al., 2014; Sala et al., 2015), which would increase the desertifica-
tion	processes	that	already	impact	these	ecosystems	(Puigdefábregas	
&	Mendizabal,	1998; Huang et al., 2016;	Prăvălie,	2016). Therefore, 
Mediterranean	drylands	can	serve	as	a	model	region	to	study	climate	
change impacts, especially because of the close relations linking veg-
etation	 structure,	water	 availability	 and	 ecosystem	health	 (Lavorel	
et al., 1998; Tramblay et al., 2020).

In	 this	 context,	 we	 analyzed	 the	 effect	 of	 an	 intense	 drought	
that	occurred	in	the	2014	hydrological	year	on	some	Mediterranean	
areas	 of	 SE	 Spain.	 Annual	 rainfall	was	 less	 than	 50%	of	 the	 long-	
term average, which caused notable tree mortality in several zones 
(García	 de	 la	 Serrana	 et	 al.,	 2015;	 Morcillo	 et	 al.,	 2022). Spread 
plant dieback and mortality were detected in four monitored 
Mediterranean	shrublands.	Our	main	objectives	were	 to:	 (i)	 assess	

K E Y W O R D S
climate change, consecutive dry days, grass, rainfall pattern, shrub, soil surface properties, 
subshrub, vegetation structure, water availability
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vegetation dieback due to the 2014 drought and observe the dif-
ferences	between	the	main	plant	biotypes	of	these	shrublands;	 (ii)	
identify	the	main	factors	from	three	groups	of	explanatory	variables	
(water	 availability,	 soil	 properties,	 vegetation	 structure	 attributes)	
related	to	plant	dieback	in	these	Mediterranean	shrublands.

2  |  METHODS

2.1  |  Study site

The	present	 study	was	performed	at	 four	 experimental	 field	 sites	
selected	 along	 a	 climatic	 gradient	 in	 the	 Alicante	 Province	 (SE	
Spain)	 from	 subhumid	 to	 semi-	arid	 stands	 in	 three	 hydrological	
years:	 Predrought	 2013	 (Oct.	 2012	 to	 Sept.	 2013),	Drought	 2014	
(Oct.	2013	to	Sep.	2014)	and	Postdrought	2015	(Oct.	2014	to	Sep.	
2015).	From	south	to	north,	the	experimental	sites	were	“Serra	de	

les	Àguiles”	(SAG),	“Serra	del	Ventós”	(VEN),	“El	Cabeçó	d'Or”	(CAB)	
and	 “La	Mela”	 (MEL)	 (Manrique-	Alba	 et	 al.,	 2017)	 (Figure 1). The 
mean	annual	rainfall	and	the	mean	annual	temperature	are	300 mm	
and	17°C	at	the	semi-	arid	end,	and	650 mm	and	14°C	at	the	subhu-
mid	end,	respectively	(Table 1).	At	sites	MEL	and	CAB,	water	deficit	
(Walter	&	Lieth,	1967)	occurs	in	three	months,	from	June	to	August.	
For	 sites	 SAG	and	VEN,	water	 deficit	 occurs	 in	 five	months,	 from	
May	to	September	(Appendix	S1). The studied vegetation type con-
sists	 of	 shrublands	 with	 low–	medium	 density	 plant	 patches	 com-
posed	of	sclerophyllous	shrubs	and	subshrubs	mixed	with	grasses.

2.2  |  Climate and drought characterization

We monitored the rainfall and environmental data during the study 
period	 (2012–	2015)	at	each	experimental	 field	 site,	with	a	0.2 mm	
resolution	 Rain	 Collector	 (II,	 Davis	 Instruments	 Corp.,	 Hayward,	

F I G U R E  1 Location	map	of	the	studied	sites	in	SE	Spain.	Blue	lines	denote	isohyets	every	100 mm.	“Serra	de	les	Àguiles”	(SAG),	“Serra	del	
Ventós”	(VEN),	“El	Cabeçó	d'Or”	(CAB)	and	“La	Mela”	(MEL).

Geographical data SAG VEN CAB MEL

Latitude	(N) 38°23′ 38°28′ 38°30′ 38°42′

Longitude	(W) 0°38′ 0°36′ 0°24′ 0°16′

Elevation	(m a.s.l.) 450 550 600 1050

Slope	(%) 33.84 ± 2.44 30.50 ± 1.36 31.14 ± 1.73 28.94 ± 1.38

Aspect NE NO NE SE

Climate data

Mean	annual	rainfall	(mm) 299 ± 13.1 311 ± 14.2 397 ± 17.6 651 ± 31.0

Mean	annual	temperature	(C°) 17.1 ± 0.09 17.5 ± 0.09 14.3 ± 0.1 12.4 ± 0.1

Climate classification Semi-	arid Semi-	arid Dry Subhumid

Abbreviations:	CAB,	El	Cabeçó	d'Or;	MEL,	La	Mela;	SAG,	Serra	de	les	Àguiles;	VEN,	Serra	del	
Ventós.

TA B L E  1 Geographical	data,	mean	
annual rainfall, mean annual temperature 
and climate classification according to 
Rivas-	Martínez	(1983) per studied site.
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CA,	USA)	connected	to	a	datalogger	 (HOBO	pendant	event	Onset	
Computer	Corp.,	Inc.,	Southern	MA,	USA).	The	hourly	air	tempera-
ture	(°C)	was	recorded	with	two	sensors	per	site	(HOBO	datalogger	
U23	Pro	v2,	Onset	Computer	Corp.).

In order to compare the climate conditions during our study 
period	 to	 the	 long-	term	 conditions,	we	 used	 the	 long-	term	 rain-
fall	and	temperature	time	series	for	the	1953–	2012	period.	They	
were	obtained	from	the	Spanish	Meteorological	Agency	(AEMET)	
network	(Moutahir	et	al.,	2014). To compare the rainfall during the 
study	period	to	the	 long-	term	values,	we	calculated	the	range	of	
rainfall	percentiles	of	the	long-	term	rainfall	per	site	(from	monthly	
to annually accumulated) and estimated the percentile level for the 
2014	 (and	 seven	 previous	 years)	 hydrological	 year	 accumulated	
rainfall.

We also estimated the accumulated rainfall and three rainfall 
pattern attributes in 2014 as water availability variables. We de-
fined	a	rainfall	event	as	a	day	with	rainfall	higher	than	3 L m−2. Then 
following	 Knapp	 et	 al.	 (2015), we calculated the rainfall pattern 
attributes:	 (i)	 number	 of	 rainfall	 events	 (NRE);	 (ii)	 average	 rain-
fall	events	size	(AES)	as	the	average	rainfall	volume	(L m−2) of the 
rainfall	events;	and	(iii)	consecutive	dry	days	(CDD)	as	the	average	
number	of	days	between	rainfall	events.	Air	temperature	(°C)	was	
corrected	 by	 the	mean	 elevation	 (m a.s.l.)	 of	 each	 study	 site	 and	
by applying a monthly lapse rate calculated for the whole region 
by	Moutahir	 (2016).	 Finally,	 we	 also	 estimated	 the	 Standardized	
Precipitation–	Evapotranspiration	Index	(SPEI)	of	the	2014	hydro-
logical	 year	 (12-	month	 SPEI)	 as	 an	 integrated	 indicator	 of	 water	
deficit,	 which	 includes	 rainfall	 and	 air	 temperature	 (Vicente-	
Serrano et al., 2010).

2.3  |  Vegetation structure characterization

In order to determine the effect of the 2014 drought on the shrub-
land plant community, we measured plant cover, structure and com-
position early in spring 2015 at each study site. We followed the 
point	 intercept	method	with	vertical	 stratification	 (Fayle,	1959) to 
measure plant cover and the overlap of different plant species. We 
extended	 three	 independent	 35-	m-	long	 transects	 per	 site	 follow-
ing the line of slope, and recorded the contacts of all the different 
plant	species	every	50 cm	along	each	transect	within	25-	cm	height	
intervals with a vertical graduated rod. We distinguished between 
contacts	of	 alive	and	dead	plants	 (i.e.,	 contacts	with	a	 completely	
dead stem).

Species were classified and grouped per plant biotype 
(Raunkiær,	1934;	Mateo	&	Crespo,	2009):	shrubs	(phanerophytes,	
higher	than	0.5 m);	subshrubs	(hemicryptophytes	and	chamaeph-
ytes,	shorter	than	0.5 m,	with	lignified	stems);	grasses	(herbaceous	
species with no ligneous tissues in the hemicryptophyte and cha-
maephyte	groups)	(Appendix	S2). We estimated the total cover of 
both the plant community and each plant biotype by integrating 
the plant cover of all the species into each biotype, and separat-
ing	dead	and	alive	plant	cover.	Using	the	vertically-	stratified	data	

information, we estimated the following vegetation structure at-
tributes:	plant	height	(maximum	height	of	the	vertical	plant	contact	
at	each	transect	point);	leaf	area	index	(number	of	vertical	layers	
with plant contacts at each transect point; Heslehurst, 1971); 
plant	volume	(the	product	of	plant	cover	and	height);	size	of	plant	
patches	 and	 interpatches	 (plantless	 areas).	We	 considered	 plant	
patch areas to have two consecutive plant contacts or more along 
the transect. Likewise, interpatch areas were those with two or 
more	consecutive	points	without	plant	contacts.	We	used	species-	
specific cover data to calculate plant species richness, and the di-
versity and dominance indices. We estimated diversity with the 
Shannon	Diversity	 Index	 (Shannon	 &	Weaver,	1964; Hill, 1973), 
and evenness of plant community composition with the Simpson 
Index	(Simpson,	1949).

Finally,	we	assessed	drought	effects	on	vegetation	cover	by	es-
timating plant dieback from dead plant contacts. This accumulation 
of	dead	material	in	plants	is	the	consequence	of	the	partial	mortality	
that	affects	Mediterranean	shrubs	as	an	adaptation	strategy	when	
conditions	are	 limiting	 (Bellot	&	Escarré,	1980). To do so, we esti-
mated the plant dieback level as the volumetric dead fraction to total 
plant	volume	ratio	expressed	as	a	percentage.

2.4  |  Soil properties and soil water content

In	order	to	characterize	soil	properties,	soil	depths	(cm)	were	meas-
ured at three points per transect by inserting a metal bar into soil. 
Soil surface cover types were recorded at all the sampled points of 
each transect by identifying if litter, bare soil, stoniness and rocky 
outcrops	were	present.	For	the	soil	texture	characterization,	poros-
ity	and	soil	field	capacity,	we	randomly	took	nine	mixed	subsamples	
at	a	soil	depth	from	10 cm	to	30 cm	at	each	experimental	site.	Soil	
analyses	 were	 carried	 out	 in	 an	 external	 laboratory	 (Laboratoris	
Escuredo®,	Reus,	Spain)	(Appendix	S3).

At	each	experimental	field	site,	we	monitored	soil	water	content	
(SWC)	(cm3 cm−3)	from	0	to	20 cm	of	soil	depth	by	periodic	measuring	
following	the	time	domain	reflectometry	method	(TDR)	by	using	18	
TDR	 (20 cm	 long)	probes	per	 shrubland	community.	We	measured	
SWC	from	May	2013	to	October	2015.	We	calculated	relative	ex-
tractable	water	 (REW,	Granier,	1987;	 Bréda	 et	 al.,	1995) from the 
SWC	data	as	(1):

where: θt	 is	 the	actual	SWC	(m
3 m−3), θmin represents the minimum 

SWC observed during the study period, and θFC denotes SWC at 
field capacity.

2.5  |  Statistical analysis

We characterized shrublands by comparing vegetation struc-
ture	 and	 soil	 properties	 among	 study	 sites	 by	 a	 one-	way	ANOVA	

(1)REW =
Θt − Θmin

ΘFC − Θmin
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(Tukey's	HSD	[honestly	significant	difference]	post-	hoc	 test).	Data	
were	transformed	(logarithm	and	square	root)	whenever	necessary	
to	meet	the	ANOVA	assumptions.	After	initially	exploring	the	data	
distribution	of	our	response	variables	(Appendix	S4), we compared 
plant	dieback	among	shrubland	transects	(n = 12,	i.e.,	three	transects	
by four sites) using a generalized linear model with beta distribution, 
and	with	Site	as	the	fixed	factor	 (Cullen	&	Frey,	1999;	Delignette-	
Muller	&	Dutang,	2015).

We	 quantified	 the	 influences	 of	 the	 main	 explanatory	 fac-
tors on plant dieback with beta regressions in generalized linear 
mixed	models	 by	 including	 Site	 as	 the	 random	 factor	 (Damgaard	
& Irvine, 2019).	We	grouped	the	possible	explanatory	factors	into	
three	 groups:	 water	 availability	 variables	 (mean	 annual	 tempera-
ture,	accumulated	rainfall,	SPEI,	rainfall	pattern	variables	NRE,	AES	
and	CDD,	 and	 soil	moisture	 variables	 SWC	 and	 REW),	 soil	 prop-
erties	(depth,	bare	cover,	surface	stoniness,	 litter	cover	and	rocky	
outcrops)	 and	 vegetation	 structure	 variables	 (plant	 volume,	 plant	
height,	LAI,	plant	patch	size,	 interpatch	size,	plant	richness,	diver-
sity	and	evenness).	For	each	type	of	explanatory	factor	(water	avail-
ability, soil properties and vegetation structure), we selected as the 
best	explanatory	variable	of	dieback	 those	 that	produced	models	
with	 lower	Akaike	 Information	Criterion	 corrected	 for	 small	 sam-
ple	size	(AICc;	Hurvich	&	Tsai,	1991) and were not autocorrelated 
(correlation < 0.6).	We	first	selected	the	best	beta	regression	model	
with	a	lower	AICc	from	all	the	explanatory	variables.	Then	we	ex-
plored	other	possible	models	with	explanatory	variables	that	were	
not	autocorrelated	(Appendix	S5). In all cases, the models with only 
one	explanatory	variable	obtained	lower	AICc	values	than	the	mod-
els	with	more	than	one	explanatory	variable.	All	the	statistical	anal-
yses	were	conducted	using	the	R	statistical	software	(R	Core	Team,	
2022, version 4.2.1).

3  |  RESULTS

3.1  |  Extreme drought event intensity

The 2014 drought episode drastically lowered the total annual rain-
fall	between	33%	and	48%	compared	to	the	long-	term	average.	This	
reduction	reached	extremely	low	levels	of	rainfall,	beyond	the	first	
of	the	long-	term	driest	years	at	all	the	sites	(Figure 2). The intensity 
of this drought event contrasted with the relatively wet conditions 
of	the	previous	hydrological	year	(2013),	when	the	total	annual	rain-
fall	values	were	above	 the	70th	percentile	of	 the	 long-	term	series	
at	all	 the	sites,	except	at	CAB,	which	reached	the	40th	percentile.	
Furthermore,	five	of	the	seven	previous	years	were	above	the	60th	
long-	term	percentile	(four	years	for	CAB	and	MEL),	and	were	always	
above	the	20th	percentile	(Appendix	S6).

The temperatures during the 2014 drought were also hotter than 
the	long-	term	averages	at	all	the	sites,	with	increments	of	about	1–	
4°C	in	spring	and	autumn,	and	an	exceptional	increment	that	was	2–	
5°C	higher	than	the	long-	term	average	in	April	(Figure 2). This month 
went	above	the	95th	percentile	of	 the	hotter	 long-	term	values	for	

all	 the	sites.	At	VEN,	only	three	months	 (October,	April,	 June)	had	
higher	temperatures	in	the	2014	hydrological	year	than	in	the	long-	
term series.

3.2  |  Impact of extreme drought on water 
availability

The low annual rainfall recorded for drought year 2014 was re-
flected as not only notable changes in the rainfall pattern attrib-
utes,	but	also	as	a	drop	 in	soil	moisture	at	all	 the	sites	 (Figure 3, 
Appendix	 S7). The main affected rainfall pattern attribute was 
CDD,	with	 threefold	 longer	dry	periods	 than	 in	2013	 (twofold	at	
MEL).	 At	 SAG,	 VEN	 and	 CAB,	 the	 average	 dry	 periods	 spanned	
more	than	one	month	(38–	48 days)	in	hydrological	year	2014.	NRE	
lowered at the same ratio as the annual total rainfall reduction did 
(ca.	65%	 less	 than	 in	2013	at	 all	 the	 sites).	Reduction	 in	AES	 led	
to	similar	values	 in	2014	at	all	 the	sites	 (10 ± 1 L m−2), which con-
trasts	with	 the	 higher	 variance	 observed	 in	 2013	 (14 ± 2.5 L m−2) 
and	means	that	the	AES	decrease	was	asymmetrical	between	sites.	
In	SPEI	terms,	drought	hit	harder	at	CAB	and	MEL	than	at	VEN	and	
SAG,	which	was	the	opposite	 trend	shown	 in	 the	rainfall	pattern	
attributes, especially in CDD.

Subhumid	site	MEL	had	higher	REW	values	than	the	other	sites	
in	autumn	and	spring,	but	the	mid-	summer	values	were	similar	for	all	
the	sites	(Figure 3).	For	hydrological	year	2014,	the	REW	values	were	
below	0.4	for	eight	continuous	months	at	SAG,	VEN	and	CAB	(from	
February	to	September)	and	for	five	continuous	months	(from	May	
to	September)	at	MEL.	This	low	REW	may	be	taken	as	a	tipping	point	
of	soil	water	deficit	for	Mediterranean	species	(Granier,	1987;	Bréda	
et al., 1995).	Indeed,	REW	dropped	below	0.2	at	SAG	and	CAB	for	
six	and	seven	continuous	months,	respectively,	while	sites	VEN	and	
MEL	presented	REW	values	below	0.2	only	for	summer	months.	In	
contrast,	the	REW	values	for	2015	were	below	the	0.4	tipping	point	
for	 3–	4 months,	 and	 lower	 than	 0.2	 for	 1–	2 months	 depending	 on	
the	site	and	for	the	late	spring	and	mid-	summer	seasons	(we	have	no	
REW	data	for	the	whole	of	2013).

3.3  |  Shrubland characterization: Vegetation 
structure and soil properties

Shrubland structure varied between sites due to differences in the 
dominance of grass and shrub biotypes, differences in the plant 
patch	 pattern,	 and	 distinct	 vertical	 shrub	 development	 (Figure 4). 
Dry–	subhumid	sites	(CAB	and	MEL)	showed	more	plant	abundance,	
with	larger	plant	patches	(i.e.,	smaller	bare-	soil	patches)	than	at	semi-	
arid	sites	SAG	and	VEN	(Figure 4a,m).	CAB	had	a	bigger	grass	phyto-
volume	with	larger	grass	patches	than	the	other	sites	(Figure 4d,p). 
VEN	had	 the	 clumpiest	 and	most	 vertically	 developed	vegetation,	
with	the	tallest	shrubs	and	the	highest	LAI	(Figure 4e,f,i,j). The shrub 
phytovolume	was	 lower	 at	 VEN	 than	 at	 the	 other	 sites	 despite	 it	
having	larger	(and	taller)	shrub	patches.	However,	the	size	of	shrub	
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interpatches	was	also	notably	larger	at	VEN	than	at	the	other	sites	
(Figure 4b,n).	SAG	was	 the	shrubland	with	a	smaller	phytovolume,	
mainly because of short vegetation height and a smaller amount of 
grasses. Subshrub structure and abundance were similar between 
sites	 (Figure 4c,g,k,o).	The	composition	of	plant	communities	 (spe-
cies richness, plant diversity, plant evenness) was also similar at all 
four	sites	(Appendix	S8).

The main differences between shrubland soils were due to the 
presence of rocky outcrops, while other factors like soil depth, lit-
ter cover and soil surface stoniness were relatively even between 
shrublands	 (Appendix	 S9). Shrublands showed a latitudinal trend 
of	rocky	outcrops,	from	a	smaller	amount	of	rocky	outcrop	at	SAG	
(~1%),	medium	at	VEN	and	CAB	(~10%)	and	bigger	at	MEL	(~25%). The 
opposite trend was observed in the amount of bare soil. However, in 
this case, differences between sites were not significant. The soil 
depth	 of	 shrublands	was	 the	 same	 (~40 cm),	 except	 for	 VEN	with	

shallower	soil	(~16 cm).	The	soil	surface	cover	was	different	between	
MEL,	where	it	consisted	mainly	of	litter	(~53%), and the other sites, 
where	soil	was	mostly	covered	by	stones	(~45%).

3.4  |  Extreme drought effects on 
vegetation dieback

After	 the	 2014	 drought,	 visual	 observations	 indicated	 that	 plants	
underwent decaying processes because whole individuals had died, 
and also due to partial canopies in multistemmed species. In this con-
text,	plant	dieback	varied	among	sites	by	ranging	from	12.5% ± 3%	
at	VEN	and	MEL,	to	26% ± 3%	at	CAB,	with	the	highest	dieback	lev-
els,	38% ± 2%,	at	SAG	(Appendix	S10, Figure 5a). Shrub dieback was 
26% ± 4%	for	SAG,	CAB	and	MEL,	and	was	almost	negligible	for	VEN	
(<1%)	(Figure 5b).	Subshrub	dieback	reached	49% ± 6%	at	SAG,	CAB	

F I G U R E  2 Monthly	accumulated	rainfall	(top)	and	mean	temperature	(bottom)	of	hydrological	years	(October	to	September)	2013	(dashed	
line),	2014	(continuous	line)	and	the	range	of	rainfall	percentiles	of	the	long-	term	rainfall	series	(colored	areas	for	the	10	percentile	ranks).	
Inset	in	the	bottom	graphs:	time	above	and	under	the	long-	term	average	temperature	during	the	2014	drought.
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and	VEN,	with	no	subshrub	dieback	evidence	for	MEL	 (Figure 5c). 
Grass	dieback	was	higher	at	SAG	with	23%	and	only	2.5% ± 1%	at	the	
other	sites	(Figure 5d).

3.5  |  Relation among explanatory factors and 
plant dieback

The	explanatory	variables	that	best	correlated	with	plant	dieback	
changed	between	plant	biotypes	(Figure 6).	At	the	plant	commu-
nity level, water availability and soil properties, but not vegeta-
tion structure, showed significant correlations with plant dieback. 
However, at the plant biotype level, only the plant structure 
variables correlated significantly with dieback at all the different 
biotypes.	Both	REW	and	bare	soil	cover	showed	the	highest	cor-
relations with plant community dieback, which indicates greater 
dieback	 events	 under	 extreme	drought	 in	 barer	 soils	with	 lower	
REW.	 For	 each	 plant	 biotype,	 the	 best	 correlated	 explanatory	
variable belonged to one group, which was different in each case: 
plant structure in shrubs, water availability in subshrubs and soil 

properties	in	grasses.	In	shrubs,	LAI	correlated	the	best	with	die-
back.	The	shrub	communities	with	higher	LAI	showed	less	dieback	
under	 extreme	 drought	 conditions.	 Soil	 stone	 cover	 correlated	
negatively with shrub dieback, and no water availability factors 
were	correlated.	CDD	was	the	main	explanatory	factor	that	corre-
lated with subshrub dieback, which denotes greater subshrub die-
back	linked	with	an	increase	in	dry	spells	during	extreme	drought.	
Other factors that also correlated with subshrub dieback were the 
phytovolume of the plant community and subshrubs. In this case, 
no soil property factor was significantly correlated. The shrub-
lands with a bigger phytovolume of the plant community showed 
less	subshrub	dieback	under	extreme	drought,	and	this	trend	was	
the same when only the subshrub phytovolume was taken into ac-
count.	Bare	soil	was	the	best	explanatory	variable	that	correlated	
with grass dieback, which suggests greater grass dieback in barer 
soils	under	extreme	drought.	Furthermore,	grass	height	correlated	
significantly with grass dieback, which indicates greater dieback 
in	 shorter	 grasses	 under	 extreme	 drought	 conditions.	 However,	
in this case, no water availability variables correlated significantly 
with grass dieback.

F I G U R E  3 Monthly	relative	extractable	water	(REW)	from	May	2013	to	September	2015	vs	monthly	rainfall	at	each	study	site.	The	
straight	line	represents	REW = 0.4,	which	is	the	tipping	point	of	soil	water	deficit	for	Mediterranean	species	according	to	Granier	(1987) and 
Bréda	et	al.	(1995). The vertical dotted line shows the beginning and end of the 2014 hydrological year.
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4  |  DISCUSSION

The structure and functioning of drylands are strongly influenced 
by precipitation patterns. In such environments, changes in rainfall 
frequency	and	annual	quantity	of	rainfall	may	have	profound	effects	
on	soil	moisture	and	might,	thus,	affect	plant	communities	(Pugnaire	
et al., 2004; Knapp et al., 2008; Roitberg et al., 2016). Present 
studies	 essentially	 need	 to	 incorporate	 data	 on	 drought-	induced	
plant dieback and mortality to predict impacts on global and local 
scales	(Allen	et	al.,	2010, 2015; Greenwood et al., 2017;	McDowell	
et al., 2018).	 Our	 results	 revealed	 an	 extremely	 dry	 year,	 with	

precipitation recorded in the 2014 hydrological year going below 
the first percentile of the driest years. This low precipitation mainly 
influenced autumn and winter months when recovery from the sum-
mer	drought	spell	is	critical	for	plant	functioning.	Furthermore,	the	
mean temperature showed a hot 2014 hydrological year principally 
in	 autumn,	winter	 and	 spring,	with	 growing	 evaporative	demand	 (	
Moutahir,	2016) and, thus, increasing potential plant water stress 
(Tardieu	&	Simonneau,	1998).

Several studies have shown that the effect of drought episodes 
in	SE	Spain,	such	as	those	recorded	in	1994,	2003	and	2014,	has	
caused considerable damage to plant communities, along with 

F I G U R E  4 Vegetation	structure	in	the	four	Mediterranean	shrublands.	Bars	with	different	letters	show	statistically	different	values	
(α < 0.05).
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decay	processes	and	further	generalized	plant	mortality	(Peñuelas	
&	Filella,	2001; Herrero et al., 2013;	García	de	la	Serrana	et	al.,	2015; 
Morcillo	et	al.,	2022).	Mediterranean	shrublands	are	quite	vulnera-
ble	to	rising	temperatures	and	decreasing	water	availability	(Bellot	
et al., 2004),	and	the	expected	increasing	aridity	in	regions	that	are	
already	dry	in	large	areas	of	the	Mediterranean	Basin	may	have	se-
rious	ecological	and	socio-	economic	consequences	 (IPCC,	2021). 
Our results showed that not only were water availability factors 
correlated	with	the	observed	plant	dieback	in	response	to	extreme	
drought, but so were other factors related to soil properties, and 
vegetation structure played an important role. Soil moisture is a 
key parameter to determine how water availability correlates with 
plant community dieback. However, our results confirmed the 
relevance	 of	 available	 water	 (REW)	 rather	 than	 absolute	 water	
content	(SWC)	in	the	soil	of	drylands,	which	rely	more	on	soil	tex-
ture and composition, biological cover, rainfall pattern and soil 
moisture	dynamics	than	on	the	amount	of	incoming	rainfall	(Noy-	
Meir,	1973; Ogle & Reynolds, 2004; Berdugo et al., 2014). Changes 
in rainfall pattern have been shown to affect plant functioning, 
productivity	 and	 survival	 (Fay,	2009;	Heisler-	White	 et	 al.,	2009; 
Cherwin & Knapp, 2012; Reed et al., 2012;	 Felton	 et	 al.,	2020) 
mainly because soil water availability depends more on the num-
ber and distribution of rainfall events than on the total rainfall 
amount	in	arid	ecosystems	(Hottenstein	et	al.,	2015). In this study, 
we	showed	that	CDD	was	the	most	significant	explanatory	factor	
to correlate with subshrub dieback. This highlights the timing of 
rainfall events regardless of the amount of rainfall as a main fac-
tor	of	decay	 in	shallow-	rooted	plant	species,	which	usually	show	
the	highest	dieback	and	mortality	ratios	during	extreme	droughts	
(Jacobsen	&	Pratt,	2018).

Vegetation	structure	correlated	with	the	dieback	of	all	the	plant	
biotypes,	 mainly	 through	 vertical	 plant	 development	 (height,	 LAI	
and	 phytovolume),	while	 spatial	 distribution	 (patch	 and	 interpatch	
sizes) was less relevant. In plants with similar functional strategies 
(i.e.,	 biotypes	 regarding	 potential	 plant	 growth	 and	 root	 devel-
opment),	 short	 stature	 and	 low	 LAIs	 of	 plants	 suggest	 less	 devel-
oped or younger individuals than plant stands with a taller stature 
and	higher	LAIs	of	plants	(Westoby,	1998; Reich et al., 2003). This 
could be due to lesser root system development in shorter than in 
taller	shrub	stands	(Cornelissen	et	al.,	2003; Christina et al., 2011). 
Drought usually affects short plants in shrublands of arid ecosys-
tems, mainly because of the shallow root systems of this vege-
tation	 (Paddock	 III	 et	 al.,	2013;	 Venturas	 et	 al.,	2016; Jacobsen & 
Pratt, 2018). In this sense, we revealed that shrubs and grasses with 
lower	LAI	and	height,	and	subshrubs,	were	the	vegetation	most	af-
fected	by	extreme	drought.	As	extreme	drought	altered	the	rainfall	
pattern by becoming more irregular with higher CDD, the plants 
with more developed root systems could have been favored be-
cause of the gravimetric downward shifts of the soil water profile 
(Sala	et	al.,	1992, 2015).	Furthermore,	the	subshrubs	in	shrublands	
with a bigger phytovolume showed less dieback, which could be due 
to	the	facilitation	of	these	short-	statured	plants	by	the	rest	of	the	
plant	community,	especially	taller	shrubs	and	grasses	under	extreme	
drought	conditions	(Holzapfel	&	Mahall,	1999; Cortina et al., 2011; 
Soliveres	 &	Maestre,	2014).	 For	 example,	 under	 extreme	 drought	
conditions, taller shrubs and grasses may buffer environmental con-
ditions	for	the	short-	statured	plants	by	mechanisms	such	as	shading	
(i.e.,	 reducing	direct	 radiation,	 soil	water	 evaporation	 and	 soil	 and	
air temperature) and increasing water availability through hydraulic 
lift	(i.e.,	lift	of	water	stored	in	deep	soil	layers	and	release	in	upper	

F I G U R E  5 Plant	dieback	in	the	total	plant	community	and	plant	biotypes	after	the	2014	drought	in	the	four	Mediterranean	shrublands.	
Bars	with	different	letters	denote	statistically	different	values	(α < 0.05).
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soil	 layers	by	 roots)	 (Padilla	&	Pugnaire,	2006; Prieto et al., 2010). 
Therefore, vertical vegetation development may be a better indica-
tor	of	 shrubland	vulnerability	 to	extreme	drought	 than	 the	 spatial	
arrangement	in	Mediterranean	drylands.

Soil properties were the main factors correlating with decay-
ing grasses, and they also highly correlated with the dieback of the 
plant community and shrubs. Bare soil surface was the most relevant 
soil	surface	trait	 to	explain	plant	dieback	at	both	the	plant	commu-
nity and grass levels. This could be due to the greater sensitivity of 
grass species to surface water loss by evaporation given their shallow 
root system. Surface stoniness has been related to higher infiltration 
rates	under	wet	conditions	 (Mayor	et	al.,	2009),	which	may	explain	
the negative correlation that we found between shrub dieback and 
stone cover. However, the lack of correlation with grass and subshrub 
dieback	could	be	explained	by	the	opposite	role	of	soil	surface	stoni-
ness	 under	 extremely	 dry	 conditions,	 especially	 for	 shallow-	rooted	

plants. Stones on the soil surface might reduce water input to soil by 
intercepting	the	majority	of	less	intense	rainfall	events	(>80% of the 
rainfall	events	in	2014	were <3 L·m−2, which was twice that in an av-
erage	year).	Negative	correlations	have	been	shown	between	surface	
stoniness and the cover of short plant species in these ecosystems 
(Maestre	&	Cortina,	2002).	Therefore,	only	deep-	rooted	plants	(some	
shrubs) might have profited by high soil surface stoniness, while this 
benefit	of	increasing	infiltration	during	high	rainfall	events	for	shallow-	
rooted	plants	(subshrubs	and	grasses)	could	have	been	masked	by	the	
interception of minor rainfall events during dry periods.

5  |  CONCLUSIONS

The	climate	phenomenon	observed	in	2014	was	an	extreme	drought	
that	affected	all	four	study	sites.	Subshrubs	in	semi-	arid	and	dry	eco-
systems were the biotype most affected by drought, while the shrub 
and grass dieback differences among sites were likely due to differ-
ent	development	stages	(vertical	development).	The	plant	dieback-	
related factors vastly varied between plant biotypes, and vegetation 
structure for shrubs, water availability for subshrubs and soil prop-
erties	 for	 grasses	were	 the	most	 relevant	 ones.	 REW	 and	 rainfall	
pattern	attributes	(CDD)	proved	to	be	better	explanatory	variables	
of	 vegetation	dieback	 than	 accumulated	 rainfall.	Vertical	 develop-
ment	(LAI	and	height)	drove	shrub	and	grass	resistance	to	extreme	
drought, while spatial arrangement did not seem to be related to 
plant	dieback.	 Lack	of	 soil	 surface	 cover	was	also	 relevant	 for	ex-
plaining plant dieback, although surface stoniness seemed beneficial 
only	for	deep-	rooted	biotypes.	These	results	highlight	the	relevance	
of	 plant	 structure	 and	 soil	 surface	 properties	 in	 Mediterranean	
drylands	 to	withstand	extreme	drought	events.	They	 suggest	 that	
shrubland landscape architecture management is a suitable action 
for adaptation to climate change to increase the resilience of these 
ecosystems to climate change.
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