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Abstract
Questions: Knowledge of how extreme drought events induce plant dieback and, 
eventually, plant mortality, may improve our forecasting of ecosystem change ac-
cording to future climate projections, especially in Mediterranean drylands. In them, 
shrublands are the main vegetation communities in transition areas from a subhu-
mid to semi-arid climate. This study analyzed differences in plant dieback after an 
unusual drought in 2014 and identified their main underlying factors in relation to 
three groups of explanatory variables: water availability, soil properties and vegeta-
tion structure attributes.
Location: Four Mediterranean shrublands along a climatic gradient in SE Spain.
Methods: At each experimental field site, we sampled a pool of vegetation structure 
characteristics, soil depth and soil surface properties, and we also determined water 
availability by continuously monitoring soil moisture and the microclimate conditions.
Results: The climatic analysis showed that there was an extreme drought event in 
2014, which was below the first percentile of the driest years. Under such conditions, 
vegetation dieback occurred at all the study sites. However, plant dieback differed 
between sites and plant biotypes. Subshrubs were the main affected biotype, with 
diebacks close to 60% at the driest sites, and up to 40% dieback for shrubs depend-
ing on their vertical development. Relative extractable water and bare soil surface 
cover were the best explanatory variables of plant community dieback but changed 
between plant biotypes. Vegetation structure variables related to plant vertical devel-
opment (leaf area index [LAI], plant height, phytovolume) were significant explanatory 
variables of plant dieback in shrubs, subshrubs and grasses. Consecutive dry days fit-
ted the best model to explain subshrub dieback.
Conclusions: We found that rainfall pattern rather than total annual rainfall was the 
climatic factor that best determined water availability for plants in Mediterranean 
drylands. These results also pointed out the relevance of plant structure and soil 
properties for explaining ecosystem responses to extreme drought.
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1  |  INTRODUC TION

“Ecological drought” is defined as an episodic water availability 
deficit that drives ecosystems beyond tipping points of vulnerabil-
ity and impacts ecosystem health (Crausbay et al., 2017; Tramblay 
et al., 2020). Unusual intense or extensive climatic events, such as 
extreme drought, may exceed ecological tipping points and trigger 
critical shifts in ecosystems with impacts on ecosystem integrity and 
functioning, which hamper their resilience and ability to provide eco-
system services (Scheffer et al., 2001). However, extreme drought 
events rarely elicit extreme ecological responses (Smith,  2011a, 
2011b; Zhang et al., 2019). Worldwide there are several pieces of 
evidence for ecosystem critical responses to drought, such as large 
vegetation die-off events (Donaldson, 1967; Faber-Langendoen & 
Tester, 1993; Van Mantgem et al., 2009; Lloret et al., 2015; Anderegg 
et al., 2016; Greenwood et al., 2017). Nevertheless, our mechanistic 
understanding of these phenomena is still scarce due to the marked 
complexity of ecosystem responses to drought, which leads to a 
lack of consistence between experimental and observational stud-
ies (Leuzinger et al., 2011; Knapp et al.,  2017; Yuan et al.,  2017). 
It is, therefore, necessary to better characterize and monitor the 
ecological responses triggered by natural extreme drought events 
to validate experimental findings, and to help to disentangle these 
complex ecological processes.

Water availability is the underlying driver of ecosystem respon-
siveness to drought, which has been widely associated with drought 
intensity (Dracup et al., 1980; Slette et al., 2019). However, the process 
is a complex one. Responses to real water availability are determined 
mainly by regional climate features, local geophysical aspects like soil 
properties, and particular ecosystem sensitivity to water resources, 
as determined basically by plant and soil biotic communities and 
the way they use water. Thus, rainfall patterns rather than the total 
amounts of annual rainfall have been able to determine water avail-
ability in water-limited ecosystems (Le Houerou et al., 1988; Knapp & 
Smith, 2001; Felton et al., 2020). The timing and intensity of rainfall 
events are key aspects of the rainfall that drive ecological responses 
in arid ecosystems by conditioning the pulsed dynamics of soil mois-
ture (Collins et al., 2014). Soil moisture is the most direct water source 
for plants and soil microbials, and has been widely used as an indica-
tor of water availability and drought intensity (Zargar et al., 2011). In 
this regard, soil properties and microtopography features may also 
largely determine soil water availability by driving the infiltration 
and retention of rainfall water in soils. Soil surface properties, such 
as stoniness or litterfall cover, are key features of controlling rain-
fall water passing into soil by enabling its infiltration with increasing 
soil surface roughness and porosity, but by also providing protection 
from evaporative loss (Tongway & Ludwig, 1997; Read et al., 2016). 
Soil depth, stoniness and rocky outcrops as a counterpart determine 

total soil water storage capability, water exposure to evapotranspira-
tion, and soil water losses by deep percolation and runoff (Seligman 
et al., 1992; Hopp & McDonnell, 2009; Mei et al., 2018).

Shrublands are one of the main plant communities in 
Mediterranean drylands. In these water-limited ecosystems 
dominated by shrubs and grasses, vegetation shows a patched 
spatial arrangement by determining a source–sink pattern that in-
fluences water and nutrient dynamics (Ludwig et al., 2005; Bautista 
et al.,  2007; Vásquez-Méndez et al.,  2010). Functional traits of 
dominant plant species also determine changes in community sen-
sitivity to water availability, such as plants' ability to withstand 
extreme drought events (Vilagrosa et al., 2014; Rosas et al., 2019; 
Peguero-Pina et al., 2020). The rooting depth and leaf area index 
(LAI) of dominant plant species may be two relevant morphological 
functional traits to explain ecosystem responsiveness to drought be-
cause most processes at the ecosystem level (e.g. net primary pro-
ductivity and nutrient cycling) rely on these dominant plant species 
(Felton & Smith, 2017; Smith et al., 2020). A diminishing “mass ratio 
effect” of dominant plant traits, and the likely increase in plant–plant 
interactions, may lead to even more complex ecosystem responses 
to drought (Felton & Smith, 2017). Indeed, non-linear responses to 
drought have been reported when plant species and functional rich-
ness increase in drylands (Gherardi & Sala, 2015; Rodriguez-Ramirez 
et al., 2017), and biodiversity can increase the complexity of the bi-
otic aspect of water availability control in dryland ecosystems.

Climate change projections point out that a significant decrease in 
annual rainfall and a higher mean annual air temperature are expected 
in these Mediterranean zones (IPCC, 2021). By the end of the 21st 
century, the semiarid climate (200–350 L m−2 year−1) is expected to 
shift to the north, replacing the dry–subhumid (400–600 L m−2 year−1) 
with frequent years with annual rainfall below 200 L m−2 year−1 in 
these transition areas (Touhami et al., 2015; Moutahir, 2016). Such 
changes may increase the frequency and intensity of drought events, 
with impacts on soil water availability to plants (Dai, 2011; Trenberth 
et al., 2014; Sala et al., 2015), which would increase the desertifica-
tion processes that already impact these ecosystems (Puigdefábregas 
& Mendizabal, 1998; Huang et al., 2016; Prăvălie, 2016). Therefore, 
Mediterranean drylands can serve as a model region to study climate 
change impacts, especially because of the close relations linking veg-
etation structure, water availability and ecosystem health (Lavorel 
et al., 1998; Tramblay et al., 2020).

In this context, we analyzed the effect of an intense drought 
that occurred in the 2014 hydrological year on some Mediterranean 
areas of SE Spain. Annual rainfall was less than 50% of the long-
term average, which caused notable tree mortality in several zones 
(García de la Serrana et al.,  2015; Morcillo et al.,  2022). Spread 
plant dieback and mortality were detected in four monitored 
Mediterranean shrublands. Our main objectives were to: (i) assess 

K E Y W O R D S
climate change, consecutive dry days, grass, rainfall pattern, shrub, soil surface properties, 
subshrub, vegetation structure, water availability
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vegetation dieback due to the 2014 drought and observe the dif-
ferences between the main plant biotypes of these shrublands; (ii) 
identify the main factors from three groups of explanatory variables 
(water availability, soil properties, vegetation structure attributes) 
related to plant dieback in these Mediterranean shrublands.

2  |  METHODS

2.1  |  Study site

The present study was performed at four experimental field sites 
selected along a climatic gradient in the Alicante Province (SE 
Spain) from subhumid to semi-arid stands in three hydrological 
years: Predrought 2013 (Oct. 2012 to Sept. 2013), Drought 2014 
(Oct. 2013 to Sep. 2014) and Postdrought 2015 (Oct. 2014 to Sep. 
2015). From south to north, the experimental sites were “Serra de 

les Àguiles” (SAG), “Serra del Ventós” (VEN), “El Cabeçó d'Or” (CAB) 
and “La Mela” (MEL) (Manrique-Alba et al.,  2017) (Figure  1). The 
mean annual rainfall and the mean annual temperature are 300 mm 
and 17°C at the semi-arid end, and 650 mm and 14°C at the subhu-
mid end, respectively (Table 1). At sites MEL and CAB, water deficit 
(Walter & Lieth, 1967) occurs in three months, from June to August. 
For sites SAG and VEN, water deficit occurs in five months, from 
May to September (Appendix S1). The studied vegetation type con-
sists of shrublands with low–medium density plant patches com-
posed of sclerophyllous shrubs and subshrubs mixed with grasses.

2.2  |  Climate and drought characterization

We monitored the rainfall and environmental data during the study 
period (2012–2015) at each experimental field site, with a 0.2 mm 
resolution Rain Collector (II, Davis Instruments Corp., Hayward, 

F I G U R E  1 Location map of the studied sites in SE Spain. Blue lines denote isohyets every 100 mm. “Serra de les Àguiles” (SAG), “Serra del 
Ventós” (VEN), “El Cabeçó d'Or” (CAB) and “La Mela” (MEL).

Geographical data SAG VEN CAB MEL

Latitude (N) 38°23′ 38°28′ 38°30′ 38°42′

Longitude (W) 0°38′ 0°36′ 0°24′ 0°16′

Elevation (m a.s.l.) 450 550 600 1050

Slope (%) 33.84 ± 2.44 30.50 ± 1.36 31.14 ± 1.73 28.94 ± 1.38

Aspect NE NO NE SE

Climate data

Mean annual rainfall (mm) 299 ± 13.1 311 ± 14.2 397 ± 17.6 651 ± 31.0

Mean annual temperature (C°) 17.1 ± 0.09 17.5 ± 0.09 14.3 ± 0.1 12.4 ± 0.1

Climate classification Semi-arid Semi-arid Dry Subhumid

Abbreviations: CAB, El Cabeçó d'Or; MEL, La Mela; SAG, Serra de les Àguiles; VEN, Serra del 
Ventós.

TA B L E  1 Geographical data, mean 
annual rainfall, mean annual temperature 
and climate classification according to 
Rivas-Martínez (1983) per studied site.
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CA, USA) connected to a datalogger (HOBO pendant event Onset 
Computer Corp., Inc., Southern MA, USA). The hourly air tempera-
ture (°C) was recorded with two sensors per site (HOBO datalogger 
U23 Pro v2, Onset Computer Corp.).

In order to compare the climate conditions during our study 
period to the long-term conditions, we used the long-term rain-
fall and temperature time series for the 1953–2012 period. They 
were obtained from the Spanish Meteorological Agency (AEMET) 
network (Moutahir et al., 2014). To compare the rainfall during the 
study period to the long-term values, we calculated the range of 
rainfall percentiles of the long-term rainfall per site (from monthly 
to annually accumulated) and estimated the percentile level for the 
2014 (and seven previous years) hydrological year accumulated 
rainfall.

We also estimated the accumulated rainfall and three rainfall 
pattern attributes in 2014 as water availability variables. We de-
fined a rainfall event as a day with rainfall higher than 3 L m−2. Then 
following Knapp et al.  (2015), we calculated the rainfall pattern 
attributes: (i) number of rainfall events (NRE); (ii) average rain-
fall events size (AES) as the average rainfall volume (L m−2) of the 
rainfall events; and (iii) consecutive dry days (CDD) as the average 
number of days between rainfall events. Air temperature (°C) was 
corrected by the mean elevation (m a.s.l.) of each study site and 
by applying a monthly lapse rate calculated for the whole region 
by Moutahir (2016). Finally, we also estimated the Standardized 
Precipitation–Evapotranspiration Index (SPEI) of the 2014 hydro-
logical year (12-month SPEI) as an integrated indicator of water 
deficit, which includes rainfall and air temperature (Vicente-
Serrano et al., 2010).

2.3  |  Vegetation structure characterization

In order to determine the effect of the 2014 drought on the shrub-
land plant community, we measured plant cover, structure and com-
position early in spring 2015 at each study site. We followed the 
point intercept method with vertical stratification (Fayle, 1959) to 
measure plant cover and the overlap of different plant species. We 
extended three independent 35-m-long transects per site follow-
ing the line of slope, and recorded the contacts of all the different 
plant species every 50 cm along each transect within 25-cm height 
intervals with a vertical graduated rod. We distinguished between 
contacts of alive and dead plants (i.e., contacts with a completely 
dead stem).

Species were classified and grouped per plant biotype 
(Raunkiær, 1934; Mateo & Crespo, 2009): shrubs (phanerophytes, 
higher than 0.5 m); subshrubs (hemicryptophytes and chamaeph-
ytes, shorter than 0.5 m, with lignified stems); grasses (herbaceous 
species with no ligneous tissues in the hemicryptophyte and cha-
maephyte groups) (Appendix S2). We estimated the total cover of 
both the plant community and each plant biotype by integrating 
the plant cover of all the species into each biotype, and separat-
ing dead and alive plant cover. Using the vertically-stratified data 

information, we estimated the following vegetation structure at-
tributes: plant height (maximum height of the vertical plant contact 
at each transect point); leaf area index (number of vertical layers 
with plant contacts at each transect point; Heslehurst,  1971); 
plant volume (the product of plant cover and height); size of plant 
patches and interpatches (plantless areas). We considered plant 
patch areas to have two consecutive plant contacts or more along 
the transect. Likewise, interpatch areas were those with two or 
more consecutive points without plant contacts. We used species-
specific cover data to calculate plant species richness, and the di-
versity and dominance indices. We estimated diversity with the 
Shannon Diversity Index (Shannon & Weaver, 1964; Hill,  1973), 
and evenness of plant community composition with the Simpson 
Index (Simpson, 1949).

Finally, we assessed drought effects on vegetation cover by es-
timating plant dieback from dead plant contacts. This accumulation 
of dead material in plants is the consequence of the partial mortality 
that affects Mediterranean shrubs as an adaptation strategy when 
conditions are limiting (Bellot & Escarré, 1980). To do so, we esti-
mated the plant dieback level as the volumetric dead fraction to total 
plant volume ratio expressed as a percentage.

2.4  |  Soil properties and soil water content

In order to characterize soil properties, soil depths (cm) were meas-
ured at three points per transect by inserting a metal bar into soil. 
Soil surface cover types were recorded at all the sampled points of 
each transect by identifying if litter, bare soil, stoniness and rocky 
outcrops were present. For the soil texture characterization, poros-
ity and soil field capacity, we randomly took nine mixed subsamples 
at a soil depth from 10 cm to 30 cm at each experimental site. Soil 
analyses were carried out in an external laboratory (Laboratoris 
Escuredo®, Reus, Spain) (Appendix S3).

At each experimental field site, we monitored soil water content 
(SWC) (cm3 cm−3) from 0 to 20 cm of soil depth by periodic measuring 
following the time domain reflectometry method (TDR) by using 18 
TDR (20 cm long) probes per shrubland community. We measured 
SWC from May 2013 to October 2015. We calculated relative ex-
tractable water (REW, Granier, 1987; Bréda et al., 1995) from the 
SWC data as (1):

where: θt is the actual SWC (m
3 m−3), θmin represents the minimum 

SWC observed during the study period, and θFC denotes SWC at 
field capacity.

2.5  |  Statistical analysis

We characterized shrublands by comparing vegetation struc-
ture and soil properties among study sites by a one-way ANOVA 

(1)REW =
Θt − Θmin

ΘFC − Θmin
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(Tukey's HSD [honestly significant difference] post-hoc test). Data 
were transformed (logarithm and square root) whenever necessary 
to meet the ANOVA assumptions. After initially exploring the data 
distribution of our response variables (Appendix S4), we compared 
plant dieback among shrubland transects (n = 12, i.e., three transects 
by four sites) using a generalized linear model with beta distribution, 
and with Site as the fixed factor (Cullen & Frey, 1999; Delignette-
Muller & Dutang, 2015).

We quantified the influences of the main explanatory fac-
tors on plant dieback with beta regressions in generalized linear 
mixed models by including Site as the random factor (Damgaard 
& Irvine, 2019). We grouped the possible explanatory factors into 
three groups: water availability variables (mean annual tempera-
ture, accumulated rainfall, SPEI, rainfall pattern variables NRE, AES 
and CDD, and soil moisture variables SWC and REW), soil prop-
erties (depth, bare cover, surface stoniness, litter cover and rocky 
outcrops) and vegetation structure variables (plant volume, plant 
height, LAI, plant patch size, interpatch size, plant richness, diver-
sity and evenness). For each type of explanatory factor (water avail-
ability, soil properties and vegetation structure), we selected as the 
best explanatory variable of dieback those that produced models 
with lower Akaike Information Criterion corrected for small sam-
ple size (AICc; Hurvich & Tsai, 1991) and were not autocorrelated 
(correlation < 0.6). We first selected the best beta regression model 
with a lower AICc from all the explanatory variables. Then we ex-
plored other possible models with explanatory variables that were 
not autocorrelated (Appendix S5). In all cases, the models with only 
one explanatory variable obtained lower AICc values than the mod-
els with more than one explanatory variable. All the statistical anal-
yses were conducted using the R statistical software (R Core Team, 
2022, version 4.2.1).

3  |  RESULTS

3.1  |  Extreme drought event intensity

The 2014 drought episode drastically lowered the total annual rain-
fall between 33% and 48% compared to the long-term average. This 
reduction reached extremely low levels of rainfall, beyond the first 
of the long-term driest years at all the sites (Figure 2). The intensity 
of this drought event contrasted with the relatively wet conditions 
of the previous hydrological year (2013), when the total annual rain-
fall values were above the 70th percentile of the long-term series 
at all the sites, except at CAB, which reached the 40th percentile. 
Furthermore, five of the seven previous years were above the 60th 
long-term percentile (four years for CAB and MEL), and were always 
above the 20th percentile (Appendix S6).

The temperatures during the 2014 drought were also hotter than 
the long-term averages at all the sites, with increments of about 1–
4°C in spring and autumn, and an exceptional increment that was 2–
5°C higher than the long-term average in April (Figure 2). This month 
went above the 95th percentile of the hotter long-term values for 

all the sites. At VEN, only three months (October, April, June) had 
higher temperatures in the 2014 hydrological year than in the long-
term series.

3.2  |  Impact of extreme drought on water 
availability

The low annual rainfall recorded for drought year 2014 was re-
flected as not only notable changes in the rainfall pattern attrib-
utes, but also as a drop in soil moisture at all the sites (Figure 3, 
Appendix  S7). The main affected rainfall pattern attribute was 
CDD, with threefold longer dry periods than in 2013 (twofold at 
MEL). At SAG, VEN and CAB, the average dry periods spanned 
more than one month (38–48 days) in hydrological year 2014. NRE 
lowered at the same ratio as the annual total rainfall reduction did 
(ca. 65% less than in 2013 at all the sites). Reduction in AES led 
to similar values in 2014 at all the sites (10 ± 1 L m−2), which con-
trasts with the higher variance observed in 2013 (14 ± 2.5 L m−2) 
and means that the AES decrease was asymmetrical between sites. 
In SPEI terms, drought hit harder at CAB and MEL than at VEN and 
SAG, which was the opposite trend shown in the rainfall pattern 
attributes, especially in CDD.

Subhumid site MEL had higher REW values than the other sites 
in autumn and spring, but the mid-summer values were similar for all 
the sites (Figure 3). For hydrological year 2014, the REW values were 
below 0.4 for eight continuous months at SAG, VEN and CAB (from 
February to September) and for five continuous months (from May 
to September) at MEL. This low REW may be taken as a tipping point 
of soil water deficit for Mediterranean species (Granier, 1987; Bréda 
et al., 1995). Indeed, REW dropped below 0.2 at SAG and CAB for 
six and seven continuous months, respectively, while sites VEN and 
MEL presented REW values below 0.2 only for summer months. In 
contrast, the REW values for 2015 were below the 0.4 tipping point 
for 3–4 months, and lower than 0.2 for 1–2 months depending on 
the site and for the late spring and mid-summer seasons (we have no 
REW data for the whole of 2013).

3.3  |  Shrubland characterization: Vegetation 
structure and soil properties

Shrubland structure varied between sites due to differences in the 
dominance of grass and shrub biotypes, differences in the plant 
patch pattern, and distinct vertical shrub development (Figure  4). 
Dry–subhumid sites (CAB and MEL) showed more plant abundance, 
with larger plant patches (i.e., smaller bare-soil patches) than at semi-
arid sites SAG and VEN (Figure 4a,m). CAB had a bigger grass phyto-
volume with larger grass patches than the other sites (Figure 4d,p). 
VEN had the clumpiest and most vertically developed vegetation, 
with the tallest shrubs and the highest LAI (Figure 4e,f,i,j). The shrub 
phytovolume was lower at VEN than at the other sites despite it 
having larger (and taller) shrub patches. However, the size of shrub 
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interpatches was also notably larger at VEN than at the other sites 
(Figure 4b,n). SAG was the shrubland with a smaller phytovolume, 
mainly because of short vegetation height and a smaller amount of 
grasses. Subshrub structure and abundance were similar between 
sites (Figure 4c,g,k,o). The composition of plant communities (spe-
cies richness, plant diversity, plant evenness) was also similar at all 
four sites (Appendix S8).

The main differences between shrubland soils were due to the 
presence of rocky outcrops, while other factors like soil depth, lit-
ter cover and soil surface stoniness were relatively even between 
shrublands (Appendix  S9). Shrublands showed a latitudinal trend 
of rocky outcrops, from a smaller amount of rocky outcrop at SAG 
(~1%), medium at VEN and CAB (~10%) and bigger at MEL (~25%). The 
opposite trend was observed in the amount of bare soil. However, in 
this case, differences between sites were not significant. The soil 
depth of shrublands was the same (~40 cm), except for VEN with 

shallower soil (~16 cm). The soil surface cover was different between 
MEL, where it consisted mainly of litter (~53%), and the other sites, 
where soil was mostly covered by stones (~45%).

3.4  |  Extreme drought effects on 
vegetation dieback

After the 2014 drought, visual observations indicated that plants 
underwent decaying processes because whole individuals had died, 
and also due to partial canopies in multistemmed species. In this con-
text, plant dieback varied among sites by ranging from 12.5% ± 3% 
at VEN and MEL, to 26% ± 3% at CAB, with the highest dieback lev-
els, 38% ± 2%, at SAG (Appendix S10, Figure 5a). Shrub dieback was 
26% ± 4% for SAG, CAB and MEL, and was almost negligible for VEN 
(<1%) (Figure 5b). Subshrub dieback reached 49% ± 6% at SAG, CAB 

F I G U R E  2 Monthly accumulated rainfall (top) and mean temperature (bottom) of hydrological years (October to September) 2013 (dashed 
line), 2014 (continuous line) and the range of rainfall percentiles of the long-term rainfall series (colored areas for the 10 percentile ranks). 
Inset in the bottom graphs: time above and under the long-term average temperature during the 2014 drought.
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and VEN, with no subshrub dieback evidence for MEL (Figure 5c). 
Grass dieback was higher at SAG with 23% and only 2.5% ± 1% at the 
other sites (Figure 5d).

3.5  |  Relation among explanatory factors and 
plant dieback

The explanatory variables that best correlated with plant dieback 
changed between plant biotypes (Figure 6). At the plant commu-
nity level, water availability and soil properties, but not vegeta-
tion structure, showed significant correlations with plant dieback. 
However, at the plant biotype level, only the plant structure 
variables correlated significantly with dieback at all the different 
biotypes. Both REW and bare soil cover showed the highest cor-
relations with plant community dieback, which indicates greater 
dieback events under extreme drought in barer soils with lower 
REW. For each plant biotype, the best correlated explanatory 
variable belonged to one group, which was different in each case: 
plant structure in shrubs, water availability in subshrubs and soil 

properties in grasses. In shrubs, LAI correlated the best with die-
back. The shrub communities with higher LAI showed less dieback 
under extreme drought conditions. Soil stone cover correlated 
negatively with shrub dieback, and no water availability factors 
were correlated. CDD was the main explanatory factor that corre-
lated with subshrub dieback, which denotes greater subshrub die-
back linked with an increase in dry spells during extreme drought. 
Other factors that also correlated with subshrub dieback were the 
phytovolume of the plant community and subshrubs. In this case, 
no soil property factor was significantly correlated. The shrub-
lands with a bigger phytovolume of the plant community showed 
less subshrub dieback under extreme drought, and this trend was 
the same when only the subshrub phytovolume was taken into ac-
count. Bare soil was the best explanatory variable that correlated 
with grass dieback, which suggests greater grass dieback in barer 
soils under extreme drought. Furthermore, grass height correlated 
significantly with grass dieback, which indicates greater dieback 
in shorter grasses under extreme drought conditions. However, 
in this case, no water availability variables correlated significantly 
with grass dieback.

F I G U R E  3 Monthly relative extractable water (REW) from May 2013 to September 2015 vs monthly rainfall at each study site. The 
straight line represents REW = 0.4, which is the tipping point of soil water deficit for Mediterranean species according to Granier (1987) and 
Bréda et al. (1995). The vertical dotted line shows the beginning and end of the 2014 hydrological year.
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4  |  DISCUSSION

The structure and functioning of drylands are strongly influenced 
by precipitation patterns. In such environments, changes in rainfall 
frequency and annual quantity of rainfall may have profound effects 
on soil moisture and might, thus, affect plant communities (Pugnaire 
et al.,  2004; Knapp et al.,  2008; Roitberg et al.,  2016). Present 
studies essentially need to incorporate data on drought-induced 
plant dieback and mortality to predict impacts on global and local 
scales (Allen et al., 2010, 2015; Greenwood et al., 2017; McDowell 
et al.,  2018). Our results revealed an extremely dry year, with 

precipitation recorded in the 2014 hydrological year going below 
the first percentile of the driest years. This low precipitation mainly 
influenced autumn and winter months when recovery from the sum-
mer drought spell is critical for plant functioning. Furthermore, the 
mean temperature showed a hot 2014 hydrological year principally 
in autumn, winter and spring, with growing evaporative demand ( 
Moutahir, 2016) and, thus, increasing potential plant water stress 
(Tardieu & Simonneau, 1998).

Several studies have shown that the effect of drought episodes 
in SE Spain, such as those recorded in 1994, 2003 and 2014, has 
caused considerable damage to plant communities, along with 

F I G U R E  4 Vegetation structure in the four Mediterranean shrublands. Bars with different letters show statistically different values 
(α < 0.05).
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decay processes and further generalized plant mortality (Peñuelas 
& Filella, 2001; Herrero et al., 2013; García de la Serrana et al., 2015; 
Morcillo et al., 2022). Mediterranean shrublands are quite vulnera-
ble to rising temperatures and decreasing water availability (Bellot 
et al., 2004), and the expected increasing aridity in regions that are 
already dry in large areas of the Mediterranean Basin may have se-
rious ecological and socio-economic consequences (IPCC, 2021). 
Our results showed that not only were water availability factors 
correlated with the observed plant dieback in response to extreme 
drought, but so were other factors related to soil properties, and 
vegetation structure played an important role. Soil moisture is a 
key parameter to determine how water availability correlates with 
plant community dieback. However, our results confirmed the 
relevance of available water (REW) rather than absolute water 
content (SWC) in the soil of drylands, which rely more on soil tex-
ture and composition, biological cover, rainfall pattern and soil 
moisture dynamics than on the amount of incoming rainfall (Noy-
Meir, 1973; Ogle & Reynolds, 2004; Berdugo et al., 2014). Changes 
in rainfall pattern have been shown to affect plant functioning, 
productivity and survival (Fay, 2009; Heisler-White et al., 2009; 
Cherwin & Knapp,  2012; Reed et al.,  2012; Felton et al., 2020) 
mainly because soil water availability depends more on the num-
ber and distribution of rainfall events than on the total rainfall 
amount in arid ecosystems (Hottenstein et al., 2015). In this study, 
we showed that CDD was the most significant explanatory factor 
to correlate with subshrub dieback. This highlights the timing of 
rainfall events regardless of the amount of rainfall as a main fac-
tor of decay in shallow-rooted plant species, which usually show 
the highest dieback and mortality ratios during extreme droughts 
(Jacobsen & Pratt, 2018).

Vegetation structure correlated with the dieback of all the plant 
biotypes, mainly through vertical plant development (height, LAI 
and phytovolume), while spatial distribution (patch and interpatch 
sizes) was less relevant. In plants with similar functional strategies 
(i.e., biotypes regarding potential plant growth and root devel-
opment), short stature and low LAIs of plants suggest less devel-
oped or younger individuals than plant stands with a taller stature 
and higher LAIs of plants (Westoby, 1998; Reich et al., 2003). This 
could be due to lesser root system development in shorter than in 
taller shrub stands (Cornelissen et al., 2003; Christina et al., 2011). 
Drought usually affects short plants in shrublands of arid ecosys-
tems, mainly because of the shallow root systems of this vege-
tation (Paddock III et al., 2013; Venturas et al., 2016; Jacobsen & 
Pratt, 2018). In this sense, we revealed that shrubs and grasses with 
lower LAI and height, and subshrubs, were the vegetation most af-
fected by extreme drought. As extreme drought altered the rainfall 
pattern by becoming more irregular with higher CDD, the plants 
with more developed root systems could have been favored be-
cause of the gravimetric downward shifts of the soil water profile 
(Sala et al., 1992, 2015). Furthermore, the subshrubs in shrublands 
with a bigger phytovolume showed less dieback, which could be due 
to the facilitation of these short-statured plants by the rest of the 
plant community, especially taller shrubs and grasses under extreme 
drought conditions (Holzapfel & Mahall, 1999; Cortina et al., 2011; 
Soliveres & Maestre, 2014). For example, under extreme drought 
conditions, taller shrubs and grasses may buffer environmental con-
ditions for the short-statured plants by mechanisms such as shading 
(i.e., reducing direct radiation, soil water evaporation and soil and 
air temperature) and increasing water availability through hydraulic 
lift (i.e., lift of water stored in deep soil layers and release in upper 

F I G U R E  5 Plant dieback in the total plant community and plant biotypes after the 2014 drought in the four Mediterranean shrublands. 
Bars with different letters denote statistically different values (α < 0.05).
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soil layers by roots) (Padilla & Pugnaire, 2006; Prieto et al., 2010). 
Therefore, vertical vegetation development may be a better indica-
tor of shrubland vulnerability to extreme drought than the spatial 
arrangement in Mediterranean drylands.

Soil properties were the main factors correlating with decay-
ing grasses, and they also highly correlated with the dieback of the 
plant community and shrubs. Bare soil surface was the most relevant 
soil surface trait to explain plant dieback at both the plant commu-
nity and grass levels. This could be due to the greater sensitivity of 
grass species to surface water loss by evaporation given their shallow 
root system. Surface stoniness has been related to higher infiltration 
rates under wet conditions (Mayor et al., 2009), which may explain 
the negative correlation that we found between shrub dieback and 
stone cover. However, the lack of correlation with grass and subshrub 
dieback could be explained by the opposite role of soil surface stoni-
ness under extremely dry conditions, especially for shallow-rooted 

plants. Stones on the soil surface might reduce water input to soil by 
intercepting the majority of less intense rainfall events (>80% of the 
rainfall events in 2014 were <3 L·m−2, which was twice that in an av-
erage year). Negative correlations have been shown between surface 
stoniness and the cover of short plant species in these ecosystems 
(Maestre & Cortina, 2002). Therefore, only deep-rooted plants (some 
shrubs) might have profited by high soil surface stoniness, while this 
benefit of increasing infiltration during high rainfall events for shallow-
rooted plants (subshrubs and grasses) could have been masked by the 
interception of minor rainfall events during dry periods.

5  |  CONCLUSIONS

The climate phenomenon observed in 2014 was an extreme drought 
that affected all four study sites. Subshrubs in semi-arid and dry eco-
systems were the biotype most affected by drought, while the shrub 
and grass dieback differences among sites were likely due to differ-
ent development stages (vertical development). The plant dieback-
related factors vastly varied between plant biotypes, and vegetation 
structure for shrubs, water availability for subshrubs and soil prop-
erties for grasses were the most relevant ones. REW and rainfall 
pattern attributes (CDD) proved to be better explanatory variables 
of vegetation dieback than accumulated rainfall. Vertical develop-
ment (LAI and height) drove shrub and grass resistance to extreme 
drought, while spatial arrangement did not seem to be related to 
plant dieback. Lack of soil surface cover was also relevant for ex-
plaining plant dieback, although surface stoniness seemed beneficial 
only for deep-rooted biotypes. These results highlight the relevance 
of plant structure and soil surface properties in Mediterranean 
drylands to withstand extreme drought events. They suggest that 
shrubland landscape architecture management is a suitable action 
for adaptation to climate change to increase the resilience of these 
ecosystems to climate change.
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