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Abstract: SCARA robotic manipulators (Selective Compliance Articulated Robot Arms) find wide use in
industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-DOF SCARA
robotic manipulator. The dynamic model of the SCARA robot undergoes approximate linearization around
a temporary operating point that is recomputed at each time-step of the control method. The linearization
relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space
model of the system a stabilizing optimal (H-infinity) feedback controller is designed. To compute the con-
troller’s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control
algorithm. The stability properties of the control method are proven through Lyapunov analysis. The
proposed control method is advantageous because: (i) unlike the popular computed torque method for
robotic manipulators, the new control approach is characterized by optimality and is also applicable when
the number of control inputs is not equal to the robot’s number of DOFs, (ii) it achieves fast and accurate
tracking of reference setpoints under minimal energy consumption by the robot’s actuators, (iii) unlike the
popular Nonlinear Model Predictive Control method, the article’s nonlinear optimal control scheme is of
proven global stability and of ensured convergence to the optimum.

Keywords: 4-DOF SCARA robotic manipulator, industrial robots, nonlinear H-infinity control, Taylor
series expansion, Jacobian matrices, Riccati equation, global stability, differential flatness properties.

1 Introduction

SCARA robots (Selective Compliance Articulated Robot Arms) are widely used in industrial tasks as well
as in the teaching of robotics and in the related testing of new robot control algorithms [1-5]. The rapid
development of the Computer, Communication and Consumer Electronics Industry (3C industry) has led
also to the spread of the use of SCARA robots [6-10]. SCARA robots exhibit agility in assembly tasks for
the 3C industry and particularly in the fabrication of electronic devices, as well as in welding, handling of
objects and pick and place tasks with high speed, short time-cycle, accurate path following and in general
much flexible operation [11-15]. Of course, to achieve the precise execution of such tasks SCARA robots
have to be equipped with computationally powerful microprocessors and have to be also supplied with
elaborated nonlinear control algorithms [16-20].

SCARA robots are high performance robotic manipulators with relatively simple structure. With three
revolute joints (named as shoulder, elbow and wrist, respectively) a SCARA robot can move its end-effector
horizontally, while with a prismatic joint it can move the end-effector vertically [21-26]. The configuration
of the SCARA robot (Fig. 1) is outlined as follows: First it comprises a revolute joint about the vertical

1

This is a previous version of the article published in Robotica. 2023, 41(8): 2397-2450. https://doi.org/10.1017/S0263574723000450

https://doi.org/10.1017/S0263574723000450


axis. This joint swings a rigid arm and at the end of this arm there is a second revolute joint which swings
the second arm again about the vertical axis. The first two revolute joints enable to move horizontally a
load picked by the robot’s end-effector. A prismatic joint (tool) is mounted at the end of the second arm.
This can move straight up and down. Finally, at the end of the tool there is a third revolute joint which
allows for the precise positioning and orientation of the load.

In the present article, a nonlinear optimal control method is proposed for the nonlinear model of a 4-DOF
SCARA robot [27-28]. The dynamic model of the 4-DOF SCARA robot undergoes first approximate lin-
earization around a temporary operating point which is updated at each sampling instance. This operating
point is defined by the present value of the robot’s state vector and by the last sampled value of the control
inputs vector. The linearization process relies on first-order Taylor series expansion and on the computa-
tion of the associated Jacobian matrices [29-31]. The modelling error which is due to the truncation of
higher-order terms in the Taylor series expansion, is proven to be small and is asymptotically compensated
by the robustness of the control algorithm. For the approximately linearized state-space description of the
system a stabilizing H-infinity feedback controller is defined.

The proposed H-infinity controller achieves the solution of the optimal control problem for the SCARA
robot under model uncertainty and external perturbations. Actually, it represents a min-max differential
game which takes place between (i) the control inputs of the system that try to minimize a cost function
comprising a quadratic term of the state vector’s tracking error (ii) the model uncertainty and exogenous
perturbation terms which try to maximize this cost function. To compute the staabilizing feedback gains of
this controller an algebraic Riccati equation has to be also solved at each time-step of the control method
[1], [32]. The global stability properties of the control scheme are proven through Lyapunov analysis. First,
it is proven that the control loop satisfies the H-infinity tracking performance criterion [1], [33]. Next, it
is proven that under moderate conditions, global asymptotic stability of the control loop is ensured. To
implement state estimation-based control without need to measure the entire state vector of the system
the H-infinity Kalman Filter is used as a robust state estimator [1]. The nonlinear optimal control method
retains the advantages of linear optimal control, that is fast and accurate tracking of reference setpoints
under moderate variations of the control inputs.

The article has a meaningful contribution to the area of nonlinear control. One can point out the ad-
vantages of the nonlinear optimal control method against Nonlinear Model Predictive Control (NMPC)
[28]. In NMPC the stability properties of the control scheme remain unproven and the convergence of
the iterative search for an optimum often depends on initialization and parameter values’ selection. It
is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical
systems than approaches based on the solution of State Dependent Riccati Equations (SDRE). The SDRE
approaches can be applied only to dynamical systems which can be transformed to the Linear Parameter
Varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear opti-
mal control schemes which use approximation of the solution of the Hamilton-Jacobi-Bellman equation by
Galerkin series expansions. The stability properties of the Galerkin series expansion -based optimal control
approaches are still unproven.

The structure of the paper is as follows: In Section 2 the dynamic model of the 4-DOF SCARA robot is
given and the associated state-space model in the affine-in-the-input nonlinear state-space form is formu-
lated. In Section 3 the dynamic model of the SCARA robot undergoes approximate linearization through
Taylor series expansion and with the computation of the associated Jacobian matrices. In Section 4 the
H-infinity optimal control problem is formulated for the dynamic model of the SCARA robot. In Section
5 the global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.
Besides, the H-infinity Kalman Filter is introduced as a robust state estimator. In Section 6 the accuracy of
setpoints tracking by the state variables of the SCARA robot, under the nonlinear optimal control method,
is further confirmed through simulation experiments. Finally, in Section 7 concluding remarks are stated.

2



htb

Figure 1: The 4-DOF SCARA robotic manipulator and the reference frames (coordinate systems) associated
with the robot’s links and joints

2 Dynamic model of the 4-DOF SCARA robotic manipulator

2.1 State-space model of the SCARA robot

The diagram of the 4-DOF SCARA robot is shown in Fig. 1. The associated state-space model of the
robot’s dynamics takes the form [1], [2]

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) + d̃ = τ(t) (1)

where θi, i = 1, 2, 4 is the joints’ turn angle, θ̇i, i = 1, 2, 4 is the joints’ angular speed, θ3 is the position of
the prismatic joint, θ̇3 is the velocity of the prismatic joint, d̃ is the disturbances vector, M(θ) is the inertia
matrix, C(θ, θ̇) is the Coriolis and centrifugal forces matrix, and G(θ) is the gravitational forces vector/
These parameters of the robotic model are defined as follows [2]:

M(θ) =









p1 + p2cos(θ2) p3 + 0.5p2cos(θ2) 0 −p5
p2 + 0.5p2 cos(θ2) p2 0 −p5

0 0 p4 0
−p5 −p50 p5









(2)

C(θ, θ̇) =









−p2cos(θ1)θ̇2 −0.5p2sin(θ2)θ̇2 0 0

0.5p2sin(θ2)θ̇1 0 0 0
0 0 0 0
0 0 0 0









G(θ) =









0
0
p4ḡ
0









d̃ =









b1θ̇1
b2θ̇2
b3θ̇3
b4θ̇4









(3)
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In the previous model τi are the control inputs, Ii are the moments of inertia around the centroid (the
center of rotation of each link is at distance κ from the end of the link), mi is the mass of the i-th link, di is
the center of mass of the i-th link, li is the length of the i-th link, θi is the angle (position) i-th joint, while ḡ

is the acceleration of gravity. It holds that Ii = miκ
2
i , p1 =

∑4
i=1Ii+m1d

2
1+m2(d

2
1+l21)+(m3+m4)(l

2
1+l22),

p2 = 2[l1d2m2 + l1l2(m3 +m4)], p3 = m3 +m4, p4 = m3 +m4 and p5 = I4.

About the elements of the inertia matrix one has: m11 = p1+p2cos(θ2), m12 = p3+0.5p2cos(θ2), m13 = 0,
m14 = −p5, m21 = p2 + 0.5p2 cos(θ2), m22 = p2, m23 = 0, m34 = −p5, m31 = 0, m32 = 0, m33 = p4,
m34 = 0, m41 = −p5, m42 = −p5, m43 = 0, m44 = p5.

About the elements of the Coriolis matrix one has: c11 = −p2cos(θ1)θ̇2, c12 = −0.5p2sin(θ2)θ̇2, c13 = 0

c14 = 0, c21 = 0.5p2sin(θ2)(̇θ)1, c22 = 0, c23 = 0, c24 = 0, c31 = 0, c32 = 0, c33 = 0, c34 = 0, c41 = 0,
c42 = 0, c43 = 0, c44 = 0.

About the elements of the Gravitational forces vector one has: g1 = 0, g2 = 0, g3 = p4ḡ and g4 = 0.

About the elements of the disturbances (friction) vector one has: d1 = b1θ̇1, d2 = b2θ̇2, d3 = b3θ̇3, and
d4 = b4θ̇4.

Next, the inverse of the inertia matrix M is defined as

N−1 = 1
detM









M11 −M21 M31 −M41

−M12 M22 −M32 M42

M13 −M23 M33 −M43

−M14 M24 −M34 M44









(4)

where the above noted subdeterminants Mij i = 1, · · · , 4 and j = 1, · · · , 4 are defined as

M11 = m22(m33m44 −m43m34)−m23(m32m44 −m43m34 +m24)(m32m43 −m42m33)
M12 = m21(m33m44 −m43m34)−m23(m31m44 −m41m34 +m24)(m31m43 −m41m33)
M13 = m21(m32m44 −m42m34)−m22(m31m44 −m41m34 +m24)(m31m43 −m41m33)
M14 = m21(m32m43 −m42m33)−m22(m31m43 −m41m33 +m23)(m31m42 −m41m32)

M21 = m12(m33m44 −m43m34)−m13(m32m44 −m42m34 +m14)(m32m43 −m42m33)
M22 = m11(m23m24 −m43m44)−m13(m31m44 −m41m14 +m14)(m31m43 −m41m23)
M23 = m11(m32m44 −m42m44)−m12(m31m44 −m41m34 +m14)(m31m42 −m41m32)
M24 = m11(m32m43 −m42m33)−m12(m31m43 −m41m33 +m13)(m31m42 −m41m32)

M31 = m12(m23m44 −m43m24)−m13(m22m44 −m42m24 +m14)(m22m43 −m42m23)
M32 = m11(m23m44 −m42m24)−m13(m12m44 −m41m24 +m14)(m12m43 −m41m23)
M33 = m11(m22m44 −m42m24)−m12(m21m44 −m41m24 +m14)(m41m22 −m21m42)
M34 = m11(m22m43 −m42m23)−m12(m21m43 −m41m23 +m13)(m21m42 −m41m22)

M41 = m12(m23m34 −m33m24)−m13(m22m34 −m32m23 +m14)(m22m33 −m32m23)
M42 = m11(m22m43 −m33m42)−m31(m12m43 −m13m44 +m41)(m12m33 −m31m32)
M43 = m11(m22m34 −m32m24)−m12(m21m34 −m31m24 +m14)(m21m32 −m31m22)
M44 = m11(m22m33 −m32m23)−m12(m21m33 −m31m23 +m13)(m21m32 −m31m22)

The determinant of matrix M is

detM = m11M11 −m12M12 +m13M13 −m14M14

For the dynamic model of the SCARA robot that was initially written in the form
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M(θ)θ̈ + C̃(θ, θ̇)θ̇ +G(θ) + d̃ = τ (5)

it holds that

C̃(θ, θ̇)θ̇ =









c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

















θ̇1
θ̇2
θ̇3
θ̇4









(6)

or equivalently

C(θ, θ̇) =









c1
c2
c3
c4









=









c11θ̇1 c12θ̇2 c13θ̇3 c14θ̇4
c21θ̇2 c22θ̇2 c23θ̇3 c24θ̇4
c31θ̇3 c32θ̇2 c33θ̇3 c34θ̇4
c41θ̇4 c42θ̇2 c43θ̇3 c44θ̇4









(7)

Consequently, the dynamic model of the robot can be written as

M(θ)θ̈ + C(θ, θ̇) +G(θ) + d̃(θ̇) = τ⇒

θ̈ +M−1(θ)C(θ, θ̇) +M−1(θ)G(θ) +M−1(θ))d̃(θ̇) = M−1(θ)τ⇒

θ̈ = −M−1(θ)C(θ, θ̇)−M−1(θ)G(θ) −M−1(θ))d̃(θ̇) +M−1(θ)τ⇒

θ̈ = −M−1(θ)[C(θ, θ̇) +G(θ) + d̃(θ̇)] +M−1(θ)τ

(8)

Consequently, the dynamic model of the SCARA robot is written as









θ̈1
θ̈2
θ̈3
θ̈4









= − 1
detM









M11 −M21 M31 −M41

−M12 M22 −M32 M42

M13 −M23 M33 −M43

−M14 M24 −M34 M44

















c1 + g1 + d1
c2 + g2 + d2
c3 + g3 + d3
c4 + g4 + d4









+

+ 1
detM









M11 −M21 M31 −M41

−M12 M22 −M32 M42

M13 −M23 M33 −M43

−M14 M24 −M34 M44

















τ1
τ2
τ3
τ4









(9)

Equivalently, using that the torques vector τ = [τ1, tau2, τ3, τ4]
T is the control inputs vector u = [u1, u2, u3, u4]

T ,
the dynamic model of the SCARA robot is written as





















θ̈1

θ̈2

θ̈3

θ̈4





















=























−M11(c1+g1+d1)+M21(c2+g2+d2)−M31(c3+g3+d3)+M41(c4+g4+d4)
detM

M12(c1+g1+d1)−M22(c2+g2+d2)+M32(c3+g3+d3)−M42(c4+g4+d4)
detM

−M13(c1+g1+d1)+M23(c2+g2+d2)−M33(c3+g3+d3)+M43(c4+g4+d4)
detM

M14(c1+g1+d1)−M24(c2+g2+d2)+M34(c3+g3+d3)−M44(c4+g4+d4)
detM























+

+





















M11

detM
− M21

detM
M31

detM
− M41

detM

− M12

detM
M22

detM
− M32

detM
M42

detM

M13

detM
− M23

detM
M33

detM
− M34

detM

− M14

detM
M24

detM
− M34

detM
M44

detM





























u1

u2

u3

u4









(10)
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The state vector of the SCARA robotis

x = [x1, x2, x3, x4, x5, x6, x7, x8]
T⇒

x = [θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, θ4, θ̇4]
T (11)

Moreover, the following functions are defined

f1(x) = x2 f2(x) =
−M11(c1+g1+d1)+M21(c2+g2+d2)−M31(c3+g3+d3)+M41(c4+g4+d4)

detM

f3(x) = x4 f4(x) =
M12(c1+g1+d1)−M22(c2+g2+d2)+M32(c3+g3+d3)−M42(c4+g4+d4)

detM

f5(x) = x6 f6(x) =
−M13(c1+g1+d1)+M23(c2+g2+d2)−M33(c3+g3+d3)+M43(c4+g4+d4)

detM

f7(x) = x8 f8(x) =
M14(c1+g1+d1)−M24(c2+g2+d2)+M34(c3+g3+d3)−M44(c4+g4+d4)

detM

g11(x) g12(x) = 0 g13 = 0 g14 = 0
g21(x) =

M11

detM
g22(x) = − M21

detM
g23(x) =

M31

detM
g24(x) = − M41

detM

g31(x) = 0 g32(x) = 0 g33(x) = 0 g34(x) = 0

g41(x) = − M12

detM
g42(x) =

M22

detM
g43(x) = − M32

detM
g44(x) =

M42

detM

g51(x) = 0 g52(x) = 0 g53(x) = 0 g54(x) = 0

g61(x) =
M13

detM
g62(x) = − M23

detM
g63(x) =

M33

detM
g64(x) = − M43

detM

g71(x) = 0 g72(x) = 0 g73(x) = 0 g74(x) = 0
g81(x) = − M14

detM
g82(x) =

M24

detM
g83(x) = − M34

detM
g84(x) =

M44

detM

Thus, the state-space model of the 4-DOF SCARA robot is written as

























ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

























=

























f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)
f7(x)
f8(x)

























+

























g11(x) g12(x) g13(x) g14(x)
g21(x) g22(x) g23(x) g24(x)
g31(x) g32(x) g33(x) g34(x)
g41(x) g42(x) g43(x) g44(x)
g51(x) g52(x) g53(x) g54(x)
g61(x) g62(x) g63(x) g64(x)
g71(x) g72(x) g73(x) g74(x)
g81(x) g82(x) g83(x) g84(x)

























(

τ1
τ2

)

(12)

or in concise form one has the affine-in-the-input nonlinear state-space model

ẋ = f(x) + g(x)u (13)

where x∈R8×1, f(x)∈R8×1, g(x)∈R8×4 and u∈R4×1.

2.2 Differential flatness properties of the 4-DOF SCARA robot

The dynamic model of the 4-DOF SCARA robot is differentially flat. The flat outputs vector of the sys-
tem is Y = [y1, y2, y3, y4]

T = [x1, x3, x5, x7]
T . Differential flatness is associated with the following two

conditions: (i) all state variables of the system can be expressed as differential functions of its flat outputs,
(ii) the flat outputs and their derivatives are differentially independent which signifies that they are not
connected through a relation in the form of linear homogeneous differential equation [1],[32].

Obviously, it holds that x2 = ẋ1, x4 = ẋ3, x6 = ẋ5, and x8 = ẋ7. This signifies that state variables x2, x4,
x6 and x8 are differential functions of the system’s flat outputs. Besides, using that









ẍ1

ẍ3

ẍ5

ẍ7









=









f2(x)
f4(x)
f6(x)
f8(x)









+









g11(x) g21(x) g31(x) g41(x)
g12(x) g22(x) g32(x) g42(x)
g13(x) g23(x) g33(x) g43(x)
g14(x) g24(x) g34(x) g44(x)

















τ1
τ2
τ3
τ4









(14)
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and by solving with respect to the control inputs one obtains









τ1
τ2
τ3
τ4









=









g11(x) g21(x) g31(x) g41(x)
g12(x) g22(x) g32(x) g42(x)
g13(x) g23(x) g33(x) g43(x)
g14(x) g24(x) g34(x) g44(x)









−1 















ẍ1

ẍ3

ẍ5

ẍ7









−









f2(x)
f4(x)
f6(x)
f8(x)

















(15)

The above relation signifies that the control inputs τ1, τ2, τ3 and τ4 are also differential functions of the
flat outputs of the system. Consequently, the 4-DOF SCARA robot is differentially flat. The differential
flatness property means also [1], [32] that (i) the robotic model is input-output linearizable, (ii) setpoints
for all state variables of the robot can be defined. Actually one selects first setpoints for the state variables
which coincide with the flat outputs xd

1, x
d
3, x

d
5 and xd

7 , and next defines setpoints for the rest of the state
variables xd

2, x
d
4, x

d
6 and xd

8 which are asscoiated with the flat outputs through the previously explained
differential relations. The differential flatness property is also an implicit proof of the system’s controlla-
bility.

3 Approximate linearization of the dynamic model of the SCARA robot

The dynamic model of the 4-DOF SCARA robot being initially expressed in the state-space form

ẋ = f(x) + g(x)u (16)

undergoes approximate linearization at each sampling instance around the temporary operating point
(x∗, u∗), where x∗ is the present value of the system’s state vector and u∗ is the last sampled value of the
control inputs vector. The linearization process is based on Taylor series expansion and gives

ẋ = Ax+Bu+ d̃ (17)

where d̃ is the cumulative disturbances vector which may ne due to truncation of higher-order terms from
the Taylor series expansion (b) exogenous perturbations (c) sensor measurements noise of any distribution.
Matrices A and B are Jacobian matrices of the Taylor series expansion which are defined as:

A = ∇x[f(x) + g(x)u] |(x∗,u∗) ⇒
A = ∇xf(x) |(x∗,u∗) +∇xg1(x)u |(x∗,u∗

1
) +∇xg2(x)u2 |(x∗,u∗)

+∇xg3(x)u3 |(x∗,u∗) +∇xg4(x)u4 |(x∗,u∗)

(18)

B = ∇u[f(x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (19)

where gi(x), i = 1, · · · , 4 are the columns of the control inputs gain matrix g(x).

This linearization approach which has been followed for implementing the nonlinear optimal control scheme
results into a quite accurate model of the system’s dynamics. Consider again the affine-in-the-input state-
space model

ẋ = f(x) + g(x)u⇒

ẋ = [f(x∗) +∇xf(x) |x∗ (x− x∗)] + [g(x∗) +∇xg(x) |x∗ (x − x∗)]u∗ + g(x∗)u∗ + g(x∗)(u − u∗) + d̃1⇒

ẋ = [∇xf(x) |x∗ +∇xg(x) |x∗ u∗]x+ g(x∗)u− [∇xf(x) |x∗ +∇xg(x) |x∗ u∗]x∗ + f(x∗) + g(x∗)u∗ + d̃1
(20)

where d̃1 is the modelling error due to truncation of higher order terms in the Taylor series expansion of
f(x) and g(x). Next, by defining A = [∇xf(x) |x∗ +∇xg(x) |x∗ u∗], B = g(x∗) one obtains

ẋ = Ax+Bu−Ax∗ + f(x∗) + g(x∗)u∗ + d̃1 (21)
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Moreover by denoting d̃ = −Ax∗ + f(x∗) + g(x∗)u∗ + d̃1 about the cumulative modelling error term in the
Taylor series expansion procedure one has

ẋ = Ax+Bu+ d̃ (22)

which is the approximately linearized model of the dynamics of the system of Eq. (17). The term
f(x∗) + g(x∗)u∗ is the derivative of the state vector at (x∗, u∗) which is almost annihilated by −Ax∗.

3.1 Computation of the Jacobian matrices

The computation of the Jacobian matrices A and B proceeds as follows:

Computation of the Jacobian matrix ∇xf(x) |(x∗,u∗):

First row of the Jacobian matrix ∇xf(x) |(x∗,u∗):
∂f1
∂x1

= 0, ∂f1
∂x2

= 1, ∂f1
∂x3

= 0, ∂f1
∂x4

= 0, ∂f1
∂x5

= 0, ∂f1
∂x6

= 0,
∂f1
∂x7

= 0 and ∂f1
∂x8

= 0.

Second row of the Jacobian matrix ∇xf(x) |(x∗,u∗): It holds that f2(x) =
f2,num

f2,den
with f2,num = −M11(c1+

g1 + d + 1) + M21(c2 + g2 + d2) −M31(c3 + g3 + d3) +M41(c4 + g4 + d4) and f2,den = detM . Thus, for
i = 1, 2, · · · , 8 one has

∂f2,num

∂x1

= −∂M11

∂xi
(c1 + g1 + d1)−M11(

∂c1
∂xi

+ ∂g1
∂xi

+ ∂d1

∂xi
)+

+∂M21

∂xi
(c2 + g2 + d2) +M21(

∂c2
∂xi

+ ∂g2
∂xi

+ ∂d2

∂xi
)−

−∂M31

∂xi
(c3 + g3 + d3)−M31(

∂c3
∂xi

+ ∂g3
∂xi

+ ∂d3

∂xi
)+

+∂M41

∂xi
(c4 + g4 + d4) +M41(

∂c4
∂xi

+ ∂g4
∂xi

+ ∂d4

∂xi
)

(23)

and also

∂f2,den
∂xi

= ∂detM
∂xi

(24)

and finally

∂f2
∂xi

=
∂f2,num

∂xi
f2,den−f2,num

∂f
2,den
∂xi

detM2

(25)

Third row of the Jacobian matrix ∇xf(x) |(x∗,u∗):
∂f3
∂x1

= 0, ∂f3
∂x2

= 0, ∂f3
∂x3

= 0, ∂f3
∂x4

= 1, ∂f3
∂x5

= 0, ∂f3
∂x6

= 0,
∂f3
∂x7

= 0 and ∂f3
∂x8

= 0.

Fourth row of the Jacobian matrix ∇xf(x) |(x∗,u∗): It holds that f4(x) =
f4,num

f4,den
with f4,num = M12(c1 +

g1 + d + 1) − M22(c2 + g2 + d2) +M32(c3 + g3 + d3) −M42(c4 + g4 + d4) and f4,den = detM . Thus, for
i = 1, 2, · · · , 8 one has

∂f4,num

∂x1

= ∂M12

∂xi
(c1 + g1 + d1) +M12(

∂c1
∂xi

+ ∂g1
∂xi

+ ∂d1

∂xi
)+

−∂M22

∂xi
(c2 + g2 + d2)−M22(

∂c2
∂xi

+ ∂g2
∂xi

+ ∂d2

∂xi
)−

∂M32

∂xi
(c3 + g3 + d3) +M32(

∂c3
∂xi

+ ∂g3
∂xi

+ ∂d3

∂xi
)−

−∂M42

∂xi
(c4 + g4 + d4)−M42(

∂c4
∂xi

+ ∂g4
∂xi

+ ∂d4

∂xi
)

(26)

and also

∂f4,den
∂xi

= ∂detM
∂xi

(27)

and finally
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∂f4
∂xi

=
∂f4,num

∂xi
f4,den−f4,num

∂f
4,den
∂xi

detM2

(28)

Fifth row of the Jacobian matrix ∇xf(x) |(x∗,u∗):
∂f5
∂x1

= 0, ∂f5
∂x2

= 0, ∂f5
∂x3

= 0, ∂f5
∂x4

= 0, ∂f5
∂x5

= 0, ∂f5
∂x6

= 1,
∂f5
∂x7

= 0 and ∂f5
∂x8

= 0.

Sixth row of the Jacobian matrix ∇xf(x) |(x∗,u∗): It holds that f6(x) =
f6,num

f6,den
with f6,num = −M13(c1 +

g1 + d + 1) + M23(c2 + g2 + d2) −M33(c3 + g3 + d3) +M43(c4 + g4 + d4) and f6,den = detM . Thus, for
i = 1, 2, · · · , 8 one has

∂f6,num

∂x1

= −∂M13

∂xi
(c1 + g1 + d1)−M13(

∂c1
∂xi

+ ∂g1
∂xi

+ ∂d1

∂xi
)+

+∂M23

∂xi
(c2 + g2 + d2) +M23(

∂c2
∂xi

+ ∂g2
∂xi

+ ∂d2

∂xi
)−

−∂M33

∂xi
(c3 + g3 + d3)−M33(

∂c3
∂xi

+ ∂g3
∂xi

+ ∂d3

∂xi
)+

+∂M43

∂xi
(c4 + g4 + d4) +M43(

∂c4
∂xi

+ ∂g4
∂xi

+ ∂d4

∂xi
)

(29)

and also

∂f6,den
∂xi

= ∂detM
∂xi

(30)

and finally

∂f6
∂xi

=
∂f6,num

∂xi
f6,den−f6,num

∂f
6,den
∂xi

detM2

(31)

Seventh row of the Jacobian matrix ∇xf(x) |(x∗,u∗):
∂f7
∂x1

= 0, ∂f7
∂x2

= 0, ∂f7
∂x3

= 0, ∂f7
∂x4

= 0, ∂f7
∂x5

= 0, ∂f7
∂x6

= 0,
∂f7
∂x7

= 0 and ∂f7
∂x8

= 1.

Eighth row of the Jacobian matrix ∇xf(x) |(x∗,u∗): It holds that f4(x) =
f8,num

f8,den
with f8,num = M14(c1 +

g1 + d + 1) − M24(c2 + g2 + d2) +M34(c3 + g3 + d3) −M44(c4 + g4 + d4) and f8,den = detM . Thus, for
i = 1, 2, · · · , 8 one has

∂f8,num

∂x1

= ∂M14

∂xi
(c1 + g1 + d1) +M14(

∂c1
∂xi

+ ∂g1
∂xi

+ ∂d1

∂xi
)+

−∂M24

∂xi
(c2 + g2 + d2)−M24(

∂c2
∂xi

+ ∂g2
∂xi

+ ∂d2

∂xi
)−

∂M34

∂xi
(c3 + g3 + d3) +M34(

∂c3
∂xi

+ ∂g3
∂xi

+ ∂d3

∂xi
)−

−∂M44

∂xi
(c4 + g4 + d4)−M44(

∂c4
∂xi

+ ∂g4
∂xi

+ ∂d4

∂xi
)

(32)

and also

∂f8,den
∂xi

= ∂detM
∂xi

(33)

and finally

∂f8
∂xi

=
∂f8,num

∂xi
f8,den−f8,num

∂f
8,den
∂xi

detM2

(34)

Computation of the Jacobian matrix ∇xg1(x) |(x∗,u∗).

First row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g11(x)
∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g21(x)

∂xi
=

∂M11

∂xi
detM−M11

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g31(x)

∂xi
= 0, for i = 1, 2, · · · , 8.
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Fourth row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g41(x)

∂xi
=

−
∂M12

∂xi
detM+M12

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g51(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g61(x)

∂xi
=

∂M13

∂xi
detM−M13

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g71(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg1(x) |(x∗,u∗):
∂g81(x)

∂xi
=

−
∂M14

∂xi
detM+M14

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Computation of the Jacobian matrix ∇xg2(x) |(x∗,u∗).

First row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g12(x)
∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g22(x)

∂xi
=

−
∂M21

∂xi
detM+M21

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g32(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g42(x)

∂xi
=

∂M22

∂xi
detM−M22

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g52(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g62(x)

∂xi
=

−
∂M23

∂xi
detM+M23

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g72(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
∂g82(x)

∂xi
=

∂M24

∂xi
detM−M24

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Computation of the Jacobian matrix ∇xg3(x) |(x∗,u∗).

First row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g13(x)
∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g23(x)

∂xi
=

∂M31

∂xi
detM−M31

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g33(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g43(x)

∂xi
=

−
∂M32

∂xi
detM+M32

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g53(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g63(x)

∂xi
=

∂M33

∂xi
detM−M33

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g73(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg3(x) |(x∗,u∗):
∂g83(x)

∂xi
=

−
∂M34

∂xi
detM+M34

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Computation of the Jacobian matrix ∇xg4(x) |(x∗,u∗).
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First row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g14(x)
∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g24(x)

∂xi
=

−
∂M41

∂xi
detM+M41

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g34(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g44(x)

∂xi
=

∂M42

∂xi
detM−M42

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g54(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g64(x)

∂xi
=

−
∂M33

∂xi
detM+M33

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g74(x)

∂xi
= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg4(x) |(x∗,u∗):
∂g84(x)

∂xi
=

∂M44

∂xi
detM−M44

∂detM
∂xi

detM2 , for i = 1, 2, · · · , 8

Next, one computes the partial derivatives of the sub-determinants Mij and of the determinant detM :

∂M11

∂xi
= ∂m22

∂xi
(m33m44 −m43m34)+

+m22(
∂m33

∂xi
m44 +m33

∂m44

∂xi
− ∂m43

∂xi
m34 −m43

∂m34

∂xi
)−

−∂m23

∂xi
(m32m44 −m42m34−)

−m23(
∂m33

∂xi
m44 +m32

∂m44

∂xi
− ∂m42

∂xi
m34 −m42

∂m34

∂xi
)+

+∂m24

∂xi
(m32m43 −m42m33)+

+m24(
∂m32

∂xi
m43 +m32

∂m43

∂xi
− ∂m42

∂xi
m33 −m42

∂m33

∂xi
)

(35)

Equivalently, one has

∂M12

∂xi
= ∂m21

∂xi
(m33m44 −m43m34)+

+m21(
∂m13

∂xi
m44 +m13

∂m44

∂xi
− ∂m43

∂xi
m34 −m43

∂m34

∂xi
)−

−∂m23

∂xi
(m31m44 −m41m34−)

−m23(
∂m31

∂xi
m44 +m31

∂m44

∂xi
− ∂m41

∂xi
m34 −m41

∂m34

∂xi
)+

+∂m24

∂xi
(m31m43 −m41m33)+

+m24(
∂m31

∂xi
m43 +m31

∂m43

∂xi
− ∂m41

∂xi
m33 −m41

∂m33

∂xi
)

(36)

Moreover, it holds that

∂M13

∂xi
= ∂m21

∂xi
(m32m44 −m42m34)+

+m21(
∂m32

∂xi
m44 +m32

∂m44

∂xi
− ∂m43

∂xi
m34 −m43

∂m34

∂xi
)−

−∂m23

∂xi
(m31m44 −m41m34−)

−m23(
∂m31

∂xi
m44 +m31

∂m44

∂xi
− ∂m41

∂xi
m34 −m41

∂m34

∂xi
)+

+∂m24

∂xi
(m31m42 −m41m32)+

+m24(
∂m31

∂xi
m42 +m31

∂m42

∂xi
− ∂m41

∂xi
m32 −m41

∂m32

∂xi
)

(37)

Additionally, it holds that
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∂M14

∂xi
= ∂m21

∂xi
(m32m43 −m42m33)+

+m21(
∂m32

∂xi
m43 +m32

∂m43

∂xi
− ∂m44

∂xi
m33 −m42

∂m32

∂xi
)−

−∂m22

∂xi
(m31m43 −m41m33−)

−m22(
∂m31

∂xi
m43 +m31

∂m43

∂xi
− ∂m33

∂xi
m33 −m41

∂m33

∂xi
)+

+∂m23

∂xi
(m31m42 −m41m32)+

+m23(
∂m31

∂xi
m42 +m31

∂m42

∂xi
− ∂m41

∂xi
m32 −m41

∂m32

∂xi
)

(38)

In a similar manner one obtains

∂M21

∂xi
= ∂m12

∂xi
(m33m44 −m43m34)+

+m12(
∂m33

∂xi
m44 +m33

∂m44

∂xi
− ∂m43

∂xi
m33 −m43

∂m34

∂xi
)−

−∂m13

∂xi
(m32m44 −m42m34−)

−m13(
∂m32

∂xi
m44 +m32

∂m44

∂xi
− ∂m42

∂xi
m34 −m42

∂m34

∂xi
)+

+∂m14

∂xi
(m32m43 −m42m33)+

+m14(
∂m32

∂xi
m43 +m32

∂m43

∂xi
− ∂m42

∂xi
m33 −m42

∂m33

∂xi
)

(39)

Equivalently one has

∂M22

∂xi
= ∂m11

∂xi
(m23m24 −m43m44)+

+m11(
∂m23

∂xi
m24 +m23

∂m24

∂xi
− ∂m43

∂xi
m44 −m43

∂m44

∂xi
)−

−∂m13

∂xi
(m31m44 −m41m24−)

−m13(
∂m31

∂xi
m44 +m31

∂m44

∂xi
− ∂m41

∂xi
m24 −m41

∂m24

∂xi
)+

+∂m14

∂xi
(m31m43 −m41m23)+

+m14(
∂m31

∂xi
m43 +m31

∂m43

∂xi
− ∂m41

∂xi
m23 −m41

∂m23

∂xi
)

(40)

Following this procedure one gets

∂M23

∂xi
= ∂m11

∂xi
(m32m44 −m42m34)+

+m11(
∂m32

∂xi
m44 +m32

∂m44

∂xi
− ∂m42

∂xi
m34 −m42

∂m34

∂xi
)−

−∂m12

∂xi
(m31m43 −m41m33−)

−m12(
∂m31

∂xi
m43 +m31

∂m43

∂xi
− ∂m41

∂xi
m33 −m41

∂m33

∂xi
)+

+∂m14

∂xi
(m31m42 −m41m32)+

+m14(
∂m31

∂xi
m43 +m31

∂m43

∂xi
− ∂m41

∂xi
m32 −m41

∂m32

∂xi
)

(41)

Additionally, it holds that

∂M24

∂xi
= ∂m11

∂xi
(m32m43 −m42m33)+

+m11(
∂m32

∂xi
m43 +m32

∂m43

∂xi
− ∂m42

∂xi
m33 −m42

∂m33

∂xi
)−

−∂m12

∂xi
(m31m43 −m41m33−)

−m12(
∂m31

∂xi
m43 +m31

∂m43

∂xi
− ∂m41

∂xi
m33 −m41

∂m33

∂xi
)+

+∂m13

∂xi
(m31m42 −m41m22)+

+m13(
∂m31

∂xi
m42 +m31

∂m42

∂xi
− ∂m41

∂xi
m22 −m41

∂m22

∂xi
)

(42)

In this context one obtains

∂M31

∂xi
= ∂m12

∂xi
(m23m44 −m43m24)+

+m12(
∂m23

∂xi
m44 +m23

∂m44

∂xi
− ∂m43

∂xi
m24 −m43

∂m24

∂xi
)−

−∂m13

∂xi
(m22m44 −m42m24−)

−m13(
∂m22

∂xi
m44 +m22

∂m44

∂xi
− ∂m42

∂xi
m24 −m42

∂m24

∂xi
)+

+∂m14

∂xi
(m22m43 −m42m23)+

+m14(
∂m32

∂xi
m43 +m22

∂m43

∂xi
− ∂m42

∂xi
m23 −m42

∂m23

∂xi
)

(43)
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Additionally, one has

∂M32

∂xi
= ∂m11

∂xi
(m23m44 −m42m24)+

+m11(
∂m23

∂xi
m44 +m23

∂m44

∂xi
− ∂m42

∂xi
m24 −m42

∂m24

∂xi
)−

−∂m13

∂xi
(m12m44 −m41m24−)

−m13(
∂m12

∂xi
m44 +m12

∂m44

∂xi
− ∂m41

∂xi
m24 −m41

∂m24

∂xi
)+

+∂m14

∂xi
(m12m43 −m41m23)+

+m14(
∂m12

∂xi
m43 +m12

∂m43

∂xi
− ∂m41

∂xi
m23 −m41

∂m23

∂xi
)

(44)

Furthermore, one has

∂M33

∂xi
= ∂m11

∂xi
(m22m44 −m42m24)+

+m11(
∂m22

∂xi
m44 +m22

∂m44

∂xi
− ∂m42

∂xi
m24 −m42

∂m24

∂xi
)−

−∂m12

∂xi
(m21m44 −m41m24−)

−m12(
∂m21

∂xi
m44 +m21

∂m44

∂xi
− ∂m41

∂xi
m24 −m41

∂m24

∂xi
)+

+∂m14

∂xi
(m41m22 −m21m42)+

+m14(
∂m41

∂xi
m22 +m41

∂m22

∂xi
− ∂m21

∂xi
m42 −m21

∂m42

∂xi
)

(45)

Continuing in this manner one gets

∂M34

∂xi
= ∂m11

∂xi
(m22m43 −m42m23)+

+m11(
∂m22

∂xi
m43 +m22

∂m43

∂xi
− ∂m42

∂xi
m23 −m42

∂m23

∂xi
)−

−∂m12

∂xi
(m21m43 −m41m23−)

−m12(
∂m21

∂xi
m43 +m21

∂m43

∂xi
− ∂m41

∂xi
m23 −m41

∂m23

∂xi
)+

+∂m13

∂xi
(m21m42 −m41m22)+

+m13(
∂m22

∂xi
m42 +m22

∂m42

∂xi
− ∂m41

∂xi
m22 −m41

∂m22

∂xi
)

(46)

Besides, one has

∂M41

∂xi
= ∂m12

∂xi
(m22m34 −m33m24)+

+m12(
∂m22

∂xi
m34 +m22

∂m34

∂xi
− ∂m33

∂xi
m24 −m33

∂m24

∂xi
)−

−∂m13

∂xi
(m23m34 −m32m23−)

−m13(
∂m22

∂xi
m34 +m22

∂m34

∂xi
− ∂m32

∂xi
m23 −m32

∂m23

∂xi
)+

+∂m14

∂xi
(m22m33 −m32m23)+

+m14(
∂m22

∂xi
m33 +m22

∂m33

∂xi
− ∂m32

∂xi
m23 −m32

∂m23

∂xi
)

(47)

Equivalently, one obtains

∂M42

∂xi
= ∂m11

∂xi
(m32m43 −m33m42)+

+m11(
∂m32

∂xi
m43 +m32

∂m42

∂xi
− ∂m33

∂xi
m42 −m33

∂m42

∂xi
)−

−∂m31

∂xi
(m12m43 −m13m42−)

−m31(
∂m12

∂xi
m43 +m12

∂m43

∂xi
− ∂m13

∂xi
m42 −m13

∂m42

∂xi
)+

+∂m41

∂xi
(m12m33 −m13m32)+

+m41(
∂m12

∂xi
m33 +m12

∂m33

∂xi
− ∂m13

∂xi
m32 −m13

∂m32

∂xi
)

(48)

In a similar manner one gets
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∂M43

∂xi
= ∂m11

∂xi
(m22m34 −m32m24)+

+m11(
∂m22

∂xi
m34 +m22

∂m34

∂xi
− ∂m32

∂xi
m24 −m32

∂m24

∂xi
)−

−∂m12

∂xi
(m21m34 −m31m24−)

−m12(
∂m21

∂xi
m34 +m21

∂m34

∂xi
− ∂m31

∂xi
m24 −m31

∂m24

∂xi
)+

+∂m14

∂xi
(m21m32 −m31m22)+

+m14(
∂m21

∂xi
m32 +m21

∂m32

∂xi
− ∂m31

∂xi
m22 −m31

∂m22

∂xi
)

(49)

Finally, one has that

∂M44

∂xi
= ∂m22

∂xi
(m22m33 −m32m23)+

+m11(
∂m22

∂xi
m33 +m22

∂m33

∂xi
− ∂m32

∂xi
m23 −m32

∂m23

∂xi
)−

−∂m12

∂xi
(m22m33 −m31m23−)

−m12(
∂m22

∂xi
m33 +m23

∂m33

∂xi
− ∂m31

∂xi
m23 −m31

∂m23

∂xi
)+

+∂m13

∂xi
(m21m32 −m31m22)+

+m13(
∂m21

∂xi
m32 +m21

∂m32

∂xi
− ∂m31

∂xi
m22 −m31

∂m22

∂xi
)

(50)

About the partial derivatives of the determinant detM one has for i = 1, 2, · · · , 8

∂detM
∂xi

= ∂m11

∂xi
M11 +m11

∂M11

∂xi
− ∂m12

∂xi
M12 −m12

∂M12

∂xi
+

+∂m13

∂xi
M13 +m13

∂M13

∂xi
− ∂m14

∂xi
M14 −m14

∂M14

∂xi

(51)

Next, the derivatives of the elements of the inertia matrix M are computed.

It holds that m11 = p1 + p2cos(x3). Thus one has: ∂m11

∂x1

= 0, ∂m11

∂x2

= 0, ∂m11

∂x3

= −p2sin(x3),
∂m11

∂x4

= 0,
∂m11

∂x5

= 0, ∂m11

∂x6

= 0, ∂m11

∂x7

= 0, ∂m11

∂x8

= 0.

Besides, it holds that m12 = m21 = p3 + 0.5p2sin(x3)x4, thus
∂m12

∂x1

= ∂m21

∂x1

= 0, ∂m12

∂x2

= ∂m21

∂x2

= 0,
∂m12

∂x3
= ∂m21

∂x3
= 0.5p2cos(x3)x4,

∂m12

∂x4
= ∂m21

∂x4
= 0.5p2sin(x3),

∂m12

∂x5
= ∂m21

∂x5
= 0, ∂m12

∂x6
= ∂m21

∂x6
= 0,

∂m12

∂x7

= ∂m21

∂x7

= 0, ∂m12

∂x8

= ∂m21

∂x8

= 0.

Moreover, it holds that m13 = m31 = 0, thus ∂m13

∂x1
= ∂m31

∂x1
= 0, ∂m13

∂x2
= ∂m31

∂x2
= 0, ∂m13

∂x3
= ∂m31

∂x3
= 0,

∂m13

∂x4

= ∂m31

∂x4

= 0, ∂m13

∂x5

= ∂m31

∂x5

= 0, ∂m13

∂x6

= ∂m31

∂x6

= 0, ∂m13

∂x7

= ∂m31

∂x7

= 0, ∂m13

∂x8

= ∂m31

∂x8

= 0.

Additionally, it holds that m14 = m41 = −p5, thus
∂m14

∂x1
= ∂m41

∂xi
= 0 ∂m14

∂x2
= ∂m41

∂x2
= 0, ∂m14

∂x3
= ∂m41

∂x3
= 0,

∂m14

∂x5

= ∂m41

∂x5

= 0, ∂m14

∂x6

= ∂m41

∂x6

= 0, ∂m14

∂x7

= ∂m41

∂x7

= 0, ∂m14

∂x8

= ∂m41

∂x8

= 0

Moreover, it holds that m22 = p2, thus
∂m22

∂x1
= 0, ∂m22

∂x2
= 0, ∂m22

∂x3
= 0, ∂m22

∂x4
= 0, ∂m22

∂x5
= 0, ∂m22

∂x6
= 0,

∂m22

∂x7

= 0, ∂m22

∂x8

= 0

Furthermore, it holds that m23 = m32 = 0, thus ∂m23

∂x1

= ∂m32

∂x1

= ∂m23

∂x2

= ∂m32

∂x2

= 0, ∂m23

∂x3

= ∂m32

∂x3

= 0,
∂m23

∂x4

= ∂m32

∂x4

= 0, ∂m23

∂x5

= ∂m32

∂x5

= 0, ∂m23

∂x6

= ∂m32

∂x6

= 0, ∂m23

∂x7

= ∂m32

∂x7

= 0, ∂m23

∂x8

= ∂m32

∂x8

= 0.

Besides, it holds that m24 = m42 = −p5, thus
∂m24

∂x1

= ∂m42

∂x1

= ∂m24

∂x2

= ∂m42

∂x2

= 0, ∂m24

∂x3

= ∂m42

∂x3

= 0,
∂m24

∂x4

= ∂m42

∂x4

= 0, ∂m24

∂x5

= ∂m42

∂x5

= 0, ∂m24

∂x6

= ∂m42

∂x6

= 0, ∂m24

∂x7

= ∂m42

∂x7

= 0, ∂m24

∂x8

= ∂m42

∂x8

= 0.

Moreover, it holds that m33 = p4, thus
∂m33

∂x1

= 0, ∂m33

∂x2

= 0, ∂m33

∂x3

= 0, ∂m33

∂x4

= 0, ∂m33

∂x5

= 0, ∂m33

∂x6

= 0,
∂m33

∂x7
= 0, ∂m33

∂x8
= 0
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Additionally, it holds that m34 = m43 =, thus ∂m34

∂x1

= ∂m43

∂x1

=, ∂m34

∂x2

= ∂m43

∂x2

=, ∂m34

∂x3

= ∂m43

∂x3

=,
∂m34

∂x4
= ∂m43

∂x4
=, ∂m34

∂x5
= ∂m43

∂x5
=, ∂m34

∂x6
= ∂m43

∂x6
=, ∂m34

∂x7
= ∂m43

∂x7
=,. ∂m34

∂x8
= ∂m43

∂x8
=.

Finally, it holds that m44 = p5, thus
∂m44

∂x1

= 0, ∂m44

∂x2

= 0, ∂m44

∂x3

= 0, ∂m44

∂x4

= 0, ∂m44

∂x5

= 0, ∂m44

∂x6

= 0,
∂m44

∂x7
= 0,.∂m44

∂x8
= 0.

Finally, about the computation of the partial derivatives of the Coriolis forces vector one has

C(x, ẋ)ẋ =









c11x2 + c12x4 + c13x6 + c14x8

c21x2 + c22x4 + c23x6 + c24x8

c31x2 + c22x4 + c23x6 + c24x8

c41x2 + c42x4 + c43x6 + c44x8









(52)

It holds that for i = 1.3, 5, 7

∂c1
∂xi

= ∂c11
∂xi

x2 +
∂c12
∂xi

x4 +
∂c13
∂xi

x6 +
∂c14
∂xi

x8 (53)

and also

∂c1
∂x2

= ∂c11
∂x2

x2 + c11 +
∂c12
∂x2

x4 +
∂c13
∂x2

x6 +
∂c14
∂x2

x8 (54)

∂c1
∂x4

= ∂c11
∂x4

x2 +
∂c12
∂x4

x4 + c12 +
∂c13
∂x4

x6 +
∂c14
∂x4

x8 (55)

∂c1
∂x6

= ∂c11
∂x6

x2 +
∂c12
∂x6

x4 +
∂c13
∂x6

x6 + c13 +
∂c14
∂x6

x8 (56)

∂c1
∂x8

= ∂c11
∂x8

x2 +
∂c12
∂x8

x4 +
∂c13
∂x8

x6 +
∂c14
∂x8

x8 + c14 (57)

Equivalently it holds that for i = 1.3, 5, 7

∂c2
∂xi

= ∂c21
∂xi

x2 +
∂c22
∂xi

x4 +
∂c23
∂xi

x6 +
∂c24
∂xi

x8 (58)

and also

∂c2
∂x2

= ∂c21
∂x2

x2 + c21 +
∂c22
∂x2

x4 +
∂c23
∂x2

x6 +
∂c24
∂x2

x8 (59)

∂c2
∂x4

= ∂c21
∂x4

x2 +
∂c22
∂x4

x4 + c22 +
∂c23
∂x4

x6 +
∂c24
∂x4

x8 (60)

∂c2
∂x6

= ∂c1
∂x6

x2 +
∂c22
∂x6

x4 +
∂c23
∂x6

x6 + c23 +
∂c24
∂x6

x8 (61)

∂c2
∂x8

= ∂c21
∂x8

x2 +
∂c22
∂x8

x4 +
∂c23
∂x8

x6 +
∂c24
∂x8

x8 + c24 (62)

Similarly, it holds that for i = 1.3, 5, 7

∂c3
∂xi

= ∂c31
∂xi

x2 +
∂c32
∂xi

x4 +
∂c33
∂xi

x6 +
∂c34
∂xi

x8 (63)

and also

∂c3
∂x2

= ∂c31
∂x2

x2 + c31 +
∂c32
∂x2

x4 +
∂c33
∂x2

x6 +
∂c34
∂x2

x8 (64)

∂c3
∂x4

= ∂c31
∂x4

x2 +
∂c32
∂x4

x4 + c32 +
∂c33
∂x4

x6 +
∂c34
∂x4

x8 (65)
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∂c3
∂x6

= ∂c3
∂x6

x2 +
∂c32
∂x6

x4 +
∂c33
∂x6

x6 + c33 +
∂c34
∂x6

x8 (66)

∂c3
∂x8

= ∂c31
∂x8

x2 +
∂c32
∂x8

x4 +
∂c33
∂x8

x6 +
∂c34
∂x8

x8 + c34 (67)

Finally, it holds that for i = 1.3, 5, 7

∂c4
∂xi

= ∂c41
∂xi

x2 +
∂c42
∂xi

x4 +
∂c43
∂xi

x6 +
∂c44
∂xi

x8 (68)

and also

∂c4
∂x2

= ∂c41
∂x2

x2 + c41 +
∂c42
∂x2

x4 +
∂c43
∂x2

x6 +
∂c44
∂x2

x8 (69)

∂c4
∂x4

= ∂c41
∂x4

x2 +
∂c42
∂x4

x4 + c42 +
∂c43
∂x4

x6 +
∂c44
∂x4

x8 (70)

∂c4
∂x6

= ∂c4
∂x6

x2 +
∂c42
∂x6

x4 +
∂c43
∂x6

x6 + c43 +
∂c44
∂x6

x8 (71)

∂c4
∂x8

= ∂c41
∂x8

x2 +
∂c42
∂x8

x4 +
∂c43
∂x8

x6 +
∂c44
∂x8

x8 + c44 (72)

Next, the following partial derivatives of the elements cij i = 1, 2, 3, 4 and j = 1, 2, 3, 4 of the Coriolis
matrix are computed.

It holds c11 = −p2sin(x1)x4, thus one has that: ∂c11
∂x1

= −p2cos(x1)x4,
∂c11
∂x2

= 0, ∂c11
∂x3

= 0, ∂c11
∂x4

=

−o2sin(x1),
∂c11
∂x5

= 0, ∂c11
∂x6

= 0, ∂c11
∂x7

= 0, ∂c11
∂x8

= 0.

Additionally, it holds that c12 = −0.5p2sin(x3)x4, thus ∂c12
∂x1

= 0, ∂c11
∂x2

= 0, ∂c12
∂x3

= −0.5p2cos(x3)x4,
∂c12
∂x4

= −0.5p2sin(x3),
∂c12
∂x5

= 0, ∂c12
∂x6

= 0, ∂c12
∂x7

= 0, ∂c11
∂x8

= 0.

Moreover, it holds that c13 = 0, thus one obtains: ∂c13
∂xi

= 0, for i = 1, 2, · · · , 8

Additionally, it holds that c14 = 0, thus one obtains: ∂c14
∂xi

=, for i = 1, · · · , 8

Additionally, it holds that c21 = 0.5p2sin(x3)x2, thus, one obtains: ∂c21
∂x1

= 0, ∂c21
∂x2

= 0.5p2sin(x3),
∂c21
∂x3

= 0.5p2cos(x3)x2,
∂c21
∂x4

= 0, ∂c21
∂x5

= 0, ∂c21
∂x6

= 0, ∂c21
∂x7

= 0, ∂c21
∂x8

= 0.

Additionally, it holds that c22 = 0 thus one obtains: ∂c22
∂xi

=, for i = 1, 2, · · · , 8

Moreover, it holds that c23 = 0, thus, one obtains: ∂c23
∂xi

= 0 for i = 1, 2, · · · , 8.

Furthermore, it holds that c24 = 0 thus, one obtains ∂c24
∂xi

= 0 for i = 1, 2, · · · , 8

Additionally, one has that c31 = 0 thus, one obtains: ∂c31
∂xi

=, for i = 1, 2, · · · , 8

Furthermore, it holds c32 = 0, thus, one obtains: ∂c32
∂xi

=, for i = 1, 2, · · · , 8.

Moreover, it holds that c33 = 0 thus, one obtains: ∂c33
∂x1

= 0, for i = 1, 2, · · · , 8

Additionally, it holds that c34 = 0, thus, one obtains: ∂c34
∂x1

= 0, for i = 1, 2, · · · , 8
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Furthermore, one has that c41 = 0 thus, one obtains: ∂c41
∂xi

=, for i = 1, 2, · · · , 8

Moreover, it holds that c42 = 0 thus, one obtains: ∂c42
∂xi

=, for i = 1, 2, · · · , 8

Furthermore, it holds that c43 = 0 thus, one obtains: ∂c43
∂xi

=, for i = 1, 2, · · · , 8.

Finally, it holds that c44 = 0. Thus, one obtains ∂c44
∂xi

= 0, for i = 1, · · · , 8.

In a similar manner one computes the partial derivatives of the elements of the gravitational forces matrix.
It holds that g1 = 0 that one obtains ∂g1

∂xi
= 0, for i = 1, · · · , 8.

Additionally, it holds that g2 = 0 that one obtains ∂g2
∂xi

= 0, for i = 1, · · · , 8.

Moreover it holds that g3 = p4ḡ, thus, one obtains ∂g3
∂xi

= 0, for i = 1, 2, · · · , 8.

Finally it holds that g4 = 0 thus, one obtains ∂g4
∂xi

= 0, for i = 1, 2, · · · , 8

In a similar manner one computes the partial derivatives of the elements of the disturbances vector d̃. It
holds that d1 = b1x2 that one obtains ∂d1

∂xi
= 0, for i = 1, · · · , 8 and i 6=2, while ∂d1

∂x2

= b1.

Additionally, it holds that d2 = b2x4 that one obtains ∂d2

∂xi
= 0, for i = 1, · · · , 8 and i 6=4, while ∂d2

∂x4
= b2.

Moreover it holds that d3 = b3x6 that one obtains ∂d3

∂xi
= 0, for i = 1, · · · , 8 and i 6=6, while ∂d3

∂x6
= b3.

Finally it holds that d4 = b4x8 that one obtains ∂d4

∂xi
= 0, for i = 1, · · · , 8 and i 6=8, while ∂d4

∂x8

= b4.

4 Design of an H-infinity nonlinear feedback controller

4.1 Equivalent linearized dynamics of the 4-DOF SCARA robot

After linearization around its current operating point, the dynamic model for the 4-DOF SCARA robot is
written as

ẋ = Ax+Bu+ d1 (73)

Parameter d1 stands for the linearization error in the 4-DOF SCARA robot’s model that was given previ-
ously in Eq. (17). The reference setpoints for the state vector of the aforementioned dynamic model are
denoted by xd = [xd

1, · · · , x
d
8]. Tracking of this trajectory is achieved after applying the control input u∗.

At every time instant the control input u∗ is assumed to differ from the control input u appearing in Eq.
(73) by an amount equal to ∆u, that is u∗ = u+∆u

ẋd = Axd +Bu∗ + d2 (74)

The dynamics of the controlled system described in Eq. (73) can be also written as

ẋ = Ax+Bu+Bu∗ − Bu∗ + d1 (75)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax+Bu+Bu∗ + d3 (76)

By subtracting Eq. (74) from Eq. (76) one has
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ẋ− ẋd = A(x− xd) +Bu+ d3 − d2 (77)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as d̃ = d3 − d2, the
tracking error dynamics becomes

ė = Ae+Bu+ d̃ (78)

The above linearized form of the 4-DOF SCARA robot’s model can be efficiently controlled after applying
an H-infinity feedback control scheme.

4.2 The nonlinear H-infinity control

The initial nonlinear model of the 4-DOF SCARA robot is in the form

ẋ = f(x, u) x∈Rn, u∈Rm (79)

Linearization of the model of the 4-DOF SCARA robot is performed at each iteration of the control
algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent of the
system is described by

ẋ = Ax+Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (80)

where matrices A and B are obtained from the computation of the previously defined Jacobians and vector
d̃ denotes disturbance terms due to linearization errors. The problem of disturbance rejection for the
linearized model that is described by

ẋ = Ax+Bu+ Ld̃
y = Cx

(81)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical LQR control scheme is
applied. This is because of the existence of the perturbation term d̃. The disturbance term d̃ apart from
modeling (parametric) uncertainty and external perturbation terms can also represent noise terms of any
distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the system’s
state vector and simultaneous disturbance rejection, considering that the disturbance affects the system
in the worst possible manner. The disturbances’ effects are incorporated in the following quadratic cost
function:

J(t) = 1
2

∫ T

0
[yT (t)y(t) + ruT (t)u(t)− ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (82)

The significance of the negative sign in the cost function’s term that is associated with the perturbation
variable d̃(t) is that the disturbance tries to maximize the cost function J(t) while the control signal u(t)
tries to minimize it. The physical meaning of the relation given above is that the control signal and the
disturbances compete to each other within a min-max differential game. This problem of min-max opti-
mization can be written as minumaxd̃J(u, d̃).

The objective of the optimization procedure is to compute a control signal u(t) which can compensate
for the worst possible disturbance, that is externally imposed to the 4-DOF SCARA robot. However, the
solution to the min-max optimization problem is directly related to the value of the parameter ρ. This
means that there is an upper bound in the disturbances magnitude that can be annihilated by the control
signal.
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Figure 2: Diagram of the control scheme for the 4-DOF SCARA robotic manipulator

4.3 Computation of the feedback control gains

For the linearized system given by Eq. (81) the cost function of Eq. (82) is defined, where the coefficient
r determines the penalization of the control input and the weight coefficient ρ determines the reward of
the disturbances’ effects. It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫

∞

0
d̃T (t)d̃(t)dt < ∞, (ii) matrices [A,B] and [A,L] are stabilizable, (iii) matrix

[A,C] is detectable. In the case of a tracking problem the optimal feedback control law is given by

u(t) = −Ke(t) (83)

with e = x− xd to be the tracking error, and K = 1
r
BTP where P is a positive definite symmetric matrix.

As it will be proven in Section 5, matrix P is obtained from the solution of the Riccati equation

ATP + PA+Q− P (2
r
BBT − 1

ρ2LL
T )P = 0 (84)

where Q is a positive semi-definite symmetric matrix. The worst case disturbance is given by

d̃(t) = 1
ρ2L

TPe(t) (85)

The solution of the H-infinity feedback control problem for the 4-DOF SCARA robot and the computation
of the worst case disturbance that the related controller can sustain, comes from superposition of Bellman’s
optimality principle when considering that the robot is affected by two separate inputs (i) the control input
u (ii) the cumulative disturbance input d̃(t). Solving the optimal control problem for u, that is for the
minimum variation (optimal) control input that achieves elimination of the state vector’s tracking error,
gives u = − 1

r
BTPe. Equivalently, solving the optimal control problem for d̃, that is for the worst case

disturbance that the control loop can sustain gives d̃ = 1
ρ2L

TPe.

The diagram of the considered control loop for the 4-DOF SCARA robot is depicted in Fig. 2.
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5 Lyapunov stability analysis

5.1 Stability proof

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme assures
H∞ tracking performance for the 4-DOF SCARA robot, and that in case of bounded disturbance terms
asymptotic convergence to the reference setpoints is achieved. The tracking error dynamics for the 4-DOF
SCARA robot is written in the form

ė = Ae+Bu+ Ld̃ (86)

where in the 4-DOF SCARA robot’s case L = ∈R8×8 to be the disturbance inputs gain matrix. Variable d̃
denotes model uncertainties and external disturbances of the 4-DOF SCARA robot’s model. The following
Lyapunov equation is considered

V = 1
2e

TPe (87)

where e = x− xd is the tracking error. By differentiating with respect to time one obtains

V̇ = 1
2 ė

TPe+ 1
2eP ė⇒V̇ = 1

2 [Ae+Bu+ Ld̃]TPe+ 1
2e

TP [Ae +Bu+ Ld̃]⇒ (88)

V̇ = 1
2 [e

TAT + uTBT + d̃TLT ]Pe+ 1
2e

TP [Ae+Bu+ Ld̃]⇒ (89)

V̇ = 1
2e

TATPe+ 1
2u

TBTPe+ 1
2 d̃

TLTPe+ 1
2e

TPAe+ 1
2e

TPBu+ 1
2e

TPLd̃ (90)

The previous equation is rewritten as

V̇ = 1
2e

T (ATP + PA)e+ (12u
TBTPe+ 1

2e
TPBu) + (12 d̃

TLTPe+ 1
2e

TPLd̃) (91)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a positive definite
matrix P , which is the solution of the following matrix equation

ATP + PA = −Q+ P (2
r
BBT − 1

ρ2LL
T )P (92)

Moreover, the following feedback control law is applied to the system

u = − 1
r
BTPe (93)

By substituting Eq. (92) and Eq. (93) one obtains

V̇ = 1
2e

T [−Q+ P (2
r
BBT − 1

ρ2LL
T )P ]e+ eTPB(− 1

r
BTPe) + eTPLd̃⇒ (94)

V̇ = − 1
2e

TQe+ 1
r
eTPBBTPe− 1

2ρ2 e
TPLLTPe

− 1
r
eTPBBTPe+ eTPLd̃

(95)

which after intermediate operations gives

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+ eTPLd̃ (96)

or, equivalently

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+ 1
2e

TPLd̃+ 1
2 d̃

TLTPe (97)

Lemma: The following inequality holds
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1
2e

TLd̃+ 1
2 d̃L

TPe− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (98)

Proof : The binomial (ρα− 1
ρ
b)2 is considered. Expanding the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0 ⇒ 1
2ρ

2a2 + 1
2ρ2 b

2 − ab ≥ 0 ⇒

ab− 1
2ρ2 b

2 ≤ 1
2ρ

2a2 ⇒ 1
2ab+

1
2ab−

1
2ρ2 b

2 ≤ 1
2ρ

2a2
(99)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous relation becomes

1
2 d̃

TLTPe+ 1
2e

TPLd̃− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (100)

Eq. (100) is substituted in Eq. (97) and the inequality is enforced, thus giving

V̇≤− 1
2e

TQe+ 1
2ρ

2d̃T d̃ (101)

Eq. (101) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇ from 0 to
T gives

∫ T

0
V̇ (t)dt≤ − 1

2

∫ T

0
||e||2Qdt+

1
2ρ

2
∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt≤2V (0) + ρ2

∫ T

0
||d̃||2dt

(102)

Moreover, if there exists a positive constant Md > 0 such that

∫

∞

0 ||d̃||2dt ≤ Md (103)

then one gets

∫

∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (104)

Thus, the integral
∫

∞

0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the definition of the
Lyapunov function V in Eq. (87) it becomes clear that e(t) will be also bounded since e(t) ∈ Ωe =
{e|eTPe≤2V (0) + ρ2Md}. According to the above and with the use of Barbalat’s Lemma one obtains
limt→∞ e(t) = 0.

After following the stages of the stability proof one arrives at Eq. (101) which shows that the H-infinity
tracking performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and
in particular to satisfy ρ2 < ||e||2Q/||d̃||

2 one has that the first derivative of the Lyapunov function is upper
bounded by 0. This condition holds at each sampling instance and consequently global stability for the
control loop can be concluded.

5.2 Robust state estimation with the use of the H∞ Kalman Filter

The control loop has to be implemented with the use of information provided by a small number of sensors
and by processing only a small number of state variables. To reconstruct the missing information about the
state vector of the 4-DOF SCARA robot it is proposed to use a filtering scheme and based on it to apply
state estimation-based control [1], [32]. By denoting as A(k), B(k), C(k) the discrete-time equivalents of
matrices A, B, C which constitute the linearized state-space model of Eq. (17), the recursion of the H∞

Kalman Filter, for the model of the boom SCARA robot, can be formulated in terms of a measurement

update and a time update part

Measurement update:
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D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) +K(k)[y(k)− Cx̂−(k)]
(105)

Time update:

x̂−(k + 1) = A(k)x(k) +B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) +Q(k)

(106)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix P−(k)
−1

−
θW (k) +CT (k)R(k)−1C(k) will be positive definite. When θ = 0 the H∞ Kalman Filter becomes equiva-
lent to the standard Kalman Filter. One can measure only a part of the state vector of the SCARA robot,
for instance state variables x1, x3, x5, and x7 and can estimate through filtering the rest of the state vector
elements (x2, x4, x6 and x8). Moreover, the proposed Kalman filtering method can be used for sensor
fusion purposes.

6 Simulation tests

The global stability properties of the control method and the elimination of the state vector’s tracking error
which were previously proven through Lyapunov analysis are further confirmed through simulation exper-
iments. The parameters of the model of the 4-DOF SCARA robot which have been used in the simulation
tests have been according to [2]. To compute the stabilizing feedback gains of the controller, the algebraic
Riccati equation of Eq. (92) had to be repetitively solved at each iteration of the control algorithm. The
obtained results are depicted in Fig. 3 to Fig. 18. The real values of the state variables of the 4-DOF
SCARA robot are printed in blue, their estimates which are provided by the H-infinity Kalman Filter are
printed in green colour while the associated setpoints are printed in red. The performance of the nonlinear
optimal control method was very satisfactory Actually, through all test cases it has been confirmed that the
control method can achieve fast and accurate tracking of reference trajectories (setpoints) under moderate
variations of the control inputs. The simulation tests come to confirm that the control method has global
(and not local) stability properties. Under the nonlinear optimal control method the state variables of the
SCARA robot can track precisely setpoints with fast and abrupt changes. Moreover, the convergence to
these setpoints is independent from initial conditions.

Regarding the selection of values for the controller gains it can be noted that parameters r, ρ and Q which
appear in the method’s algebraic Riccati equations are assigned offline constant values, where the gains
vector K is updated at each sampling instance, based on the positive definite and symmetric matrix P
which is the solution of the method’s algebraic Riccati equation. The tracking accuracy and the transient
performance of the control scheme depends on the values of coefficients r, ρ and on the values of the
elements of the diagonal matrix Q. Actually, for relatively small values of r one achieves elimination of the
state vectors’ tracking error one. Moreover, for relatively high values of the diagonal elements of matrix
Q one achieves fast convergence the state variables’ reference trajectories, Finally, the smallest value of
the attenuation coefficient ρ that results into a valid solution of the method’s Riccati equation in the form
of the positive definite and symmetric matrix P , it the one that provides the control loop with maximum
robustness.

Comparing to past attempts for solving the H-infinity control problem for nonlinear dynamical systems,
the article’s control approach is substantially different [28]. Preceding results on the use of H-infinity con-
trol to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only
dynamics and considered that the control inputs gain matrix is not dependent on the values of the system’s
state vector. Moreover, in these approaches the linearization was performed around points of the desirable
trajectory whereas in the present article’s control method the linearization points are related with the value
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of the state vector at each sampling instant as well as with the last sampled value of the control inputs
vector. The Riccati equation which has been proposed for computing the feedback gains of the controller
is novel, so is the presented global stability proof through Lyapunov analysis.

The proposed H-infinity (optimal) control method for the 4-DOF SCARA robot exhibits several advantages
when compared against other linear or nonlinear control schemes [28]. For instance: (i) In contrast to global
linearization-based control schemes (Lie algebra-based control and differential flatness theory-based con-
trol) it does not need complicated changes of state-variables (diffeomorphisms) and does not come against
singularity problems in the computation of the control inputs, (ii) In contrast to sliding-mode control or
to back-stepping control the proposed nonlinear optimal control scheme does not require the state-space
model of the system to be in a specific form (e.g. triangular, canonical, etc.) (iii) In contrast to PID control
the proposed nonlinear optimal control method is globally stable and functions well at changes of operating
points, (iv) In contrast to multi-models based control and linearization around multiple operating points,
the nonlinear optimal control scheme requires linearization around one single operating point and thus it
avoids the computational burden for solving multiple Riccati equations or LMIs, (v) Moreover, unlike the
popular computed torque method for robotic manipulators, the new control approach is characterized by
optimality and is also applicable when the number of control inputs is not equal to the robot’s number of
DOFs.

7 Conclusions

SCARA-type robots (Selective Compliance Articulated Robot Arms) are widely used in several industrial
tasks. To improve their accuracy, and speed in tasks’ execution as well as to reduce the cost of their func-
tioning, elaborated control algorithms have to be used about them. In the present article a novel nonlinear
optimal control approach has been used for the dynamic model of the 4-DOF SCARA robot with three
revolute joints and one prismatic joint. At a first-stage the dynamic model of the SCARA robot undergoes
approximate linearization with the use of first-order Taylor series expansion and through the computation
of the associated Jacobian matrices. The linearization point is updated at each sampling instance and is
defined by the present value of the system’s state vector and by the last sampled value of the control inputs
vector.

At a second stage a stabilizing H-infinity feedback controller is designed. The H-infinity controller achieves
solution of the optimal control problem for the model of the SCARA robot under model uncertainty and
external perturbations. The H-infinity controller represents a min-max differential game which takes place
between (i) the control inputs which try to minimize a quadratic cost function of the state vector’s tracking
error, ii) the model imprecision and the external perturbation terms which try oo maximize this cost func-
tion. To compute the stabilizing feedback gains of the H-infinity controller an algebraic Riccati equation
had to be repetitively solved at each time-step of the control algorithm. The global stability properties
of the control scheme have been proven through Lyapunov analysis. First, it has been demonstrated that
the control method satisfies the H-infinity tracking performance criterion, while under moderate conditions
it has been proven that the control loop is globally asymptotically stable. Finally, to implement state
est9mation-based control, the H-infinity Kalman Filter has been used as a robust state estimator. The
nonlinear optimal control approach retains the advantages of the standard linear optimal control, that is
fast and accurate tracking of reference setpoints under moderate variations of the control inputs.
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Figure 3: Tracking of setpoint 1 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 4: Tracking of setpoint 1 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot

24



0 5 10 15 20
0.2

0.4

0.6

0.8

1

time (sec)

x
1

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

time (sec)
x

2

0 5 10 15 20
0.2

0.4

0.6

0.8

1

time (sec)

x
3

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

time (sec)

x
4

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

time (sec)

x
5

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

time (sec)

x
6

0 5 10 15 20
0

0.2

0.4

0.6

0.8

time (sec)

x
7

0 5 10 15 20
−1

−0.5

0

0.5

1

time (sec)

x
8

(a) (b)

Figure 5: Tracking of setpoint 2 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 6: Tracking of setpoint 2 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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Figure 7: Tracking of setpoint 3 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 8: Tracking of setpoint 3 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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Figure 9: Tracking of setpoint 4 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 10: Tracking of setpoint 4 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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Figure 11: Tracking of setpoint 5 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 12: Tracking of setpoint 5 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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Figure 13: Tracking of setpoint 6 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 14: Tracking of setpoint 6 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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Figure 15: Tracking of setpoint 7 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 16: Tracking of setpoint 7 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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Figure 17: Tracking of setpoint 8 for the SCARA robot (a) convergence of state variables x1 to x4 to their
reference setpoints (red line: setpoint, blue line: real value, green line: estimated value), (b) convergence
of state variables x5 to x8 to their reference setpoints
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Figure 18: Tracking of setpoint 8 for the SCARA robot (a) control inputs u1, u2 applied to the robot, (b)
tracking error variables e1, e3, e5 and e7 of the SCARA robot
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