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Abstract: Exact numerical schemes have previously been obtained for some linear retarded delay
differential equations and systems. Those schemes were derived from explicit expressions of the
exact solutions, and were expressed in the form of perturbed difference systems, involving the
values at previous delay intervals. In this work, we propose to directly obtain expressions of
the same type for the fundamental solutions of linear delay differential equations, by considering
vector equations with vector components corresponding to delay-lagged values at previous intervals.
From these expressions for the fundamental solutions, exact numerical schemes for arbitrary initial
functions can be proposed, and they may also facilitate obtaining explicit exact solutions. We
apply this approach to obtain an exact numerical scheme for the first order linear neutral equation
x′(t)− γx′(t− τ) = αx(t) + βx(t− τ), with the general initial condition x(t) = ϕ(t) for −τ ≤ t ≤ 0.
The resulting expression reduces to those previously published for the corresponding retarded
equations when γ = 0.

Keywords: exact numerical schemes; neutral delay differential equations; fundamental solutions
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1. Introduction

Differential equations are essential modelling tools in science and engineering, with a
vast majority of applications requiring the use of numerical methods, due to the lack of
exact solutions or practical computable expressions for them. Finite difference schemes are
some of the most widely used methods to compute numerical approximate solutions of
ordinary or partial differential equations (e.g., [1–3]), transforming the original continuous
differential problems into difference equations or systems.

In [4], Potts considered a seemingly simple question, whether, given a linear ordinary
differential equation (ODE), a linear ordinary difference equation (O∆E) could be deter-
mined with the same general solution, that is, satisfying that, for any step-size h defining
the discretization tn = nh, the numerical values computed with the O∆E, xn, coincide with
the continuous solution x(t) at those points, i.e., xn = x(tn). With positive answers for
linear ODE and systems given by Potts [4], and for general ODE by Mickens [5,6], an exact
difference scheme is defined as one for which the solution to the O∆E has the same general
solution as the associated ODE.

Exact difference schemes for particular problems, or groups of problems [7], are
ideal, as there are no truncation errors and there are no issues regarding the order of
convergence or stability. More importantly, since they reproduce the values of exact
solutions in the discrete mesh, the dynamic properties of the continuous solutions are
faithfully preserved by the numerical method. By constructing exact schemes for different
examples of simple ODE, it was shown that commonly used standard numerical schemes
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for these equations [4,6], which were not exact, could have stability problems and/or
could produce numerical solutions with dynamic properties different from the continuous
solutions they were supposed to reproduce.

There is no general procedure on how to construct exact schemes for particular prob-
lems, and, since having an exact scheme essentially equates to having an exact solution, it
cannot be expected to obtain exact schemes for most problems. However, as pointed out
in [6], examples of exact schemes for a variety of equations may give “useful information on
modeling rules for realistic situations where exact solutions are not known a priori”. This
basic idea was developed by Mickens to propose “nonstandard modeling rules” for differ-
ence schemes, resulting in the so-called nonstandard finite difference (NSFD) methods [8].
NSFD methods have been increasingly used in all kind of problems, including ordinary,
partial, fractional, and delay differential equations (see [8–12] and references therein), with
a special focus on applications in population models and epidemiology, since they can be
designed to preserve critical dynamic properties of these models (e.g., [13–19]).

In real world systems, completely instantaneous responses, if any, are hardly found,
and although in most situations they can be safely assumed in models, there are many
problems where the presence of delays and lagged responses heavily affect the systems’
dynamics, requiring the use of delay differential equations (see, e.g., [20–24] and references
therein). Although exact schemes have been constructed for many different non-delay
differential equations and systems (see ([12], Chapter 10)), for delay differential equations
(DDE) they are limited to the linear first order retarded scalar initial value problem [25,26],

x′(t) = αx(t) + βx(t− τ), t > 0, (1)

x(t) = ϕ(t), −τ ≤ t ≤ 0, (2)

and also to the corresponding vector problem [27,28].
In [26,27], explicit constructive exact solutions were used to express the value of

x(t + h) as a function of x(t) and previous values. The resulting expression included all
previous τ−lagged values, i.e., x(t− kτ), and also an integral term with the initial function
ϕ(t), reflecting the infinite dimensional nature of delay equations, and from that expression
an exact numerical solution was presented in the form of a perturbed difference system.
The aim of the present work is to show that, assuming these properties for exact numerical
solutions of linear DDE, they could be directly constructed without the requirement of
having a previous expression for the exact solutions. As a proof of concept, we will consider
the neutral equation

x′(t)− γx′(t− τ) = αx(t) + βx(t− τ), t > 0, (3)

with the initial condition (2), obtaining an expression for its exact numerical solution and
generalizing the expression given in [26] for the particular case γ = 0.

Thus, this work may be considered an extension of the results on exact numerical
schemes presented in [26] for the scalar retarded Equation (1), extended in [27] to systems
of retarded equations, with two main novelties. Firstly, the proposed new approach is to
derive exact numerical schemes without prior knowledge of the exact solution, which we
expect could be applied to more complex DDE; and, secondly, we use the construction of
an exact scheme for the neutral Equation (3), not previously obtained and including the
exact scheme given in [26], as a particular case.

We would like to stress the significance of both the new results developed in this work
and the new methodology used in the process. To our knowledge, we present the first
example of an exact numerical scheme for a neutral delay equation. Additionally, we are
not aware of an exact constructive solution for the neutral DDE (3) that would allow to
derive an exact scheme following the process used in previous works.
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2. Methods and Results

To facilitate reading, and clarify the type of expressions that are sought for the exact
numerical solutions of (3), in the next lemma we recall the results obtained in [26] for the
retarded problems (1) and (2), in the equivalent form of the simplified expression given
in [27] for the corresponding vector problem with commuting matrix coefficients, which
include the scalar equation considered in [26] as a particular case.

Lemma 1. Let h > 0 such that Nh = τ, for some integer N ≥ 1. Writing tn ≡ nh and
xn ≡ x(tn), for n ≥ −N, the numerical solution for −N ≤ n ≤ 0 is given by xn = ϕ(tn), and
for (m− 1)τ ≤ nh < mτ and m ≥ 1 it is given by

xn+1 = x(tn + h) = eαh
m−1

∑
k=0

βkhk

k!
xn−kN

+
βm

(m− 1)!

∫ tn−mτ+h

tn−mτ
(tn −mτ + h− s)m−1eα(tn−mτ+h−s)ϕ(s)ds, (4)

which defines an exact numerical scheme for problem (1) and (2).

Consider Equation (3) with the initial condition (2), with ϕ(t) ∈ C1([−τ, 0]). Then, the
solution x(t) is continuous in (0, ∞) and of class C1 in each interval [(k− 1)τ, (k− 1)τ],
k ∈ N ([29], Theorem 5.1). For (m − 1)τ < t < mτ, write u = t − (m − 1)τ, and let
X(u) = (xm(u), . . . , x1(u))T be the vector of functions xk defined by xk(u) = x((k− 1)τ +
u) = x(t− kτ).

We also consider the fundamental solution f (t), satisfying (3) with initial values f (t) =
0 for t ∈ [−τ, 0) and f (0) = 1, which exists and is unique ([29], p. 146), and let F(u) =
( fm(u), . . . , f1(u))T be the corresponding vector of functions fk(u) = f ((k− 1)τ + u). Then,
for k = 1, one has f ′1(u) = f ′(u) = α f (u) = α f1(u), since f (u− τ) = f ′(u− τ) = 0; while
for k > 1 it holds that

f ′k(u)− γ f ′k+1(u) = f ′(t− kτ)− γ f ′(t− (k + 1)τ)

= α f (t− kτ) + β f (t− (k + 1)τ) = α fk(u) + β fk+1(u). (5)

Hence, letting C and B be the m dimensional upper triangular matrices

C =



1 −γ 0 · · · 0 0
0 1 −γ · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −γ
0 0 0 · · · 0 1


, B =



α β 0 · · · 0 0
0 α β · · · 0 0
0 0 α · · · 0 0
...

...
...

. . . · · ·
...

0 0 0 · · · α β
0 0 0 · · · 0 α


, (6)

the vector of fundamental solutions satisfies the equation CF′(u) = BF(u) or, equivalently,
since C is invertible, F′(u) = AF(u), with A = C−1B. Therefore, for 0 < h ≤ τ and
(m− 1)τ ≤ t ≤ mτ − h, one gets

F(u + h) = eAhF(u), (7)

and the first element in this equation provides the expression of f (t + h) in terms of
f (t− kτ), k = 0 . . . m− 1.

It can easily be checked that the matrices C−1 = (c−1
ij ) and A = (aij) are upper

triangular matrices with non-zero elements given by

c−1
ii+k = γk, i = 1 . . . m, k = 0 . . . m− i (8)
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and

aii = α, i = 1 . . . m; aii+k = (β + αγ)γk−1, i = 1 . . . m− 1, k = 1 . . . m− i. (9)

Thus, it is obvious that eAh is also an upper triangular matrix, and it is not difficult
to see that the main diagonal elements are equal to eαh. By computing eAh for increasing
dimension values, and by analysing the results, one can guess a general expression for all
the elements in this matrix, as shown in our next theorem.

Theorem 1. Let Q(u) = (qij(u)) be the m-dimensional upper triangular matrix with nonzero
elements qii(u) = eαu, for i = 1 . . . m, and

qpp+k(u) = eαu
k

∑
r=1

γk−r(β + αγ)rur

r!

(
k− 1
r− 1

)
, p = 1 . . . m, k = 1 . . . m− p. (10)

Then, Q(u) satisfies Q′(u) = AQ(u) and Q(0) = I, where I is the m-dimensional identity matrix,
and, hence, Q(u) = eAu.

Proof. It is obvious that Q(0) = I, and that both Q′(u) and AQ(u) are upper triangular
matrices. Additionally, the diagonal elements are easily found to be αeαh in both cases.

We will show next that the elements in row p and column p + k, with 1 ≤ p ≤ m− 1
and 1 ≤ k ≤ m− p, in both matrices Q′(u) and AQ(u) are equal. For Q′(u) one has

q′pp+k(u) = αqpp+k(u) + eαu
k

∑
r=1

γk−r(β + αγ)rur−1

(r− 1)!

(
k− 1
r− 1

)

= αqpp+k(u) + eαuγk−1(β + αγ) + eαu
k−1

∑
r=1

γk−1−r(β + αγ)r+1ur

(r)!

(
k− 1

r

)
. (11)

Writing A = (aij) and taking into account that both A and Q(u) are upper triangular
matrices, the corresponding element in the product AQ(u) is computed as

k

∑
j=0

app+jqp+jp+k(u)

= αqpp+k(u) +
k−1

∑
j=1

(β + αγ)γj−1eαu
k−j

∑
r=1

γk−j−r(β + αγ)rur

(r)!

(
k− j− 1

r− 1

)
+ (β + αγ)γk−1eαu

= αqpp+k(u) + eαuγk−1(β + αγ) + eαu
k−1

∑
j=1

k−j

∑
r=1

γk−1−r(β + αγ)r+1ur

(r)!

(
k− j− 1

r− 1

)
(12)

and we only need to prove that the last terms in (11) and (12) are equivalent. Using the
binomial identity ([30], p. 619, 26.3.7).

m

∑
i=n

(
i
n

)
=

(
m + 1
n + 1

)
, (13)

one gets

k−1

∑
j=1

k−j

∑
r=1

γk−1−r(β + αγ)r+1ur

(r)!

(
k− j− 1

r− 1

)
=

k−1

∑
s=1

s

∑
r=1

γk−1−r(β + αγ)r+1ur

(r)!

(
s− 1
r− 1

)

=
k−1

∑
r=1

γk−1−r(β + αγ)r+1ur

(r)!

k−1

∑
s=r

(
s− 1
r− 1

)
=

k−1

∑
r=1

γk−1−r(β + αγ)r+1ur

(r)!

(
k− 1

r

)
(14)

and the proof is complete.
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Hence, the expression for f (t + h) follows as given in our next Theorem.

Theorem 2. Let 0 < h ≤ τ and (m− 1)τ ≤ t ≤ mτ − h for m ≥ 1. Then, the fundamental
solution f (t) of (3) satisfies

f (t + h) = eαh

(
f (t) +

m−1

∑
k=1

(
k

∑
r=1

γk−r(β + αγ)rhr

r!

(
k− 1
r− 1

))
f (t− kτ)

)
. (15)

Proof. From (7), f (t + h) is the first element in the vector F(t + h), and the right-hand term
in (15) is simply the first element in the product eAhF(u), using the expressions for the
elements of eAh given in Theorem 1.

We now seek an expression similar to (15) for the solution of (3) with the general initial
condition (2). In this case, for k = 1 one has

x′1(u) = x′(u) = αx(u) + βϕ(u− τ) + γϕ′(u− τ) = αx1(u) + βϕ(u− τ) + γϕ′(u− τ), (16)

and for k > 1, similarly to (5), one has x′k(u) − γx′k−1(u − τ) = αxk(u) + βxk−1(u − τ).
Therefore, considering the m-dimensional vector Φ(u) = (0, . . . 0, γϕ′(u − τ) + βϕ(u −
τ))T , one has the non-homogeneous equation

X′(u) = AX(u) + B−1Φ(u), (17)

which can be used to obtain the expression for x(t + h) given in our next theorem.

Theorem 3. Let 0 < h ≤ τ and (m− 1)τ ≤ t ≤ mτ − h for m ≥ 1. Then, writing F(s) =
γϕ′(s) + βϕ(s), the solution x(t) of (3), with the initial condition (2), satisfies

x(t + h) = eαh

(
x(t) +

m−1

∑
k=1

(
k

∑
r=1

γk−r(β + αγ)rhr

r!

(
k− 1
r− 1

))
x(t− kτ)

)

+
∫ t−mτ+h

t−mτ

(
γm−1 +

m−1

∑
k=1

k

∑
r=1

γm−1−r(β + αγ)r(t−mτ + h− s)r(k−1
r−1)

r!

)
eα(t−mτ+h−s)F(s)ds. (18)

Proof. Let G be the constant vector (γm−1, γm−2, . . . , γ, 1)T and Ψ(u) the vector Ψ(u) =
(ϕ′(u− τ) + βϕ(u− τ))G. It can easily be checked that B−1Φ(u) = Ψ(u). Then, since eAu

is a fundamental matrix solution of (17), one has

X(u + h) = eA(u+h)X(0) +
∫ u+h

0
eA(u+h−v)Ψ(v)dv

= eAh
(

eAuX(0) +
∫ u

0
eA(u−v)Ψ(v)dv

)
+
∫ u+h

u
eA(u+h−v)Ψ(v)dv

= eAhX(u) +
∫ u+h

u
eA(u+h−v)Ψ(v)dv. (19)

Hence, for t in [(m− 1)τ, mτ], writing u = t− (m− 1)τ and s = v− τ, one gets

X(t− (m− 1)τ + h) = eAhX(t− (m− 1)τ) +
∫ t−mτ+h

t−mτ
eA(t−mτ+h−s)G(ϕ′(s) + βϕ(s))ds. (20)

Then, since xm−1(t − (m − 1)τ + h) = x((m − 1)τ + t − (m − 1)τ + h) = x(t + h), the
expression given in (18) is obtained as the first element on the right-hand side of (20), using
the expressions for eAh and eA(t−mτ+h−s) given in Theorem 1.

From Theorem 3, an exact numerical scheme can immediately be obtained, as given in
the following corollary.
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Corollary 1. Let h > 0, such that Nh = τ for some integer N ≥ 1. Writing tn ≡ nh and
xn ≡ x(tn) for n ≥ −N, the numerical solution for −N ≤ n ≤ 0 is given by xn = ϕ(tn), and for
(m− 1)τ ≤ nh < mτ and m ≥ 1 by

xn+1 = eαhxn +
m−1

∑
k=1

(
k

∑
r=1

γk−r(β + αγ)rhr

r!

(
k− 1
r− 1

))
xn−kN

+
∫ tn−mτ+h

tn−mτ

(
γm−1 +

m−1

∑
k=1

k

∑
r=1

γm−1−r(β + αγ)r(tn −mτ + h− s)r(k−1
r−1)

r!

)
eα(tn−mτ+h−s)F(s)ds, (21)

with F(s) as in Theorem 3, and where the summations are understood to be empty when m = 1,
defines an exact numerical scheme for (3) with the initial condition (2).

Remark 1. When γ = 0, i.e., for the retarded initial value problems (1) and (2), all the terms with
γ in (21), except those corresponding to γk−r with k = r, are zero, and the expression given in
Corollary 1 reduces to that previously obtained for this case, recalled in Lemma 1.

Example 1. Figures 1 and 2 present two examples of numerical solutions computed with the exact
scheme given in Corollary 1 superimposed to the exact continuous solutions obtained by step-by-step
integration of Equation (3) with x(t− τ) and x′(t− τ) as computed in the previous interval. As
shown in these figures, the numerical solutions perfectly match the exact continuous solutions,
either when the exact solution is asymptotically stable (Figure 1) or when it is unstable (Figure 2).

Figure 1. Exact continuous solution (lines) and exact numerical solution computed with the scheme
given in Corollary 1 (circles) for problem (1) with the parameters γ = 3/4, α = −4, β = 1/2, τ = 1,
and with the initial function ϕ(t) = (t + 1)2 (red).
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Figure 2. Exact continuous solution (lines) and exact numerical solution computed with the scheme
given in Corollary 1 (circles) for problem (1) with the parameters γ = 1, α = −1, β = 1.1, τ = 1, and
with the initial function ϕ(t) = (t + 1)2 (red).

3. Discussion

In previous works [26,27], exact numerical solutions for retarded first order DDE
were derived from explicit expressions of the exact solutions. These type of expressions
are usually constructed by using the method of steps to obtain solutions in successive
delay intervals [29], and then guessing a possible general form of the solution, which can
hopefully be formally proven to be correct. Once an expression for the explicit solution
is available, it still needs to be transformed into an expression relating the value of the
solution at t + h with previously computed values. The whole process can be cumbersome,
especially when more complex equations than those considered in [26,27] are to be tackled.

The main idea of this work was to use the information obtained about the form of
the exact schemes derived in [26,27], i.e., that they can be given in the form of a perturbed
difference system including all previous τ-lagged values, to try and directly construct an
exact numerical solution without requiring previous knowledge of the continuous solution.

As shown by the expression given in Corollary 1, the envisaged strategy was proven
to be successful by obtaining an exact numerical scheme for the first order neutral DDE (3),
with the general initial condition (2). The expression given in Corollary 1 generalises previ-
ous results for retarded scalar equations [26], reducing to them when γ = 0. Additionally,
to our knowledge, it constitutes the first example of an exact scheme for a neutral DDE.

Although not in the objectives of this work, we note that the expressions given in
Theorems 2 and 3 may also help the construction of explicit expressions for the exact
continuous solutions, reversing the process previously used to derive exact numerical
solutions. Instead of using the method of steps, which may imply solving increasingly
complex non-homogeneous ODE, one could use a recursive process to express the solution
in one interval in terms of the previous ones.

The form of the exact solutions obtained in this and previous works as perturbed
difference systems, including an integral term depending on the initial function, seem
unavoidable except for particular simple initial functions that could be integrated exactly,
and this reflects the infinite dimensional nature of delay equations. In [26,27], to avoid
the computation of the integral terms, a family of NSFD schemes of as high an order as
needed, derived from the given exact schemes, was proposed and shown to be dynamically
consistent with the continuous solutions. The strategy followed there was not directly
applied to the neutral equation considered in this work, as all terms in (3) corresponding
to previously computed vales, xn−kN , include coefficients of order h, in contrast to the
retarded case, where they were of order hk.

As part of future work we consider the use of the recursive expressions given in
Theorems 2 and 3 to construct exact solutions and analysing the best approach to derive
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efficient NSFD methods from the exact schemes, as mentioned above, but also testing the
applicability of the proposed approach to directly derive exact schemes to higher order
equations or to problems with random terms.
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