
For Review Only
Abstract

In 3D modelling, a surface mesh is a collection of vertices, edges, and faces that define

the shape of a 3D object. The surface mesh is typically used to represent the outer surface

of an object, as opposed to the internal structure. A surface mesh is usually defined as a

polygon mesh, which is a collection of polygons (triangles or quadrilaterals are the most

common) that are connected at their vertices. The vertices of the mesh define the shape

of the object, and the edges and faces provide the topological information that describes

how the vertices are connected. Surface meshes are often used in 3D modeling software

to create 3D objects for animation, video games, and other purposes.

Although triangular meshes are the most widely used in various fields, they have a series

of disadvantages that quad meshes solve in most cases. This article presents a set of

algorithms capable of generating quad meshes from any type of input triangular mesh,

preserving the geometric characteristics of the initial model. This process is known as

“remeshing”. The results obtained by these algorithms on a large number of models

related to the footwear industry have been compared, as well as analysing the advantages

and disadvantages of each one of them applied to geometric models commonly used in

footwear industry.

Keywords: overlocking, quadrangulation, footwear, geometric singularities

1. Introduction

Modelling using triangular meshes (polygonal meshes made up of triangles) is

present in a wide variety of fields, such as computer graphics, geometric modelling,

1 Corresponding author at ecalabuig@inescop.es

Page 1 of 30

https://mc.manuscriptcentral.com/jcde

Implementation of efficient surface discretisation

algorithms adapted to geometric models specific to the

footwear industry

Eduardo Calabuig-Barbero,a,1 German Martinez-Martinez,a Jose-Luis

Sanchez-Romero,b Antonio Jimeno-Morenilla,b Vicente Lopez-Martin,a

Higinio Mora-Mora b

a INESCOP - Footwear Technology Center, Elda, 03600, Spain
b Department of Computer Technology, University of Alicante, San Vicente del Raspeig, 03690, Spain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is a previous version of the article published in The International Journal of Advanced Manufacturing Technology. 2023. https://doi.org/10.1007/s00170-023-11361-w

For Review Only

computer vision, various fields of medicine and biology, etc. Although triangular meshes

are the most widely used representations, quad meshes (polygonal meshes consisting

entirely of quadrilaterals) have many advantages and are progressively gaining

acceptance in different fields, for example, in computer-aided design (CAD) where

significant progress has been made in recent years (Bommes et al., 2012).

Due to the high degree of use of triangular meshes in 3D environments and related

research, there is a very important strand of studies working on the concept of converting

these triangular meshes into quad meshes. This process is also called “quad remeshing”

(Alliez et al., 2008). Thanks to this remeshing process a type of quad mesh is obtained,

less dense than the initial one and capable of preserving the initial geometrical

characteristics of the original triangular mesh that is based on established, validated and

widely accepted methods.

There are two basic types of quad meshes:

● Semi-regular mesh. It is also called a multi-block mesh, in which the blocks

correspond to patches, which in turn are regular submeshes formed by regular

2D arrays of quads. In a semi-regular quad mesh, all vertices that are internal

to the patches or along their boundary edges are regular (they have valence

4), while only the vertices at the boundaries and corners of the patches can be

singular (valence 3 and 2, respectively). These meshes are very useful as base

meshes for tensor product spline or NURBS fitting, where a spline patch is

defined for each regular patch of the mesh, and the different patches are joined

on common boundaries. In general, tensor product patches obtained from

quad-type control meshes are much easier to manipulate than triangle-based

Bernstein/Bezier bases. These techniques are important because splines,

NURBS and subdivision surfaces are the modelling techniques that appear in

many industrial applications, such as CAD/CAM applications for splines and

NURBS.

● Semi-regular valence mesh. A mesh is said to be valence semi-regular if most

of its vertices have valence 4. All semi-regular quad meshes are valence semi-

regular, but not all valence semi-regular quad meshes can be divided into a

small number of patches.

The two types of quad meshes discussed above make it possible to distinguish

between between algorithms that produce meshes with a patchy structure, and algorithms

that minimise the number of irregular vertices.

Page 2 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 1: Different types of meshes. A: Semi-regular mesh. B: Semi-regular valence mesh
(Bommes et al., 2012).

Some of the main advantages of quad meshes include:

● The quad mesh has a tensor product structure and is, therefore, suitable for

fitting splines or NURBS. Since these types of surfaces are very widespread

in industrial CAD/CAM applications, quad meshes are ideal for 3D

modelling.

● Semi-regular quad mesh patches with a rectangular grid topology (semi-

regular valence meshes) naturally match the sampling pattern of all types of

textures, from images to displacement maps. Therefore, quad meshes are

suitable for texturing.

● Geometries typically have two dominant local directions, usually associated

with the principal curvature directions or local sharp features of the surface,

to which the quads can be aligned; however, the use of triangular meshes

requires an arbitrary choice of one of the edges as the third. The alignment of

the elements of a mesh with certain directions is crucial to capture the features

of the shape.

● Quad meshes can greatly reduce storage space. Since details are stored in 2D

arrays (textures, normal maps, displacement maps) similar to images, they

can be reduced in size with standard image compression techniques.

Semi-regular quad meshes have the ability to change the way in which the

geometry of different surfaces is stored and processed, thus improving the efficiency of

many algorithms. However, the use of this type of meshes also have some disadvantages:

● The number of algorithms that obtain quad meshes that adapt correctly to the

given surface is scarce. In addition, they must comply with other aspects that

the resulting quad mesh must cover, such as singularities (their good

placement has a very important impact on the approximation quality of the

Page 3 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

final mesh) and the correct placement of the patches. This is especially

evident in geometric models of higher complexity.

● The remeshing times in existing algorithms are usually quite long if high

quality results must be achieved. Obviously, this will also depend on the

complexity of the geometry.

● Processing geometry on quad meshes is computationally more expensive than

on triangle meshes. This is due to the properties of quads, which make them

more difficult primitives to process than triangles. A triangle is always convex

and flat, can be easily projected onto a plane, and is relatively easy to rasterise.

In the case of quads, the operations are more complex since, unlike triangles,

a quad may not be flat, flat quads may not be convex, and their rendering

requires a more complex rasteriser than in the case of triangles.

● Some of these problems mean that many automatic methods do not achieve

results that are obtained by skilled professional modellers. Another option is

to use hybrid methods, where an automatic remeshing is performed, after

which the user has the option to alter the remeshing with tools such as manual

repositioning of singularities or patch boundaries, "guides" to direct the final

remeshing, choice of zones to obtain a higher or lower density of quads, etc.

1.1 Use of meshes in footwear design

Most geometric models found in the footwear industry have an organic origin.

Therefore, they are made up of soft meshes, without characteristic or reduced line, and

also with meshes with a greater number of sharp features. Consequently, the mesh

generation and mesh remeshing algorithms must perform well with both types of meshes,

in order to obtain the most realistic models possible. The problem is that not all current

algorithms obtain quality results for both mesh types.

Using quad meshes for geometric models in the footwear industry offers the same

advantages as for models in other industries. In this case, the use of quad meshes makes

the manipulation of the model much easier and much less cumbersome, although with the

possibility of preserving a high resolution of the surface, helping the designer’s

subsequent work.

Page 4 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 2: Left: initial triangular mesh type enlarged. Middle: initial triangular mesh. Right:

quad mesh resulting from the remeshing on the previous triangular mesh.

2. State-of-the-art on Meshing an Remeshing

The literature on quad meshing is quite extensive (Bommes et al., 2012). In this

section, the set of methods which have been tested are detailed. The experimental results

can be seen in section 3.

In Jakob et al. (2015), the Instant Field-Aligned Meshes method is presented. This

method is able to produce quad or triangular meshes automatically, although there is the

option to use some tools to help meshing manually. Meshing algorithms can be classified

into local and global methods. Local methods are usually simple, robust and scalable, but

due to their locality, they tend to introduce many singularities. Global algorithms solve

optimisation problems whose size depends on the entire dataset, which increases quality,

but sacrifices scalability, efficiency and simplicity of implementation. In the performed

work, ideas from local and global meshing methods have been combined, thus computing

a mesh that is globally aligned with a direction field using local smoothing operators of

the orientation (determines the directions of the edges of a quad) and position (determines

where the vertices of the mesh are placed) field. Unlike global methods, such as the one

presented in Bommes et al. (2009), the main steps of this algorithm are local to a vertex

and its neighbours, based on discontinuous surface fields, whose jumps are solved on the

fly by the different local operators provided by the algorithm. In this way, the calculation

of a global and continuous parameterisation is avoided. Finally, the mesh of the fields is

extracted and, optionally, post-processed.

The execution time of this algorithm increases linearly with the mesh size. As a

relatively fast method, it introduces a set of interactive brush tools, which can be used to

control the alignment of edges in the final mesh, their exact position on the surface, and

the location and number of irregular vertices. With these tools the system combines

automatic and manual meshing methods: it allows users to control the positions of

elements in critical regions, while automatically re-meshing the rest of the surface.

Page 5 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

This algorithm produces quad-dominant meshes (most of the faces that make up

the mesh are quads, while there may be a small fraction of these that are not quads, usually

being triangles and/or pentagons) of high quality without much distortion. However, it

produces quite a few singularities in the position field in addition to the singularities in

the orientation field, which in most cases are unnecessary.

In Huang et al. (2018), the Quadriflow method is shown. This method is able to

generate a quad mesh from a triangular mesh, although it can be adapted to accept a point

cloud, based on the method from Jakob et al. (2015), but obtaining far fewer singularities

than the latter. To reduce the number of singularities, which can rarely be completely

eliminated, a global method is used to remove them from the position field, while the

orientation field is calculated as in Jakob et al. (2015), as this field usually has much

fewer singularities.

Local optimisation algorithms usually produce meshes with many singularities,

while the best algorithms usually require non-local optimisation, and are therefore slow.

The method from Huang et al. (2018) considers the computation of the position field

without singularities as a globally constrained optimisation problem, using a system of

linear and quadratic constraints. These constraints are accomplished by solving a global

minimum cost network flow problem (for which efficient algorithms exist) and local

boolean satisfiability problems (satisfiability problem-SAT). Unlike the method from

Bommes et al. (2009), it does not solve the problem by mixed integer programming.

Instead, it divides it into three stages:

1. Calculate the orientation and position fields as in Jakob et al. (2015) without

imposing additional constraints.

2. Apply constraints by modifying only the integer variables in the position field,

changing the integers as little as possible.

3. Re-optimise the continuous variables of the position field.

The second stage is a Mixed-Integer Programming (MIP) problem, for which it is

difficult to find an optimal solution, but good approximate solutions can be obtained in

practice. The problem is simplified to an integer linear program (ILP). The ILP is

approximated as a simpler minimum cost flow problem (MCF) that can be solved in

polynomial time, although good approximate solutions are also obtained, as in MIP. The

third stage is not difficult and requires the solution of a linear system.

Replacing the MIP solver used by Bommes et al. (2009), with an MCF solver that

globally reduces the number of singularities, although it is also approximate, plus edge

contractions and a SAT solver, which locally imposes triangle orientation constraints,

results in a quad remeshing that produces far fewer singularities than the method from

Jakob et al. (2015).

Page 6 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

One limitation of this method is that, when approximating a MIP problem as an

MCF, geometric details may be lost when the target mesh density is low. On the other

hand, it solves the global problem of removing position singularities much faster than

other global methods. It is not as fast as the method from Jakob et al. (2015), a purely

local method, but it produces far fewer singularities than the latter.

In Pietroni et al. (2021) the QuadWild method is detailed. It is an automatic

method capable of generating semi-regular quad meshes on a surface, whose objective is

to obtain a good quality final mesh, preserving the initial characteristics of the surface. It

relies on a coarse design of polygonal patches, where the surface is initially divided into

patches that are then tessellated individually but in a globally coherent way. Furthermore,

in this method, the boundaries of the patches are forced to be part of the characteristic

lines of the surface (which will become edges of the final mesh), allowing for non-

quadrilateral patches and T-junctions in the layout. Inside the patches, a globally

consistent internal tessellation is achieved, without T-junctions and allowing pure quad

meshing.

Usually, T-junctions are not allowed in this class of methods and each patch is

rectangular. This leads to a straightforward and easy final quadrangulation, but the

restricted nature of the (quadrangular) layout makes its construction difficult. T-junctions

make construction easier and provide more degrees of freedom, which can be exploited

to optimise the domain in other respects. However, this requires the solution of a non-

trivial problem to produce a final conformal mesh and determine a globally consistent

subdivision of the layout sides. Ad-hoc strategies are used for this purpose. This ensures

that the quadrangulation of the patch coincides with the patch boundaries, resulting in a

conformal quadrangulation (without T-junctions).

The method relies on an auxiliary tangent space direction field of the auxiliary

tangent space of the input surface to control the orientation of the edges and the location

of the irregular vertices, which must be located at the singular points of the field. Briefly,

the method is divided into the following steps (Fig. 3):

1. As a preliminary step to quad remeshing, an automatic optimisation of the input

triangle mesh is carried out by performing a sequence of local operations aimed to

improving the shape of the triangles and the distribution of the vertices of the input

mesh. None of these operations disturbs the original characteristic edges.

2. A cross field is then calculated. It is aligned with the characteristic lines and propagates

over the entire surface. In the absence of characteristic lines, the field is aligned with

the principal curvature directions.

3. A series of trajectories are traced, thus dividing the surface into patches. This is the

main stage of the process; its objective is to produce patches that are easily

“quadrangulated”, i.e. that have a geometric shape and topology that strongly favour

the existence of a valid and good quality internal semi-regular quadrangulation of

Page 7 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

valence. For this purpose, a series of topological and geometrical criteria are defined

to estimate whether the patch is suitable or not.

4. The sides of each patch are tessellated, converting each side into a given number of

edges. To determine the exact number, an ILP is solved, driven by an objective

function that balances conflicting objectives, such as constant edge length and mesh

regularity.

5. The last phase consists of creating each patch with quads. This task is carried out

independently for each patch and the result is a pure and conformal quad mesh (without

T-junctions). The internal quadrangulation of a patch may have irregular vertices.

Fig. 3: Phases of the remeshing algorithm from Pietroni et al. (2021). A: input mesh. B:

optimized input mesh. C: calculation of the cross field and singularities. D: Surface
division into patches. E: Tessellation of the edges forming each patch. F: Final quad

dominant mesh.

Compared to the results obtained by the methods from Jakob et al. (2015) and

Huang et al. (2018), this method obtains favourable results, both in terms of required

number of irregular vertices, i.e., those required for the mesh to fit the given surface

correctly, and the quality of the shape, especially in the proximity of the characteristic

lines.

One problem to point out is that in many cases symmetries are not respected (see

Fig. 4). This piece is symmetrical with respect to the Z axis, but the resulting quad mesh

is not similar on both sides of the Z axis, i.e., the final remeshing does not respect the

symmetry of the initial piece. In addition, the optimisation of the initial triangular mesh,

includes additional time to the process of obtaining the final quad mesh.

Page 8 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

 Fig. 4: Piece (part of a heel). Left: initial triangular mesh type enlarged. Middle:

initial triangular mesh. Right: quad mesh resulting from the remeshing method from

Pietroni et al. (2021).

The Quad Remesher 1.2 method (Exoside, 2022) is capable of obtaining quad

dominant meshes automatically that includes a series of tools that help the designer both

to guide the remeshing and to indicate the final density level of the quads by zones in a

simple way. It allows any type of polygonal input mesh. This application software belongs

to the company EXOSIDE, under a proprietary software licence. It is available for

different graphic design applications, such as Blender or Maya.

The Mixed-Integer Quadrangulation method (Bommes et al., 2009) converts a

triangular mesh into a quadrangulation automatically in a two-step process: cross-field

generation and a global parameterisation, which are reduced to a MIP problem. After

constructing a symmetric cross-field as smooth as possible that satisfies a sparse set of

directional constraints to capture the geometric structure of the surface, a globally smooth

and seamless parameterisation is computed. The isoparametric lines of the

parameterization follow the directions of the cross-field that is given as input. Both steps

of the algorithm (cross-field and the parameterisation) can be formulated as a problem

that is solved very efficiently by means of a greedy solver. First, a smooth cross-field is

obtained and used as input to compute a global parameterisation method. To compute this

parameterisation, the mesh is sectioned in such a way as to create a surface patch with a

disc-like topology in which all singularities of the cross field lie on the boundary. Then,

two piecewise linear scalar fields u and v whose gradients follow the given cross field are

computed. Finally, a consistent quadrangulation can be extracted the parameterisation is

compatible in the cuts, and all singularities are assigned to integer positions along the

boundary of the parameter domain. In both steps of the algorithm, the task can be

formulated in terms of a MIP problem which merely consists in a set of linear problems

where a subset of the variables belongs the continuous domain while the others are

discrete.

Page 9 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Many recent methods use smoothed (discrete) principal curvature directions to

guide the meshing of the quadrants. The problem with these approaches is that the final

positions of the singularities are determined by the local smoothing operator applied to

the initial curvature estimations. Another problem is oversmoothing, which can destroy

the original orientation information in the feature regions. To overcome these problems,

this method selects only the most relevant and dominant directions (Fig. 5), e.g. by a

conservative threshold or by manual selection.

Fig. 5: Example of manual selection of some of the relevant and dominant directions of

a model, in this case the edges.

A limitation of this method is that, for coarse quadrangulations of very complex

models with many cross-field singularities, the local relocation of the local singularities

in the parameterisation step dominates the total computational time. On the other hand,

although it produces quad surface meshes with good qualities, it is slow and does not

adapt well with large meshes. Another noteworthy fact is that this method completely

omits the quad extraction process from the parameterisation obtained by this method.

Therefore, a method capable of extracting quads from the obtained parameterisation must

be used. The method QEx (Ebke et al., 2013) is capable of such extraction. It is able to

perform quad extraction in a robust way and without the need for any complex tolerance

thresholds or disambiguation rules; moreover, it is able to cope with the usual local folds

in the parameterisation, which it is important, as quad extractors produce holes or non-

square faces when they encounter them.

3. Experimentation

In this section, the experimental results carried out on a set of surfaces related to

the footwear industry are shown. Different types of triangular meshes have been chosen

(Fig. 6) that act as initial meshes, on which the different algorithms mentioned above have

been tested. The experimentation has been carried out on an Intel Core i7-8750H 2.20

GHz computer with 8 GB of RAM.

Page 10 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 6: Types of triangular meshes used as input in the different test models used.

Each of these algorithms has different inputs to carry out the remeshing processes.

To perform this experimentation, the inputs corresponding to each of these algorithms

were as follows:

 Huang et al. (2018): this algorithm does not have a graphical interface;

therefore, it is managed under command line. The two solvers available for

this algorithm have been used: maximum flow solver and SAT solver; in

addition, the option to explicitly preserve the sharp edges of the original

model has been used in all test cases. Under these options, the target number

of approximate faces for the output mesh is given.

 Jakob et al. (2015]: this algorithm has a graphical interface that makes it

possible to choose a series of options and tools to obtain the final remeshing.

On all test cases, the Extrinsic and Align to boundaries options have been

enabled for a better adaptation to the characteristics of the mesh and, when

the mesh is not closed, to ensure that the edges of the output mesh follow

those of the input mesh. After obtaining the mesh, the algorithm is instructed

to perform a Laplacian smoothing process to increase the uniformity of the

mesh (3 iterations). All this under an indicated number of approximate target

vertices for the final mesh.

 Pietroni et al. (2021): This algorithm is also managed under command line.

In all use cases, a text type configuration file is given to this algorithm, which

includes options such as:

▪ Dihedral angle of the sharp features, whose value throughout the

experimentation will be between 30º and 90º.

▪ Regularity over the output mesh; this value shall always be close to 0.

Page 11 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

▪ Scale of the final quadrangulation, which indicates the size of the quads of

the final mesh, this value varies the most, and depends on the number of

quads on the final mesh required for each test.

 Exoside (2022): to use this algorithm, an interface has been created with

different functionalities available to perform the remeshing. As a goal, a

number of approximate quads for the final mesh has been used, in addition to

the option that allows the final mesh to be adapted to a greater or lesser extent

to the surface topology, thus reproducing the original geometry with a higher

precision. This value will always be between 0.5 and 1 in all test cases. An

option to automatically detect hard edges on the input mesh geometry is also

set. With this option, the algorithm creates guides on these hard edges to

obtain an edge loop in the output remeshing. In addition, in symmetrical

geometries, the method is indicated on which axis the piece is symmetrical.

 Bommes et al. (2009): this algorithm produces a seamless parameterisation.

To obtain a quad mesh from this parameterisation, the algorithm from Ebke

et al. (2013) was chosen. The C++ geometry processing library libigl, which

implements this algorithm, was used. The algorithm from Ebke et al. (2013)

is not included in libigl, so it was downloaded from another repository.

Page 12 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 7: Processing time, number of final quads and singularities obtained on an input

triangular mesh (first mesh) for each of the algorithms seen. Several outputs with

different final quad mesh densities are shown (second and third mesh).

Table 1 shows statistical data obtained on a set of experiments performed with the

different algorithms. For each of the algorithms on the initial meshes, the following results

are detailed:

 Number of vertices (#V): Indicates the number of vertices in the mesh.

 Number of quad and triangular faces (#F): Indicates the number of triangular

and quad faces that make up the mesh.

 Number of irregular vertices (#IV): Indicates the number of irregular vertices,

i.e., vertices with a valence other than 4. Vertices that form part of the edges of

the mesh have not been taken into account as irregular.

 Aspect Ratio (#AR): Indicates the regularity of the quad or triangular elements

that make up the mesh. The best numerical accuracy is achieved with a mesh

that has perfect and uniform quad elements whose edges have the same length.

Obviously, in most cases it is not possible to achieve a mesh of perfect

elements, as the surface may be composed of sharp corners, curved parts, etc.

Therefore, some of the elements composing the mesh may have much longer

edges than others. The range is in [1, +inf); the closer to 1, the more perfect the

cell will be.

 Minimum included angle (#MINA),: Indicates the smallest angle included in a

quad. The range is [0º , 90º]; angles between 45º and 90º would be an

acceptable range for quad cells.

 Maximum included angle (#MAXA),: Indicates the largest angle included in a

quad. The range is [90º, 360º]: between 90º and 135º would be an acceptable

range for quad cells.

 Warp (#W): Indicates the angle between the normal vectors of the triangles

resulting from the diagonalisation of a quad, i.e., it indicates how flat the quads

are in the structure. As a quad can be diagonalised in two ways, the value

Page 13 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

indicated will be the maximum of the two. The range is [0, +inf); the closer a

cell is to 0, the flatter it is.

 Skewness Equiangle (#SK): Difference between the shape of the cell and the

shape of an equilateral cell of equivalent volume. Highly asymmetric cells can

decrease accuracy and destabilise the solution. For example, optimal quad

meshes will have vertex angles close to 90 degrees, while triangular meshes

should preferably have angles close to 60 degrees and have all angles less than

90 degrees. The range is [0, 1]; the closer to zero, the more symmetric the cell

will be.

These measurements were obtained from Pointwise’s free software [Mesh

Generation Software for CFD | Pointwise, Inc., n. d.], which allows virtually any 3D mesh

file to be viewed, displayed in a variety of styles, and various mesh quality metrics to be

calculated.

Table 1. Measurements on the meshes resulting from the different algorithms.
Method #V #F (quad/tri) #IV #AR #MINA #MAXA #W #SK Time (s)

SNEAKER_1

[Huang et al., 2018] 1918 1593/47 1 1,2844 72,9306 106,9664 16,2700 0,2098 13.562

[Jakob et al., 2015] 2301 1964/197 120 1,1307 79,6320 94,8634 1,9130 0,1006 0.876

[Pietroni et al., 2021] 2434 2236/0 8 1,9306 64,7978 115,8217 2,4529 0,2903 29.505

[Exoside, 2022] 2053 1823/0 10 1,2786 83,8275 96,0733 1,4843 0,0745 3.157

[Bommes et al., 2009] +
[Ebke et al., 2013]

1808 1545/0 0 1,0080 89,3980 90,5384 2,6002 0,0068 209.967

SNEAKER_2

[Huang et al., 2018] 2223 2048/27 1,1599 80,3763 99,5106 7,8031 0,1170 15.030

[Jakob et al., 2015] 2724 2447/295 191 1,1346 78,8214 95,0221 2,2661 0,1087 0.877

[Pietroni et al., 2021] 2446 2309/0 1,5822 71,4202 109,1198 4,0765 0,2229 34.710

[Exoside, 2022] 1985 1885/7 1,4785 81,4658 98,1644 1,4378 0,1004 0.896

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

SNEAKER_3

[Huang et al., 2018] 2437 2241/18 0 1,2113 80,0945 99,5637 8,6121 0,1183 11.507

[Jakob et al., 2015] 3408 3136/235 1,0891 82,3878 94,0698 0,6735 0,0781 0.565

[Pietroni et al., 2021]. 3421 3272/0 8 1,2521 70,4391 110,2309 1,0754 0,2270 28.502

[Exoside, 2022] 3050 2922/0 8 1,2439 83,7357 96,1578 0,7418 0,0738 1.727

[Bommes et al., 2009] +
[Ebke et al., 2013]

2958 2768/0 0 1,0073 89,6217 90,35835 1,0612 0,0043 90.590

SNEAKER_4

[Huang et al., 2018] 3372 2898/71 1,3320 75,0260 105,0032 14,6550 0,1829 23.381

[Jakob et al., 2015]. 3454 2915/399 286 1,1632 77,2859 95,6650 2,1017 0,1232 0,533

[Pietroni et al., 2021] 3495 3106/0 63 1,1806 77,1504 103,3007 1,8584 0,1548 69.234

[Exoside, 2022] 2912 2565/7 55 1,3792 79,7049 100,3504 2,6300 0,1252 2.824

[Bommes et al., 2009] +
[Ebke et al., 2013]

3952 3420/0 0 1,0016 89,8494 90,1192 2,0157 0,0017 190.072

Page 14 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

SNEAKER_5

[Huang et al., 2018] 2374 1968/46 31 1,2758 66,3436 113,5020 31,3577 0,2801 20.069

[Jakob et al., 2015] 2995 2487/291 193 1,1550 78,8259 95,0941 6,5382 0,1092 0.580

[Pietroni et al., 2021] 2948 2682/0 2,0470 63,9144 115,9969 13,2647 0,3082 197.691

[Exoside, 2022] 2259 2255/4 55 3,3208 82,7013 97,3719 6,2721 0,0922 0.879

[Bommes et al., 2009] +
[Ebke et al., 2013]

3778 3204/0 5 1,0818 81,9519 95,5173 23,1094 0,0934 82.222

SALON_ABOTINADO_1

[Huang et al., 2018] 973 892/10 0 1,2176 82,4449 97,4724 7,9150 0,0919 4.694

[Jakob et al., 2015] 1080 981/76 1,0926 80,7561 95,5993 0,9313 0,0968 0.479

[Pietroni et al., 2021] 1147 1080/0 1,1520 76,5365 103,7488 1,7359 0,1565 19.349

[Exoside, 2022] 1008 949/0 1,1598 84,7330 95,0469 0,5887 0,0613 1.066

[Bommes et al., 2009] +
[Ebke et al., 2013]

1401 1315/0 0 1,0057 89,6346 90,3580 1,6615 0,0042 49.334

SALON_ABOTINADO_2

[Huang et al., 2018] 288 204/10 0 1,3246 66,4351 114,2445 25,2612 0,3022 2.436

[Jakob et al., 2015] 337 252/70 1,2140 69,8415 99,1034 6,4049 0,1976 0.198

[Pietroni et al., 2021] 439 352/0 1,9937 33,5699 148,2162 30,7302 0,6916 61.479

[Exoside, 2022] 347 306/0 2,7862 77,9303 102,0141 3,2057 0,1483 0.800

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

SALON_ABOTINADO_3

[Huang et al., 2018] 666 576/11 1,2186 71,5857 108,7371 14,3626 0,2241 2.695

[Jakob et al., 2015] 691 572/107 52 1,1684 75,0590 96,7806 2,5656 0,1468 0.289

[Pietroni et al., 2021] 705 601/0 1,8171 53,0275 129,1585 15,5621 0,4607 60.369

[Exoside, 2022] 578 525/0 1,3235 81,4377 98,2492 2,0473 0,1028 0.675

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

SALON_ABOTINADO_4

[Huang et al., 2018] 273 160/35 10 2,5003 52,2393 128,5582 50,5424 0,4805 10.290

[Jakob et al., 2015] 296 170/88 52 1,3532 62,2668 99,9616 2,9432 0,2628 0.334

[Pietroni et al., 2021] 424 299/0 2,5637 27,8209 151,7751 31,7001 0,7388 51.079

[Exoside, 2022] 197/15 31 1,4168 70,6380 106,4487 1,9202 0,2289 0.808

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

SALON_ABOTINADO_5

[Huang et al., 2018] 3496 3460/0 1,1667 77,0720 102,9235 9,3285 0,1653 65.403

[Jakob et al., 2015] 4070 3716/635 496 1,2179 74,1384 97,3859 7,7828 0,1591 1.254

[Pietroni et al., 2021] 3899 3863/0 148 1,1177 79,6498 101,6773 5,7946 0,1445 181.562

[Exoside, 2022] 2339 2245/116 125 5,6049 65,7868 113,0169 3,0122 0,2829 1.320

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

SALON_ABOTINADO_6

[Huang et al., 2018] 2223 1964/60 1,2390 78,5869 101,8211 9,9740 0,1412 39.700

[Jakob et al., 2015] 2290 2018/274 1,1437 78,0354 95,9290 1,1749 0,1204 0.758

[Pietroni et al., 2021] 2521 2226/0 95 1,5347 66,3074 114,1316 6,2759 0,2834 116.171

[Exoside, 2022] 2279 2061/59 4,0637 77,8471 101,3480 1,2513 0,1427 4.513

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

Page 15 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

SALON_ABOTINADO_7

[Huang et al., 2018] 1710 1708/0 8 1,2030 82,1193 98,0300 1,8191
0,09561

1691
29.642

[Jakob et al., 2015] 1969 1769/152 101 1,7775 76,5567 98,4339 7,1596 0,1458 1.001

[Pietroni et al., 2021] 2322 2320/0 1,2458 81,0752 99,2321 2,0255 0,1118 957.109

[Exoside, 2022] 2238 2236/0 8 3,4394 85,0629 95,2982 0,7203 0,0621 6.850

[Bommes et al., 2009] +
[Ebke et al., 2013]

812 810 1,3119 72,9263 106,5801 11,6387 0,20087 1048.705

BOTA

[Huang et al., 2018] - - - - - - - - -

[Jakob et al., 2015] 7475 5882/639 311 1,1545 79,3997 95,2711 2,8536 0,1062 1.932

[Pietroni et al., 2021] 7182 5887/0 563 2,2439 44,4347 135,8416 22,7834 0,5336 350.874

[Exoside, 2022] 6922 6615/106 848 2,8005 66,5147 112,0747 12,3944 0,2735 30.300

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

OBJETO_CREMALLERA

[Huang et al., 2018] 226 139/0 1,2951 50,3995 130,8181 37,1035 0,4848 1.282

[Jakob et al., 2015] 257 163/31 1,2354 72,8033 99,1834 0,9857 0,1764 0.217

[Pietroni et al., 2021] 335 243/0 21 2,8911 69,1854 110,8332 10,6661 0,2551 50.393

[Exoside, 2022] 251 251/4 1,5033 79,1056 100,1946 1,0664 0,1350 0.597

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

PARTE_CREMALLERA

[Huang et al., 2018] - - - - - - - - -

[Jakob et al., 2015] 4413 1798/597 264 1,3184 66,6447 98,5874 7,3675 0,2198 2.187

[Pietroni et al., 2021] 3197 2164/0 309 2,1892 54,6080 123,0786 22,8788 0,4120 351.459

[Exoside, 2022] 2854 2681/26 634 1,6486 77,6398 102,8663 12,0364 0,1643 1.305

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

HEBILLA

[Huang et al., 2018] 2054 2046/0 1,2065 81,6378 98,5535 5,1716 0,1019 25.494

[Jakob et al., 2015] 2114 2005/129 1,0807 83,1998 93,6120 3,1636 0,0681 0.509

[Pietroni et al., 2021 2159 2109/0 1,1928 82,0941 98,1387 3,1189 0,0953 57.185

[Exoside, 2022] 1966 1968/0 2,5160 82,0757 98,0237 2,5343 0,0945 1.872

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

PISO_2

[Huang et al., 2018] - - - - - - - - -

[Jakob et al., 2015] 5220 4164/585 311 1,1658 77,5327 95,7889 2,1829 0,1236 1.224

[Pietroni et al., 2021] 5337 4668/0 268 3,0357 60,4365 120,1319 12,3293 0,3574 313.820

[Exoside, 2022] 3946 3936/16 93 5,9301 71,8434 108,0972 5,5874 0,2100 5.149

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

DEPORTIVA_PARTE_SUPERIOR

[Huang et al., 2018] - - - - - - - - -

[Jakob et al., 2015] 1491 1254/205 1,1586 76,4042 96,2133 1,8151 0,1333 0.490

[Pietroni et al., 2021] 1430/0 35 1,2836 75,7644 105,2842 3,1795 0,1785 74.352

[Exoside, 2022] 1375 1236/10 44 1,3805 80,0436 99,5759 3,2686 0,1202 0.911

[Bommes et al., 2009] + - - - - - - - - -

Page 16 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

[Ebke et al., 2013]

DEPORTIVA_PARTE_TRASERA

[Huang et al., 2018] 21 19/0 10 1,5641 35,9132 128,1096 75,0128 0,6377 0.886

[Jakob et al., 2015] 43/7 1,1563 74,3609 98,7836 1,9027 0,1586 0.407

[Pietroni et al., 2021] 75 57/0 8 1,6451 56,9035 124,9006 12,0205 0,4157 28.204

[Exoside, 2022] 26 16/2 1,5142 68,5990 102,4167 5,1058 0,2286 4.647

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

ZAPATO_ADORNO_SUPERIOR

[Huang et al., 2018] - - - - - - - - -

[Jakob et al., 2015] 283 109/20 1,2894 73,6368 98,1457 0,0092 0,1604 0.970

[Pietroni et al., 2021] 3848 1964/0 357 11,8714 45,0493 134,7928 2,2766 0,5136 526.811

[Exoside, 2022] 399 397/6 2,5037 53,9315 124,4888 21,8944 0,4242 1.597

[Bommes et al., 2009] +
[Ebke et al., 2013]

- - - - - - - - -

Fig. 8 shows a comparison on a set of parts belonging to the same shoe. It can be

seen that the methods from Huang et al. (2018) and Bommes et al. (2009) did not respect

the edges of the meshes, which are open. In the remaining open meshes, they will also

not keep the edges as they are in the initial mesh. In addition, the method from Bommes

et al. (2009) did not manage to remesh the SNEAKER_2 and SNEAKER_5 pieces. It can

also be seen that in pieces SNEAKER_2 and SNEAKER_5, only the methods from

Pietroni et al. (2021) and Exoside (2022) respected the internal “holes” of the initial mesh.

Regarding the quantitative values, it can be observed that the methods from Huang et al.

(2018) and Bommes et al. (2009) managed to obtain a dominant quad mesh with a

reduced number of singularities. On the other hand, Instant Meshes algorithm obtained a

final mesh with a suitable aspect ratio and symmetry. Despite these values, the method

from Exoside (2022) obtained better overall results, both from a qualitative and

quantitative point of view. Although this method generates irregular vertices (#IV), it

distributes them in areas of the surface where they are considered necessary (curved,

sharp areas, etc.), as does also the method from Pietroni et al. (2021) and unlike Instant

Meshes, which includes irregular vertices in unnecessary areas. Apart from maintaining

an aspect ratio and symmetry on the quads of the final mesh adequate to the initial surface,

as does the method from Pietroni et al. (2021), the fundamental difference with respect

to the latter method is the remeshing times.

Page 17 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 8: Visual results of the quad remeshing as shown in Table 1 (SNEAKER_1 to

SNEAKER_5).

Fig. 9 shows another comparison between a series of pieces belonging to the same

shoe, with different types of triangular input meshes. For the piece

SALON_ABOTINADO_1, its initial mesh is similar to the SNEAKER_5 pieces, where

Huang et al. (2018), in spite of generating a pure quad mesh, still does not respect the

initial edges; Bommes et al. (2009) only manages to remesh two of the proposed parts,

which still do not respect the initial edges; Jakob et al. (2015) still generates singularities

in unnecessary areas; Pietroni et al. (2021) and Exoside (2022) obtain the best results, but

with a much better remeshing time in the latter.

For the pieces from SALON_ABOTINADO_2 to SALON_ABOTINADO_4, the

quality of overlocking both in qualitative and quantitative values is lower than for

SALON_ABOTINADO_1, especially in the first three overlocking methods. This is due

Page 18 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

to the initial input mesh. In the piece SALON_ABOTINADO_5, something similar to

pieces SALON_ABOTINADO_2 to SALON_ABOTINADO_4 occurs, with the

difference that it is a non-connected mesh; this means that the final overlocking between

the different parts that make up the mesh is not homogeneous between all its non-convex

components.

Finally, the pieces SALON_ABOTINADO_6 and SALON_ABOTINADO_7 are

similar with the only difference in their triangular input mesh. This alters the final result,

as can be seen in another example in Fig. 10. In these last two pieces of the Fig. 9, the

results obtained by the methods from Pietroni et al. (2021) and Exoside (2022) are shown;

it can be observed that they are quite different with respect to the initial input mesh in

these last two cases. It is worth mentioning that for the part SALON_ABOTINADO_7,

the method from Huang et al. (2018) was not able to remesh.

Page 19 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Page 20 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 9: Visual results of quad remeshing as shown in Table 1

(SALON_ABOTINADO_1 to SALON_ABOTINADO_7).

Fig. 10: Example of quadratic meshing on the same model but with a different input

triangular mesh. It can be seen that the results are different between the same methods.

Fig. 11 shows pieces belonging to a boot. It can be seen that the final overlocking

in this piece is of lower quality in all methods, mainly due to the areas with indentations

where the triangular mesh is much denser. The other two pieces have similar results to

some of the pieces analysed previously.

Page 21 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 11. Visual results of the quad remeshing shown in Table 1 (BOTA to

PARTE_CREMALLERA).

Fig. 12 shows several pieces of different types of footwear. We can highlight that

the PISO_2 piece, even though it is a closed piece like the HEBILLA piece, the method

from Huang et al. (2018) did not managed to maintain the initial edges. In the piece

DEPORTIVA_PARTE_SUPERIOR, the method from Pietroni et al. (2021) was the only

one that manages to maintain the eyelets of the piece to some extent, even ahead of the

method of Exoside (2022). The piece DEPORTIVA_PARTE_TRASERA clearly shows

how the triangular input mesh completely conditions these remeshing methods; indeed,

since this piece does not present any kind of “rough” area, it should be easy to obtain a

pure quad mesh; the method from Exoside (2022) was the one that obtained the best

result, using a smaller number of singularities than the rest. Finally, for the piece

ZAPATO_ADORNO_SUPERIOR, the method from Exoside (2022) was the only one

that obtained a mesh without holes although without completely respecting the sharp

edges; this is also due to the fact that the resulting mesh is much less dense than the initial

Page 22 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

one, therefore, quite a lot of geometrical details are lost. It is worth mentioning that the

resulting mesh of the method from Pietroni et al. (2021) was much denser in this part,

because it was not possible to reduce its quad density to the level of the other methods.

The method from Huang et al. (2018) was not been able to obtain a valid result.

Page 23 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 12: Visual results of the quad riveting shown in Table 1 (HEBILLA to

ZAPATO_ADORNO_SUPERIOR).

After analysing these tests, it is observed that the methods of Exoside (2022) and

Pietroni et al. (2021) are the ones that obtain the best results with regard to the number

and distribution of singularities, preservation of geometric characteristics and remeshing

times. Although Jakob et al. (2015) obtains quite acceptable meshes in many cases,

however, due to being a local method it produces many unnecessary singularities,

although it achieves the lowest execution times over the rest, in some cases, by far.

Finally, the method from Huang et al. (2018) does not manage to remesh all the proposed

test cases; moreover, it does not manage to preserve the edges of the meshes, especially

the open ones; therefore, for this type of parts in the field of footwear, this method is not

very useful.

Moreover, with regard to the automatic remeshing, the methods form Exoside

(2022) and Jakob et al. (2015) offer a number of user tools. The first offers two tools: one

to focus the final quad density on user-specified areas of the surface, and a second to

guide the final remeshing with a series of user-specified curves. These tools are easy to

use and useful in some specific cases and depending on the final quad mesh required. On

the other hand, Jakob et al. (2015) offers a series of tools that allow the user to intervene

in the process of guiding the orientation fields and the movement/removal of some of the

singularities. These tools are more tedious to use for a non-specialist user. Fig. 13 shows

an example of the result of the tools on a model. Finally, it is worth mentioning that the

method from Pietroni et al. (2021) allows receiving a text file indicating the sharp features

of the piece, although the algorithm automatically detects the edges as sharp features by

Page 24 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

default. In Fig. 14, some examples on the remeshing achieved with each of the algorithms

on different types of models and input meshes are shown.

Fig. 13. Remeshing on an initial triangular mesh with the algorithms from Jakob et al.,

(2015) and Exoside (2022), without using (Tools: OFF) and using (Tools: ON) density

tool and singularities and field orientation tool, respectively.

Page 25 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Fig. 14: Examples remeshed with each of the algorithms on different types of models

and input meshes.

4. Conclusions

In this work, several methods have been analyzed which are aimed at obtaining a

quad mesh from an input, such as any polygonal mesh or a point cloud. The aim is to

obtain a dominant and structured quad mesh from input models in the footwear domain,

in order to facilitate at a later stage, the manipulation of these meshes by a designer, as

well as to obtain lightweight models for their storage and exploitation on the web and

new techonologies.

Five algorithms capable of obtaining dominant and structured quad meshes have

been tested and several measurements have been collected in order to compare these

algorithms, such as the number of singularities generated in the final mesh, symmetry of

Page 26 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

the quads that make up the mesh, etc. In addition, it has been found that, on the same

input surface with a different type of initial mesh, different results are obtained, even in

some cases, a final mesh of poor quality. This indicates that it is important that the input

mesh is correctly structured. It is worth mentioning that, in non-convex input meshes, the

remeshing between the different parts of the mesh is often different, sometimes even

losing geometrical characteristics in certain parts.

After analysing and comparing these methods, it can be concluded that the

algorithms from Pietroni et al. (2021) and Exoside (2022) obtained good quality meshes

in most of the tested models, the quality of the latter being superior in some of them, as

well as obtaining significantly lower times with denser and/or more complex inputs. The

method from Exoside (2022) has several options and tools to improve meshing, while

that from Pietroni et al. (2021) is more limited in this aspect. It should be noted that the

latter method is open source, while the method from Exoside (2022) is not. Regarding the

rest of the algorithms, the algorithm from Jakob et al.(2015), although it has the best

execution times, tends to generate meshes with too many singularities in areas where they

are not necessary a priori; this makes the mesh more difficult to handle in post-processing.

The method from Huang et al. (2018), with quite short times, failed to maintain the initial

edges of the open meshes, in addition to failing in the remeshing process in several

proposed cases. Finally, the methods from Bommes et al. (2009) and Ebke et al. (2013)

failed to obtain a final mesh in most cases; in almost all of them, the parameterisation

process of Bommes et al. (2009) ended up with some kind of exception, although there

have also been some cases where the parameterisation has been achieved but Ebke et al.

(2013) failed to extract the quad mesh.

The choice of one of these algorithms will depend on the characteristics of the

final mesh to be obtained: if it is desired to obtain a quad mesh that maintains the

characteristics of the initial surface, with a controlled number of singularities and reduced

execution times, the method from Exoside (2022) is the best option. If an open-source

algorithm is desired, Pietroni et al. (2021) may be an option. On the other hand, if

singularities do not matter and the initial surface features are desired to be preserved, the

method of Jakob et al. (2015) may be an acceptable option. Finally, if the edges of the

initial surface are preserved, especially in open meshes, and some tools are included to

improve the meshing, Huang et al. (2018) is a good option.

As future lines of research, some of the analysed methods could be integrated in

real industrial design platforms in the field of footwear, as well as to implement and test

in a more exhaustive way, the different tools that offer some of these methods, such as

Exoside (2022) and Jakob et al. (2015).

References

Page 27 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Alliez, P., Ucelli, G., Gotsman, C., Attene, M. (2008). Recent Advances in Remeshing of

Surfaces, in L. De Floriani and M. Spagnuolo (eds) Shape Analysis and

Structuring. Berlin, Heidelberg: Springer (Mathematics and Visualization), pp.

53-82. Available at: https://doi.org/10.1007/978-3-540-33265-7_2.

Bommes, D., Levy, B., Pietroni, N., Puppo, E., Silva, C., & Zorin, D. (2012). State of the

Art in Quad Meshing. Eurogr. STARS 2012, 20, 1–24.

Bommes, D., Zimmer, H., & Kobbelt, L. (2009). Mixed-integer quadrangulation. ACM

Transactions on Graphics, 28(3), 77:1-77:10, https://doi.org/10.1145/

1531326.1531383

Ebke, H.-C., Bommes, D., Campen, M., & Kobbelt, L. (2013). QEx: Robust quad mesh

extraction. ACM Transactions on Graphics, 32(6), 168:1-168:10,

https://doi.org/10.1145/2508363.2508372.

Exoside (2022, Novembre 15) Quad Remesher-Auto Retopology.

https://exoside.com/quadremesher/ Accessed 15 November 2022.

Huang, J., Zhou, Y., Niessner, M., Shewchuk, J. R., & Guibas, L. J. (2018). QuadriFlow:

A Scalable and Robust Method for Quadrangulation. Computer Graphics Forum,

37(5), 147-160, https://doi.org/10.1111/cgf.13498.

Jakob, W., Tarini, M., Panozzo, D., & Sorkine-Hornung, O. (2015). Instant field-aligned

meshes. ACM Transactions on Graphics, 34(6), 189:1-189:15,

https://doi.org/10.1145/2816795.2818078

Pietroni, N., Nuvoli, S., Alderighi, T., Cignoni, P., & Tarini, M. (2021). Reliable feature-

line driven quad-remeshing. ACM Transactions on Graphics, 40(4), 155:1-

155:17. https://doi.org/10.1145/3450626.3459941.

Pointwise (2022, November) Mesh Generation Software for CFD - Pointwise, Inc.

https://www.pointwise.com/ Accessed 15 November 2022.

Page 28 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

i l h Q d l (d) hT i l h Quadrangular (quad) meshTriangular mesh Quadrangular (quad) meshTriangular mesh Quadrangular (quad) meshTriangular mesh Q g (q)g

DiffDifferentDifferentDifferentDifferent
T fTransformTransformTransformTransform

l i hAl ithAlgorithmsAlgorithmsAlgorithmsg

l iI l t tiImplementationImplementationImplementation p
f thof theof theof the

Al ithAlgorithmsAlgorithmsAlgorithmsgo sg
Vi lVisualVisualVisualVisual

lR ltResultsResultsResults

E i t tiExperimentationExperimentationExperimentationp
l f ton real footwearon real footwearon real footwearon real footwear
f i i i lmanufacturing St ti ti lmanufacturing Statisticalmanufacturing Statisticalmanufacturing Statisticalg
ii R b tpieces Robustnesspieces Robustnesspieces Robustnessp

R ltResultsResultsResultsesu s

Page 29 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

HIGHLIGHTS

 Different algorithms for transforming triangular meshes into quadrangular meshes

are analyzed.

 The algorithms are tested on different pieces of real objects related to footwear

manufacturing.

 The results of the experimentation are shown in terms of statistical data and also

visualization.

 The conclusions allow manufacturers to have a more advanced knowledge about the

most suitable method with respect to the user’s requirements.

Page 30 of 30

https://mc.manuscriptcentral.com/jcde

Manuscripts submitted to Journal of Computational Design and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

