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In this work we propose a correspondence between black hole entropy and a topological quantity
defined for projective spaces based on the real, complex, and quaternion numbers. After interpreting
Weinstein’s integer as the normalized volume of the quantum phase space, whose logarithm gives place to
the area law (in the real case) and to logarithmic corrections with − 1

2
and − 3

2
coefficients (in the complex

and quaternionic cases, respectively), the exact Bekenstein-Hawking entropy is obtained when certain
equally spaced spectrum for the event horizon area is imposed. Even more, the minimal area(s) which
emerge from our model, are of the form 4 log k, k ∈ f2; 4; 16g, in complete agreement with previous
works. Finally, the role played by global (complex and quaternionic) phases in different descriptions of
black hole entropy is clarified.
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I. INTRODUCTION

The entropy of a black hole, which equals one quarter of
the area of its event horizon in units of the Planck area to
leading order [1,2], is usually considered one of the key
pieces of gravity where looking for questions trying to open
the way toward a complete theory of quantum gravity.
Thermodynamically, it behaves like the entropy of non-
gravitational physics and, therefore, we must have a
statistical interpretation in terms of underlying microstates.
Providing a statistical mechanical interpretation of black
hole entropy has been a longstanding goal for all candidates
for a complete quantum gravitational theory. Nowadays,
the problem is not that we do not have an (incomplete)
theory for quantum gravity, but we have several of them.
Some of these, although different (in principle and in
practice), predict the same qualitative logarithmic correc-
tion to the aforementioned entropy by adopting a particular
definition of black hole microstates together with their
counting. This is the case, for example, of loop quantum
gravity (LQG) [3,4], string theory [5,6] and the AdS=CFT
correspondence [7]. Essentially, what is generally accepted
is that, when quantum corrections are switched on, black
hole entropy is given by S ¼ A

4
− k log A

4
þ � � �, where A is

the area of the event horizon.

In this work, we take the very same existence of the
aforementioned coincidences between calculations per-
formed for black hole entropies in different theories, as
an indicative of some underlying structure to all of them.
More precisely, we propose a duality between black hole
microstates and a topological quantity for projective spaces
entering into the description of the quantum sector of
gravity, such that it is capable of easily encoding both the
area law and the k ¼ 1=2; 3=2 corrections, which are of
fundamental importance within LQG and two dimensional
CFT and the Cardy formula (calculations within string
theory show (see, for example, [6]), that the aforemen-
tioned corrections deviate from the previously mentioned
values for k).
Specifically, we will appeal to a very basic fact: quantum

theory may be formulated using Hilbert spaces over the real
numbers (R), the complex numbers (C) and the quaternions
(H), which form the three associative normed division
algebras. This “three-fold way”, as Dyson called it [8], will
be revealed as a powerful tool to analyze the quantum phase
space, whose volume is encoded in the Weinstein integer.
We will show that it allows for a simple counting of black
hole microstates.

II. MOTIVATION: THE SPACE OF PURE STATES

If we adopt a conventional point of view on quantum
theory, pure states are given by vectors in a Hilbert space,
H. If a finite dimensional Hilbert space is considered, then
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H ¼ Cn equipped with a scalar product. However, given
that two states are related by multiplication by any
complex number, the true quantum phase space is the
space of rays in the Hilbert space. For the special case in
which H is Cnþ1, the space of rays is CPn (the so-called
projective Hilbert space, HP) [9]. The dimension n is
n ¼ k − 1, where k labels the number of relevant (energy,
spin,…) levels which are needed to describe the physics
under study. At this point, the term quantum phase space
refers to the space of physical states which we will assume
as a truly phase space in the statistical mechanical sense. If
this is the case, then, what is the basic unit of phase space?
In standard statistical mechanics, it is true that Planck’s
constant can be thought as the quantum of phase space
volume [10]. For example, for an ideal gas, it enters in the
ratio between the volume, V, and λ3dB, where λdB ∼ ℏ is the
thermal de Broglie wavelength. As we are promoting
quantum phase spaces to truly phase spaces, a natural
characterization of the aforementioned granularity is man-
datory. The problem is that quantum phase spaces, as we
have defined them, are pure mathematical objects. For
instance, in the space of qubits, it is CP1 ¼ S2. Then, a
term like VolðCP1Þ=VolðXÞ, where X is to be determined,
should play an equivalent role to the standard statistical-
mechanical terms like V2=λ2dB [11].
It is customary by geometers and topologists to take the

sphere as, let us say, the canonical and paradigmatic
object. Roughly speaking, the study of “deviations from
the sphere” has always been an intense field of study in
geometry and topology. Here we will rely on mathematics
to define quantum phase spaces. For example, for complex
projective spaces we will promote a term like VolðCPnÞ=
VolðSnÞ to the measure of the volume of truly quantum
phase spaces of pure n-level systems. In this sense, the
choice of these “normalized volumes” as quantum phase
spaces can be considered, at this point, the first hypothesis
of the present work.
As commented before, we are mainly interested in

projective spaces. Specifically, we will work with RPn,
CPn and HPn. For brevity, we will collect these spaces by
writing KPn, specifying the field if necessary. The spheres
Sn will be also considered in order to introduce “deviations
from classicality,” as we will show along the manuscript.

III. WEINSTEIN’S INTEGER

A Riemannian n-dimensional manifold ðMn; gÞ will be
called a CL-manifold if all the geodesics on Mn are closed
and have length 2πL, i.e., if all the orbits of the geodesic
flow on the unit tangent bundle UðMn; gÞ are periodic with
least period 2πL. The following important results, which
we cite without proof, were reported by A. Weinstein
during the 1970s [12].

Theorem 1.—If ðMn; gÞ is CL, then

iðMn; gÞ ¼ VolðMn; gÞ
LnVolðSn; canÞ ð1Þ

is an integer.
Here, can stands for the canonical metric.
Theorem 2.—The number jðMn; gÞ ¼ 2iðMn; gÞ is a

topological invariant of the fibration of the unit tangent
bundle UðMn; gÞ by the orbits of the geodesic flow.
For example, all compact symmetric spaces of rank one,
which are Sn, RPn, CPn, HPn and the octonionic projec-
tive plane, are CL-manifolds [13]. Note that the octonionic
case is the only one which is not n-dimensional. For that
reason we will not consider it along the manuscript. Even
more, note that, apart from a numerical factor, Weinstein’s
integer is exactly what we were looking for to describe
quantum phase spaces following the first hypothesis
previously introduced.
With these tools at hand, we can compute the corre-

sponding volumes of KPn and Sn, following [14]. From
these, the Weinstein integer [12] for our cases of interest
are [12]:

iðSn; canÞ ¼ 1 ð2Þ
iðRPn; canÞ ¼ 2n−1 ð3Þ

iðCPn; canÞ ¼
�
2n − 1

n − 1

�
ð4Þ

iðHPn; canÞ ¼ 1

2nþ 1

�
4n − 1

2n − 1

�
; ð5Þ

[15], whose meaning will be easily clarified in what
follows.

IV. WEINSTEIN ENTROPY

The fundamental postulate of statistical mechanics
expresses the entropy, S, of a physical system, P, composed
of N particles, as a function of the accessible volume in
phase space, Ω½PðNÞ�, following Boltzmann’s formula:

S ¼ kB logΩ½PðNÞ�; ð6Þ

where kB is Boltzmann’s constant.
Let us make the identification

P → ðMn; gÞ ð7Þ

N → n ð8Þ

Ω½PðNÞ� → i½ðMn; gÞ�: ð9Þ

Even more, let us go one step further and define the
Weinstein entropy of a CL-manifold, Sg½ðMn; gÞ� as
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Si½ðMn; gÞ� ¼ log i½ðMn; gÞ�: ð10Þ

In a further analogy with statistical mechanics, let us take
the limit of large n (not necessary for the spheres, which
have iðSn; canÞ ¼ 1), which corresponds to a large number
of particles, N. We get, for our cases of interest

iðSn; canÞ ¼ 1 ð11Þ

iðRPn; canÞ ∼ 2n ð12Þ

iðCPn; canÞ ∼ 4n

2
ffiffiffi
π

p
n1=2

ð13Þ

iðHPn; canÞ ∼ 16n

4
ffiffiffiffiffiffi
2π

p
n3=2

: ð14Þ

Therefore, following

Si ¼ log½iðKPnÞ� n large; ð15Þ

we get

SiðSnÞ ¼ log½iðSn; canÞ� ¼ 0 ð16Þ

SðRPnÞ ¼ log½iðRPn; canÞ� ∼ n log 2 ð17Þ

SiðCPnÞ ¼ log½iðCPn; canÞ� ∼ n log 4 −
1

2
log n ð18Þ

SiðHPnÞ ¼ log½iðHPn; canÞ� ∼ n log 16 −
3

2
log n: ð19Þ

[16].

V. BLACK HOLE ENTROPY

Let us assume an equal spacing of black hole area
eigenvalues. Although there is not complete consensus on
the spacing on the area eigenvalues, let us remark that LQG
initially predicted a not equally spaced spectrum (see, for
example, the review [18]). However, there are alternative
choices within LQG where a new area operator with
equidistant eigenvalues exists (see [20] and references
therein) (in addition, the standard area spectrum of LQG
is equally spaced in the large spin limit). We will define the
number of black hole microstates by the asymptotic growth
of Weinstein’s integer. Thus, black hole entropy is given by
the asymptotic expansion for large n, which we will assume
is proportional to the area of the event horizon, of
Weinsten’s integer, iðKPnÞ [19].
Specifically, we will assume that the area spectrum is

given by

A ¼ nAmin ¼ 4n log k; ð20Þ

where k is an integer. The argument for our choice,
following Mukhanov and Bekenstein [21–23], is the
following. They considered that gn ¼ eS is the degeneracy
of the nth area eigenvalue and, therefore, the accepted
thermodynamic relation between black hole surface area
and entropy can be met with the requirement that gn has to
be an integer for every n only when Amin ¼ 4 log k, k ∈ N.
In this sense, statistical physics arguments force the
dimensionless constant gn to be of the form of Amin given
by Eq. (20).
It must be emphasized that, in principle, there is not any

fundamental reason to say that the dimension of the
projective space must coincide with the area quantization
rate. However, (20) can be thought as an heuristic constraint
which makes the work. It does not mean a weakness in our
approach. Instead, our connection could be thought as a
bridge between abstract and unexplored mathematics and
the physics realm. Interestingly, the number n in Eq. (20)
can also be interpreted as the number of basics units which
tessellates the event horizon, each one of these units having
a minimum are proportional to l2p. This number of units,
usually referred to as holographic degrees of freedom, has
inspired a large number of quantum black hole models
following Wheeler’s “it from bit” proposal [24] (see, for
example, [25,26] and references therein).
Let us assume that the event horizon of a black hole can

be described by a pure state, jhori, living on H ¼ Cn. As
we have discussed, the space of physical states is the
corresponding projective space, CPn. Under this point of
view, we note that the states

jhori ∼ jhor0i ¼ eıθjhori ð21Þ

are equivalent in the sense that a global phase makes no
difference between them (we will come to this sentence
in brief).
From Eq. (18) it is clear that, after imposing the

aforementioned equally spaced area spectrum as then,
SiðCPnÞ is given by

SiðCPnÞ ¼ A
4
−
1

2
log

A
4
þ � � � ; ð22Þ

when

Amin ¼ 4 log 4: ð23Þ

Let us interpret our results from a more technical point of
view. We are forming CPn from S1 fibers over S2nþ1

spheres, i.e., we are Hopf-fibring (first fibration) to write
CPn ¼ S2nþ1

S1 ¼ S2nþ1

Uð1Þ , which physically implies ignoring the

S1 ¼ Uð1Þ global phase. In order to see what is happening,
we consider the simplest n ¼ 1 case. It should be clear that
the three-sphere has a different global geometry than does a
circle mapped to every point of a two-sphere. Even more, in
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the language of quantum information we could say that
“one cannot choose phase factors for all qubits that would
vary continuously over the entire Bloch sphere (S2)” [27].
Therefore, the global phase can not be universally defined.
These global phases are not a mere gauge, being routinely
measured in the laboratory. Then, if we do not want to
eliminate the global phase, the most natural mathematical
object to encode the state space of a qubit is a unit vector on
a three-sphere, or a unit quaternion [28].
Following this line of thought, let us now consider

that the space of physical states is HPn ¼ S4nþ3

S3 ¼ S4nþ3

SUð2Þ
(second Hopf fibration). In this case, a similar analysis to
that performed in the previous CPn case allows us to write

SiðHPnÞ ¼ A
4
−
3

2
log

A
4
þ � � � ; ð24Þ

where, in this case, we have that

Amin ¼ 4 log 16: ð25Þ

Finally, we note that if the space of physical states is
taken to be RPn, no logarithmic corrections are found. In
this case, the same techniques allow us to write

SiðRPnÞ ¼ A
4
þ � � � ; ð26Þ

inspired a large number of quantum black hole models
where the corresponding Amin is

Amin ¼ 4 log 2: ð27Þ

The relationship with the approached we are following in
the present work is beautifully summarized by J. C. Baez,
who writes [29]: “Quantum theory may be formulated
using Hilbert spaces over any of the three associative
normed division algebras: the real numbers, the complex
numbers and the quaternions.” In this sense, we interpret
the Bekenstein-Hawking entropy not as a consequence of
classical physics but as a consequence of quantum physics
based on RPn which although, “real,” it is able to provide
us with the desired degeneracy, as Eq. (12) shows. Even
more, deviations from the area law are not exactly intrinsi-
cally quantum, but a consequence of the extra structures
which appear both in CPn and HPn (Hilbert spaces of any
one of the three kinds, real, complex and quaternionic, can
be seen as Hilbert spaces of the other kinds, equipped with
extra structure [29]).

VI. SOME SIMILARITIES
WITH OTHER APPROACHES

Regarding the isolated horizon approach of LQG, it is
well known that its classical degrees of freedom can be

described dynamically by a Chern-Simons theory which
was first found in itsUð1Þ gauge. The problem was that this
Uð1Þ gauge fixed theory failed in the quantum theory when
one tried to look for compatibility of this gauge fixing with
Heisenberg’s uncertainty principle. This difficulty is cir-
cumvented in the SUð2Þ formulation which was formulated
later (see [30] for a review). Leaving aside some technical-
ities that show differences between these two approaches,
let us note that black hole entropy is given exactly by
Eqs. (22) and (24) in the Uð1Þ and SUð2Þ formulations,
respectively.
Concerning the role played by global phases in our

model for the horizon, let us summarize by noting that

RPn ¼ Sn

S0
¼ Sn

Z2

ð28Þ

CPn ¼ S2nþ1

S1
¼ S2nþ1

Uð1Þ ð29Þ

HPn ¼ S4nþ3

S3
¼ S4nþ3

SUð2Þ : ð30Þ

In the complex case, the Uð1Þ fibers correspond to a
global phase of the corresponding nþ 1-level system,
jnþ 1i ∈ CPn. Therefore, Uð1Þ remember us that jnþ 1i
and eıθjnþ 1i belong to the same class of equivalence,
which gives place to the − 1

2
log A

4
correction. Corres-

pondingly, in the SUð2Þ case, invariance under quater-
nionic rotations leads to the − 3

2
log A

4
correction. In this

sense, it is very appealing to show how invariance under
Uð1Þ or SUð2Þ, which is of paramount importance in LQG,
also emerges in the first and second Hopf fibrations, which
are intimately linked to our proposal based on Weinstein’s
entropy. In addition, we note that if no equivalence classes
are introduced in the spheres, Sn, all of its points are
trivially equivalent (there are no privileged points on Sn).
Therefore, from a statistical point of view, Sn consists only
of one microstate. We conjecture that this the reason
why SgðSnÞ ¼ 0.
We close this section by noting a coincidence between

our approach and a CFT-based counting. Carlip shown [7]
that the density of states for a CFTwith central charge c and
eigenvalues Δ grows as

ρðΔÞ ∼
�

c
96Δ3

�
1=4

e2π
ffiffiffi
cΔ
6

p
; ð31Þ

giving place, for a generic black hole in arbitrary dimen-
sions [31], to a generic density of states given by:

ρðΔÞ ∼ c
12

�
A
8π

�
−3=2

eA=4: ð32Þ
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Surprisingly, we have that

ρðΔÞ ∼ iðHPn; canÞ: ð33Þ

Therefore, although the CFT argument also does not in
general involve equal spacing and, furthermore, both the
LQG and CFT derivations involve an explicit counting of a
finite number of states, with no regularization, the Weinstein
integer makes its appearance at some level within both
approaches.

VII. SOME FINAL COMMENTS

To close our work we would like to discuss on some
possible consequences of our model. First, we note that
imposing A ¼ nAmin, as we previously said, we have that for

Amin ¼ ð4 log 2; 4 log 4; 4 log 16Þ; ð34Þ

then Eqs. (17), (18) and (19) give exactly the Bekenstein-
Hawking entropy together with logarithmic corrections.
In this sense, there is a correspondence between the

Weinstein entropy and black hole entropy. This is somehow
reminiscent of the so-called black hole-qubit correspon-
dence [32], which connects two previously disparate areas
of theoretical physics: the Bekenstein-Hawking entropy of
certain black hole solutions in string theory with certain
multipartite entanglement measures in quantum informa-
tion. In our case, the correspondence we show here
connects very general features of black hole entropy with
geometric and topological properties of projective spaces.

Clearly, we can writeAmin ¼ αwhere the value taken by α
will depend on the integer we are considering to define
Weinstein’s entropy. Interestingly, α can be associated to
gravitational waves echoes [33]. As commented by Agullo
et al. [33], the ability of measuring α is of interest for
fundamental theories of gravity. For example, in the frame-
work of LQG, the area spectrum for macroscopic black holes
is almost continuum and, therefore, no echoes are expected.
However, an alternative definition of the area operator
defined by Barbero and coworkers in Ref. [20] allows an
equally spaced spectrum of the area operator and it predicts
α ¼ 4 log 3. In our approach, the entropy with the correct
logarithmic correction of −3=2 yields α ¼ 4 log 16. We
expect that forthcoming observations will allow to discrimi-
nate between this and other values for α.

VIII. CONCLUSIONS

In this work we have implemented a three-fold way in
order to calculate black hole entropy by defining the
Weinstein entropy of projective spaces based on three
normed associative division algebras, R, C and H. Using
statistical mechanics as a guide, we have interpreted
Weinstein’s integer as the normalized volume of the quan-
tum phase space (the space of physical states), whose
logarithm gives place to an arealike law ðRÞ in addition
to logarithmic corrections with − 1

2
ðCÞ and − 3

2
ðHÞ coeffi-

cients. The exact Bekenstein-Hawking entropy (including
the aforementioned logarithmic corrections) is obtained
when an equally spaced spectrum for the event horizon
area is imposed. Even more, the minimal area(s) which
emerge from our model (depending on K), are of the form

FIG. 1. The three-fold way to black hole entropy. See text for details.
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4 log k, k ∈ N, in complete agreement with previous works.
Comparison of our findings with both loop quantum gravity
and CFT techniques reveals surprising similarities.
Specifically, we have identified the key Uð1Þ and SUð2Þ
symmetries as the fibres of the first and second Hopf
fibrations which have allowed us to uncover the role played
by global (complex and quaternionic) phases in the descrip-
tion of black hole entropy, as Fig. 1 summarizes.
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