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Abstract Within Einstein’s General Relativity we study
exotic stars made of dark energy assuming an extended Chap-
lygin gas equation-of-state. Taking into account the presence
of anisotropies, we employ the formalism based on the com-
plexity factor to solve the structure equations numerically,
obtaining thus interior solutions describing hydrostatic equi-
librium. Making use of well-established criteria we demon-
strate that the solutions are well behaved and realistic. A com-
parison with another, more conventional approach, is made
as well.

1 Introduction

Any reasonable modern cosmological model must include
Dark Energy (DE). Nevertheless, the nature and origin of
Dark Energy remain a mystery despite its fundamental
importance in modern theoretical cosmology [1–3]. As it
is well known, a cosmological model made of only mat-
ter and radiation cannot lead to accelerated solutions to the
universe as predicted by Einstein’s Theory of General Rela-
tivity (GR) [4]. This kind of solution is obtained by includ-
ing a constant Λ in Einstein’s field equations [5], i.e., by
adding the contribution of the dark energy. Despite its sim-
plicity, such accelerated cosmological model is in excep-
tional agreement with a vast amount of observational data.
Such a cosmological model is known as the concordance cos-
mological model or the ΛCDM model. Nevertheless, Λ suf-
fers from the cosmological constant ongoing problem [6,7].
Additionally, this Λ–problem is amplified by the current val-
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ues estimation of the Hubble constant H0, using high red-shift
CMB data and local measurements at low red-shift data,
e.g., [8–11]. In fact, the value of the H0 computed by the
PLANCK Collaboration [12,13], H0 = (67–68) km/(Mpc
s), is lower than the value estimated from local measure-
ments [14,15], H0 = (73–74) km/(Mpc s). This H0 ten-
sion points to a cosmological model with new physics [16–
19].

Over the years, this incomplete picture of the cosmolog-
ical concordance model has motivated the arrival of many
new and alternative models. We can classify recent DE cos-
mological models into two generic categories: (i) alterna-
tive theories of gravity for which the solutions have addi-
tional corrective terms compared to the standard case; (ii)
by employing a new dynamical degree of freedom by means
of a convenient equation-of-state. In the first class of mod-
els, one finds, for instance, Scalar-Tensor theories of grav-
ity [20–23], brane-world models [24–28] and f(R) theo-
ries of gravity [29–32]; and for the second class, one finds
models such as k-essence [33], phantom [34], quintessence
[35], quintom [36], or tachyonic [37]. For a good review
article on the dynamics of dark energy see for instance
[38].

In this work, we will focus our study on the generalized
Chaplying gas equation-of-state [39], widely used in many
cosmological model extensions. Here, we study the proper-
ties of relativistic astrophysical objects, where we opt to use
the same equation of state.

In studies of compact relativistic astrophysical objects the
authors usually focus on stars made of an isotropic fluid,
where the radial pressure Pr equals the tangential pres-
sure P⊥. However, celestial bodies are not always made
of isotropic fluid only. In fact under certain conditions the
fluid can become anisotropic. The review article of Ruder-
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man [40] mentioned for the first time such a possibility: this
author makes the observation that relativistic particle inter-
actions in a very dense nuclear matter medium could lead
to the formation of anisotropies. The study on anisotropies
in relativistic stars has received a boost by the subsequent
work of [41]. Interestingly, Ivanov [42] has shown that by
considering a compact object to be an anisotropic star, the
effects of shear, electromagnetic field, etc, can be auto-
matically taken into account. Indeed, anisotropies can arise
in many scenarios of a dense matter medium, like phase
transitions [43], pion condensation [44], or in presence of
type 3A super-fluid [45]. See also [46–48] for more recent
works on the topic, and references therein. In these works
relativistic models of anisotropic quark stars were stud-
ied, and the energy conditions were fulfilled. In particu-
lar, in [46] an exact analytical solution was obtained, in
[47] an attempt was made to find a singularity free solu-
tion to Einstein’s field equations, and in [48] the Homo-
topy Perturbation Method was employed, which is a tool
that facilitates to tackle Einstein’s field equations. What
is more, alternative approaches have been considered to
incorporate anisotropies into known isotropic solutions [49–
51].

Beyond the collisionless dark matter paradigm, self-
interacting dark matter has been proposed as an attractive
solution to the dark matter crisis at galactic scales [52]. In
this scenario one can imagine relativistic stars made entirely
of self-interacting dark matter, see e.g. [53–55]. In a similar
way, given that the current cosmic acceleration calls for dark
energy, very recently a couple of works appeared in the lit-
erature, where the authors entertain the possibility that stars
made of dark energy or more generically exotic matter just
might exist [56,57].

These exotic stars are unique objects like any other com-
pact object that manifest themselves across many multi-
messenger signals like gravitational waves, neutrinos, cosmic
rays and electromagnetic radiation from radio up to gamma-
rays. For instance, we will be able to test many of these stellar
models using the data from the present and next generation of
gravitational wave detectors such as LIGO, Virgo, KAGRA
and LISA.

In the present work, we propose to study non-rotating
dark energy stars with anisotropic matter assuming a gen-
eralized equation-of-state of the form p = −B2/ρ + A2ρ

(with A and B being constants). A simplified version of
this, known as a Chaplygin equation-of-state, was introduced
in Cosmology long time ago to unify the description of
non-relativistic matter and the cosmological constant [58–
60]. Such a generic equation-of-state is originated by a vis-
cose matter, that when considered in a cosmological context
gives rise to the unification of dark matter and dark energy
[39].

2 Relativistic spheres within GR

We will consider a static, spherically symmetric object
(static fluid), and we will assume locally certain anisotropy,
bounded by a spherical surface Σ . The line element consid-
ering Schwarzschild–like coordinates is written as

ds2 = eνdt2 − eλdr2 − r2dΩ2, (1)

where ν(r) and λ(r) are, as always, the corresponding met-
ric potential, depending on the radial coordinate only, and
dΩ2 ≡ (

dθ2 + sin2 θdφ2
)

correspond to the element of
solid angle. We will take: x0 = t; x1 = r; x2 = θ; x3 = φ.
The classical Einstein field equations for a vanishing cosmo-
logical constant are:

Gν
μ = 8πGT ν

μ , (2)

with G being Newton’s constant, taken to be unity for sim-
plicity. Now, in the comoving frame, the physical matter
content is an anisotropic fluid of energy density ρ, radial
pressure Pr , and tangential pressure P⊥. Thus, the covariant
energy–momentum tensor in (local) Minkowski coordinates
is Tμ

ν = {ρ, Pr , P⊥, P⊥} and the field equations can be writ-
ten as:

ρ = − 1

8π

[
− 1

r2 + e−λ

(
1

r2 − λ′

r

)]
, (3)

Pr = − 1

8π

[
1

r2 − e−λ

(
1

r2 + ν′

r

)]
, (4)

P⊥ = 1

32π
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (5)

where the derivatives with respect to r are denoted by primes.
As it is well known, we can combine the last equations to

produce the hydrostatic equilibrium equation (also known as
the generalized Tolman–Opphenheimer–Volkoff equation),
i.e.,

− 1

2
ν′ (ρ + Pr ) − P ′

r + 2

r
(P⊥ − Pr ) = 0. (6)

Conveniently, we can express this equilibrium equation as
the balance between the following three forces: gravitational
(Fg), hydrostatic (Fr ) and anisotropic (Fp), which we define
as

Fg = −ν′ (ρ + Pr )

2
, Fr = −P ′

r and Fp = 2Π

r
. (7)

where Δ ≡ Π = P⊥ − Pr . Accordingly, Eq. (6), now reads

Fg + Fr + Fp = 0. (8)

The previous Eq. (8) establishes that this compact star results
from the equilibrium between these three different forces
[61]. It is worth noticing that if Fp = 0, we obtain the stan-
dard TOV equation. In particular, in cases where P⊥ > Pr
(or Π > 0), Fp > 0 causes a repulsive force in Eq. (8)
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that counteracts the attractive force given by Fg + Fr . In the
reverse case of P⊥ < Pr (or Π < 0), Fp < 0 is also an
attractive force that adds to the other ones.

Alternatively, we can remove the ν′-dependence in Eq. (6)
to obtain a more convenient equation, namely

P ′
r = − (m + 4π Prr3)

r (r − 2m)
(ρ + Pr ) + 2

r
(P⊥ − Pr ) , (9)

To do that, we have used the relation

1

2
ν′ = m + 4π Prr3

r (r − 2m)
, (10)

In addition, m is the mass function, obtained by:

R3
232 = 1 − e−λ = 2m

r
, (11)

or,

m = 4π

∫ r

0
r̃2ρ dr̃ . (12)

Now, let us rewrite the energy-momentum tensor as follow

Tμ
ν = ρuμuν − Phμ

ν + Πμ
ν , (13)

Firstly, we set the four-velocity as uμ = (e− ν
2 , 0, 0, 0),

and the four acceleration, aα = uα
;βu

β , whose any non–
vanishing component is a1 = −ν′/2. Subsequently, the set
{Πμ

ν ,Π, hμ
ν , sμ, P} is taken according to

Πμ
ν = Π

(
sμsν + 1

3
hμ

ν

)
(14)

Π = P⊥ − Pr (15)

hμ
ν = δμ

ν − uμuν (16)

sμ = (0, e− λ
2 , 0, 0) (17)

P ≡ 1

3

(
Pr + 2P⊥

)
(18)

with the properties sμuμ = 0, sμsμ = −1. For the exterior
solution, we match the problem with Schwarzschild space-
time, i.e.,

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2dΩ2.

(19)

The problem should be supplemented using certain boundary
conditions on the surface r = rΣ = cte. Thus, we demand
the continuity of the first and the second fundamental forms
across that surface, which means

eνΣ = 1 − 2M

rΣ
, (20)

e−λΣ = 1 − 2M

rΣ
, (21)

[Pr ]Σ = 0, (22)

where subscript Σ represent that the quantity is evaluated
on the boundary surface Σ . Finally, notice that last three
equations are the necessary (and also sufficient) conditions
for a smooth matching of the two metrics (1) and (19) on the
surface Σ .

3 Anisotropic matter: complexity factor

In what follows, we will briefly summarize the underlying
physics behind the definition of the complexity factor, focus-
ing on the astrophysical relevance of such quantity. Let us first
start mentioning the seminal paper by Herrera [62], where a
new and non-trivial way to reveal when static self-gravitating
objects are anisotropic was properly introduced. Even more,
this new definition tried to fix two problems present in pre-
liminary definitions of complexity. The first problem appears
when the probability distribution (which appear in the defini-
tion of “disequilibrium” and information) is replaced by the
energy density of the fluid distribution [63]. The second prob-
lem is manifest when we recognize that previous definitions
of complexity consider the energy density of the fluid only,
ignoring another relevant components as pressure. Thus, the
new definition introduced by L.H. try to make progress by
fixing the above mentioned issues.

Originally, the new definition of the complexity factor was
investigated only under a mathematical point of view (see
[64–67] and references therein). However, the real value of
such definition becomes evident when we use it as a supple-
mentary condition to close the set of differential equations
of a self-gravitational system. What is more, the complexity
factor could be used as a self-consistent way to incorporate
anisotropies [68,69], see also [70–77] and references therein.

As was previously pointed out, the complexity factor
appears in the orthogonal splitting of the Riemann tensor for
static self-gravitating fluids with spherical symmetry, and
for a detailed step-by-step computation, we should see the
original paper [62] and also [78]. Thus, albeit we will avoid
a profound discussion regarding the orthogonal decomposi-
tion of the Riemann tensor, we need to define the following
quantities:

Yαβ = Rαγβδu
γ uδ, (23)

Zαβ = R∗
αγβδu

γ uδ = 1

2
ηαγ εμR

εμ
βδu

γ uδ, (24)

Xαβ = R∗
αγβδu

γ uδ = 1

2
η εμ

αγ R∗
εμβδu

γ uδ, (25)

Please, notice that the symbol ∗ represent the dual tensor,
namely

R∗
αβγ δ = 1

2
ηεμγ δR

εμ
αβ (26)
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and ηεμγ δ is the well-known Levi–Civita tensor. Taking
advantage of the decomposition of the Riemann tensor, we
rewrite the set of scalars {Yαβ, Zαβ, Xαβ} in term of the phys-
ical variables, i.e.,

Yαβ = 4π

3
(ρ + 3P)hαβ + 4πΠαβ + Eαβ, (27)

Zαβ = 0, (28)

Xαβ = 8π

3
ρhαβ + 4πΠαβ − Eαβ. (29)

Notice that the corresponding tensor Eαβ (defined as Eαβ =
Cαγβδuγ uδ) is given by

Eαβ = E

(
sαsβ + 1

3
hαβ

)
, (30)

with

E = −e−λ

4

[

ν′′ + ν′2 − λ′ν′

2
− ν′ − λ′

r
+ 2(1 − eλ)

r2

]

,

(31)

satisfying the following properties:

Eα
α = 0, Eαγ = E(αγ ), Eαγ u

γ = 0. (32)

Even more, as was also demonstrated by [79], the tensors
{Yαβ, Zαβ, Xαβ} can be represented in term of alternative
scalar functions. Considering the tensors Xαβ and Yαβ in the
static case, the so-called structure scalars XT , XT F ,YT ,YT F

can be written in term of the physical variables as follow:

XT = 8πρ, (33)

XT F = 4π

r3

∫ r

0
r̃3ρ′dr̃ , (34)

YT = 4π(ρ + 3Pr − 2Π), (35)

YT F = 8πΠ − 4π

r3

∫ r

0
r̃3ρ′dr̃ . (36)

From Eqs. (34)–(36), the local anisotropy of pressure is deter-
mined by XT F and YT F via the following relation:

8πΠ = XT F + YT F . (37)

The vanishing complexity condition, YT F = 0, implies
the following relation between the energy density and the
anisotropic factor

Π(r) = 1

2r3

∫ r

0
r̃3ρ′(r̃)dr̃ (38)

The last condition has also been significantly investigated
along years introducing, via alternative ansatzs, several con-
crete forms of the anisotropy Π ≡ P⊥ − Pr and different
equations of state (see for instance [49,80–91] and refer-
ences therein). Given that a profound comprehension of the
idea of complexity is still under construction, the connec-
tion between Π (or more precisely, any equation of state

P⊥ ≡ P⊥(ρ)) and the definition of complexity factor YT F is
still missing.

4 Discussion

In the present paper we have investigated anisotropic stars
made of exotic matter in light of the by now well-known
complexity formalism. In particular, we compute for the first
time numerical solutions of realistic compact distribution of
matter, and compare our solution against the conventional
formalism, both within GR. We take advantage of a general-
ized Chaplyin equation-of-state to close the system. After the
numerical computation shown, in figures, how several rele-
vant quantities of the star evolve. In particular, we notice that:
(i) the mass function increase, the anisotropic factor decrease
and the energy density and pressures decrease throughout the
star, (ii) the speed of sound, radial and tangential, increase
and decrease, respectively, and both are lower that c2

0 ≡ 1,
the relativistic adiabatic index, Γ (r), increase and it is always
higher than Γ0 ≡ 4/3, (iii) the corresponding energy con-
ditions are also satisfied. Thus, in light the these numerical
results, we can confirm that the complexity factor formalism
is a solid approach to obtain well-defined solutions in the
context of compact stars (Figs. 1, 2, 3).

As a supplementary check, we have obtained, numerically
again, interior solutions using a more standard approach, i.e.,
adding external constraints to close the system of differential
equations. As a toy model, we have considered an anisotropic
factor, Π(r), as follows

Π(r) = −
(
r

a

)2

ρ(r) (39)

characterized by a dimensionful parameter, a, with dimen-
sions of length, which encodes the strength of the anisotropy.
This form of anisotropic factor was previously employed
in [82]. Its mathematical form may be justified as follows:
It is a simple expression fulfilling the basic requirements,
namely the anisotropic factor has the correct dimensions, it
is manifestly negative, and it vanishes at the center of the star,
Π(r = 0) = 0. Moreover, we consider two concrete cases:
(i) large values of a and (ii) small values of a, assuming the
following numerical values

a −→
{
alarge = 30 km

asmall = 10 km
(40)

Although it is not necessary to do so, given the ansatz above
for the anisotropic factor, one may derive the following dif-
ferential equation

Π ′(r) = 2

r
Π(r) − r2

a2 ρ′(r), (41)
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Fig. 1 Anisotropic DE stars within complexity factor: mass function in solar masses (left panel), anisotropic factor (middle panel), and energy
density and pressures (right panel) versus radial coordinate throughout the star

Fig. 2 Anisotropic DE stars within complexity factor: Speed of sounds (left panel) and relativistic adiabatic index (right panel) versus radial
coordinate throughout the star

Fig. 3 Anisotropic DE stars within complexity factor: Energy conditions versus radial coordinate throughout the star

Fig. 4 Anisotropic DE stars considering a more standard approach and assuming small a: Mass function in solar masses (left panel), anisotropic
factor (middle panel), and sound speeds (right panel) versus radial coordinate throughout the star

123
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Fig. 5 Anisotropic DE stars considering a more standard approach and assuming large a: Mass function in solar masses (left panel), anisotropic
factor (middle panel), and sounds speed (right panel) versus radial coordinate throughout the star

Fig. 6 Mass-to-radius profiles in two alternative approaches: Left: Profiles for the 3 models corresponding to the curves following the complexity
formalism. Right: Profiles for the 3 models corresponding to curves obtained in the conventional scenario

which looks very similar to the differential equation

Π ′(r) = −3

r
Π(r) + ρ′(r)

2
. (42)

obtained using Eq. (36) and the vanishing complexity con-
dition YT F = 0. Equation (41) may be derived in a straight-
forward manner as follows: First, taking the derivative with
respect to r of both sides of Eq. (39)

− Π ′(r) = 1

a2 [2rρ + r2 ρ′(r)], (43)

and then making use once more of the definition of the
anisotropic factor

Π(r)

r
= − r

a2 ρ(r). (44)

Our main result may be summarized as follows: When
the normalized anisotropy, Π(r)/B, is comparable, i.e. same
order of magnitude, to the one studied within the complexity
factor formalism, the solution is not realistic, since causality
is violated, as shown in Fig. 4 for the small a case. On the
contrary, when the solution is realistic satisfying all the crite-
ria, the star is characterized by a similar mass and at the same
time by a much lower anisotropic factor. This is displayed in
Fig. 5 for the large a case, where it is clear that the star is
much less anisotropic in comparison to Fig. 1.

Finally, we show in Fig. 6 the mass-to-radius profiles
(mass in solar masses versus radius in km) for three mod-
els, both within the complexity factor formalism (left panel)
and in a more standard approach for the case of large a (right
panel). The three models considered here are the following

A = √
0.4, B = 0.23 × 10−3 km−2 (45)

for Model 1,

A = √
0.425, B = 0.215 × 10−3 km−2 (46)

for Model 2, and

A = √
0.45, B = 0.2 × 10−3 km−2 (47)

for Model 3. The shape of the curves shows that the radius of
the star acquires a maximum value first, and then the mass of
the star, too, acquires its maximum mass. Although in both
cases the anisotropic factor is negative, the complexity factor
formalism predicts smaller and lighter objects as compared
to the conventional approach (Fig. 7).

We notice that the complexity factor is an effective method
to include modifications in the stellar structure of compact
stars resulting from the presence of new physical processes
responsible for the appearance of anisotropy contributions.
Consequently, the TOV equations for such stars are altered
by the existence of a new anisotropic force. Unlike in the case
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Fig. 7 Mass-to-radius profiles for Model 1 for different cases: (i) con-
sidering isotropic matter (dashed), (ii) utilizing the vanishing complex-
ity factor formalism (cyan), and (iii) using the conventional method
(three curves in between for a = 100 km (less anisotropic), 50 km
(middle), 25 km (more anisotropic)

of an isotropic star, the TOV equations balance three forces:
gravity, hydrostatic and anisotropic forces.

Finally, in the last figure we show the mass-to-radius rela-
tionships both for isotropic and for anisotropic stars within
both approaches for the case of Model 1. First we obtain the
M-R profile for stars made of isotropic matter (dashed line).
Then we study anisotropies within the vanishing complex-
ity formalism, and we obtain the curve in cyan. Next, when
we consider the conventional method, since now the ansatz
for the anisotropic factor is characterized by a continuous
parameter, we can observe the impact of that parameter on
the profiles, corresponding to the other 3 curves in the fig-
ure. Increasing the anisotropy, the profile is gradually shifted
towards the one corresponding to complexity. But at some
point causality is violated, and therefore the solution is not
realistic/viable any more. That is precisely the point where
we must stop. The last allowed profile remains quite far away
from the one obtained within complexity.

5 Conclusions

To summarize our work, we have obtained interior solutions
of exotic stars made of dark energy, taking into account the
presence of anisotropies and adopting the extended Chap-
lygin gas equation-of-state. The anisotropic factor is treated
employing the formalism based on the complexity factor, and
the structure equations have been integrated numerically. The
solutions are shown to be well-behaved and realistic. More-
over, we have made a comparison with another more con-
ventional approach, where the form of the anisotropic factor
is introduced by hand.
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