
Citation: Migallón, V.; Penadés, H.;

Penadés, J.; Tenza-Abril, A.J. A

Machine Learning Approach to

Prediction of the Compressive

Strength of Segregated Lightweight

Aggregate Concretes Using

Ultrasonic Pulse Velocity. Appl. Sci.

2023, 13, 1953. https://doi.org/

10.3390/app13031953

Academic Editors: Maria Sozanska,

Mariusz Jaśniok and Zbigniew

Perkowski

Received: 11 January 2023

Revised: 26 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Machine Learning Approach to Prediction of the
Compressive Strength of Segregated Lightweight Aggregate
Concretes Using Ultrasonic Pulse Velocity
Violeta Migallón 1,*,† , Héctor Penadés 1,†, José Penadés 1,† and Antonio José Tenza-Abril 2,†

1 Department of Computer Science and Artificial Intelligence, University of Alicante, 03071 Alicante, Spain
2 Department of Civil Engineering, University of Alicante, 03071 Alicante, Spain
* Correspondence: violeta@ua.es
† These authors contributed equally to this work.

Abstract: Lightweight aggregate concrete (LWAC) is an increasingly important material for modern
construction. However, although it has several advantages compared with conventional concrete, it
is susceptible to segregation due to the low density of the incorporated aggregate. The phenomenon
of segregation can adversely affect the mechanical properties of LWAC, reducing its compressive
strength and its durability. In this work, several machine learning techniques are used to study the
influence of the segregation of LWAC on its compressive strength, including the K-nearest neighbours
(KNN) algorithm, regression tree-based algorithms such as random forest (RF) and gradient boosting
regressors (GBRs), artificial neural networks (ANNs) and support vector regression (SVR). In addition,
a weighted average ensemble (WAE) method is proposed that combines RF, SVR and extreme GBR
(or XGBoost). A dataset that was recently used for predicting the compressive strength of LWAC is
employed in this experimental study. Two different types of lightweight aggregate (LWA), including
expanded clay as a coarse aggregate and natural fine limestone aggregate, were mixed to produce
LWAC. To quantify the segregation in LWAC, the ultrasonic pulse velocity method was adopted.
Numerical experiments were carried out to analyse the behaviour of the obtained models, and a
performance improvement was shown compared with the machine learning models reported in
previous works. The best performance was obtained with GBR, XGBoost and the proposed weighted
ensemble method. In addition, a good choice of weights in the WAE method allowed our approach
to outperform all of the other models.

Keywords: concrete; lightweight aggregate; prediction; compressive strength; machine learning;
average weighted ensemble

1. Introduction

One of the most commonly used building materials in civil and structural engineering
is concrete. However, the use of conventional concrete as a basic building material is facing
growing challenges. The expansion of the construction industry has created significant
demand for lightweight, high-strength structures for high-rise buildings, long-span bridges,
and offshore platforms. Lightweight aggregate concrete (LWAC) contains light aggregates
(LWAs), such as expanded clay, shale, or slate [1], and is an important and widely used
material in advanced architecture, with a low density as the most obvious characteristic
that distinguishes it from conventional concrete. LWAC stands out as an extremely versa-
tile building material due to the wide range of potentially available LWAs. Over the last
two decades, there has been growing interest in reducing the density of concrete while
maintaining as much strength as possible [2]. LWAC also has certain advantages com-
pared with conventional concrete, such as low thermal conductivity, better fire resistance,
and insulation against heat and sound. Compared with conventional concrete, LWAC can
effectively reduce dead load (thus reducing the costs due to the quantity of structural steel

Appl. Sci. 2023, 13, 1953. https://doi.org/10.3390/app13031953 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031953
https://doi.org/10.3390/app13031953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5372-3198
https://orcid.org/0000-0002-7883-6532
https://doi.org/10.3390/app13031953
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031953?type=check_update&version=1

Appl. Sci. 2023, 13, 1953 2 of 38

needed and the foundation size [3]) and can improve the seismic capacity of buildings [4].
Improving the performance of concrete is crucial in order to enable sustainable develop-
ment. The rheological performance of fresh concrete is characterised by diversity and
complexity, and fresh concrete must have sufficient workability to ensure the quality of
concrete constructions [5]. In addition, good compaction is critical to ensure that the mate-
rial fills all the voids in the formworks. When fresh LWAC is placed in the desired area, it
must be compacted to remove entrapped air and voids, and to consolidate it. However,
over-vibration of LWAC promotes segregation, in which denser aggregates settle to the
bottom while the lower-density LWA tends to float, which affects its compressive strength
and durability [6]. Over-vibration has been found to reduce the compressive strength by
up to 67% depending on the density and the LWA used [7].

There are several factors that affect the segregation of concrete, for example, the
components of the material, the rheology of the mortar, the sizes of the particles, the density
of the produced concrete, and the compaction procedure, which induces anisotropy in the
casting direction and has a negative impact on the properties of the concrete [8,9]. There are
several different methods of quantifying the segregation degree of concrete, most of which
are based on standard density measurements, ultrasonic velocity measurements or image
analysis [6,10–14]. In particular, the ultrasonic pulse velocity method is a non-destructive
approach that has been successfully used to evaluate the quality of concrete. It can also be
used to detect internal cracking and other defects as well as changes in the concrete.

The use of machine learning techniques has become an important area of research for
predictive analysis in engineering (see, e.g., [6,15–17] and the references therein). The enor-
mous variety of formulae used to create LWAC with specific qualities and the continuously
increasing complexity of cementitious systems remain challenging problems. The ability of
machine learning to tackle complex tasks autonomously means that it has transformative
potential for research into concrete [18]. In the context of building and construction materi-
als, several works have reported the use of artificial neural networks (ANNs) to predict
the compressive strength of concrete. For example, in [6], a multilayer perceptron (MLP)
network was employed to estimate the influence of the segregation in concrete on the
compressive strength of LWAC using ultrasonic pulse velocity. The Levenberg–Marquardt
backpropagation algorithm was used to train the network, and the best prediction model
for the compressive strength of LWAC gave a determination coefficient of about 0.825
and a root mean square error (RMSE) of about 3.745. In [19], the behaviour of multiple
linear regression (MLR) and regression tree (RT) models were compared with the ANN
models proposed in [6], using the same dataset, and the authors showed that MLR models
were not competitive in terms of explaining the compressive strength of LWAC, with a
poor determination coefficient of about 0.77 and an RMSE of about 4.332. In addition,
CHAID (Chi-squared automatic interaction detector) [20], exhaustive CHAID [21] and CRT
(classification and regression trees) [22] were analysed. The best RT model was obtained
with the CHAID algorithm, which yielded performance similar to that of the ANN models
proposed in [6], with a determination coefficient of about 0.82 and an RMSE of about 3.808.

In other studies, MLR and ANN models have also been compared in terms of predict-
ing some of the properties of concrete. For example, in [23], ANNs and MLR were used to
predict the compressive strength of concrete based on two predictor variables (the ultra-
sonic pulse velocity and the weight of concrete specimens), whereas in [24], categorised
linear regression, MLR and ANN were employed to predict the compressive strength of
structural LWAC. The results of both of these works indicated the higher accuracy of ANN
models. In [25], MLR and ANN models were used to predict slump as well as 7-day and
28-day compressive strengths based on data obtained from plants in India using ready-mix
concrete. The ANN models outperformed the MLR models, giving more accurate predic-
tions for both slump and compressive strength. In [26], the use of ANNs to predict the
compressive strength of recycled brick aggregate concrete was explored. The components
of the concrete mixture formed the input data parameters (cement, water–cement ratio,
crushed tile ratio, crushed brick ratio and natural aggregate ratio), and the results showed

Appl. Sci. 2023, 13, 1953 3 of 38

that the type of clay aggregate used in the study (brick or tile) could be neglected. In [27],
ANN, nonlinear regression (NLR) and RT models were compared to predict the 28-day
compressive strength of recycled aggregate concrete. The ANN models outperformed both
the NLR and RT models with nine predictor variables (cubic metre proportions of cement,
natural fine aggregate, recycled fine aggregate, natural coarse aggregate—10 mm, natural
coarse aggregate—20 mm, recycled aggregate—10 mm, recycled aggregate—20 mm, ad-
mixture and water). RT methods have also previously been applied to predict the elastic
modulus of recycled aggregate concrete [28] and to address other problems in the area of
civil engineering, such as the modelling of damage in reinforced concrete buildings [29].
In [30], a backpropagation ANN model was proposed to predict the bond strength for
fibre-reinforced plastic (FRP) reinforced concrete at high temperatures. This ANN was
tested by using 151 data points, and its precision was found to be slightly lower than
that of the current mathematical models [31–33]. However, it had higher generality in
predicting the bond strength when applied to inexpressible problems involving multiple
influence parameters.

In [34], two-level and hybrid ensembles of RT were used to predict the compressive
strength of high-performance concrete and were found to outperform RT models. Re-
cently, in [35], support vector regression (SVR), MLP, gradient boosting regressors (GBRs)
and extreme GBR (or XGBoost) were also used to predict the compressive strength of high-
performance concrete. The results were better than those reported in other studies [36–40],
in which several machine learning techniques were proposed for the same problem. As re-
ported in [34,35], tree-based ensemble methods have strong potential in terms of predicting
the compressive strength of high-performance concrete (see also [41]).

In [42], a comparative study of machine learning methods was conducted in the
context of predicting the strength of concrete with blast furnace slag. K-nearest neighbours
(KNN), SVR and random forest (RF) achieved high levels of prediction accuracy. In [43],
MLP, RF and KNN algorithms were used to predict the compressive strength of concrete
mixed with ground granulated blast furnace slag and fly ash. The results showed similar
performance for the RF and MLP regression models, which outperformed the KNN model.
Moreover, RF was the most stable and was the least influenced by the data splitting process.

Recently, in [44,45], various machine learning algorithms were proposed to predict
the compressive strength of lightweight concrete. In [44], Gaussian progress regression
(GPR), SVR, and ensemble learning were applied to a dataset consisting of 120 data points.
The predictor variables were cement content, water content, fine aggregate, normal weight
coarse aggregate, lightweight coarse aggregate, and water-cement ratio. The dataset was
partitioned into 70% for training and 30% for testing. To obtain the best fitted models,
10-fold cross-validation was applied to the training dataset. The optimised GPR and SVR
models obtained the best accuracy, with training correlation coefficients of 0.9933 and
0.9947, respectively, and testing correlation coefficients of 0.8915 and 0.8882. The opti-
mised SVR gave an RMSE of 3.2988 for the training dataset and 4.6111 for the test dataset,
while the optimised GPR achieved values for the RMSE of 1.7982 and 4.4002, respectively.
The study performed in [45] utilised 420 data points and applied the SVR, ANN, RT, GPR,
and XGBoost algorithms to predict the compressive strength of LWAC. The predictor vari-
ables included cement content, sand content, water–cement ratio, quantity of LWA, normal
aggregate content, density of LWA, water absorption of LWA, proportion of superplasticiser,
curing time, fly ash content, and type of LWA. To obtain the best models, the parameters
involved in the algorithms and the percentages of the data used for training, validation and
testing were varied. The best results were achieved with the GPR, RT and SVR algorithms,
although the GPR models outperformed all of the other models, with a training RMSE of
1.34 and a testing RMSE of 5.06. The values obtained for the mean absolute error (MAE)
were 0.69 and 3.01, respectively.

In this work, we focus on the use of machine learning techniques to predict the com-
pressive strength of LWAC with expanded clay using ultrasonic pulse velocity. The LWAC
is compacted for different vibration times in order to segregate the produced concrete.

Appl. Sci. 2023, 13, 1953 4 of 38

The detailed experimental procedure for obtaining the dataset used in this work is ex-
plained in [6] and summarised in Section 2.2. KNN, ANN, SVR, RF and several ensemble
algorithms are employed to estimate the compressive strength of LWAC using ultrasonic
pulse velocity. In addition, a weighted ensemble (WAE) algorithm that combines RF, SVR
and XGBoost is proposed. The input variables include the fixed density of LWAC, the par-
ticle density of LWA, the concrete laying time, the vibration time, the experimental dry
density, the P-wave velocity and the segregation index based on P-wave velocities.

Section 2 describes the materials and methods used in this work. After providing
an overview of machine learning techniques and the methodology used to evaluate the
models, Section 2 also explains the problem addressed in this paper. Section 3 analyses
the behaviour of the proposed machine learning methods and discusses the numerical
results obtained in this work. For each machine learning technique, an exhaustive analysis
of its behaviour is presented based on the values of the parameters and hyperparameters
involved. Once the best models have been obtained for each technique, they are compared
to find the best machine learning techniques to predict the compressive strength of LWAC.
Numerical experiments show that gradient-boosted tree models and the proposed WAE
models give better performance than the models obtained using other machine learning
techniques. Finally, some conclusions are presented in Section 4.

2. Materials and Methods

Machine learning is a field of artificial intelligence that focuses on the development of
algorithms which, based on the analysis of datasets, can learn from patterns in these data
and apply what they have learned to decision making. Using the dataset described in [6],
several machine learning algorithms are proposed and analysed in terms of predicting
the compressive strength of LWAC, including KNN, ANNs, SVR, RF and other tree-based
ensemble methods. Our experimental results are also compared with those reported in
previous works [6,19], in which MLR, RT and ANN models were applied to the same
dataset. Section 2.1 explains the machine learning techniques involved in this research,
the validation process used and the criteria applied for model selection. Section 2.2 describes
the dataset used in the experimental study and summarises the experimental results
obtained in previous works for this dataset.

2.1. Machine Learning Methods
2.1.1. Multiple Linear Regression

An MLR model has the form:

Y = β0 + β1X1 + β2X2 + · · ·+ βdXd + ε, (1)

where Y is the dependent variable, X1, X2, . . . , Xd are the independent or predictor variables,
β0, β1, β2, . . . , βd are the regression coefficients, and ε is the random component of the model
(that is, the unpredictable part of the dependent variable).

If we assume that the dataset has n instances, then the model defined in Equation (1)
can be written as follows:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βdxid + εi, i = 1, 2, . . . , n.

To ensure the validity of an MLR model, the relationship between the dependent vari-
able and each of the predictor variables must be linear, and the residuals εi,
i = 1, 2, . . . , n, must be normally distributed with E(εi) = 0 and Var(εi) = σ2. It is
also assumed that there is no multicollinearity between predictor variables.

2.1.2. K-Nearest Neighbours

KNN algorithms are widely used for both classification and regression problems.
When applied to regression problems, this supervised machine learning method attempts
to predict the values of a quantitative variable Y from the values obtained for the pre-

Appl. Sci. 2023, 13, 1953 5 of 38

dictor variables X1, X2, . . . Xd, based on a similarity metric. That is, given a training set
{(x(1), y1), (x(2), y2), . . . , (x(m), ym)}with x(i) = (xi1, . . . , xid), i = 1, 2, . . . , m, the K shortest
distances between the data to be evaluated and the training data are obtained. The predicted
value for a test instance x, denoted as ŷ(x), is then obtained as the average of the outputs
of its K nearest neighbours (denoted as yi(x), i = 1, 2, . . . , K). That is, ŷ(x) = 1

K ∑K
i=1 yi(x)

(see Figure 1). The performance of this method depends on both the value selected for K
and the type of metric chosen for the KNN algorithm [46,47]. Two well-known metrics
used in this method are the Euclidean and Manhattan distances. Although the metric may
affect the performance of this method, there seems to be little consensus on which distance
is most generally applicable and in which cases [48].

Figure 1. KNN algorithm for d = 2 predictor or dependent variables and K = 7.

2.1.3. Artificial Neural Networks

ANNs are a set of useful machine learning techniques based on biological neural
networks and are used to model complex relationships between inputs and outputs or to
find patterns. The simplest processing element of a neural network is the neuron. Each
neuron i may have multiple inputs, x1, x2, . . . , xd, and synaptic weights, wi1, wi2, . . . , wid
from which it produces a single output. More specifically, an input or propagation function
gi combines these inputs with their synaptic weights, and an activation function fi is then
subsequently applied to the obtained result to generate the corresponding output. Figure 2
graphically illustrates the model of a neuron i, in which the input function is defined as
gi(x1, x2, . . . , xd, wi1, wi2, . . . , wid) = ∑d

j=1 wijxj + θi, and θi is a bias value. This value is
treated as a weight whose input is one. The output value of neuron i can therefore be
expressed as yi = fi(∑d

j=1 wijxj + θi), where fi is some activation function.

Figure 2. Diagram of an artificial neuron.

Although a single neuron can perform some simple information processing functions,
the power of ANNs arises from the connections between many of these simple and robust

Appl. Sci. 2023, 13, 1953 6 of 38

units. Two typical network architectures, which differ in the types of connections between
neurons, are the feedforward and recurrent networks. In a feedforward ANN, there are
no cycles; that is, there is no closed path from any neuron to itself, meaning that the flow
of information has a single direction. In a recurrent ANN, however, cycles are present,
meaning that information can flow in any direction between the different layers, including
the input layer and the output layer.

An MLP network is a type of fully connected feedforward ANN in which backpropa-
gation is used for training the network [49]. There are three types of layers in this neural
network: the input layer, the hidden layers, and the output layer. Neurons in the input
layer receive inputs and propagate them to the next layer. The hidden layers form the
intermediate layers, while the output layer transfers the information from the network
to the outside and gives the response for each input pattern. Figure 3 shows an example
of an MLP network with a single hidden layer, where {x1, x2, . . . , xd} is the set of inputs
accessing the network, wij denotes the synaptic weight between input neuron j and hidden
neuron i, and ŵki denotes the synaptic weight between hidden neuron i and output neuron
k. As can be seen from this figure, the activation propagates in the network through the
weights from the input layer to the intermediate layer. In this hidden layer, a certain
activation function is applied to the inputs that reach it. The activation then propagates
through the synaptic weights to the output layer. To train the network, two sets of weights
must be updated: those between the input layer and the hidden layer, and those between
the hidden layer and the output layer. Various activation functions can be used in an MLP
network depending on the characteristics of the problem. Some of the most commonly used
for regression problems are the logistic sigmoid function, the hyperbolic tangent function
(tanh), and the rectified linear unit (ReLU) function [50].

Figure 3. Example of MLP network.

To create the predictive model, a supervised and iterative learning process is followed,
starting with an initial configuration of synaptic weights. These weights are adjusted
iteratively according to the inputs of the training set, and a loss function is used to compare
the output with the data to be predicted. One widely used loss function for regression
problems is the mean squared error (MSE). The learning algorithm attempts to find the
weights of the neural network that minimise this function. Several optimisation algorithms
can be used for this purpose, for example, stochastic gradient descent (SGD), Adam
and limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [51]. Adam [52] is
a stochastic gradient-based optimiser that typically performs better on relatively large
datasets. L-BFGS [53] is an optimiser from the family of quasi-Newton methods that tends
to perform better for small datasets. Each optimiser has several associated parameters
that should be suitably chosen to improve training and reduce the cost. These parameters,
called hyperparameters in the context of neural networks, are configured before network
training is carried out but do not form part of its architecture.

Appl. Sci. 2023, 13, 1953 7 of 38

2.1.4. Regression Trees and Tree-Based Ensemble Methods

An RT is a variant of the decision tree model [54] in which the target variable is continu-
ous. Using a set of decision rules, the interdependence between the predictor variables and
the target variable is graphically represented in the form of a tree structure. This structure
is defined by the topology of the tree (configuration of nodes and arcs) and the splitting
rules applied to build the tree. Given a training set {(x(1), y1), (x(2), y2), . . . , (x(m), ym)}
with x(i) = (xi1, . . . , xid), i = 1, 2, . . . , m, and with the aim of predicting the values of the
quantitative variable Y from the values obtained for the predictor variables X1, X2, . . . Xd,
a recursive process is used to build the tree, starting from the root node representing the
entire current dataset. The dataset is then partitioned into smaller and smaller subsets
based on the input variables considered in an attempt to obtain similar or homogeneous
behaviour within nodes with respect to the target variable Y. In an RT, the space of all joint
predictor variable values is partitioned into disjoint regions Rj, j = 1, 2, . . . , J, which are
represented by the terminal nodes of the tree. A constant value γj is assigned to each region,
and the predictive rule is obtained as x ∈ Rj → f (x) = γj. Hence, a tree can be expressed

as T(x; Θ) = ∑J
j=1 γj I(x ∈ Rj) with parameters Θ =

{
Rj, γj

}J
1, where I(·) denotes the

indicator function of a set. The parameter values are found with the aim of minimising

some specified loss function L, that is, Θ̂ = arg min
Θ

J

∑
j=1

∑
xi∈Rj

L(yi, γj) [55].

In this context, some well-known RT algorithms are CHAID, exhaustive CHAID,
and CRT. We note that when they are used for prediction in regression problems, these
algorithms use the mean of the corresponding nodes. In addition, CHAID and exhaustive
CHAID use the F-test as a splitting criterion [56]. The CRT algorithm builds binary trees to
maximise within-node homogeneity. The node impurity is a measure of the homogeneity
between the values of the node, and in regression problems, the impurity is typically
measured using the least-squared deviation [19].

However, overfitting is a common problem in decision trees, and very different trees
can be obtained with small changes in the training dataset. To overcome this limitation,
RF can be used [57]. RF is an ensemble machine learning method that combines several
decision trees based on various random subsamples (see Figure 4). The construction of the
RF model is usually done using bagging (bootstrap aggregation). The bagging technique
uses several training datasets obtained from the full dataset by random sampling with
replacement. Each training dataset is then used to build a tree model. That is, in RF, each
tree is trained independently and at the same time. An ensemble of these strong learners,
using for example the average of all of them, produces a more robust model than a single
decision tree [58]. The important hyperparameters in RF include the number of trees used
to build the model, the function chosen to measure the quality of each split (MSE, MAE,
etc.), and several useful parameters for controlling the growth of the trees. Increasing the
number of trees when building an RF model does not cause overfitting.

Figure 4. Flowchart of the RF algorithm.

Appl. Sci. 2023, 13, 1953 8 of 38

In contrast, boosting is an ensemble iterative technique in which each new tree is
built in an attempt to minimise the errors of previous trees, and thus each tree depends
on the previous one. This technique minimises the loss function by adding, at each
step, a new tree that best reduces the loss function. A well-known method of this type
is GBR [59,60]. Algorithm 1 describes this technique. Unlike RF, in which all trees are
constructed independently, each using a subset of the training dataset, GBR uses gradient
boosting as an ensemble technique [61].

Algorithm 1 GBR algorithm
Let M be the number of boosting iterations.
Given a learning rate ν, 0 < ν ≤ 1.

Initialise f0(x) = arg min
γ

m

∑
i=1

L(yi, γ).

for k = 1→ M do
for i = 1→ m do

Compute rik = −
[

∂L(yi , f (xi))
∂ f (xi)

]
f= fk−1

.

end for
Fit a regression tree to the targets rik giving terminal regions
Rjk, j = 1, 2, . . . , Jk.
for j = 1→ Jk do

Compute γjk = arg min
γ

∑
xi∈Rjk

L(yi, fk−1(xi) + γ).

end for

Update fk(x) = fk−1(x) + ν
Jk

∑
j=1

γjk I(x ∈ Rjk).

end for
return f̂ (x) = fM(x).

In this approach, an additive model is built such that at each stage, an RT is fitted to the
negative gradient of the given loss function. Note that at each boosting iteration k, a tree is
added that modifies the overall model. The added trees are weak learners in the sense that
their performance is slightly better than random chance. An important parameter associated
with gradient-based optimisers is the learning rate, which controls the contribution of each
tree to the final outcome. If the learning rate is low, more boosting stages (i.e., more trees)
are needed in the training process. In general, models that learn slowly perform better.
However, the number of boosting iterations must be carefully selected due to the high
risk of overfitting [59]. In addition, the extreme GBR (or XGBoost) method may be used
to reduce overfitting. This is an extension of the gradient boosting method that employs
advanced regularisation techniques such as Lasso regularisation (based on the L1 norm),
Ridge regularisation (based on the L2 norm), and dropout techniques. The Lasso and Ridge
regularisation methods introduce an additional term into the loss function to penalise large
weights [62]. The dropout technique [63] is an adaptive regularisation method in which
a random percentage of trees is ignored in the training phase so that no tree manages to
memorise part of the inputs [62].

2.1.5. Support Vector Regression

SVR is an extension of the support vector machine classification algorithm [64] and is
used for regression problems [65] such as the one considered here. To obtain the estimated
continuous-valued multivariate function with this technique, an ε-insensitive region around
the function, called the ε-tube, is considered. The optimisation problem then involves
finding the tube that best approximates it. The estimation function is obtained by mapping
the input samples onto a higher-dimensional feature space using a nonlinear mapping φ
and learning a linear regressor in the feature space [66]. That is, given the training vectors
x(i) ∈ Rd, i = 1, 2, . . . , m, and a vector y ∈ Rm, it is assumed that the regression estimating

Appl. Sci. 2023, 13, 1953 9 of 38

function f : Rd −→ R is defined by f (x) = ωtφ(x) + b, where ω is a vector in the feature
space and b is a scalar threshold. Then, to determine the values of ω and b, SVR solves the
following primal problem [64,67,68]:

min
ω,b,ξ,ξ∗

1
2

ωtω + C
m

∑
i=1

(ξi + ξ∗i)

subject to yi −ωtφ(x(i))− b ≤ ε + ξi,
ωtφ(x(i)) + b− yi ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0, i = 1, 2, . . . , m,

where C, ε ∈ R+ are input parameters and ξ, ξ∗ are nonnegative vectors of slack variables.
This optimisation problem can be solved in its dual form using the Lagrange multipliers
method, as follows:

min
α,α∗

1
2
(α− α∗)tP(α− α∗) + εet(α + α∗)− yt(α− α∗)

subject to et(α− α∗) = 0,
0 ≤ αi, α∗i ≤ C, i = 1, 2, . . . , m,

where α, α∗ ∈ Rm are the Lagrange multipliers, e is a vector of all ones and P is an m×m positive
semidefinite matrix, with Pij = φ(x(i))tφ(x(j)). Then, taking K(x(i), x(j)) = φ(x(i))tφ(x(j)),
where K is a kernel function, the prediction of an input vector x ∈ Rd is obtained as
f (x) = ∑m

i=1(αi − α∗i)K(x(i), x) + b (see Figure 5).

Figure 5. Flowchart of the SVR algorithm.

To rewrite and solve the dual problem, various kernel functions can be used depending
on the characteristics of the dataset, such as polynomial functions (K(x(i),
x(j)) = (γ〈x(i), x(j)〉 + τ)δ), sigmoid functions (K(x(i), x(j)) = tanh(γ〈x(i), x(j)〉 + τ)) or
radial basis function (RBF) kernels (K(x(i), x(j)) = e−γ‖x(i)−x(j)‖2

). In the training phase,
different parameters (C, ε, γ, δ, τ) must be optimised depending on the kernel function,
although C and ε are common to all SVR kernels.

We note that SVR solves a convex optimisation problem in which the optimal solution
is found analytically rather than heuristically, such that for a predetermined kernel and a
given training dataset, the training phase returns a uniquely defined model.

2.1.6. Validation Process and Criteria Used for Model Selection

Validation of the model is a critical stage in machine learning. There are several
different validation techniques (e.g., holdout, random subsampling, resubstitution, k-fold
cross-validation, and leave-one-out cross-validation) [69]. In this work, we use random

Appl. Sci. 2023, 13, 1953 10 of 38

subsampling and repeated k-fold cross-validation. Random subsampling or Monte Carlo
cross-validation is based on random splitting of the dataset into several training and test
sets. A prediction model is obtained for each training dataset, and is evaluated on the
corresponding test dataset. To analyse the performance of a model, the average values
of the goodness-of-fit measures are considered (see Figure 6a). In k-fold cross-validation,
the dataset is randomly partitioned into k subsamples of equal size. At each iteration,
one of these k subsamples is used as a test set, and the remaining k− 1 subsamples as a
training set. The performance of this approach is obtained based on the average values
of the goodness-of-fit measures at each iteration (see Figure 6b). In repeated k-fold cross-
validation, this process is repeated several times with different random data partitions,
and the mean performance across all repeats is considered.

(a) (b)

Figure 6. Random subsampling and k-fold cross-validation procedures. (a) A 10 random subsampling
procedure by randomly partitioning the sample into 75% for training and 25% for testing; (b) k-fold
cross-validation procedure, example with k = 4.

To assess the performance of the models presented in this study, the following
goodness-of-fit measures were considered (where yi, i = 1, 2, . . . , n, denote the observed
values; ȳ is the mean of the observed values; ŷi, i = 1, 2, . . . , n, are the predicted values;
and d is the number of predictive variables in the model):

• Relative error, ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−ȳ)2 .

• Determination coefficient, R2 = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−ȳ)2 .

• Mean squared error, MSE = ∑n
i=1(yi−ŷi)

2

n .

• Root mean square error, RMSE =

√
∑n

i=1(yi−ŷi)2

n .

• Mean absolute error, MAE = ∑n
i=1 |yi−ŷi |

n .
• Mean absolute percentage error, MAPE = 100

n ∑n
i=1 |

yi−ŷi
yi
|.

The determination coefficient is one of the most frequently used measures of the
degree of linear correlation between two variables. This measure can be interpreted as the
proportion of variability explained by the model. Note that the determination coefficient
in a linear least-squares regression with an intercept is equivalent to the square of the
correlation coefficient and, therefore, takes values between zero and one, where a value
of one indicates perfect correlation. However, outside of this context, the determination

Appl. Sci. 2023, 13, 1953 11 of 38

coefficient may be negative. The RMSE, MAE and MAPE are also very suitable measures
for comparing the performance of the models, where lower values indicate a better fit of
the model. The MAPE and MAE are robust to the effects of outliers, due to the use of
absolute values in the formulae, while the RMSE is more sensitive. Nevertheless, there
are some circumstances in which the use of the RMSE is more beneficial (for example,
when the errors are normally distributed), meaning that it would be hard to argue that one
measure is better than another. Hence, a combination of these metrics is used to analyse
the performance of the models.

One of the main concerns in machine learning is overfitting or underfitting the models.
Underfitting occurs when the model is not able to represent the training data or new
inputs that are not included in the training dataset. Although in some cases this is due
to insufficient training, the most common causes of underfitting are poor choices of the
training dataset and learning model. On the other hand, overfitting is usually due to
excessive training. If the model is overtrained, it will be able to model the training data
almost perfectly, but with new datasets, it may not achieve high accuracy. These issues,
therefore, need to be analysed to obtain the best models.

On the other hand, to compare the models, an analytic hierarchy process based on
discrete ranking analysis [45,70] was also performed. In this case, the models were rated
based on the goodness-of-fit measures obtained for the training and test datasets (see
Figure 7a). The models were then ordered from lowest to highest performance for each
of these measures. The rating assigned to the worst model was one, while the rating
assigned to the best model was equal to the number of models considered in the study.
The rating assigned to each model for a goodness-of-fit measure was then computed as
the sum of the two ratings. The overall rating of a model was computed by adding the
individual ratings obtained for the considered goodness-of-fit measures. To compute this
overall rating, we used the determination coefficient, RMSE, MAE and MAPE measures.
In addition, to consider the magnitude of the performance differences, a continuous ranking
was proposed (see Figure 7b). This ranking uses normalised values (max-normalisation) of
the relative error (1− R2), RMSE, MAE and MAPE rather than discrete values. The sum
of these values for the training and test datasets gives a rating for each model, which also
shows the differences between the performance of one model and the others. Lower values
of this continuous rating indicate higher performance.

(a) (b)

Figure 7. Ranking a set of models. (a) Discrete ranking; (b) continuous ranking.

2.2. Dataset and Related Results

The dataset consisted of 640 samples from four different types of LWAC that were
intentionally segregated by compacting them for different vibration times, following the
experimental procedure explained in [6] (see Table 1). To manufacture the samples, each
of the four types of concrete was mixed in a vertical shaft, and cylindrical moulds (with
diameter 150 mm and height 300 mm) were filled and compacted using a needle vibrator
(for 0, 10, 20, 40 and 80 s). The laying time was also taken into account in order to simulate

Appl. Sci. 2023, 13, 1953 12 of 38

the laying of LWAC under real conditions, as fresh concrete loses its workability over time.
The mixture proportions of each type of LWAC were computed according to the Fanjul
method [71]. A total of 160 cylinders were manufactured. The type of LWAC depended on
both the type of LWA used to produce the concrete and the target density of the produced
concrete (1700 or 1900 kg/m3). Two types of LWA were considered, consisting of expanded
clay (from the company Saint-Gobain) with different particle densities, the first with a
density of 482 kg/m3 and a granulometric fraction with sizes 6/10, and the second with a
density of 1019 kg/m3 and fraction 4/10. The lighter LWA has a high-porosity structure
(36.6% of water absorption at 24 h) and is typically used for ultra-lightweight concrete
applications, whereas the denser LWA (12.20% of water absorption at 24 h) is mainly
used for structural concrete applications. Two cores of diameter 50 mm were extracted
from each LWAC cylinder produced in this way and were cut into four 70 mm lengths.
The variables considered in this problem were the theoretical density of the concrete
according to the Fanjul method [71], the particle density of the LWA, the laying time of
the concrete, the vibration time, the dry density of the specimen obtained experimentally
after 28 days, the P-wave velocity and the segregation index. The segregation index used
in this work was based on the P-wave velocities and was proposed in [6] as an alternative
to the segregation index put forward by Ke [12] for the case where several cores from
a concrete specimen are considered rather than one complete specimen. To obtain the
segregation index based on the P-wave velocity, the longitudinal velocity (Vp) of each
core was determined using 250 kHz transducers. The mean value of the P-wave velocity
of an LWAC was then computed based on the four P-wave velocities of the cores (Vpm),
considering the position of the core in the original specimen (VpSi). The segregation index
was computed for each core as the ratio between the P-wave velocity of the core (VpSi) and
the mean P-wave velocity of the four cores of the corresponding LWAC cylinder (Vpm) [6].
To determine the influence of segregation, the compressive strength of each core sample
was obtained using a 200 kN machine with a loading rate of 0.25 MPa/s. A preliminary
statistical study showed significant differences in compressive strength depending on
the type of LWAC. As expected, the higher the LWA particle density or LWAC density,
the greater the compressive strength [19]. Table 2 summarises the statistical characteristics
of the variables involved in this problem: minimum (min), maximum (max), mean, median,
first quartile (Q1) and third quartile (Q3).

Table 1. Characteristics of types of LWAC. “Adapted with permission from Ref. [19]. Copyright
2019, Elsevier”.

LWAC Type LWA Particle Density (kg/m3) LWAC Fixed Density (kg/m3)

1 482 1700
2 482 1900
3 1019 1700
4 1019 1900

Table 2. Variables of the experimental dataset. “Adapted with permission from Ref. [6]. Copyright
2018, Elsevier”.

Variable Description Min Max Mean Median Q1 Q3

LWAC fixed density (kg/m3) 1700 1900 1800 1800 1700 1900
LWA particle density (kg/m3) 482 1019 750.5 750.5 482 1019

Concrete laying time (min) 15 90 48.75 45.00 18.75 82.50
Vibration time (s) 0 80 30 20 10 40

Experimental dry density (kg/m3) 1069.80 2486.84 1673.35 1677.15 1533.35 1810.84
P-wave velocity (m/s) 3044.25 5253.73 3778.89 3718.49 3520.48 3945.65

Segregation index 0.845 1.136 1 0.999 0.978 1.021
Compressive strength (MPa) 2.99 50.72 21.55 20.25 14.37 28.76

Appl. Sci. 2023, 13, 1953 13 of 38

We are interested in predicting the compressive strength of LWAC by applying ma-
chine learning to this dataset. This problem has been considered in previous works in which
MLR, ANNs and three RT algorithms (CHAID, exhaustive CHAID, and CRT) were used
to predict the compressive strength of LWAC [6,19]. Tables 3 and 4 summarise the best
models obtained in these works. However, there are no experiments in the literature that
have analysed the performance of other machine learning techniques for predicting the
compressive strength of concrete with this dataset.

Table 3. Statistical measures for the best MLR and RT models in [19]. “Adapted with permission
from Ref. [19]. Copyright 2019, Elsevier”.

Technique Model Measures Estimate

MLR

Without R2 0.767
validation MAE 3.394

MAPE 19.04
RMSE 4.327

Best model R2 0.766
with validation MAE 3.396

MAPE 18.86
RMSE 4.332

CHAID

Without R2 0.829
validation MAE 2.829

MAPE 15.49
RMSE 3.705

Best model R2 0.820
with validation MAE 2.928

MAPE 16.22
RMSE 3.808

Table 4. Statistical measures for the best ANN model in [6]. “Adapted with permission from Ref. [6].
Copyright 2018, Elsevier”.

Measures Estimate

R2 0.825
MAE 2.897

MAPE 15.85
RMSE 3.745

3. Results and Discussion

To implement and construct our machine learning models, we used Python 3.9, ver-
sion 1.1.2 of the Scikit-learn API [72] and version 1.6.2 of the XGBoost (extreme Gradient
Boosting) library [62]. Other Python libraries such as NumPy 1.21.0, SciPy 1.7.0, and pandas
1.3.0 were also needed. The experiments were carried out on a Windows 10 64-bit PC with
an Intel Core i7-1065G7 CPU at 1.30 GHz and 16 GB of RAM. To evaluate each model
using Monte Carlo cross-validation, the sample was split into two datasets: the training set,
which was used to estimate the new model, and a test set, which was used to evaluate the
predictive ability of the model. The validation process was repeated 10 times, by randomly
partitioning the sample into 75% for training and 25% for testing. Several experiments were
also performed with repeated k-fold cross-validation, using different values of k (k = 4,
k = 10). The k-fold cross-validation procedure was also repeated 10 times. To enable
a comparison and ensure the reproducibility of results, the same 10 seeds were used to
perform the partitions in both cross-validation procedures (see also Section 2.1.6).

At the preprocessing stage, normalisation was applied to scale the dataset. This is
often useful to improve the accuracy of most machine learning algorithms, especially

Appl. Sci. 2023, 13, 1953 14 of 38

when there are variables with different units. In the same way as in [6], we used min-max
normalisation in this work to scale the data to the range [0, 1].

For each machine learning technique, an exhaustive analysis of its behaviour is pre-
sented below, including the values chosen for the parameters and hyperparameters in-
volved in each method. Based on these analyses, the best models are selected in an attempt
to avoid both overfitting and underfitting.

3.1. KNN Algorithms

In this section, we analyse the behaviour of the KNN algorithms in terms of predicting
the compressive strength of LWAC. Two similarity metrics were used, the Euclidean and
Manhattan distances, and the neighbourhood size K was varied from 1 to 50. Figure 8
illustrates the influence of the type of distance used in the KNN algorithm. The mean values
of the RMSE, MAE and MAPE for the test datasets of the 10 random models are shown in
Figure 8a–c, respectively. The best results were achieved with the Manhattan distance and
values of K of between five and seven. For these values of K, Figure 9 displays the RMSE of
the 10 random runs of the validation process. For the training dataset, the best results were
obtained with K = 5, with a mean RMSE of 3.8173, a mean MAE of 2.8956 and a mean MAPE
of 15.3229%. For the test data, the best mean RMSE and MAE were obtained with K = 7
(4.3365 and 3.3134, respectively) and the best mean MAPE with K = 5 (see Table 5). Table 6
displays several goodness-of-fit measures for the model with these values of K, obtained both
without validation and after the validation process. The same results were obtained with both
Monte Carlo and repeated k-fold cross-validation. The best model achieved a coefficient of
determination of 0.812 and an RMSE of 3.8863. The best model without validation had a
coefficient of determination of 0.8365 and an RMSE of 3.6246.

A comparison of these models with those presented in [19] (see Table 3) and the ANN
models in [6] (see Table 4) shows that the KNN algorithms (using the Manhattan distance)
outperformed the MLR models (RMSE = 4.332) in predicting the compressive strength of
LWAC. However, KNN showed slightly lower performance than the best tree model in [19]
(RMSE = 3.808) and the best ANN model in [6] (RMSE = 3.745).

(a) (b)

(c)

Figure 8. Comparison of KNN models, 1 ≤ K ≤ 50; mean values of statistical measures on the test
data for the 10 random models (75:25 ratio). (a) RMSE; (b) MAE; (c) MAPE.

Appl. Sci. 2023, 13, 1953 15 of 38

(a) (b)

Figure 9. Comparison of KNN models, K = 5, 6, 7; RMSE for the training and test data of the
10 random models (75:25 ratio), with the Manhattan distance. (a) Training; (b) test.

Table 5. Statistical measures on the test data for KNN models; 10 models randomly generated with a
75:25 ratio by means of simple random sampling.

Model St. Measures Median Mean Confidence Interval (95%)

Manhattan MAE 3.3871 3.3158 [3.1676, 3.4640]
distance MAPE 17.7148 17.8784 [16.7483, 19.0085]

K = 5 RMSE 4.3912 4.3852 [4.1707, 4.5997]

Euclidean MAE 3.4199 3.4384 [3.3320, 3.5448]
distance MAPE 18.0707 18.5220 [17.6788, 19.3652]

K = 5 RMSE 4.4556 4.4921 [4.3254, 4.6588]

Manhattan MAE 3.3981 3.3318 [3.1932, 3.4704]
distance MAPE 17.5864 17.9849 [16.8763, 19.0935]

K = 6 RMSE 4.3845 4.3733 [4.1709, 4.5757]

Euclidean MAE 3.4646 3.4592 [3.3369, 3.5815]
distance MAPE 18.3423 18.6691 [17.6019, 19.7363]

K = 6 RMSE 4.4300 4.4808 [4.3001, 4.6615]

Manhattan MAE 3.3550 3.3134 [3.1579, 3.4689]
distance MAPE 17.4759 17.9372 [16.8324, 19.0420]

K = 7 RMSE 4.3177 4.3365 [4.1150, 4.5580]

Euclidean MAE 3.4203 3.4474 [3.3160, 3.5788]
distance MAPE 18.2648 18.6589 [17.5924, 19.7254]

K = 7 RMSE 4.4611 4.4920 [4.3151, 4.6689]

Table 6. Statistical measures for KNN models with the Manhattan distance.

Model Measures K = 5 K = 7

Without R2 0.8365 0.8115
validation MAE 2.7562 2.9255

MAPE 14.5033 15.5158
RMSE 3.6246 3.8916

With validation R2 0.8038 0.7930
(mean of 10 models) MAE 3.0006 3.1044

MAPE 15.9617 16.6643
RMSE 3.9694 4.0775

With validation R2 0.8120 0.7974
(best model) MAE 2.9567 3.0597

MAPE 15.6981 16.3948
RMSE 3.8863 4.0340

Appl. Sci. 2023, 13, 1953 16 of 38

3.2. MLP Neural Networks

The MLP is a commonly used ANN. In this section, we discuss its use to predict
the compressive strength of LWAC. Although these neural networks can be designed
using several hidden layers, the use of only one hidden layer improved the performance
of these configurations. Hence, we focus here on the analysis of MLP neural networks
with a single hidden layer. Several different activation functions were used: the identity
function, the logistic sigmoid function, the hyperbolic tangent function and the ReLU
function. The solvers used to minimise the squared error were SGD, L-BFGS and Adam.
To simplify the models and prevent overfitting, Ridge or L2 regularisation was applied.
Based on the L2 norm, this type of regularisation introduces an additional term to the
loss function to penalise large weights and thus forces the weights of the network to take
small values [51]. The values considered for the strength of the regularisation term were
α = 0, 0.0001, 0.001, 0.01, 0.05, 0.08, 0.09, 0.1, 0.11, 0.12, 0.2, 0.5, 1, 2. Note that α = 0 means
that no regularisation was applied. To determine the number of neurons for the hidden
layer, architectures were designed with between one and 27 neurons in this layer. Figure 10
displays the change in the relative error as the number of neurons increases, where the
L-BFGS optimiser and the ReLU activation function are used. This configuration gave the
best performance for our problem. Table 7 summarises several goodness-of-fit measures
for some of the models. A suitable value for α was found to be 0.1, as this value prevented
overfitting and achieved more stable results, regardless of the number of neurons used
(see Figure 10c). In this way, we avoid the problem in which a few neurons dominate the
behaviour of the network, and we force non-informative features to have weights close to
or equal to zero. We should point out that the ANN models considered here outperformed
the best ANN architecture proposed in [6]. For example, with α = 0.1, we obtained a
mean RMSE value of 3.705 with 30 neurons in the hidden layer and a value of 3.6765
with 40 neurons (see Table 7). These values are lower than 3.745, which was the RMSE
for the best model in [6]. Similar results were obtained with values of α very close to 0.1.
Note that without Ridge regularisation, the models may be overfitted to the training data
(see Figure 10a). This issue also occurs when very small values of α are applied (α → 0).
In contrast, when α > 1, the models are clearly underfitted (see Figure 10d). In fact, we
obtained mean values of RMSE greater than four for α = 1 and greater than 4.4 for α = 2.

Table 7. Statistical measures for MLP networks; ReLU activation function, L-BFGS solver.

Number of Neurons, α Measures Mean of Test Sets With Validation (Mean of 10 Models)

R2 0.8014 0.8043
8, α = 0.01 MAE 3.0467 3.0404

MAPE 16.7511 16.6353
RMSE 3.9617 3.9628

R2 0.8045 0.8290
30, α = 0.1 MAE 2.9960 2.8415

MAPE 16.3343 15.4097
RMSE 3.9328 3.7050

R2 0.8032 0.8317
40, α = 0.1 MAE 2.9536 2.7956

MAPE 15.9433 15.0795
RMSE 3.9437 3.6765

3.3. Tree-Based Algorithms: Random Forest and Gradient-Boosted Tree Models
3.3.1. Random Forests

To construct the RF models, the dataset was also partitioned into training and test
sets with a ratio of 75:25. This randomised process was repeated 10 times. Each of the
random training datasets was then used to create an RF model, using bootstrap samples to
build the trees. A specific percentage of samples was drawn from the training datasets to

Appl. Sci. 2023, 13, 1953 17 of 38

train each base estimator. Once a random forest model had been obtained, its predictive
accuracy and generalisability were analysed using the corresponding test dataset. Repeated
k-fold cross-validation was also applied, and no appreciable differences between the two
cross-validation procedures were found.

(a) (b)

(c) (d)

Figure 10. Relative error of the MLP networks for varying numbers of neurons in the hidden layer;
number of iterations = 2000, ReLU activation function, L-BFGS solver. (a) α = 0 (without L2
regularisation); (b) α = 0.01; (c) α = 0.1; (d) α = 2.

To explore the influence of the number of samples used to train the base estimator,
different percentages for the training set were considered. The results showed similar
performance for percentages greater than or equal to 75% (see Figure 11). In addition,
each RF model was created with varying numbers of trees, from two to 1000. No major
differences were found when a number of trees greater than or equal to 10 was used (see
Figure 12a). Moreover, as expected, no overfitting was detected as the number of trees
increased. In the rest of the results discussed in this section, we use 100 trees to estimate
each RF, as this number of trees gave optimal RF models (see Figure 12b). The splitting
criteria used were the MSE and the MAE. Both gave the same performance.

To detect overfitting, we varied not only the maximum depth of the trees but also the
minimum number of cases needed for parent and child nodes. Figure 13 illustrates the
behaviour of the RMSE when the maximum depth of the trees was varied. In Figure 13a,
the nodes could be expanded until all leaves are pure, while in Figure 13b, a minimum
of 20 cases for parent nodes and 10 for child nodes are required to augment the branches.
As can be seen from these figures, good results were obtained with a maximum depth of
five. Figure 14 compares the RMSE for the training and test datasets of the 10 models with
varying values of the minimum number of cases for parent and child nodes needed to
increase the branches of the tree. Table 8 summarises several goodness-of-fit measures for
the models shown in Figure 14. Acceptable results were obtained from pre-pruning the
trees, where a minimum of 20 samples was required to split an internal node and 10 samples
in the leaf or terminal nodes (model (c)). This model achieved a mean RMSE of 3.8434 and a
mean MAE of 2.9809 for the test data. Although models (a) and (b) in Table 8 seem a priori
to outperform model (c), decreasing the required cases for parent and child nodes could
lead to overfitting; see Figure 14a with a minimum of two cases for internal nodes and
one for terminal nodes and Figure 14b with a minimum of 10 cases for internal nodes and

Appl. Sci. 2023, 13, 1953 18 of 38

five for terminal nodes. Increasing the cases required for parent and child nodes produced
underfitting (see Figure 14d,e). Table 9 displays several goodness-of-fit measures for the
models after the validation process. The parameters used to obtain these models were the
same as those for model (c) in Table 8. In addition, various percentages of samples were
used to train each base estimator, achieving a mean RMSE of between 3.6303 and 3.6784,
a MAE of between 2.7808 and 2.8207, and a MAPE of between 15.5416% and 15.7916%.

(a) (b)

(c) (d)

Figure 11. Behaviour of RF models for varying proportions of samples for training each base estimator;
maximum depth = 5, minimum of 20 cases for parent nodes and 10 for child nodes, number of trees = 100.
(a) RMSE, training dataset; (b) RMSE, test dataset; (c) MAE, training dataset; (d) MAE, test dataset.

(a) (b)

Figure 12. Behaviour of RF models for varying numbers of trees; maximum depth = 5, minimum
of 20 cases for parent nodes and 10 for child nodes, proportion of samples for training each base
estimator = 0.75. (a) RMSE, number of trees between 10 and 1000; (b) RMSE, number of trees between
two and 1000.

As expected, RF outperformed the tree models described in [19] (see Table 3), which
achieved a MAPE of approximately 16.22%, an RMSE of 3.808 and an MAE of 2.928 with
the best model. In addition, the efficiency of RF was higher than that of both the KNN
models (with a best mean RMSE of 3.9694) and the MLP neural networks (with a best mean
RMSE of 3.6765); see Tables 6 and 7, respectively.

Appl. Sci. 2023, 13, 1953 19 of 38

(a) (b)

Figure 13. Behaviour of RF models for varying maximum depths; proportion of samples for training
each base estimator = 0.75. (a) RMSE, minimum of two cases for parent nodes and one for child
nodes; (b) RMSE, minimum of 20 cases for parent nodes and 10 for child nodes.

Table 8. Results for RF models; 10 models randomly generated with a 75:25 ratio by means of simple
random sampling, maximum depth = 5, proportion of samples for training each base estimator = 0.75.
Statistical measures for test data: (a) minimum of two cases for parent nodes and one for child nodes,
(b) minimum of 10 cases for parent nodes and five for child nodes, (c) minimum of 20 cases for parent
nodes and 10 for child nodes, (d) minimum of 40 cases for parent nodes and 20 for child nodes,
(e) minimum of 50 cases for parent nodes and 25 for child nodes.

Model St. Measures Median Mean Confidence Interval (95%)

(a) MAE 2.9328 2.9530 [2.8378, 3.0682]
MAPE 16.2147 16.2340 [15.4197, 17.0483]
RMSE 3.8316 3.8239 [3.6988, 3.9490]

(b) MAE 2.9556 2.9557 [2.8570, 3.0544]
MAPE 16.3162 16.4000 [15.5729, 17.2271]
RMSE 3.8380 3.8279 [3.7241, 3.9317]

(c) MAE 2.9492 2.9809 [2.8953, 3.0665]
MAPE 16.7791 16.7259 [15.8576, 17.5942]
RMSE 3.8571 3.8434 [3.7560, 3.9308]

(d) MAE 3.1185 3.1390 [3.0210, 3.2570]
MAPE 17.5578 17.7231 [16.7236, 18.7226]
RMSE 4.0653 4.0443 [3.9077, 4.1809]

(e) MAE 3.1682 3.1887 [3.0705, 3.3069]
MAPE 17.7840 18.0240 [16.9883, 19.0597]
RMSE 4.1343 4.1074 [3.9662, 4.2486]

3.3.2. Gradient-Boosted Tree-Based Models

The RF regressors studied in Section 3.3.1 are ensemble methods from the family
of averaging methods. By contrast, in boosting methods, the base estimators are built
sequentially, such that each decision tree attempts to reduce the error of the previous tree.
In this section, we explore the use of two well-known boosting ensemble methods: GBR and
extreme GBR (or XGBoost). To obtain gradient-boosted tree models using GBR, both the
squared error and the absolute error were used as loss functions. In addition, the splitting
criteria were the MSE and the MSE with Friedman’s improvement score. When the absolute
error loss function was used, the best splitting criterion was the Friedman MSE; however,
the best results were obtained with the squared error loss function, which gave the same
performance with both splitting criteria. Gradient-boosted tree models were obtained with
varying numbers of boosting stages, from 10 to 1000. The maximum depth of the individual
regression estimators was chosen as between one and five, and the best results were ob-
tained with a value of three. For this maximum depth, Figure 15 illustrates the behaviour of
the RMSE and MAE as the number of boosting iterations (added trees) increases. The learn-
ing rate was set to 0.02 in Figure 15a,b and to 0.05 in Figure 15c,d. The learning rate and the

Appl. Sci. 2023, 13, 1953 20 of 38

number of estimators are two critical hyperparameters for this method [73]. These hyperpa-
rameters interact with each other in such a way that lower values of the learning rate require
larger numbers of estimators to maintain similar RMSE and MAE values [55]. For a learning
rate of 0.02, good results were obtained with 250 weak learners or trees (see Figure 15a,b).
With this learning rate, a higher number of trees could lead to overfitting the model. A slight
improvement was obtained with a learning rate of 0.05 and 130 weak learners. In this
case, clear overfitting occurs with more than 200 added trees (see Figure 15c,d). In contrast,
a small number of weak learners or a lower value of the learning rate could lead to under-
fitting of the model (see Figures 15 and 16). In addition, as the number of trees increases,
the values of the learning rate that produce strong underfitting decrease. For example, with
250 weak learners, a learning rate of 0.005 or less caused underfitting of the models for our
problem (see Figure 16c,d). With 130 weak learners, strong underfitting occurred for values
less than or equal to 0.01 (see Figure 16a,b), while a learning rate greater than 0.1 produced
overfitting in both cases.

(a) (b)

(c) (d)

(e)

Figure 14. Behaviour of RF models for varying numbers of minimum cases for parent and child nodes;
maximum depth = 5, percentage of samples for training each base estimator = 0.75. (a) Minimum of
two cases for parent nodes and one for child nodes; (b) minimum of 10 cases for parent nodes and
five for child nodes; (c) minimum of 20 cases for parent nodes and 10 for child nodes; (d) minimum
of 40 cases for parent nodes and 20 for child nodes; (e) minimum of 50 cases for parent nodes and
25 for child nodes.

Appl. Sci. 2023, 13, 1953 21 of 38

Table 9. Statistical measures for RF; minimum of 20 cases for parent nodes and 10 for child nodes,
maximum depth = 5, p = proportion of samples for training each base estimator.

p Measures Mean of Test Sets With Validation (Mean of 10 Models)

R2 0.8135 0.8316
0.75 MAE 2.9809 2.8207

MAPE 16.7259 15.7916
RMSE 3.8434 3.6784

R2 0.8125 0.8343
0.9 MAE 2.9867 2.7955

MAPE 16.7081 15.6373
RMSE 3.8534 3.6486

R2 0.8119 0.8359
1 MAE 2.9925 2.7808

MAPE 16.7218 15.5416
RMSE 3.8603 3.6303

From the above figures, we see that the best results were obtained with 130 boosting
iterations (weak learners or trees) and a learning rate of between 0.04 and 0.06; a mean
RMSE of 3.799, a mean MAE of 2.9338 and a mean MAPE of 16.2570% were achieved for
the test datasets with a learning rate of 0.05.

In an attempt to reduce possible overfitting, the minimal cost-complexity pruning
algorithm [61] was also used with the GBR algorithm. Figure 17 shows the influence of
the value of the pruning parameter. In Figure 17a, a minimum of two cases for parent
nodes and one for child nodes were considered, while Figure 17b shows a minimum
of 20 cases for parent nodes and 10 for child nodes. In both cases, similar performance
was obtained for a pruning parameter of 0.00001 or less, and this was comparable to the
performance of the model when no pruning was carried out (i.e., a pruning parameter
of zero). However, pruning parameters greater than 0.00001 caused underfitting of the
models. Table 10 summarises several goodness-of-fit measures for the best configurations
of hyperparameters found. Different proportions of samples were also used to train each
base learner. The best gradient-boosted models achieved a mean RMSE of between 3.15
and 3.2979 and outperformed RF regardless of the proportion of samples extracted from
the training dataset to train each base estimator (see Tables 9 and 10).

(a) (b)

(c) (d)

Figure 15. Gradient-boosted tree models with varying numbers of stages or built trees, for a minimum of
two cases for parent nodes and one for child nodes; maximum depth = 3. (a) RMSE, learning rate = 0.02;
(b) MAE, learning rate = 0.02; (c) RMSE, learning rate = 0.05; (d) MAE, learning rate = 0.05.

Appl. Sci. 2023, 13, 1953 22 of 38

Table 10. Statistical measures for gradient-boosted tree models; learning rate = 0.05, number of
estimators = 130, maximum depth = 3, p = proportion of samples for training each base learner;
(a) minimum of two cases for parent nodes and one for child nodes, (b) minimum of 20 cases for
parent nodes and 10 for child nodes.

Model Measures Mean of Test Sets With Validation (Mean of 10 Models)

(a) R2 0.8185 0.8762
p = 0.75 MAE 2.9183 2.4472

MAPE 16.2005 13.6766
RMSE 3.7921 3.1528

(b) R2 0.8204 0.8646
p = 0.75 MAE 2.8988 2.5283

MAPE 16.1394 14.1537
RMSE 3.7725 3.2979

(a) R2 0.8182 0.8765
p = 0.9 MAE 2.9209 2.4396

MAPE 16.2251 13.6751
RMSE 3.7959 3.1500

(b) R2 0.8201 0.8590
p = 0.9 MAE 2.9032 2.5825

MAPE 16.2201 14.4576
RMSE 3.7747 3.3650

(a) R2 0.8178 0.8732
p = 1.0 MAE 2.9338 2.4690

MAPE 16.2570 13.8063
RMSE 3.7990 3.1907

(b) R2 0.8175 0.8632
p = 1.0 MAE 2.9318 2.5466

MAPE 16.3024 14.2430
RMSE 3.8021 3.3145

The gradient-boosted tree models discussed above were created using the Scikit-learn
API. With the aim of optimising these models, we also used the XGBoost library, an opti-
mised distributed gradient boosting library that allowed us to apply some regularisation
techniques such as L1 and L2 regularisation [62] and dropout techniques [63]. The booster
parameter sets the type of learner used in the algorithm: the gbtree booster allows for
L1 and L2 regularisation, while the dart booster inherits the gbtree booster, but adds
dropout techniques, allowing some trees to be dropped to solve the possible problem
of overfitting. Both learners gave the same results when no dropout was added, and
all instances of the training dataset were employed to train each base learner (p = 1).
For p < 1, the dart learner slightly outperformed the gbtree learner, although the dif-
ferences were not significant. Note that XGBoost does not support the hyperparameters
related to the minimum number of samples required to split an internal or a leaf node;
instead, the min_child_weight parameter can be controlled. This parameter represents the
minimum sum of the instance weights needed for a child node. If the tree partitioning step
results in a leaf node with a sum of the instance weights of less than min_child_weight,
the building process will cease any further partitioning. In linear regression tasks, this
simply corresponds to the minimum number of instances required for each node. This
parameter was varied from 0 to 20, and the best performance was obtained for values of
zero and one, which gave the same results. Figure 18 illustrates the behaviour of XGBoost
with varying numbers of trees and a varying percentage of samples used to train each base
learner. Neither L1 and L2 regularisation nor dropout techniques are included in these re-
sults. Under these conditions, XGBoost behaved analogously to the previous gradient-boosted
tree models, in which the nodes could be expanded until all the leaves were pure. That is, both
algorithms gave a similar performance as the number of trees increased. More specifically,

Appl. Sci. 2023, 13, 1953 23 of 38

for a learning rate of 0.05, both models gave good results for numbers of base estimators
of between 90 and 130. However, XGBoost produced more underfitting for small numbers
of trees. When setting the best configurations of hyperparameters, we found that XGBoost
slightly outperformed the previous gradient-boosted tree model. For example, with 130 weak
learners, a learning rate of 0.05 and 75% of samples used to train each base estimator, XGBoost
achieved a mean RMSE of 3.1402, a mean MAE of 2.4375 and a mean MAPE of 13.6244%,
i.e., better results than those shown in Table 10 (see model (a) in Tables 10 and 11). To anal-
yse the prediction accuracy of XGBoost depending on the type of regularisation applied,
the parameters used to control the L1 and L2 regularisation (α and λ, respectively) were
varied in the set {0, 0.0001, 0.001, 0.01, 0.1, 0.2} and the dropout rate was varied in the set
{0, 0.01, 0.05, 0.1}. The best results were obtained for α = 0, λ = 0.001, and a dropout rate
of zero (see Figures 19 and 20). The prediction accuracy of these models was comparable
to the results obtained without these types of regularisation. More specifically, under the
above conditions, XGBoost achieved a mean RMSE of 3.1396, a mean MAE of 2.4371 and a
mean MAPE of 13.6238%. For the test datasets, the mean values were 3.7812, 2.9020 and
16.0921%, respectively (see Table 11). Note that both the gradient-boosted tree models and
the extreme gradient-boosted tree models outperformed RF.

(a) (b)

(c) (d)

Figure 16. Gradient-boosted tree models with varying learning rates, for a minimum of two cases for
parent nodes and one for child nodes; maximum depth = 3. (a) RMSE, number of estimators = 130;
(b) MAE, number of estimators = 130; (c) RMSE, number of estimators = 250; (d) MAE, number of
estimators = 250.

Appl. Sci. 2023, 13, 1953 24 of 38

(a) (b)

Figure 17. Gradient-boosted tree models with varying pruning parameters; learning rate = 0.05,
proportion of samples for training each base learner = 1. (a) RMSE. Minimum of two cases for parent
nodes and one for child nodes; (b) RMSE. Minimum of 20 cases for parent nodes and 10 for child nodes.

(a) (b)

(c) (d)

Figure 18. Results for XGBoost models; 10 models randomly generated with a 75:25 ratio by means
of simple random sampling, maximum depth = 3, learning rate = 0.05, minimum sum of instance
weight needed in a child node = 1, p = proportion of samples for training each base estimator.
(a) RMSE, p = 0.75; (b) MAE, p = 0.75; (c) RMSE, p = 1; (d) MAE, p = 1.

Table 11. Results for XGBoost models; learning rate = 0.05, number of estimators = 130, maximum
depth = 3, p = proportion of samples for training each base learner, minimum sum of instance
weight needed in a child node = 1.

Model Measures Mean of Test Set With Validation (Mean of 10 Models)

p = 0.75 R2 0.8195 0.8772
α = 0 MAE 2.9042 2.4375
λ = 0 MAPE 16.1032 13.6244

RMSE 3.7821 3.1402

p = 0.75 R2 0.8196 0.8773
α = 0 MAE 2.9020 2.4371

λ = 0.001 MAPE 16.0921 13.6238
RMSE 3.7812 3.1396

p = 0.9 R2 0.8172 0.8761
α = 0 MAE 2.9261 2.4408
λ = 0 MAPE 16.2213 13.6526

RMSE 3.806 3.1545

p = 0.9 R2 0.8175 0.8761
α = 0 MAE 2.9256 2.4416

λ = 0.001 MAPE 16.2244 13.6555
RMSE 3.8027 3.1549

p = 1.0 R2 0.8172 0.8731
α = 0 MAE 2.9356 2.4693
λ = 0 MAPE 16.2774 13.8164

RMSE 3.8051 3.1926

p = 1.0 R2 0.8167 0.8730
α = 0 MAE 2.9393 2.4698

λ = 0.001 MAPE 16.3016 13.8291
RMSE 3.8104 3.1936

Appl. Sci. 2023, 13, 1953 25 of 38

(a) (b)

(c)

Figure 19. Results for XGBoost models with varying λ; learning rate = 0.05, number of estimators
= 130, maximum depth = 3, p = 0.75, minimum sum of instance weight needed in a child node = 1,
dropout rate = 0, α = 0. (a) RMSE, training dataset; (b) RMSE, test dataset; (c) RMSE, all datasets.

(a) (b)

(c)

Figure 20. Results for XGBoost models with varying dropout rate; learning rate = 0.05, number of
estimators = 130, maximum depth = 3, p = 0.75, minimum sum of instance weight needed in a child
node = 1, α = 0, λ = 0.001. (a) RMSE, training dataset; (b) RMSE, test dataset; (c) RMSE, all datasets.

3.4. Support Vector Regression

SVR methods were also studied in terms of predicting the compressive strength of
LWAC. For this purpose, we used linear, polynomial, RBF and sigmoid kernels, and differ-
ent values of C, ε and γ were explored. The regularisation parameter C was varied between
0.1 and 100, and ε was drawn from the set {0.00001, 0.0001, 0.001, 0.002, 0.003, 0.004, 0.005,

Appl. Sci. 2023, 13, 1953 26 of 38

0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4}. The values for γ were γ = 1
d and γ = 1

d Var(X)
,

where d is the number of input variables and Var(X) is the variance of the input dataset.
The use of linear, polynomial and sigmoid kernels failed to improve the performance of the
RBF kernel, giving models with RMSE values greater than four. We, therefore, focus here
on an analysis of the SVR models with RBF kernel. Figure 21 illustrates the behaviour of the
SVR models with RBF kernel for various values of ε for the epsilon tube. The best results
were obtained with ε ≤ 0.05 for both choices of γ. For ε > 0.1, the models were underfitted.

(a) (b)

Figure 21. RMSE for the SVR models; RBF kernel, C = 1. (a) γ = 1
d ; (b) γ = 1

d Var(X)
.

The influence of the parameter C is illustrated in Figure 22 for good values of ε.
Figure 22a,b shows the behaviour of the RMSE for γ = 1

d , and Figure 22c,d shows the
results for γ = 1

d Var(X)
. Different behaviour was observed depending on the value of γ.

For γ = 1
d , the best results were obtained with a value for C of between two and nine;

however, for γ = 1
d Var(X)

, a lower value of C was needed to avoid overfitting. In this case,
the optimal values of C were between 0.3 and 0.7, and this model outperformed the one
based on γ = 1

d . Table 12 displays several metrics, with C in this range, for this value of γ.

(a) (b)

(c) (d)

Figure 22. RMSE for the SVR models for varying values of C; RBF kernel. (a) γ = 1
d , ε = 0.05,

0.1 ≤ C ≤ 100; (b) γ = 1
d , ε = 0.05, 0.1 ≤ C ≤ 15; (c) γ = 1

d Var(X)
, ε = 0.04, 0.1 ≤ C ≤ 100;

(d) γ = 1
d Var(X)

, ε = 0.04, 0.1 ≤ C ≤ 1.1.

Appl. Sci. 2023, 13, 1953 27 of 38

Table 12. Statistical measures on the test data for SVR models; 10 models randomly generated with a
75:25 ratio by means of simple random sampling, RBF kernel, γ = 1

d Var(X)
, ε = 0.04.

C Measures Mean of Test Sets With Validation (Mean of 10 Models)

R2 0.8120 0.8237
0.3 MAE 3.0000 2.8778

MAPE 16.2627 15.5709
RMSE 3.8586 3.7637

R2 0.8124 0.8272
0.4 MAE 2.9944 2.852

MAPE 16.1798 15.4092
RMSE 3.8543 3.7252

R2 0.8115 0.8299
0.5 MAE 3.0004 2.832

MAPE 16.182 15.2909
RMSE 3.8639 3.6970

R2 0.8111 0.8134
0.6 MAE 2.9986 2.8152

MAPE 16.1617 15.1992
RMSE 3.8679 3.6751

R2 0.8101 0.8333
0.7 MAE 3.0035 2.8016

MAPE 16.1789 15.1239
RMSE 3.8783 3.6591

The performance of these models was similar to that of the RF models, with a mean
RMSE of between 3.8543 and 3.8783 for the test sets and between 3.6591 and 3.7637 for the
overall dataset.

3.5. Weighted Average Ensemble Models

We developed a weighted average ensemble (WAE) method to predict the compressive
strength of LWAC using the tree-based ensemble methods and the SVR method. The RF,
SVR and XGBoost models were combined to give a more powerful model than each of
these approaches alone. The triplet (α1, α2, α3) denotes the weights associated with each
of these models, respectively. These parameters were varied from zero to one, such that
α1 + α2 + α3 = 1. The predictions from the WAE method were obtained following the
flowchart shown in Figure 23 as a weighted sum of the results from the RF, SVR and
XGBoost models, using the weights α1, α2 and α3. For the cross-validation procedure,
the dataset was split into training and test sets with a ratio of 75:25, using the same seeds
as in the previous experiments. This randomised process was repeated 10 times. For each
of these sets, the training process was carried out to tune the hyperparameters associated
with these methods. The initialisation of the training procedure was conducted using good
values for each individual model. To search for the optimal weights, the regularisation was
controlled by means of the C parameter of the SVR method. In addition, the behaviour
of this ensemble method was explored for varying proportions of the samples (p) used to
train each base learner. The results showed good performance for p = 0.75 (see Figure 24).

Figure 23. Flowchart of the WAE method.

Appl. Sci. 2023, 13, 1953 28 of 38

(a) (b)

Figure 24. Results for WAE models; γ = 1
d Var(X)

, p = proportion of samples for training each base
learner, learning rate = 0.05, ε = 0.04, C = 6. (a) RMSE, training dataset; (b) RMSE, test dataset.

The WAE models were also rated based on the values of their goodness-of-fit measures,
using both the discrete and continuous rankings described in Section 2.1.6 (see Table 13).
Based on these rankings, Table 14 summarises several goodness-of-fit measures for the best
configurations of hyperparameters found. For a tolerance error of 0.04, a good compromise
between the accuracy of the models on the training sets and the accuracy on the test sets
was obtained for 0.6 ≤ C ≤ 6. For these configurations, suitable models were obtained with
0 ≤ α1 ≤ 0.15, 0.65 ≤ α3 ≤ 1, and α2 = 1− α1− α3, with a mean RMSE of between 3.75 and
3.757, a mean MAE of between 2.872 and 2.877, and a mean MAPE of approximately 15.8%
for the test datasets. These values were lower than those obtained from each individual
estimator. We conclude that a good choice of weights for this ensemble method allows it to
outperform the XGBoost models.

For setting competitive models, we first identified the three WAE models with the
lowest values of the overall continuous ranking; these were models (6), (4) and (5), with an
overall rank of approximately 7.89 (see Table 13). We then analysed the corresponding
training and test ratings to detect possible overfitting. Similar values were obtained for the
training and test datasets, indicating that no overfitting was detected. Next, we analysed
the discrete ranking. In this case, higher overall ranks were obtained for models (6), (2) and
(4). Since model (2) obtained the worst discrete rank in the training process, we concluded
that the settings of models (4) and (6) are preferable. As can be seen from Table 14, both
models performed well on the test dataset, with similar values of goodness-of-fit. Model
(4) had a mean determination coefficient of 0.8201, a mean RMSE of 3.757, a mean MAE of
2.8768 and a mean MAPE of 15.845%, for the test dataset, while for model (6), the values
were 0.822, 3.7562, 2.8755 and 15.8056%, respectively.

Table 13. Ranking analysis of WAE models; D: discrete rank, C: continuous rank, learning rate = 0.05,
number of estimators = 130, maximum depth = 3, p = 0.75, ε = 0.04, λ = 0.001, C = 6.

WAE Model Dataset R2/1− R2 MAE MAPE RMSE Total Rank Overall Rank
D/C D/C D/C D/C D/C D/C

(1) Training 2/0.9925 3/0.9882 6/0.9779 2/0.9962 13/3.9548 21/7.9505
α1 = 0, α2 = 0.4, α3 = 0.60 Test 1/1 1/1 5/0.9957 1/1 8/3.9957

(2) Training 3/0.9878 2/0.9923 2/0.9904 3/0.9940 10/3.9645 32/7.9222
α1 = 0.15, α2 = 0.2, α3 = 0.65 Test 5/0.9796 6/0.9928 6/0.9953 5/0.9900 22/3.9577

(3) Training 1/1 1/1 1/1 1/1 4/4 25/7.9594
α1 = 0.25, α2 = 0.15, α3 = 0.60 Test 6/0.9790 5/0.9934 4/0.9972 6/0.9898 21/3.9594

(4) Training 6/0.9691 5/0.9847 4/0.9858 6/0.9844 21/3.9240 29/7.8930
α1 = 0, α2 = 0.15, α3 = 0.85 Test 3/0.9829 2/0.9945 1/1 2/0.9916 8/3.9690

(5) Training 4/0.9700 4/0.9852 3/0.9863 5/0.9849 16/3.9264 26/7.8949
α1 = 0.01, α2 = 0.15, α3 = 0.84 Test 2/0.9829 3/0.9944 2/0.9998 3/0.9914 10/3.9685

(6) Training 5/0.9700 6/0.9835 5/0.9823 4/0.9850 20/3.9208 35/7.8861
α1 = 0, α2 = 0.2, α3 = 0.80 Test 4/0.9823 4/0.9941 3/0.9975 4/0.9914 15/3.9653

Appl. Sci. 2023, 13, 1953 29 of 38

Table 14. Results for WAE models; learning rate = 0.05, number of estimators = 130, maximum
depth = 3, p = 0.75, ε = 0.04, λ = 0.001, C = 6.

Model Measures Mean of Test Sets With Validation (Mean of 10 Models)

(2) R2 0.8225 0.8769
α1 = 0.15 MAE 2.8720 2.4278
α2 = 0.20 MAPE 15.7700 13.4316
α3 = 0.65 RMSE 3.7509 3.1438

(4) R2 0.8201 0.8783
α1 = 0 MAE 2.8768 2.4159

α2 = 0.15 MAPE 15.8450 13.4064
α3 = 0.85 RMSE 3.7570 3.1261

(5) R2 0.8219 0.8783
α1 = 0.01 MAE 2.8764 2.4167
α2 = 0.15 MAPE 15.8422 13.4105
α3 = 0.84 RMSE 3.7564 3.1270

(6) R2 0.822 0.8782
α1 = 0 MAE 2.8755 2.4135

α2 = 0.20 MAPE 15.8056 13.3628
α2 = 0.80 RMSE 3.7562 3.1272

3.6. Comparison of Models

Figures 25–27 present a comparison of the above models. As can be seen from these
figures, the MLP, RF and SVR models achieved similar results, with best mean RMSEs of
3.6765, 3.6303 and 3.6591, respectively, and best mean MAPEs of 15.0795%, 15.5416% and
15.1239% (see Table 15). In addition, their efficiencies were higher than those of the KNN
models (with a best mean RMSE of 3.9694, a best mean MAPE of 15.9617%, and a best MAE
of 3.0006). Although these three models gave better performance than the ANN models
studied in [6] and the MLR and RT models explored in [19], none of them outperformed the
models obtained in this study using the GBR, XGBoost, and WAE methods (see Figure 27).

In addition, the comparison of the models treated herein with the models obtained
in previous research works [6,19] also showed that the MLR [19] and KNN models were
the worst in terms of predicting the compressive strength of LWAC. KNN showed slightly
lower performance than the best tree model in [19] (RMSE = 3.808) and the best ANN
model in [6] (RMSE = 3.745). The KNN models based on the Manhattan distance only
succeeded in outperforming the MLR models (with a best mean RMSE of 4.332), while the
KNN models based on the Euclidean distance, with a best mean RMSE of 4.4808, were
worse than the MLR models.

A comparison between GBR and XGBoost models showed that the XGBoost models
achieved the smallest mean values for the RMSE and MAE on both the training and test
datasets (see Figures 25 and 26). With suitable hyperparameter settings, the XGBoost
models outperformed GBR models and achieved a mean determination coefficient of
approximately 0.8773, a mean RMSE of 3.1396, a mean MAE of 2.4371, and a mean MAPE
of 13.6238% (see Table 15 and Figure 27).

(a) (b)

Figure 25. Comparison of the KNN, MLP, RF, GBR, XGBoost and SVR models (see Table 15 for the
x-axis labels). (a) MAE; (b) RMSE.

Appl. Sci. 2023, 13, 1953 30 of 38

(a) (b)

(c) (d)

(e) (f)

Figure 26. Comparison of the GBR, XGBoost and WAE models (see Table 15 for the x-axis labels).
(a) MAE, test dataset; (b) MAE, training and all dataset; (c) RMSE, test dataset; (d) RMSE, training
and all dataset; (e) MAPE, test dataset; (f) MAPE, training and all dataset.

(a) (b)

Figure 27. Ranking of the models of Table 15. (a) Discrete ranking; (b) continuous ranking.

The mean values of the performance measures for the best machine learning techniques
(GBR, XGBoost and WAE) are shown in Table 16. This table and the analysis of the ranking
of the best GBR, XGBoost and WAE models in Table 17 indicate that with appropriate
values of the weight parameters, the proposed WAE models based on a combination of the
RF, SVR, and XGBoost outperformed the GBR and XGBoost models. Note that the overall
rank of the WAE model is higher than those of the GBR and XGBoost models. This is also
true for the total rank for both the training and test datasets. For the results in Table 16, we

Appl. Sci. 2023, 13, 1953 31 of 38

used α2 = 0.2 and α3 = 0.8. This model gave a mean determination coefficient of 0.8782,
a mean RMSE of 3.1272, a mean MAE of 2.4135 and a mean MAPE of 13.3628%. Similar
results were obtained for a combination of the SVR and XGBoost models with α2 between
0.15 and 0.2, and α3 between 0.8 and 0.85.

Table 15. Comparison of models based on statistical measures (mean of the 10 models);
md = maximum depth, nt = number of trees, p = proportion of samples for training each base
estimator, dr = dropout ratio, (∗) best model.

Method Parameters R2 MAE MAPE RMSE

MLR (∗) [19] - 0.766 3.396 18.86 4.332

ANN (∗) [6] 6 neurons 0.825 2.897 15.85 3.745

RT (∗) [19] CHAID 0.820 2.928 16.22 3.808

KNN (1) Manhattan distance, K = 5 0.8038 3.0006 15.9617 3.9694
KNN (2) Manhattan distance, K = 7 0.7930 3.1044 16.6643 4.0775

MLP (1) 30 neurons, L-BFGS, ReLU, α = 0.1 0.8290 2.8415 15.4097 3.7050
MLP (2) 40 neurons, L-BFGS, ReLU, α = 0.1 0.8317 2.7956 15.0795 3.6765

RF (1) md = 5, nt = 100, p = 0.75 0.8316 2.8207 15.7916 3.6784
RF (2) md = 5, nt = 100, p = 0.9 0.8343 2.7955 15.6373 3.6486
RF (3) md = 5, nt = 100, p = 1 0.8359 2.7808 15.5416 3.6303

GBR (1) md = 3, nt = 130, p = 0.75 0.8762 2.4472 13.6766 3.1528
GBR (2) md = 3, nt = 130, p = 0.9 0.8765 2.4396 13.6751 3.1500
GBR (3) md = 3, nt = 130, p = 1 0.8732 2.4690 13.8063 3.1907

XGBoost (1) md = 3, nt = 130, α = 0, λ = 0, dr = 0, p = 0.75 0.8772 2.4375 13.6244 3.1402
XGBoost (2) md = 3, nt = 130, α = 0, λ = 0.001, dr = 0, p = 0.75 0.8773 2.4371 13.6238 3.1396

SVR (1) C = 0.4, γ = 1
d Var(X) , ε = 0.04 0.8272 2.8520 15.4092 3.7252

SVR (2) C = 0.5, γ = 1
d Var(X) , ε = 0.04 0.8299 2.8320 15.2909 3.6970

SVR (3) C = 0.6, γ = 1
d Var(X) , ε = 0.04 0.8134 2.8152 15.1992 3.6751

SVR (4) C = 0.7, γ = 1
d Var(X) , ε = 0.04 0.8333 2.8016 15.1239 3.6591

WAE (1) C = 6, p = 0.75, α1 = 0, α2 = 0.4, α3 = 0.60 0.8757 2.4259 13.3133 3.1598
WAE (2) C = 6, p = 0.75, α1 = 0.15, α2 = 0.2, α3 = 0.65 0.8769 2.4278 13.4316 3.1438
WAE (3) C = 6, p = 0.75, α1 = 0.25, α2 = 0.15, α3 = 0.60 0.8760 2.4415 13.5316 3.1557
WAE (4) C = 6, p = 0.75, α1 = 0, α2 = 0.15, α3 = 0.85 0.8783 2.4159 13.4064 3.1261
WAE (5) C = 6, p = 0.75, α1 = 0.01, α2 = 0.15, α3 = 0.84 0.8783 2.4167 13.4105 3.1270
WAE (6) C = 6, p = 0.75, α1 = 0, α2 = 0.2, α3 = 0.80 0.8782 2.4135 13.3628 3.1272

An analysis of the importance of each variable on the final predicted response for the
different models is shown in Figures 28 and 29. More specifically, Figure 28 compares the
importance of each variable in the RF, GBR and XGBoost models using the normalised
feature importance based on the mean decrease in impurity. For the RF and GBR models,
the most informative variables are the LWA particle density, the LWAC fixed density
and the experimental dry density. However, the order of importance of these variables
differs between the two models. The number of important features is higher for the
XGBoost models, and these are the experimental dry density, the segregation index, the P-
wave velocity, the concrete laying time and the LWA particle density. Figure 29 shows
the importance of each variable in the MLP, KNN and SVR models based on feature
permutation. The permutation feature importance is the decrease in the score for a model
when a single feature value is randomly shuffled. As can be seen from this figure, the MLP
and SVR models have the same three most important variables as the RF and GBR models,
while the KNN model has only two of these three variables as the most important: the LWA
particle density and the LWAC fixed density. This is consistent with the fact that the KNN
models are worse than the MLP, SVR and tree-based models. In addition, the XGBoost
models (and hence the WAE models) have more informative variables and outperform
all other techniques discussed in this work. Regarding the computational cost, KNN and
SVR required approximately 0.04 s for training and testing each model, while RF and GBR
required between 0.08 and 0.12 s, and XGBoost required approximately 0.4 s. The WAE
algorithm had the highest computational cost and complexity and required a mean time of
1.1 s; however, it obtained the best performance.

Appl. Sci. 2023, 13, 1953 32 of 38

Table 16. Comparison of GBR, XGBoost and WAE models; 10 models randomly generated with a
75:25 ratio by means of simple random sampling (see Table 15 for the description of the models).

Method Dataset St. Measures Median Mean Confidence
Interval (95%)

GBR (2)

Training R2 0.8952 0.8954 [0.8934, 0.8974]
MAE 2.2738 2.2792 [2.2533, 2.3051]

MAPE 12.7757 12.8251 [12.6434, 13.0068]
RMSE 2.9005 2.9009 [2.8671, 2.9347]

Test R2 0.8144 0.8182 [0.8078, 0.8286]
MAE 2.9413 2.9209 [2.7964, 3.0454]

MAPE 15.9138 16.2251 [15.3890, 17.0612]
RMSE 3.8291 3.7959 [3.6467, 3.9441]

All R2 0.8765 0.8765 [0.8741, 0.8789]
MAE 2.4403 2.4396 [2.4197, 2.4595]

MAPE 13.6819 13.6751 [13.5575, 13.7927]
RMSE 3.1504 3.1500 [3.1185, 3.1815]

XGBoost (2)

Training R2 0.8954 0.8960 [0.8942, 0.8978]
MAE 2.2936 2.2822 [2.2524, 2.3120]

MAPE 12.7911 12.8010 [12.6456,12.9564]
RMSE 2.8853 2.8926 [2.8605,2.9247]

Test R2 0.8160 0.8196 [0.8111, 0.8281]
MAE 2.8887 2.9020 [2.7886, 3.0154]

MAPE 15.9980 16.0921 [15.3427, 16.8415]
RMSE 3.8046 3.7812 [3.6523, 3.9101]

All R2 0.8773 0.8773 [0.8754, 0.8792]
MAE 2.4384 2.4371 [2.4181, 2.4561]

MAPE 13.6637 13.6238 [13.4818, 13.7658]
RMSE 3.1394 3.1396 [3.1148, 3.1644]

WAE (6)

Training R2 0.8967 0.8965 [0.8950, 0.8980]
MAE 2.2643 2.2595 [2.2340, 2.2850]

MAPE 12.5287 12.5486 [12.3974, 12.6998]
RMSE 2.8769 2.8857 [2.8593, 2.9121]

Test R2 0.8185 0.8220 [0.8137, 0.8303]
MAE 2.8447 2.8755 [2.7697, 2.9813]

MAPE 15.7647 15.8056 [15.0947, 16.5165]
RMSE 3.7892 3.7562 [3.6275, 3.8849]

All R2 0.8785 0.8782 [0.8761, 0.8803]
MAE 2.4112 2.4135 [2.3987, 2.4283]

MAPE 13.3920 13.3628 [13.2487, 13.4769]
RMSE 3.1240 3.1272 [3.0997, 3.1547]

Table 17. Discrete ranking analysis of GBR, XGBoost and WAE models (see Table 15 for the description
of the models).

Model Dataset R2 MAE MAPE RMSE Total Rank Overall Rank

GBR (2) Training 1 2 1 1 5 9Test 1 1 1 1 4

XGBoost (2) Training 2 1 2 2 7 15Test 2 2 2 2 8

WAE (6) Training 3 3 3 3 12 24Test 3 3 3 3 12

Appl. Sci. 2023, 13, 1953 33 of 38

(a) (b)

(c)

Figure 28. Normalised feature importance for RF, GBR and XGBoost models. (a) RF model; (b) GBR
model; (c) XGBoost model.

(a) (b)

(c)

Figure 29. Normalised feature permutation importance for KNN, SVR and MLP models. (a) KNN
model; (b) SVR model; (c) MLP model.

4. Conclusions

In this work, several well-known machine learning techniques have been explored
with the aim of selecting the best in terms of predicting the compressive strength of segre-
gated LWAC with expanded clay. The attributes involved in this problem were the particle
density of the LWA, the laying time of the concrete, the vibration time, the experimental dry
density of the specimen obtained after 28 days, the P-wave velocity, and the segregation
index based on the P-wave velocities proposed in [6]. The KNN, RF, GBR, XGBoost and

Appl. Sci. 2023, 13, 1953 34 of 38

SVR algorithms were implemented, and their performance was explored for varying values
of the hyperparameters involved. In addition, a weighted ensemble method was devised
that combined the RF, SVR and XGBoost models by using weight parameters α1, α2, α3,
respectively. In an attempt to optimise the benefits of the variance-reducing effects of
this ensemble learning technique, the amount of regularisation was explored through the
parameter C of the SVR technique. The efficiency of these models was compared, both
with each other and with models proposed in previous works [6,19]. Two cross-validation
procedures were applied, involving Monte Carlo and repeated k-fold cross-validation,
and no significant differences in the results were found.

The behaviour of these methods indicated that the KNN models based on the Man-
hattan distance outperformed the MLR models presented in [19]. However, this technique
gave the poorest performance of those implemented in this work. All of the other tech-
niques studied in this work (MLP, RF, SVR, GBR, XGBoost and WAE) outperformed the
machine learning techniques used in previous works (MLR, ANN and RT) [6,19]. The MLP,
RF and SVR models behaved similarly, with best mean RMSEs of 3.6765, 3.6303 and 3.6591,
respectively, and mean MAPEs of 15.0795%, 15.5406%, and 15.1239%. However, the RF
models were the most stable (least influenced by the data splitting process), and a ranking
analysis indicated that their best model was above the MLP models. The same performance
was obtained for the MSE and MAE splitting criteria, and the best results were achieved
with an ensemble of 100 trees, a maximum depth of five, and a proportion of samples for
training each base estimator greater than or equal to 0.75. A good compromise between
accuracy and the prevention of overfitting was found based on pre-pruning the tree with a
minimum of 20 samples for child nodes and 10 for parent nodes. Suitable settings for the
hyperparameters when training the MLP networks were the use of the L-BFGS optimiser,
a ReLU activation function, and a strength of 0.1 for Ridge regularisation, which gave the
best results with one hidden layer and a number of neurons between 30 and 40. However,
with regard to the stability of these models, we observed that the MLP method was the most
strongly influenced by the choice of the training and test data split. In relation to SVR, good
configurations of parameters were obtained with the RBF kernel, ε = 0.04, a regularisation
parameter C of between 0.3 and 0.7, and γ = 1

d Var(X)
. These models exhibited similar

stability to those obtained with the best GBR, XGBoost and WAE techniques.
The optimised version of the GBR technique, XGBoost, which allows for some regular-

isation techniques to be applied, outperformed the other GBR models. Suitable hyperpa-
rameter settings were the use of the dart booster, a strength of 0.001 for L2 regularisation,
a maximum depth of three, and between 90 and 130 boosting stages. These XGBoost models
achieved a mean determination coefficient of approximately 0.8773, a mean RMSE of 3.1396,
a mean MAE of 2.4371, and a mean MAPE of 13.6238%, whereas the values obtained with
the GBR model were 0.8765, 3.15, 2.4396 and 13.6751%, respectively.

However, our proposed WAE method achieved the best prediction results for the
compressive strength of LWAC, with weights of 0 ≤ α1 ≤ 0.15, 0.65 ≤ α3 ≤ 1 and
α2 = 1− α1 − α3. We postulate that WAE methods combining SVR and XGBoost, with a
value of α2 between 0.15 and 0.20, and a value of α3 between 0.80 and 0.85 represent the best
strategies. With these weight parameters, our WAE models achieved a mean determination
coefficient of about 0.878, a mean RMSE of about 3.127, a mean MAE of about 2.415 and
a mean MAPE of 13.4%. This is coherent with the results of our ranking analysis of the
best models for each technique, which identified the WAE models with weights in these
intervals as the best options, followed by the XGBoost and GBR models, and a third group
consisting of the RF, SVR and MLP models. This ranking finished with the ANN, RT, KNN
and MLR models, in this order.

Our analysis of the importance of the input variables in each machine learning tech-
nique showed that for the RF, MLP, SVR and GBR models, the most informative variables
were the LWA particle density, the LWAC fixed density and the experimental dry density,
although the order of importance of some of these variables differed. However, for the
worst model (KNN), only two of these three variables were the most important (the LWA

Appl. Sci. 2023, 13, 1953 35 of 38

particle density and the LWAC fixed density). The XGBoost models, and hence the WAE
models, had more informative features and outperformed all other techniques discussed
in this work. These two methods included more important variables than the other tech-
niques in terms of predicting the compressive strength of segregated LWAC (experimental
dry density, segregation index, P-wave velocity, concrete lying time and LWA particle
density). The most important of these five variables were the experimental dry density,
the segregation index and the P-wave velocity.

The use of non-destructive techniques in the evaluation of the quality of concrete
allows for monitoring of the condition of concrete and ensuring its proper production
during construction. The large variability in the aggregates, types of LWA, cement, target
density of concrete, and the additions and additives used for its production makes it
difficult to correlate non-destructive techniques with strength quality. The results of our
study demonstrate that computational intelligence models are reliable for use in predicting
the compressive strength of LWAC using ultrasonic pulse velocity and would allow for
continuous verification of the quality of the LWAC, both for industrialised construction and
during the placement of concrete, since they include more variables in the learning process.

Author Contributions: Conceptualisation, V.M., J.P. and A.J.T.-A.; methodology, V.M. and J.P.; soft-
ware, V.M., H.P., and J.P.; validation, V.M., H.P., J.P. and A.J.T.-A.; formal analysis, V.M. and H.P.;
investigation, V.M., H.P. and J.P.; data curation, V.M. and A.J.T.-A.; writing—original draft preparation,
V.M., H.P. and J.P.; writing—review and editing, V.M., J.P. and A.J.T.-A.; supervision, V.M. and J.P.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MCIN/AEI/10.13039/501100011033, grant PID2021-123627OB-
C55 and by “ERDF A way of making Europe”.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LWAC Lightweight aggregate concrete
LWA Lightweight aggregate
ANN Artificial neural network
MLP Multilayer perceptron
RMSE Root mean square error
MLR Multiple linear regression
RT Regression tree
CHAID Chi-squared automatic interaction detector
CRT Classification and regression trees
NLR Nonlinear regression
FRP Fiber-reinforced plastic
SVR Support vector regression
GBR Gradient boosting regressor
XGBoost Extreme gradient boosting regressor
KNN K-nearest neighbours
RF Random forest
GPR Gaussian progress regression
MAE Mean absolute error
WAE Weighted average ensemble
ReLU Rectified linear unit
MSE Mean squared error
SGD Stochastic gradient descent
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
RBF Radial basis function
MAPE Mean absolute percentage error

Appl. Sci. 2023, 13, 1953 36 of 38

References
1. Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete; Elsevier: Amsterdam, The Netherlands, 2002.
2. Haller, T.; Beuntner, N.; Gutsch, H.; Thienel, K.C. Challenges on pumping infra-lightweight concrete based on highly porous

aggregates. J. Build. Eng. 2023, 65, 105761. [CrossRef]
3. Agrawal, Y.; Gupta, T.; Sharma, R.; Panwar, N.L.; Siddique, S. A Comprehensive Review on the Performance of Structural

Lightweight Aggregate Concrete for Sustainable Construction. Constr. Mater. 2021, 1, 39–62. . constrmater1010003. [CrossRef]
4. Wu, T.; Yang, X.; Wei, H.; Liu, X. Mechanical properties and microstructure of lightweight aggregate concrete with and without

fibers. Constr. Build. Mater. 2019, 199, 526–539. [CrossRef]
5. Xu, Z.; Li, Z. Numerical method for predicting flow and segregation behaviors of fresh concrete. Cem. Concr. Compos. 2021,

123, 104150. [CrossRef]
6. Tenza-Abril, A.J.; Villacampa, Y.; Solak, A.M.; Baeza-Brotons, F. Prediction and sensitivity analysis of compressive strength in

segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity. Constr. Build. Mater. 2018,
189, 1173–1183. [CrossRef]

7. Tenza-Abril, A.; Benavente, D.; Pla, C.; Baeza-Brotons, F.; Valdes-Abellan, J.; Solak, A. Statistical and experimental study for
determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Constr.
Build. Mater. 2020, 238, 117642. [CrossRef]

8. Leemann, A.; Münch, B.; Gasser, P.; Holzer, L. Influence of compaction on the interfacial transition zone and the permeability of
concrete. Cem. Concr. Res. 2006, 36, 1425–1433. [CrossRef]

9. Solak, A.M.; Tenza-Abril, A.J.; García-Vera, V.E. Adopting an image analysis method to study the influence of segregation on the
compressive strength of lightweight aggregate concretes. Constr. Build. Mater. 2022, 323, 126594. [CrossRef]

10. Bogas, J.A.; Gomes, M.G.; Real, S.; Pontes, J. Ultrasonic pulse velocity used to predict the compressive strength of structural sand
lightweight concrete. In Proceedings of the First International Conference on Construction Materials and Structures, Singapore,
4–6 November 1987; IOS Press: Amsterdam, The Netherlands, 2014; pp. 293–304. [CrossRef]

11. Navarrete, I.; Lopez, M. Estimating the segregation of concrete based on mixture design and vibratory energy. Constr. Build.
Mater. 2016, 122, 384–390. [CrossRef]

12. Ke, Y. Characterization of the Mechanical Behavior of Lightweight Aggregate Concretes: Experiment and Modelling. Ph.D Thesis,
Université de Cergy-Pontoise, Cergy-Pontoise, France, 2008.

13. Ke, Y.; Beaucour, A.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight
aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821–2828. . 2009.02.038. [CrossRef]

14. Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; Benavente, D. Proposing a New Method Based on Image Analysis to Estimate
the Segregation Index of Lightweight Aggregate Concretes. Materials 2019, 12, 3642. [CrossRef]

15. Hemmatian, A.; Jalali, M.; Naderpour, H.; Nehdi, M.L. Machine learning prediction of fiber pull-out and bond-slip in fiber-
reinforced cementitious composites. J. Build. Eng. 2023, 63, 105474. [CrossRef]

16. Chen, Z.; Zhang, L.; Li, K.; Xue, X.; Zhang, X.; Kim, B.; Li, C.Y. Machine-learning prediction of aerodynamic damping for
buildings and structures undergoing flow-induced vibrations. J. Build. Eng. 2023, 63, 105374. [CrossRef]

17. Sajan, K.C.; Bhusal, A.; Gautam, D.; Rupakhety, R. Earthquake damage and rehabilitation intervention prediction using machine
learning. Eng. Fail. Anal. 2023, 144, 106949. [CrossRef]

18. Li, Z.; Yoon, J.; Zhang, R.; Rajabipour, F.; Srubar III, W.V.; Dabo, I.; Radlińska, A. Machine learning in concrete science:
Applications, challenges, and best practices. Npj Comput. Mater. 2022, 8, 127. [CrossRef]

19. Migallón, V.; Navarro-González, F.J.; Penadés, J.; Villacampa, Y. Parallel approach of a Galerkin-based methodology for predicting
the compressive strength of the lightweight aggregate concrete. Constr. Build. Mater. 2019, 219, 56–68. [CrossRef]

20. Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. J. R. Stat. Soc. C Appl. Stat. 1980,
29, 119–127. [CrossRef]

21. Biggs, D.; Ville, B.D.; Suen, E. A method of choosing multiway partitions for classification and decision trees. J. Appl. Stat. 1991,
18, 49–62. [CrossRef]

22. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 1984.
[CrossRef]

23. Kewalramani, M.A.; Gupta, R. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural
networks. Automat. Constr. 2006, 15, 374–379. [CrossRef]

24. Tavakkol, S.; Alapour, F.; Kazemian, A.; Hasaninejad, A.; Ghanbari, A.; Ramezanianpour, A.A. Prediction of lightweight concrete
strength by categorized regression, MLR and ANN. Comput. Concr. 2013, 12, 151–167. [CrossRef]

25. Charhate, S.; Subhedar, M.; Adsul, N. Prediction of Concrete Properties Using Multiple Linear Regression and Artificial Neural
Network. J. Soft Comput. Civ. Eng. 2018, 2, 27–38. [CrossRef]

26. Kalman Šipoš, T.; Miličević, I.; Siddique, R. Model for mix design of brick aggregate concrete based on neural network modelling.
Constr. Build. Mater. 2017, 148, 757–769. [CrossRef]

27. Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural
Network, Model Tree and Non-linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [CrossRef]

28. Behnood, A.; Olek, J.; Glinicki, M.A. Predicting modulus elasticity of recycled aggregate concrete using M5’ model tree algorithm.
Constr. Build. Mater. 2015, 94, 137–147. [CrossRef]

http://doi.org/10.1016/j.jobe.2022.105761
http://dx.doi.org/10.3390/constrmater1010003
http://dx.doi.org/10.1016/j.conbuildmat.2018.12.037
http://dx.doi.org/10.1016/j.cemconcomp.2021.104150
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.096
http://dx.doi.org/10.1016/j.conbuildmat.2019.117642
http://dx.doi.org/10.1016/j.cemconres.2006.02.010
http://dx.doi.org/10.1016/j.conbuildmat.2022.126594
http://dx.doi.org/10.3233/978-1-61499-466-4-293
http://dx.doi.org/10.1016/j.conbuildmat.2016.06.066
http://dx.doi.org/10.1016/j.conbuildmat.2009.02.038
http://dx.doi.org/10.3390/ma12213642
http://dx.doi.org/10.1016/j.jobe.2022.105474
http://dx.doi.org/10.1016/j.jobe.2022.105374
http://dx.doi.org/10.1016/j.engfailanal.2022.106949
http://dx.doi.org/10.1038/s41524-022-00810-x
http://dx.doi.org/10.1016/j.conbuildmat.2019.05.160
http://dx.doi.org/10.2307/2986296
http://dx.doi.org/10.1080/02664769100000005
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1016/j.autcon.2005.07.003
http://dx.doi.org/10.12989/cac.2013.12.2.151
http://dx.doi.org/10.22115/scce.2018.112140.1041
http://dx.doi.org/10.1016/j.conbuildmat.2017.05.111
http://dx.doi.org/10.1016/j.ijsbe.2014.12.002
http://dx.doi.org/10.1016/j.conbuildmat.2015.06.055

Appl. Sci. 2023, 13, 1953 37 of 38

29. Karbassi, A.; Mohebi, B.; Rezaee, S.; Lestuzzi, P. Damage prediction for regular reinforced concrete buildings using the decision
tree algorithm. Comput. Struct. 2014, 130, 46–56. [CrossRef]

30. Huang, L.; Chen, J.; Tan, X. BP-ANN based bond strength prediction for FRP reinforced concrete at high temperature. Eng. Struct.
2022, 257, 114026. [CrossRef]

31. Wang, X.L.; Zha, X.X.; Zhang, X.C. Bonding properties of FRP bars and concrete at high temperature. J. Harbin. Inst. Technol.
2013, 45, 8–15.

32. El-Gamal, S. Bond strength of glass fiber-reinforced polymer bars in concrete after exposure to elevated temperatures. J. Reinf.
Plast. Compos. 2014, 33, 2151–2163. [CrossRef]

33. Özkal, F.M.; Polat, M.; Yağan, M.; Öztürk, M.O. Mechanical properties and bond strength degradation of GFRP and steel rebars
at elevated temperatures. Constr. Build. Mater. 2018, 184, 45–57. [CrossRef]

34. Erdal, H.I. Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction. Eng.
Appl. Artif. Intell. 2013, 26, 1689–1697. [CrossRef]

35. Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater.
2021, 266, 120950. [CrossRef]

36. Chou, J.S.; Pham, A.D. Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compres-
sive strength. Constr. Build. Mater. 2013, 49, 554–563. [CrossRef]

37. Mousavi, S.M.; Aminian, P.; Gandomi, A.H.; Alavi, A.H.; Bolandi, H. A new predictive model for compressive strength of HPC
using gene expression programming. Adv. Eng. Softw. 2012, 45, 105–114. [CrossRef]

38. Gandomi, A.; Alavi, A.; Shadmehri, D.M.; Sahab, M. An empirical model for shear capacity of RC deep beams using genetic-
simulated annealing. Arch. Civ. Mech. Eng. 2013, 13, 354–369. [CrossRef]

39. Tran, D.H.; Luong, D.L.; Chou, J.S. Nature-inspired metaheuristic ensemble model for forecasting energy consumption in
residential buildings. Energy 2020, 191, 116552. [CrossRef]

40. Bui, D.K.; Nguyen, T.; Chou, J.S.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert
system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 2018, 180, 320–333.
[CrossRef]

41. Assegie, T.A.; Salau, A.O.; Badrudeen, T.U. Estimation of concrete compression using regression models. Bull. Electr. Eng. Inform.
2022, 11, 2799–2804. [CrossRef]

42. Wu, X.; Zhu, F.; Zhou, M.; Sabri, M.M.S.; Huang, J. Intelligent Design of Construction Materials: A Comparative Study of AI
Approaches for Predicting the Strength of Concrete with Blast Furnace Slag. Materials 2022, 15, 4582. [CrossRef]

43. Ghunimat, D.; Alzoubi, A.E.; Alzboon, A.; Hanandeh, S. Prediction of concrete compressive strength with GGBFS and fly ash
using multilayer perceptron algorithm, random forest regression and k-nearest neighbor regression. Asian J. Civ. Eng. 2022, 1–9.
[CrossRef]

44. Kumar, A.; Arora, H.C.; Kapoor, N.R.; Mohammed, M.A.; Kumar, K.; Majumdar, A.; Thinnukool, O. Compressive Strength
Prediction of Lightweight Concrete: Machine Learning Models. Sustainability 2022, 14, 2404. [CrossRef]

45. Hussain, F.; Ali Khan, S.; Khushnood, R.A.; Hamza, A.; Rehman, F. Machine Learning-Based Predictive Modeling of Sustainable
Lightweight Aggregate Concrete. Sustainability 2023, 15, 641. [CrossRef]

46. Azadkia, M. Optimal choice of k for k-nearest neighbor regression. arXiv 2020, arXiv:1909.05495.
47. Migallón, V.; Navarro-González, F.J.; Penadés, H.; Penadés, J.; Villacampa, Y. A parallel methodology using radial basis functions

versus machine learning approaches applied to environmental modelling. J. Comput. Sci. 2022, 63, 101817. [CrossRef]
48. Todeschini, R. k-nearest neighbour method: The influence of data transformations and metrics. Chemom. Intell. Lab. Syst. 1989,

6, 213–220. [CrossRef]
49. Afzal, S.; Wani, M.A. Comparative study of back propagation learning algorithms for neural networks. Int. J. Adv. Res. Comput.

Sci. Softw. Eng. 2013, 3, 1151–1156.
50. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for

Deep Learning. arXiv 2018, arXiv:1811.03378.
51. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018.
52. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
53. Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528.

[CrossRef]
54. Rokach, L.; Maimon, O. Data Mining with Decision Trees. Theory and Applications; World Scientific: Singapore, 2007; Volume 69.

[CrossRef]
55. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer

Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]
56. Hill, T.; Lewicki, P. Statistics: Methods and Applications: A Comprehensive Reference for Science, Industry, and Data Mining; StatSoft Inc.:

Tulsa, OK, USA, 2006.
57. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
58. Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [CrossRef]
59. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
60. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]

http://dx.doi.org/10.1016/j.compstruc.2013.10.006
http://dx.doi.org/10.1016/j.engstruct.2022.114026
http://dx.doi.org/10.1177/0731684414555408
http://dx.doi.org/10.1016/j.conbuildmat.2018.06.203
http://dx.doi.org/10.1016/j.engappai.2013.03.014
http://dx.doi.org/10.1016/j.conbuildmat.2020.120950
http://dx.doi.org/10.1016/j.conbuildmat.2013.08.078
http://dx.doi.org/10.1016/j.advengsoft.2011.09.014
http://dx.doi.org/10.1016/j.acme.2013.02.007
http://dx.doi.org/10.1016/j.energy.2019.116552
http://dx.doi.org/10.1016/j.conbuildmat.2018.05.201
http://dx.doi.org/10.11591/eei.v11i5.4210
http://dx.doi.org/10.3390/ma15134582
http://dx.doi.org/10.1007/s42107-022-00495-z
http://dx.doi.org/10.3390/su14042404
http://dx.doi.org/10.3390/su15010641
http://dx.doi.org/10.1016/j.jocs.2022.101817
http://dx.doi.org/10.1016/0169-7439(89)80086-3
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1142/6604
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11749-016-0481-7
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2

Appl. Sci. 2023, 13, 1953 38 of 38

61. Sutton, C.D. 11—Classification and Regression Trees, Bagging, and Boosting. In Data Mining and Data Visualization; Rao, C.,
Wegman, E., Solka, J., Eds.; Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2005; Volume 24, pp. 303–329.
[CrossRef]

62. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]

63. Rashmi, K.; Gilad-Bachrach, R. DART: Dropouts meet Multiple Additive Regression Trees. arXiv 2015, arXiv:1505.01866v1.
64. Awad, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers;

Apress Media: New York, NY, USA, 2015. [CrossRef]
65. Zhang, F.; O’Donnell, L.J. Chapter 7—Support vector regression. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press:

Cambridge, MA, USA, 2020; pp. 123–140. [CrossRef]
66. Balasundaram, S.; Tanveer, M. On Lagrangian twin support vector regression. Neural Comput. Appl. 2013, 22, 257–267. [CrossRef]
67. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
68. Gani, W.; Taleb, H.; Limam, M. Support vector regression based residual control charts. J. Appl. Stat. 2010, 37, 309–324. [CrossRef]
69. Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K.,

Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 542–545. [CrossRef]
70. Nguyen, H.; Bui, X.N. Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural

networks and random forest. Nat. Resour. Res. 2019, 28, 893–907. [CrossRef]
71. Fernández-Fanjul, A.; Tenza-Abril, A.J. Méthode Fanjul: Dosage pondéral des bétons légers et lourds. Ann. Bâtim. Trav. Publics

2012, 5, 32–50.
72. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [CrossRef]
73. Ridgeway, G. Generalized Boosted Models: A Guide to the gbm Package, 2020. Available online: https://pbil.univ-lyon1.fr/

CRAN/web/packages/gbm/vignettes/gbm.pdf (accessed on 10 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0169-7161(04)24011-1
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/978-1-4302-5990-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1007/s00521-012-0971-9
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1080/02664760903002667
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
http://dx.doi.org/10.1007/s11053-018-9424-1
http://dx.doi.org/10.5555/1953048.2078195
https://pbil.univ-lyon1.fr/CRAN/web/packages/gbm/vignettes/gbm.pdf
https://pbil.univ-lyon1.fr/CRAN/web/packages/gbm/vignettes/gbm.pdf

	Introduction
	Materials and Methods
	Machine Learning Methods
	Multiple Linear Regression
	K-Nearest Neighbours
	Artificial Neural Networks
	Regression Trees and Tree-Based Ensemble Methods
	Support Vector Regression
	Validation Process and Criteria Used for Model Selection

	Dataset and Related Results

	Results and Discussion
	KNN Algorithms
	MLP Neural Networks
	Tree-Based Algorithms: Random Forest and Gradient-Boosted Tree Models
	Random Forests
	Gradient-Boosted Tree-Based Models

	Support Vector Regression
	Weighted Average Ensemble Models
	Comparison of Models

	Conclusions
	References

