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ABSTRACT 
 

New instruments named multi-gonio-spectrophotometers have appeared to measure and characterize 

the goniochromatism of special materials like metallic, interference, luster and pearlescent samples. 

These devices are instruments what can measure the spectrum of the sample with different 

illumination and observation angles, these angles usually agree with some requirements marked in 

ASTM and DIN standards related to the gonio colour appearance characterization. On the other hand, 

the inter-comparison between spectrophotometers, both at repeatability and reproducibility levels, has 

usually appeared in many contributions in last years. The main purpose of this study is to compare at 

reproducibility level two multi-gonio-spectrophotometers according to the ASTM E2214-08 

guidelines: one of them, with 5 measurement (directional) geometries, highly recommended by the 

automotive industry, while the other one is a bench-top instrument, with 10 measurement geometries. 

Therefore, they only have 5 common measurement geometries: 45ºx120º, 45ºx110º, 45ºx90º, 45ºx60º, 

and 45ºx25º. For the reproducibility comparison we will also make some statistical studies that include 

a Hotelling’s test and a statistical test of inter-comparison to know the confidence interval of the 

partial colour differences ∆L*, ∆a*, ∆b* and the total colour difference ∆Eab. It is done using as 

database a collection of 91 metallic, interference, luster and pearlescent samples, which were 

measured 20 times without replacement for both instruments. The final findings show that except the 

45ºx120º geometry, which is the nearest to specular direction, the reproducibility differences between 

both instruments are statistically significant. This means that these differences are due to systematic or 

bias errors (angle tolerances for each geometry, photometric scales, white standards, etc), but not 

exclusively to random errors. However, both statistical tests used here are not valid to discriminate and 

quantify the detected bias errors in this inter-instrument comparison. 

 

Keywords: colour measurement, multi-gonio-spectrophotometry, reproducibility, metallic and 

pearlescent samples 

 
CONTACT 
 

Elisabet.chorro@ua.es 

 
 

INTRODUCTION 
 

During the last years technologic innovation in all the areas has made it possible, between other things, 

the appearance of the new materials, as for example the metallic and pearlescent objects. Both of them 

are very useful for colour quality control in the automotive industry
1
, for example. But it is difficult to 

measure and characterize these kinds of colour samples by conventional colour measuring instruments 

based on integration sphere. 

 

New instruments appeared to solve this problem, specifically the multi-gonio-spectrophotometers. 

These devices are instruments which can measure the spectral reflectance of the sample with different 

illumination and observation angles. In the automotive industry the multi-gonio-spectrophotometer 

more used is the model X-Rite MA68II meeting the requirements marked in some ASTM and DIN 

standards related to the gonio colour appearance characterization. But, in last years, other models of 



multi-gonio-spectrophotometers, like Datacolor FX10 and X-Rite MA98, have incorporated a number 

of directional geometries higher to those recommended by international standards cited above. 

 

A lot of contributions about the inter-comparison between spectrophotometers have appeared in the 

last years
2-8

, however there are not enough studies with multi-gonio-spectrophotometers for the 

goniochromatism characterization
9-11

. For this, the purpose of this study is to compare the 

reproducibility of some multi-gonio-spectrophotometers, specifically the models Datacolor FX10 and 

X-Rite MA68II, following the ASTM E2214-08 rules
8
 for the five common geometries. Finally, since 

our laboratory has recently acquired one X-Rite MA98, we will complete this reproducibility 

comparison with this third colour-measuring instrument. 
 

MATERIALS 
 

We have 91 metallic, interference, luster and pearlescent samples, collected by different 

manufacturers. And every spectral and color measurement has been taken by two gonio-

spectrophotometers: Datacolor FX10 and X-Rite MA68II. 

 

The multi-gonio-spectrophotometer MA68II is a portable device and has 5 geometries of 

illumination/observation, following the ASTM 2194
12

 and DIN 6175-2
13

 standards. These geometries 

are summarized in the table 1. This instrument belongs to the Technological Institute of Optics, Color 

and Imaging (Valencia, Spain). 

 

On the other hand, the multi-gonio-spectrophotometer FX10 is a desktop device and has 10 different 

geometries of illumination/observation, including the 5 standard geometries of the MA68II. These 

geometries are also summarized in the table 1. This instrument, joint to one recent MA98, belongs to 

the Colour & Vision Group of the University of Alicante (Spain). 

 
Table 1.Illumination and observation angles of the measures. (In bold you can see the common geometries). 
 

Geometries ASTM ASTM/DIN 

Influx (incident) angle 25º 25º 45º 45º 75º 75º 45º 45º 45º 45º 

Efflux (detection) 

angle (aspecular) 

170º 

(-15º) 

140º 

(+15º) 

150º 

(-15º) 

120º 

(+15º) 

120º 

(-15º) 

90º 

(+15º) 

110º 

(+25º) 

90º 

(+45º) 

60º 

(+75º) 

25º 

(+110º) 

 

 
                                               Fig 1. Schema of the common illumination (influx)  
                                                         and observation (efflux) angles. 

 

As it was said earlier, current ASTM and DIN geometries are enough for characterization of metallic 

samples, but they are not enough for characterization of other special-effect pigments like pearlescent 

one or colour with other optic effects as glitter, sparkle, etc. However, in this study the purpose is to 

compare the results of the two or three multi-gonio-spectrophotometers, because of this, we only use 

the common geometries between both of them: 45ºx120º, 45ºx110º, 45ºx90º, 45ºx60º and 45ºx25º, 

which is in bold in the table 1 and are represented in the figure 1. 



 

METHODOLOGY 

 

The 91 goniochromatic samples were measured 20 times, without replacement, by the two multi-

gonio-spectrophotometers, after a long time of stand-by (higher to 20 min). The temporal interval 

between the measurements done in each laboratory was not longer to 2 months. Relative reflectance 

factors from each respective matte white standard and colorimetric coordinates under illuminant D65 

and standard observer CIE-1964 XYZ are the colour data obtained from these measurements for each 

one of these samples. From this first step, with the mean values of 20 measurements for each sample, 

we calculated the partial and total colour differences in CIELAB colour space measured in both 

instruments. If the reproducibility level was ideal, all colour differences should be zero. 
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                               Fig 2. Diagrams ∆a* vs ∆b* and ∆C* vs ∆L* of the 91 samples to show its distribution 

 

As we said before, the average and mean square deviation of the colorimetric values was made for the 

statistical studies of the reproducibility comparison between devices. These statistical studies include 

Hotelling’s test and a statistical test of inter-comparison to know the confidence interval of the partial 

colour differences ∆L*, ∆a*, ∆b* and the total colour difference ∆Eab between both colour-measuring 

instruments. The Hotelling’s test and the inter-comparison-test have been used earlier by other 

authors
8
 and they are really easy implementing it. The equations (1) to (5) describe the necessary 

process to calculate the Hotelling’s parameter and the critical value t∆E. 
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where n is the total of measurements and χ
2
 is the chi-square value for 3 degree of freedom. This 

critical value is very important in this study, because it fits the limit that it let us establish if the total 

colour differences ∆Eab are statistically significant, that is, if it is likely to have occurred by chance or 

they are not. Specifically if the average is higher than critical value, mean (∆Eab) > t∆E, the difference 

is significant, that is, that for directional geometry the measurement data are unlikely to have occurred 

by chance. This would be that differences between both instruments are due to systematic or bias 

errors (angle tolerances for each geometry, photometric scales, white standards, etc), but not 

exclusively to random errors. 
 

RESULTS 
 

Firstly, it is shown the relative reflectance factors with the five common geometries obtained by both 

devices for one of the measured sample, which commercial name is Mearlin Micro Blue 6303M A. 

These spectra are represented in the figure 3. 
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Fig 3. Relative reflectance factors obtained by both multi-gonio-spectrophotometers, MA68II    
and FX10, for their five common measurement geometries. 

 

In this figure two details attract our attention. The first detail is that the relative reflectance factors for 

the 45ºx120º geometry are greater than 100 %. It is so due to the existence of metallic and/or 

pearlescent particles and the fact that the observation angle 120º is near the specular angle (135º) for 

an illumination angle of 45º. 

 

The other detail you can see in the figure 3 is that the relative reflectance factors that have worst 

reproducibility (or coincidence) are the corresponding to 45ºx120º and 45ºx110º geometries, and it is 

due to the fact that the observation angle is too near the specular angle. For the other geometries, 

45ºx90º, 45ºx60º and 45ºx25º, you can see that the measured reflectance factors by the devices are 

very similar. In fact, considering the results, it seems that the observation angle is further from 

specular angle, the agreement between relative reflectance factors is better. 

 



Secondly, the colorimetric values CIE-L*a*b*, which have been obtained from these spectra, are 

shown in the next figure: 
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Fig 4. CIE-L*a*b* colorimetric coordinates obtained by the both multi-gonio-
spectrophotometers, MA68II and FX10, for all their geometries 

 
In the figure, you can see the colorimetric coordinates obtained by the two multi-gonio-

spectrophotometers with all the measured geometries, ten by the FX10 and five by the MA68II. The 

metallic samples present a characteristic T-shape
9,14

, with a part associated to metallic effect (same 

incidence angle 45º, but different observation angles) and other part associated to interference effect 

(different incidence angle, but the same observation angle, the aspecular angle ±15º, see figure 1). 

Again you can see the slight discrepancy between the measurements by the two devices, overcoat for 

nearby angles to specular angle. 

 

Next we made the multivariate statistical analysis of the differences between the colour coordinates 

measured by the two gonio-spectrophotometers for the 91 special samples. The result from this study 

is given in the next table: 

 
Table 2. Hotelling’s analysis T

2
 for colour differences of 91 samples measured by both spectrophotometers  

              (FX10   and MA68II) with a confidence interval of 95%. 
 

Geometry Sample size Variables T
2
 χχχχ

2
 df P 

45°x120° 91 3 3.2568 3.2568 3 0.3537 

45°x110° 91 3 62.7269 62.7269 3 0.0000 

45°x90° 91 3 29.5718 29.5718 3 0.0000 

45°x60° 91 3 92.3155 92.3155 3 0.0000 

45°x25° 91 3 237.5260 237.5260 3 0.0000 

 
where T

2
 is Hotelling's T-Squared statistic and P is the probability that null H0 were true, performed 

using a Matlab routine
15

 freely downloaded from Internet. Considering the results we can say that the 

probability of the colour differences for the 45ºx120º geometry was due to at random is statistically no 

significant. And therefore, we can conclude that the difference is due to at random and is not due to 

systematic or bias errors. Consequently, for the 45ºx120º geometry both devices are statistically 

equivalent. On the other hand, for the rest of the geometries, the differences are significant, i.e. there 

are statistical evidences that the colour differences are due to systematic errors. 

 

The following statistical test were the ASTM inter-comparison test to know the confidence interval of 

the partial colour differences ∆L*, ∆a*, ∆b* and the total colour difference ∆Eab between the measures 

from both spectrophotometers. After averaging out at about 20 measures of each of the 91 samples and 

computing the colour differences between devices we obtained the results shown in the tables 3 and 4. 
 



Table 3. Averages maximum and minimum values of the partial colour differences obtained for every       

              measurement geometry in the multi-gonio-spectrophotometers FX10 and MA68II. 

 

 45ºx120º 45ºx110º 45ºx90º 45ºx60º 45ºx25º 

 ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* 

Average -0.68 0.11 0.22 -3.63 0.50 -0.47 1.09 0.39 -0.73 0.41 0.34 -0.66 3.21 0.34 -0.54 

|Max| 11.66 6.74 7.85 15.25 9.65 10.53 7.43 4.67 5.43 3.77 2.57 3.53 16.66 4.01 4.48 

|Min| 0.11 0.01 0.05 0.03 0.02 0.01 0.10 0.00 0.00 0.03 0.02 0.00 0.51 0.02 0.01 

 

Specifically in the table 3 you can see some results calculated from the 91 samples for each of the 

geometries. Firstly at all, you can see the average of the partial colour differences, ∆L*, ∆a* and ∆b* 

and the maximum and minimum values of these partial colour differences. Then, it is obvious that the 

colour differences shown here are clearly higher to perceptibility limits, in many cases passing usual 

industrial colour tolerances or acceptability limits. 

 

After that, the covariance matrix S and its inverse have also been calculated (following equations from 

1 to 4). And finally, the critical value t∆E has been obtained from the inverse covariance matrix and the 

values α, β y γ. This critical value is very important in this study, because it fits the limit that it let us 

establish if the total colour differences ∆Eab are statistically significant, that is, if it is likely to have 

occurred by chance or they are not. 

 

In the next table, you can see the total colour differences ∆Eab and the critical value t∆E calculated for 

each measurement geometry between the instruments FX10 and MA68II. 

 
Table 4. Averages and critical values of the total colour differences ∆Eab obtained for every common  
              measurement geometry in the multi-gonio-spectrophotometers FX10 and MA68II. 
 

 45ºx120º 45ºx110º 45ºx90º 45ºx60º 45ºx25º 

 ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* ∆L* ∆a* ∆b* 

S 18.22 -0.34 -0.52 19.67 -1.10 3.51 6.46 -0.11 2.23 2.64 0.19 1.00 6.93 -0.05 0.87 

 -0.34 3.34 -0.36 -1.10 5.78 -0.98 -0.11 1.41 0.01 0.19 0.57 0.14 -0.05 1.01 0.32 

 -0.52 -0.36 6.18 3.51 -0.98 12.46 2.23 0.01 3.21 1.00 0.14 1.32 0.87 0.32 1.35 

α,β,γ -0.15 0.03 0.05 -0.67 0.09 -0.09 -0.39 0.13 -0.26 0.20 0.17 -0.33 0.85 0.09 -0.14 

gE  0.0018   0.0232   0.0413   0.2473   0.1824  

t∆E  6.85   1.92   1.44   0.59   0.69  

Mean(∆Eab) 4.42   5.45   2.80   2.03   3.78   

 

After making comparison between the critical value, t∆E, and the average of the total colour 

differences, shown in the earlier table, we can establish what differences are statistically significant or 

are not. In our case, FX10 vs. MA68II, only the 45ºx120º geometry is not significant, the rest of the 

geometries are statistically significant because the averages are higher than critical values, mean(∆Eab) 

> t∆E, that is, these geometries are unlikely to have occurred by chance. These results agree with the 

results previously obtained by the Hotelling test for colour differences. 

 

Finally, although without enough space to describe a complete reproducibility comparison, we have 

got all results for the pair comparisons FX10 vs. MA98 and MA68II vs. MA98. We may advance the 

main results as follows:  

 

- FX10 vs. MA98: the smallest mean(∆Eab), equals to 0.98 jnd, is for the geometry 45ºx90º, but it 

is not enough to pass the inter-comparison test (t∆E = 0.23). Therefore, the five analyzed common 

geometries are statistically significant. However, this reproducibility comparison is not complete 

because both instruments share other measurement geometries as 75ºx120º, 75ºx90º, etc. 

Consequently, this reproducibility comparison should be described with more space for the final 

presentation of this contribution. 



- MA68II vs. MA98: the smallest mean(∆Eab), equals to 1.11 jnd, is for the geometry 45ºx25º 

(retro-reflection), being enough to pass inter-comparison test (t∆E = 1.27). Therefore, except this 

measurement geometry, and in spite of the fact that both instruments belong to the same manufacturer, 

the rest of four analyzed common geometries are statistically significant. 

 

CONCLUSION 
 

Finally the conclusion is that most of the geometries are statistically significant. This means that these 

differences are due to systematic or bias errors (angle tolerances for each geometry, photometric 

scales, white standards, etc), but not exclusively to random errors. However, both statistical tests used 

here are not valid to discriminate and quantify the detected bias errors in this inter-instrument 

comparison. For pair comparison FX10 vs. MA68II, only the nearest measurement geometry, 

45ºx120º, to the specular direction (135º), with a priori a large photometric scale, shows a pure 

statistical deviation in both instruments. These results also show the intrinsic difficulty to find efficient 

methods for comparing the reproducibility in multi-gonio-spectrophotometers, even between models 

belonged to same manufacturer. For instance, for the comparison MA98 vs. MA68II, only the 

measurement geometry 45ºx25º (retro-reflection) passed the statistical inter-comparison test. 
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