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A B S T R A C T

Statistical fault injection is widely used to estimate the reliability of mission-critical microprocessor-based
systems when exposed to radiation and to evaluate the performance of fault mitigation strategies. However,
further research is needed to gain a better understanding of the accuracy of the results and the feasibility of
their application under realistic radiation conditions. In this article, an understanding of scenarios in which
Instruction Set Architecture simulators or emulators may be relied upon for realistic statistical fault injection
campaigns is advanced. An analysis is presented of the results from two simulation-based fault injection tools
versus a set of fault emulation results on a real processor. The conclusions of the analysis assist the selection
of the most efficient tool and method for testing many different software-based fault mitigation techniques
within reasonable time periods and at affordable costs throughout an irradiation campaign. In particular,
it was established that a partially ordered set of relations could be defined on the basis of statistical fault
injection in relation to the effects of different versions of an application and a given simulator that remained
unaltered during the irradiation experiments. The tests were conducted with a Texas Instruments MSP430
microcontroller to perform both fault injection campaigns and irradiation experiments using neutrons at the
Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research Facility at Los Alamos, USA.
. Introduction

The technological trend towards the miniaturization of electronic
omponents has not only led to unprecedented microprocessor perfor-
ance levels, but also to side effects such as increased susceptibility

o natural-radiation induced faults. Single Event Effects (SEEs) are faults
hat either cosmic rays and high energy particles present in space or
econdary particles generated through atmospheric interactions can
rovoke in the circuits of computing systems [1]. These faults have
een of concern in mission-critical applications working in harsh envi-
onments under radiation such as aerospace and nuclear applications.
owever, current use of nanometric technologies has extended the

mpact of SEEs to application domains operating at atmospheric and
round levels, such as telecommunications, transportation, and medical
pplications.

A particular type of SEE, the Single Event Upset (SEU) also known
s the soft error [2] results from the interaction of a particle with the
emiconductor substrate, generating an undesired transition in the state
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of a transistor. Eventually, the visible effect is the change in the data
stored in a memory cell or in a flip-flop [3]. In microprocessor-based
systems, those soft errors are expressed as faulty program execution
results or system hang issues. Despite the fact that these faults may
be temporary and inflict no physical damage on the devices, they are
currently considered as one of the main challenges to be solved in
modern electronics [4]. Thus, the tolerance of the circuits (i.e.,: their
functional capability to operate in the presence of these sorts of faults)
is an important research topic and a required feature of any system
used in mission-critical applications [3].

One of the most widespread methods for assessing the reliability
of the systems at the early design stages is statistical fault injection. It
consists of the deliberate introduction of faults during the functional
operation of the system, so as to observe their effects, and to estimate
the error rate and different reliability metrics [5]. Fault injection
approaches are usually classified according to their physical or logical
nature [6]. Physical approaches are based on the use of external sources
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to induce faults within the system that is tested, such as either particle
accelerators or pulsed laser [7]. Although this option is preferred for
provoking realistic radiation-induced faults, it is highly costly and
depends on special facilities that are within the reach of very few
researchers. Furthermore, the experiments cannot be conducted until
the final system is available. In consequence, logical fault injection
has therefore gained attention, as it yields early reliability assessment,
even during the design phases, at lower costs. It includes 2 main
strategies: emulation-based fault injection, in which the real system is
either emulated, usually with an FPGA, or the faults are emulated on
real devices [8]; and simulation-based fault injection, where a model
of the system to be tested is used, and faults are produced during its
simulation [9,10]. These tools offer different levels of accuracy (bit
accurate, cycle accurate) and observability depending on the processor
model that is employed: ISA (Instruction Set Architecture) model, RTL
(Register Transfer Level) model, etc. Moreover, some fault injection
tools are based on hybrid approaches, combining both hardware and
software components [11].

Simulators are typically used both to estimate the reliability of
mission-critical systems at an early stage of development and to eval-
uate the effectiveness of different fault mitigation strategies. However,
when using either simulation or emulation, faults are always injected in
a limited set of resources. In fact, the injection of faults is only possible
in resources that are exposed to the user, typically the Instruction Set
Architecture (ISA), which is the set of instructions, registers, flags,
and addressing modes that define a microprocessor and its internal
accessible structures. Simplified error models, such as single bit flip,
are usually adopted, due to time constraints. As a consequence, non-
ISA resources, such as the pipelining registers are always inaccessible.
Fault injection results must be validated or tuned with radiation tests
at all times to ensure precise results [12].

Ascertaining the accuracy of the simulated results with respect to
the emulated and the real experiments is therefore very necessary. ISA
simulators are focused on the performance and the functionality of the
applications running on the processor without taking into account any
other consideration (e.g., unexpected behaviors, collateral effects of
errors, etc...). However, simulation usually leads to inaccurate estima-
tions of system reliability when simulators are used in statistical fault
injection campaigns. In this respect, a quantitative evaluation of soft-
error injection techniques, which proved that ISA level fault-injection
can be non-accurate, was presented in [13].

In this work, we set out to highlight the importance of understand-
ing the limitations of the simulators, in order to produce consistent
estimations of the actual reliability levels. As case studies, we have
analyzed two simulators and propose to use emulation on real devices
to understand and eventually to surpass their limitations. Our approach
was assessed through comparisons of the fault injection estimations
with the radiation test results.

Thus, the results of three fault-injection tools are tested in this
work to analyze their applicability to realistic radiation scenarios: the
first two (i.e., MiFIT [14] and Naken-FIM [15]) are ISA-level simu-
lators, whilst the third one, FIM, is an emulation-based facility. The
comparative assessment, conducted with a Texas Instruments MSP430
microcontroller, performed both fault injection simulated and emu-
lated campaigns and irradiation experiments using real radiation at
the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron
Research Facility at Los Alamos, USA. The main contribution of this
article is twofold: 1. to obtain the limits of the tools when obtaining
real estimations of the error rates by adjusting the setup. 2. to pro-
pose guidelines to, under certain conditions, extrapolate the effects of
simulation/emulation results to those of radiation.

Preliminary results on this topic were published in [16] and the
present article extends our previous work in several ways: firstly, a
more in-depth description of the background and the state-of-the-art
is presented; secondly, extensive experiments have led to new insights
2

related to specific scenarios when the faults directly affect critical
components; thirdly, the study has been extended with irradiation cam-
paigns, during which the accuracy of simulated results was analyzed for
assessing the effectiveness of software mitigation techniques.

The rest of the article is organized as follows. In Section 2, rele-
vant literature is reviewed. The fault injection tools selected for the
experimental evaluation are then introduced in Section 3, and the
experimental setup is described. A comprehensive set of experimental
results is then presented in Section 5. Subsequently, the overall results
and some specific fault occurrence scenarios are discussed in Section 6.
The comparative analysis of the various irradiation experiments is
related in Section 7. The article is concluded in Section 8 and some
future lines of research are also outlined.

2. Related works

Fault injection is a commonly used experimental technique to as-
sess the dependability of microprocessor-based systems. In particular,
simulation-based fault injection makes use of a software program to
model both the target system and the faults. The injection of faults can
be performed by modifying either the state of the hardware components
(e.g., flip-flops), or the state of the architectural resources (e.g., register
file), or the state of the software structures (e.g., variables). In any
event, it presents several advantages regarding physical and emulated
methods. First, the controlability of simulation models is greater and
their fault propagation patterns may be traced through the hardware
and software layers. Second, they demand less effort in terms of de-
velopment time and economic costs. Finally, no special resources nor
facilities are required, which increases their availability and flexibility
during the experiments. However, simulation-based fault injection is
not always possible, because of the unavailability of models and/or
the lack of information on the micro-architectural details required for
accurate simulations. Moreover, in comparison with emulation-based
techniques, simulators usually require extra computing time when
developing extensive fault injection campaigns.

Over past decades, simulation-based fault injection has proliferated,
targeting different levels of abstraction and fault models and relying
on multiple toolkits. According to [17], they can be divided into
generalists and specialists. Generalist tools provide a common frame-
work either to support different simulator back-ends or to facilitate
portability between simulators and real hardware. Within this category,
GOOFI [18] was conceived as a generic architecture that facilitates the
adoption of new system targets and new fault injection techniques. A
second version was introduced in [19], extending the capabilities to
support real hardware through Nexus-compliant test ports. Using the
same debug port, Fidalgo et al. [20] proposed a tool for real-time fault
injection through built-in debug circuitry included in real processors.
David and Campbell [21] adopted a similar approach, although in
their case they used the GDB debugger interface. A more ambitious
effort was the FAIL* framework [22], which provided an abstraction
layer for different simulators, virtualization tools, and hardware back-
ends (ARM, x86). The fault injection campaigns were implemented
with a C++ API that offers access to both the target back-end meta-
information, and the current state. In contrast, the specialists tools are
tightly coupled to a single target or simulator. Examples include the
extensions of QEMU [23], which is a virtual machine capable of run-
ning complete operating systems, such as those described in [24,25].
Another example is GeFIN, a fault injection framework built on top of
the Gem5 micro-architectural simulator for ARM processors [26].

In addition, fault emulation on real devices is gaining attention
as a complementary method to simulation-based approaches. In some
cases, such as in high-performance computing, it represents an effective
and reliable method of speeding up testing in multi-threaded applica-
tions [27,28]. In other cases, when either low-level simulation models
are unavailable (e.g., Commercial off-the-shelf (COTS) processors) or
micro-architectural details are not disclosed, due to industrial secrecy

(e.g., GPUs), then fault emulation is the only way to arrive at realistic
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results. Following this approach, several works have proposed the
use of on-chip debugging infrastructures to produce faults on real
devices in real time [29,30]. Other proposals use the compilation
process to instrument the code transparently and to produce faults on
processors [28] and NVIDIA GPU devices [31].

Different approaches have been adopted for the evaluation of fault
injection methods. In [32], the authors compared physical methods
(heavy-ion radiation, pin level injection, and electromagnetic interfer-
ence) with software-based techniques on a Motorola 68 070 processor.
They concluded that the single bit-flip model is capable of generating
a similar set of errors as the physical techniques, except for those
caused in the data segment. Chatzidimitriou et al. [12] analyzed micro-
architectural fault injection versus neutron beam experiments. They
used the Gem5 cycle-accurate simulator for extensive fault injection
campaigns, observing that, in general, the number of failures over
time underestimates the beam results. Recent works, such as [33],
compared the effect of faults injected at different abstraction levels: IR
level (Intermediate Representation level) versus assembly code level.
This study confirmed that both were of similar accuracy for silent data
corruption faults, although the IR-level was less accurate with respect
to crashes when aggressive compiler optimizations were applied.

3. Fault injection tools

Three fault-injection tools were tested in this work: The first two
(MiFIT and Naken-FIM) were ISA-level simulators, while the third,
FIM, was an emulation-based facility. MiFIT [14] is a modular, open
source fault injection tool for microprocessors which is supported by a
standard interface that is usually available in most modern simulators
and real devices. Naken-FIM is a specialized tool derived from an
extension of Naken [15], an open source MSP processor simulator.
Their results are compared to those obtained on a real platform where
runtime faults are emulated using the FIM framework [34] using the
real device as the target. An MSP430 processor was selected to perform
the fault campaigns. This processor is often used within the scientific
community to test radiation effects on processor-based systems for
early analysis of reliability and fault tolerance properties [35,36]. The
selected tools and their main features are described below.

3.1. Naken-FIM

Naken is an open source instruction-accurate simulator for a num-
ber of ISAs including MSP430, ARM64, MIPS, and RISC-V [15]. We
modified the original simulator to enhance several analysis features
(Naken-FIM): Firstly, selective fault injection capabilities. More pre-
cisely, we can select any particular memory section from an executable
file (e.g., .data, .bss, .stack, .text, etc.) as a fault target; any
set of memory regions or single data (e.g., a subset of .data); and
ny set of registers within the register file, or any global variable.
econdly, enriched simulation/debugging trace capabilities can be used
o collect information on accurate read/write accesses, fault labeling,
tc... By gathering and post-processing this information, we can focus
n the effects of a fault campaign over a certain resource and study
ts impact on program fault tolerance levels. A facet inherited from the
riginal tool also makes it possible to simulate either an Executable and
inkable Format (ELF) file or an Intel HEXadecimal object file format
HEX) file. This characteristic is actually quite interesting, because
sing a compiler-agnostic output format, such as Intel HEX, makes it
ossible to interoperate with several compilers and hardening tools.

.2. MiFIT

The Microprocessors Fault Injection Tool (MiFIT) is a modular fault
njection tool [14]. Its source code is publicly available at: https://
ithub.com/UNPLaS/MiFIT.
3

MiFIT simulates faults in specific and general-purpose registers;
urrently, this tool does not support the simulation of faults in the
icroprocessor’s main memory. At the configuration stage, the MiFIT
odule offers a selection whereby the injection campaign can be
erformed on a single register or on the complete register file. At this
tage, users can also set the number of injections to be performed and
he place where the result is stored (register file or RAM). Moreover,
n this case, we used the debugging and programming tool mspdebug
n the injection interface to simulate faults in the MSP430 microcon-
roller. The injection interface used the mspdebug ‘step’ command to
ontrol the injection time, instead of controlling with a hardware time-
riggered interrupt, which bypasses the need to instrument the source
ode. The first step of the injection process was a golden execution
o store the expected result of the program under evaluation. Then,
he injections decided upon at the configuration stage were performed,
njecting a single fault in each execution. The results of the fault
njection campaigns were classified, according to their effects on the
ystem, and they were stored in CSV (Comma Separated Value) files
or later analysis.

.3. FIM

The Fault Injection Manager (FIM) is a highly portable fault in-
ection tool for different (ISA) processor architectures and emula-
ion/simulation platforms [34], suitable for this research where a real
evice was needed to undertake a fault campaign. It uses the built-
n hardware debugging facilities, such as On-Chip Debugging (OCD),

and the GNU Debugger (GDB) to access internal processor resources
(such as memory sections, register file, etc.) and for monitoring the
execution process. This setup provides support for many processor
implementations (softcore and hardcore) and Commercial-off-the-shelf
(COTS) devices.

FIM also uses a lightweight Interrupt Service Routine added to the
original code and driven by a built-in hardware timer to speed up the
fault injection on real COTS processors. During the initialization phase,
a clock cycle is randomly selected and the timer is configured. A GDB
debugging session is then initiated and the program that is launched in
test execution mode continues its execution routine until interrupted
by the timer. Then GDB takes control to inject a fault on a random
resource and to resume the execution. Once the program finishes, FIM
reads the result and classifies the faults according to the effect on the
system.

3.4. Tools comparison

Table 1 presents a summary of the main characteristics of the
fault injection tools. As comparative criteria, we considered the fol-
lowing: type of fault injection performed (emulation/simulation), fault
model, ability to inject faults into different processor resources, speed
of the fault injection campaign, availability of the source code in
public repositories, and possibility of adapting the tool to different
architectures.

It is worth mentioning that Naken-FIM and MiFIT present two
important limitations: (1) they are incapable of simulating several hard-
ware functionalities present in real devices, such as hardware multiplier
accelerators, timers and communications interfaces (e.g., UART); (2)
memory protection is not implemented, which means that faults affect-
ing the program counter in such a way that an invalid memory address
that is accessed may prompt a different behavior compared to the real
MSP430. In contrast, this limitation is not applicable to FIM that works
on the real device, although its campaigns are much lengthier over
time than that of the simulation tools, due to the direct (not simu-
lated) interaction with the real device. There is, therefore, an inherent
trade-off when comparing Naken-FIM and MiFIT versus FIM between
execution accuracy and its duration. Nevertheless, we can select pure
ISA programs without access to interrupts or accelerators/co-processors

https://github.com/UNPLaS/MiFIT
https://github.com/UNPLaS/MiFIT
https://github.com/UNPLaS/MiFIT


Microprocessors and Microsystems 96 (2023) 104723A. Aponte-Moreno et al.
Table 1
Comparative table of selected fault injection tools.

Tool Fault implementation Fault model Fault targets Campaign speed Public availability Adaptable to
other architectures

MiFIT Simulation Bitflip Reg.File Fast (≈minutes) Yes Yes
Naken-FIM Simulation Bitflip Reg.File/Mem. Very fast (≈minutes) On demand Yes
FIM Emulation on real processor Bitflip Reg.File/Mem. Slow (≈hours) No Yes
to minimize this tradeoff in favor of simulation strategies. Regarding
the campaign duration, we selected the built-in gdb simulator on FIM,
because it is a de-facto standard, however it is difficult to modify,
because of the lack of documentation. Consequently, the fault injection
process has to be performed using the gdb standard interface, which is
a slow procedure. In the case of Naken-FIM the fault injection infras-
tructures are integrated in the simulator, leading to faster campaigns.
Furthermore, any required modifications to mimic the real processor
behavior can be accomplished more easily. Another remarkable differ-
ence is that, unlike the simulation options, FIM instruments the code
that is to be executed, which can be problematic when the program is
too small compared to the ISR.

4. Experimental setup

4.1. Device under test

The two main tools, MiFIT and Naken, used in this study were
chosen to simulate the Texas Instruments MSP430 microcontroller (the
MSP430G2553 device) whereas the FIM tool was adapted to emulate
faults on the Launchpad prototyping board.

The core of the TI-MSP430 is a 16-bit RISC processor included in
the Texas Instruments low-power microcontroller family. It includes a
register file with 16 registers (R0–R15). The first 4 are special-purpose
registers: R0 is the Program Counter (PC); R1 is the Stack Pointer (SP);
R2 is the Status Register (SR); and the R3 register is used for constant
generation. The Status Register (R2) stores the content of arithmetic
flags (carry, overflow, negative, and zero), and some control bits such
as System Clock Generator 1 (SCG1), System Clock Generator 0 (SCG0),
Oscillator (OffOSCOFF), and CPU Off (CPUOFF) that are used to control
the operational mode of the CPU. The General Interrupt Enable (GIE)
bit is used to enable or to disable maskable interrupts. The remaining
registers, R4 to R15, are general purpose registers.

Fig. 1 presents the memory map of the different memory sections of
the TI-MSP430. The memory section distribution is important to gain
an understanding of the fault injection campaigns, as it has different
memory sections as its targets, such as: .data, .stack and .text.

4.2. Benchmarks and campaign configurations

The benchmark suite used in the experiments included applications
of different levels of complexity and different computation models (data
intensive vs. control intensive). These are: Euler algorithm (Euler), an
iterative code for calculating the Euler’s number, the recursive Quick
Sort algorithm (Qsort), and the data intensive Matrix Multiplication
(MxM). A Cyclic Redundancy Check (CRC) was added to the last 2 test
programs to reduce the output data and to facilitate the evaluation of
the results.

The programs were compiled using the msp430-gcc compiler ver-
sion 6.4.0.32. The same binary files were tested on each tool during
fault injection campaigns that used the bit-flip fault model and that
injected a single fault per execution in a randomly selected bit and clock
cycle (instruction in case of the simulators). The targets of the faults
were: the registers of the register file and three memory sections —
RAM data (.data), stack memory (.stack), and program memory (.text).
A total of 1000 faults were injected in each register and in each memory
section, numbering 16,000 faults in the register file and 3000 in the
4

memory for each program. Memory campaigns were performed using
Fig. 1. TI-MSP430G2553 memory map [37].

only Naken and FIM, as memory injection was not supported in MiFIT
at the time the experiments were performed. In all cases, the error
margin was 1% with a confidence level of 99%, according to [38].

In addition, we performed a detailed analysis of the special proces-
sor registers that were affected, e.g., PC, SP, SR (including the ALU
flags), and their effects. The specialized function of these registers
makes them an important source of errors and it is therefore necessary
to understand the possible consequences of these faults, and at the same
time, the differences that can be expected between fault simulation and
fault emulation in these specific cases.

Depending on the final result of the program execution the faults
were classified as ‘unACE’, ‘SDC’ or ‘Hang’, according to [39]. If the
system completed its execution and its results were in the expected out-
put, the injected fault was classified as unnecessary for Architecturally
Correct Execution (unACE). Faults which were not detected/corrected
and that provoked the program to complete its execution with an
erroneous output were labeled as Silent Data Corruption (SDC). Finally,
faults that caused an infinite execution loop or an abnormal program
termination were classified as Hang. SDC and Hang were categorized
together as Architecturally Correct Execution (ACE) faults.

5. Fault injection results

5.1. Register file reliability analysis

One fault injection campaign was performed for each of the three
test programs and each of the three tools, i.e., a total of nine campaigns.
Fig. 2 presents the average percentages of the fault classification for all
registers in the microprocessor register file. One can see a group of 3
bars for each program. Fault classification is shown in stacked bars with
three categories: unACE, Hangs, and SDC.
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Fig. 2. Average percentages of fault classification in the register file by fault injection tool (MiFIT, Naken and FIM) and test program.
Fig. 3. Percentages of fault classification in the register file by fault injection tool (MiFIT, Naken, and FIM) for Euler.
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As can be seen, the results of the different tools are generally similar,
specially when comparing the results obtained with the 2 simulation-
ased tools. In all cases, the differences in the unACE percentages
etween the tools are less than 2.8%. It should be noted, however,
hat the distribution of undesirable effects (SDC and Hangs) shows

variation that is slightly higher when comparing the results from
imulation-based tools (MiFIT and Naken) to those from the emulation
ool (FIM). For example, this difference reaches 7.5% in Euler and is
n aspect that will be discussed in greater detail in Section 6.

Detailed results can be seen in Fig. 3. This figure, instead of showing
he aggregated result for the entire register file, depicts the results of
he fault injection for each register individually for Euler. Within the
igure, 16 groups of stacked bars can be seen, which correspond to
he 16 registers of the processor register file. For each group, the first,
econd, and third stacked bars show the results with MiFIT, Naken, and
IM, respectively. Similar results were found for Quicksort and MxM,
owever, these results are not shown for the sake of brevity.

Fig. 3 shows differences in results, particularly between the results
f the simulation tools and the emulation tool. It is important to clarify
hat the faults only affect registers involved in program instructions.
5

ote that faults injected into unused registers (e.g., R3, R4 and R5 in m
Euler) have no consequence on the program result and are therefore
considered as unACE. In contrast, critical registers, such as R0 (program
counter) and R1 (stack pointer), presented the highest error rates.

Moreover, there were some differences between the injection results
obtained from the three tools. The registers where some differences
might be noted can be identified from this detailed representation,
comparing the results of each register independently. For instance, the
R6 register in Euler was one instance where the registers presented
inconsistencies between simulation and emulation results. In this ex-
ample, injecting a fault in this register in some specific instructions
of the program workload caused the program to require 1 additional
nstruction to complete its execution: i.e., the assembly code frag-
ent presented in Fig. 4. If a fault is injected in the R6 register,

he simulation-based tools will abandon program execution within the
xpected time, which is classified as a Hang. In contrast, the same
ault in the emulation tool is considered an SDC which is due to the
ifferences between the characteristics of the real processor used by the
mulation tool and those of the models used in the simulations. While
he real processor considers the entire underlying microarchitecture,
he simulated models are at the ISA level.

This fact shows a limitation of the specific ISA-level simulation

odels for the MSP430 used by the simulation tools. Although this
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Fig. 4. Assembly code extract from the Euler program.

ould be improved by an enhanced implementation of the simulation
odel (e.g., considering microarchitectural features of the processor),

t is a general drawback of simulation models that should be considered
hen analyzing results.

Considering the aforementioned analysis, a set of new fault injection
ampaigns were performed with an extra-time limit for 10 instructions
o the simulators, before the classification of the faults as either SDC
r Hangs. The test programs therefore have a soft time limit to finish
heir executions. Fig. 5 presents the average fault injection results
y tool and test program when an extra-time limit was given to the
imulators for the completion of the execution of the program before
he fault classification. These results were more consistent between
he simulators and the emulation tool than the results of the previous
ampaigns shown in Fig. 2 (without any extra time for the simulators).

We have compared the three means for the unACE and SDC results
or each experiment (Euler, Quicksort and MxM) and each tool (MiFIT,
aken, and FIM) using an ANOVA statistical test. We have calculated

he next p-values in the ANOVA test for the pair (unACE, SDC): Euler
0.915, 0.553), Quicksort (0.813, 0.962) and MxM (0.908, 0.987),
espectively. They are all bigger than the significance value 0.05.
herefore, the null hypothesis is not rejected and we can state that there
re no significant differences between the results obtained by MiFIT,
aken and FIM.

Furthermore, Fig. 6 illustrates, for the case of Euler, the fault
lassification in each individual register per test program in greater
etail where an extra-time limit for the simulation tools was added
efore the classification.

The results showed that adding extra time significantly reduced the
ifferences between simulation and emulation, e.g., in the aforemen-
ioned case of the R6 register in Euler, similar results were recorded
rom each of the three tools. However, some differences remain, espe-
ially in the results of the PC (R0) and SP (R1), and a few general-
urpose registers, such as R11 in MxM and Qsort, which will be
iscussed in detail in Section 6.

.2. Memory reliability analysis

Fig. 7 shows the percentage fault classifications of the faults injected
n the campaigns on the memory sections (.data, .stack, and .text) using
aken and FIM. Please, note that fault simulation in memory sections

s currently unavailable in MiFIT.
Highly similar results for the .data sections in the Euler and Ma-

rix Multiplication test programs (100% unACE faults) were recorded,
hereas the QuickSort test program showed a slight discrepancy below
%. In the case of the .stack and .text memory sections, the results
howed discrepancies in the undesirable effects (SDC and Hang faults)
btained with both injectors on the test programs. Moreover, the results
f injection into the .stack for Euler and Matrix Multiplication showed
ifferences of 31% and 37%, respectively; while the results of the
uickSort test program showed a discrepancy of less than 12% for

hese faults. With respect to the .text section, the results showed the
ollowing discrepancies: 28% for the Euler program, 30% for the Matrix
ultiplication, and 22% for the QuickSort program. These differences

n the results are discussed in greater detail in the next section.
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. Discussion

.1. Comparing results from simulation-based tools

Fig. 8 shows the comparison of injection results obtained with both
he Naken and the MiFIT tools. The percentage difference of the fault
lassification for each simulator is shown through bars for the Euler,
sort, and MxM test programs. The fault effects were classified as
nACE (lighter colored bars) and Hang (darker bars).

The horizontal axis shows the microprocessor registers, while the
ertical axis represents the percentage difference in fault classification.
ositive values are used for cases where the MiFIT fault classification
s higher than Naken. Negative values indicate the opposite.

As can be seen from all three figures, the results obtained with both
imulators are consistent. In all cases, the difference in fault classifica-
ion was less than ±7.3%. The highest differences were observed in the

special purpose registers, specifically in registers R0 and R1. As in the
case of Quicksort, where the most significant difference corresponds to
UnACE for the R0 register, with 7.3%. For general-purpose registers,
the observable differences were even less and were all below ±5.1%.

Although the results of the previous comparison were calculated
on the basis of the classifications presented in Fig. 3, these differences
remained similar and were consistent with the results shown in Fig. 6.
The differences between simulation-based tools can therefore be said
to have remained constant, whether or not an extra-time limit was
considered in the fault simulation campaigns before fault classification.

6.2. Simulation vs. emulation fault injection results

As mentioned in Section 5.1, the fault classification results obtained
with the three injection tools presented slightly larger discrepancies for
some cases, as shown in Fig. 6, due to the additional time that the
simulation tools needed before fault classification. Fig. 9 presents the
differences between the results of the simulators (MiFIT and Naken),
versus the emulation results obtained using FIM. Figs. 9(a) to 9(e)
illustrate the differences between MiFIT and FIM. In the same way, the
other 3 sub-figures, Figs. 9(b) to 9(f), represent the comparison between
Naken and FIM in terms of their results. The percentage differences
with positive values indicated that the classification of the simulation
tool was greater than the FIM, and vice versa.

Some registers recorded considerable fault classification differences
under either simulation or emulation. These discrepancies amounted to
as much as 20.0% for unACE faults for register 11 in qsort, as shown in
sub Fig. 9(d); up to 19.9% for Hang faults shown in the same subfigure
and register; and up to 11.3% for SDC faults in register 12 in Euler, as
shown in sub Fig. 9(b).

After having analyzed the assembly code of the test programs and
having performed simulation tests, it became clear that these discrep-
ancies were due to classification errors between unACE and Hangs, and
between unACE and SDC. The errors resulted from variations in the de-
sign of the fault injection campaigns. The simulation-based campaigns
included all program subroutines, including initialization subroutines,
as part of the fault injection target. Nevertheless, the initialization
subroutines were given no consideration in the emulator-based cam-
paigns. The fault injection in some registers used in these initialization
subroutines, such as R11 and R14, therefore yielded different results.
This sort of register was employed before the main routine to move data
on the RAM for the test programs. By injecting a fault in these registers,
data can actually be written to sections intended for the stack, which
can cause an erroneous return of the procedure. These faults have
been experimentally validated, using exactly the same fault injection
campaign for all tools, without injecting faults during initialization
subroutines. The results showed that the differences were considerably
reduced between the results obtained in the simulation and emulation
campaigns. In the worst case, the largest difference found was 10%,
which related to register R14 in M×M.
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Fig. 5. Average fault injection results by fault injection tool (MiFIT, Naken, and FIM) and test, with an extra-time limit for the simulators.

Fig. 6. Fault classification percentages in the registry file by fault injection tool (MiFIT, Naken, and FIM) for Euler, with an extra-time limit for the simulators.

Fig. 7. Fault classification percentages for memory section and test program.
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Fig. 8. Percentage differences between fault injection results from simulation tools:
MiFIT and Naken. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

In addition, it is worth mentioning that the majority of the remain-
ing differences between the results, both from the simulation-based
fault injection campaigns and from the emulation-based campaigns,
were due to limitations of the simulation models for the MSP430
used by the simulation-based tools. In general, the ISA-level simulation
models should be used for a preliminary assessment of the reliability
of the system during development. Simulation models are expected to
take into account the microarchitecture of the processor and its clock
cycle accuracy, to improve the precision of the results.

6.3. Memory fault injection

The results of the fault injection campaigns on the different memory
sections showed that the effects of the faults varied according to the
8

w

section of memory under consideration for the injection (as can be seen
in Section 5.2). In the case of the data section (.data), it contains the
explicitly initialized global and static variables of the programs. The
size of the values in the program source code determine the size of this
section, which remains unchanged at run time. The source code has
read–write permissions, so the variable values located in this segment
can be changed at run time. In this section, the effects of the faults show
a similar behavior in both the Naken simulator and the FIM injector
applied to the real processor.

The memory section of the .stack is located in a higher group
of addresses (as shown in Fig. 1), and grows or shrinks in relation
to the stack segment. It contains local function variables and related
accounting data. During the call to a function, a stack frame is created,
containing the arguments of the local variables of the function and
the return value (each function has a stack frame). The experimental
results showed discrepancies between the undesirable effects (SDC and
Hang faults) of both injectors during the test programs, due to the
limitations of the simulator when trying to model the behavior of the
real processor.

As mentioned above, the .stack section contains the program stack,
which is used to store the return address when a function is called and
the parameters that are passed to the function. In the same way, it
is also used to store the intermediate results of the program. In this
context, faults injected with FIM, rather than with Naken, can cause the
real processor to behave in different ways. For example, in a case where
the fault sends the Program Counter (PC) to a memory address in the
non-implemented memory section, it can prompt an exception causing
a reset, an interruption, or an infinite loop of program execution (see
Section 6.4 Specific scenarios/cases). As Naken does not have this
exception implemented, it will decode and execute trash code until it
reaches the initial memory address (_start), causing the system to restart
the program execution without faults (unACE fault). Therefore, the
behavior of the simulator will differ from the real processor depending
on the trash code in the Flash section of the processor. It is also expected
hat there will be a deviation in the results.

The .text section, also known as a code segment, contains the
achine instructions of the program. In other words, this memory

ection stores the program code. It is a read-only section that prevents
program from being accidentally modified. The effect of a fault on

his section can affect the control flow of the program execution by
hanging the memory content, for example, in a jump or call to a
untime function. In the same way as the previous case, the simulator
ill not have implemented some characteristics of the real processor,

o a variation in the results obtained between both injectors may also
e expected.

.4. Specific scenarios/cases

The effects of faults affecting non-general purpose registers used by
ach test program are studied in this sub-section (Fig. 6). As stated in
ection 4.1, we always have a number of specialized registers whose
unction makes them a major source of errors (control-flow errors,
ata corruptions, etc.). In addition to the function-specific registers,
ome general-purpose registers can also be used as pointers to memory
ocations where an intermediate or final result is stored. Therefore,
he effect of a fault on this kind of registers has to be taken into
onsideration jointly.

For example, a fault may cause the PC (R0) to decrease its value and,
onsequently, to induce the re-execution of some instructions. In this
ase, the best disruptive effect is the obvious increase in execution time.
n fact, in the case where it does not exceed the timing requirements
f the program, the fault is labeled as unACE. In this case, both Naken
nd MiFIT should generate a fault classification identical to that of FIM.
imilarly, if the fault increases the PC value, both simulator outputs
ill match the FIM output. In this case, some instructions are bypassed

hich will make SDC or Hang labeling more likely. Moreover, the PC
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Fig. 9. Percentage difference between fault injection campaign results based on simulation and emulation (with an extra-time limit).
could also be modified in such a way that the processor has to fetch
an instruction from whatever memory location from the addressable
map (see Fig. 1 for reference to the memory map), which will result in
different effect types depending on the affected resource:

• ROM/flash section: re-execution of the program from a random
address or trash code execution until the initial memory address
(_start), from which the program is loaded again, is reached. The
program will end without errors, but depending on the timing
requirements, the fault will be labeled as either Hang or unACE.
In this case, output from simulators and actual devices my differ,
depending on the trash code found in this section.

• Peripheral module sections, special registers and memory not imple-
mented: in case the processor will attempt to fetch an instruction
in any of these sections, an exception of reset will be triggered,
9

and will therefore cause the program to be restarted without
faults. For example, in the case of MSP430, if an instruction is
fetched from the peripheral configuration registers, the device
will trigger a reset exception, which may cause Hang or unACE
faults. The simulators under study will implement no exceptions,
so code will execute normally until _start is reached, as previously
stated.

• RAM section: this memory section contains data (data sections,
the stack and the heap) with no code instructions. If the PC points
here, the instruction that is fetched can result in an illegal instruc-
tion (and consequently, an exception), which is more likely, or a
legal decodable trash instruction.

• Interrupt vector table section: in the case of MSP430, an exception
of SIGTRAP_reset_vector_() arises. This routine points the PC to
the initial address of the program and stops its execution. In
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consequence, it restarts the execution of the program. Hence, in
many cases this event causes Hang faults. In turn, in the case
of MiFIT and Naken, this exception is not incorporated, so the
behavior will differ from the FIM-related behavior.

In addition, in case the fault points the PC to an address located
fter the code section, a trash code will be executed up to the Interrupt
vector table, where the exception SIGTRAP_reset_vector_() is triggered,
rovoking either Hang or unACE faults. As both, MiFIT and Naken
mplement no exceptions, programs will continue running trash code
ntil the end of the memory, which will cause Hang faults.

Moreover, a fault affecting the Stack Pointer (SP or R1), is very
ikely to affect stacked/automatic variables, which will generally lead
o SDC faults. It can also affect the reading of the return address after
he execution of a function call; in this case, the fault can make the
C return either to a wrong instruction (SDC) or to any of the previous
ossibilities, invariably yielding Hang faults.

Regarding the R2 register (or State Register), the effect of faults
shows high percentages of unACE faults in all test programs (Figs. 3
and 6). Faults on this register can produce two main effects:

1. If faults affect the control bits of the clocks, they can deactivate
the operation mode of the program (low power mode). However,
only the CPUOFF bit produces this event, so its effect should
slightly affect the result. In the case of the FIM injector, this
effect may result in Hang faults in small proportions. Similarly,
in the case of Naken and MiFIT, this effect produces no major
consequences, because the simulators have yet to implement
these microarchitectural features.

2. If the faults affect the flags (C, Z, N and V) of the ALU (Arithmetic
Logic Unit), it may cause incorrect jumps. An effect that may
therefore lead to SDC and Hang faults.

Finally, a fault affecting the remaining general-purpose registers
can produce several events. For example, a bit-flip in a register used
immediately before a conditional jump causes the program to execute
a different number of instructions prior to termination. For example,
in the source code from Fig. 4, a bit-flit on R6 will affect the program
in the aforementioned way. If the number of instructions needed to
complete the program increases, and no extra-time limit has been
specified within the injection tool, the fault will be labeled as Hang. On
the other hand, if the number of instructions is reduced, the injection
may cause an SDC type of fault.

Having completed a detailed analysis of how faults introduced in
different computational resources can affect the variability of simula-
tion and emulation results, we have all the information and variables
to assert when it is plausible to rely on Instruction Set Architecture
simulators for estimating the reliability of a system. With no loss of
generality, we can divide embedded systems software into 3 categories:
pure data-flow, control-oriented, and hybrid systems. Pure data-flow
systems always perform the same operations on a set of input data. The
operations on the data are purely logical/arithmetic, and can be defined
with the original ISA, i.e., no peripherals, co-processor units or accel-
erators of any kind are used. For example: CRC32, FIR filters, matrix
multiplication, etc. Moreover, control-oriented systems use conditions
to select between different tasks that need to be executed. These con-
ditions can be calculated from either the input data (option A), or they
can come from another external source to the microprocessor (option B)
(peripheral, interrupt, etc.). Interactive systems and ISR-based software
are good examples of such systems. Finally, hybrid systems integrate
both possibilities in the same software. When assessing reliability, pure
data-flow systems will yield the same results under both simulation
and emulation, as argued before. Therefore, simulators represent the
best option in terms of accuracy and speed. Option A control-oriented
software is indistinguishable from pure data-flow when assessing its
reliability using either emulation or simulation, so simulators will
10

again be the best option here. Option B control-oriented and hybrid
software will produce different output on emulation or simulation fault
campaigns, as previously mentioned. Some software products permit
the simulation (which must be hard-coded) of external events that
have to be accessed (e.g., MSP430 matrix multiplier accelerator, timer
events, etc.). In these cases, we must minimally instrument the code,
to improve the reliability evaluation and to minimize the differences
between emulation and simulation. In the most extreme cases (e.g., ISR-
based software), emulation should be recommended to obtain reliable
results. Finally, for designers of fault mitigation algorithms, whose
algorithms are often highly parameterizable, and therefore subject to
much variability in their effects, simulation is recommended as a key
tool for fine-tuning their proposals.

7. Simulation & emulation vs. real irradiation campaigns on mit-
gation techniques

While simulation or emulation campaigns produce valuable results
o show the effects of faults over different software/hardware structures
e.g., code and data sections, registry files, addressable memory, etc.),
hese effects must be validated in real irradiation campaigns. In this
ontext, we define simulation/emulation results as valid, if the fault
eights for each fault type (namely SDC or unACE) keep the rank
rder consistency in the corresponding irradiation experiment. In that
ay, if a mitigation technique reduces the total SDC-labeled faults
f a program in either simulation or emulation, this effect should be
lso projected in the irradiation results. In consequence, this partial
rder relation can be leveraged to speed-up the search of the most
ppropriate mitigation technique for a given software: what goes wrong
n simulation/emulation will also go wrong with real irradiation, and
ice-versa.

We selected the well-known BubbleSort algorithm (a sorting algo-
ithm that swaps contiguous elements of a vector until the vector is
hortened) to demonstrate the above. Although the BubbleSort algo-
ithm is indeed both basic and simple, we use it in fault injection
ampaigns, because we can delimit its effects on the executing de-
ice: fine control of resources used (registers, memory), easy fault
ocalization, scalability, duration control, etc. Simple but well-known
enchmarks such as BubbleSort, MxM, CRC, Qsort, AES etc. are com-
only used in the fault tolerance community to provide evidence of the

oodness of their hardening techniques [35,36,40]. In addition, in our
ase, BubbleSort provides computation of relatively low complexity and
f a relatively long duration. Thus, it is easier to trace and to explain its
ault effects. Moreover, testing more complex applications introduces
o additional benefits, however, it makes it extremely difficult or un-
easible to run their much slower associated campaigns. The BubbleSort
lgorithm was subjected to the following three techniques:

• T1-MOOGA: a genetic algorithm controlled by a multi-objective
optimization algorithm that is a non-intrusive technique for au-
tomatically testing thousands of compiler flags/parameters [41].
The final goal is to find the best set of compilation alternatives to
improve features such as code size, computing time, and fault cov-
erage altogether. We selected a possible solution for optimizing
the above-mentioned features.

• T2-SHE: a source-to-source compiler (SHE) that is used as a
method to inject redundant code (assembly) using the S-SWIFT-
R technique [42]. The compiler has the capability of producing
selective register hardening, in order to reduce the time overheads
of replica computation. In this case, the whole registry file was
protected.

• T3-HData: a high-level technique that uses a template-based C++
hardening library, named HData [43], to add Triple Modular
Redundancy (TMR) to the variables manually as they are selected.
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Fig. 10. Observed Architecturally Correct Execution (ACE) radiation events (𝑃𝑆𝐷𝐶 and 𝑃𝐻𝑎𝑛𝑔) vs. simulation events. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
An MSP430F5529 Device-under-Test (DUT) was used that was also
part of the MSP430 family. It shares the same architecture of the
previous devices studied by simulation/emulation. It is built in 130 nm,
works at 25 MHz, and is equipped with 128 KiB and 8 KiB of flash and
RAM memory, respectively.

The Naken tool was used to perform the corresponding fault simu-
lation campaigns. Finally, an irradiation campaign using neutrons was
undertaken to compare the results.

The neutron campaign was performed at the Los Alamos Neutron
Science Center (LANSCE). The experiments were carried out at the
Weapons Neutron Research Facility (WNR), using Target 4 Flight Path
30L (ICE I). The LANSCE dosimetry data yielded a constant neutron flux
of 1.7 ⋅ 105 n∕(s cm2), above 10 MeV. Taking into account the times to
complete each run, the total fluence was calculated with an accuracy
of 10%. With this configuration, the shape of the neutron spectrum was
very similar to the one produced in the atmosphere by cosmic rays.

Simulation and radiation results for the three aforementioned tech-
niques are shown in Fig. 10. Given the fact that it is not possible to trace
each fault event in radiation experiments (only those that produce soft
errors can be reliably traced), the figure only represents normalized
ACE events, in each case. Events labeled as SDC and as Hang are
represented in blue and orange, respectively. While in radiation a soft
error can be only labeled as SDC or Hang, because the microprocessor
resource that was hit cannot be ascertained, we have more control
over simulation errors. In effect, in the simulation experiments we dis-
tinguish between faults affecting the register file (Reg), the initialized
program data (Data), the program stack (Stack), and the program code
itself (Text).

In this case, we observed that, as expected, the ratio between
the total amount of SDC and Hang effects under simulation in each
case matched the corresponding radiation results. For example, the
first technique (MOOGA), summarized 65% of total SDC events, and
consequently 35% of Hang events, so it follows that SDC events were
of greater frequency and importance than Hang in simulation. The
irradiation results for this case, >80% SDC and <20%, support this
conclusion. The second technique (SHE) even yielded exact matches for
the SDC and Hang values. Conversely, Hang events implied the most
important simulation and irradiation-related effects. The last technique
was also validated by radiation. In this last case, Hang events also
represented the most common soft error with a difference of less than
15% between simulation and irradiation.
11
We were able to conclude that the order relation maintained its
behavior both in simulation and in radiation experiments; which vali-
dates our assumption. Moreover, Naken, MiFIT, and FIM can be used
to conduct valuable and reliable simulations to investigate the effects
of fault campaigns over critical applications. The main benefits range
from speeding up the search for new mitigation algorithms with highly
selective targeting (register file, memory, etc.), to having a method that
will quickly obtain candidates for irradiation.

8. Conclusions

In this work, we have presented experimental insights relating
to the accuracy of fault injection tools, to estimate the reliability
of microprocessor-based systems. In the first place, two architectural
level simulation-based tools have been assessed and compared to the
emulation of faults in the real device. The results of the simulation
campaigns were consistent across both tools. In all cases, the differ-
ences in the fault classification, in each individual register from the
microprocessor register file, were less than ±7.3%. When comparing
these overall results for the complete register file (as an average), the
difference was reduced to only ±3.3%. Moreover, simulation tools offer
a downward estimate, about 10%, of the reliability when compared to
more realistic results obtained on the real device by fault emulation.
Several specific scenarios were discussed, to better understand the rea-
sons for those discrepancies, highlighting the relevance of the low-level
architectural features. We can conclude that simulation-based fault in-
jection campaigns are comparable and consistent with fault emulation
campaigns using the real processor, but considering several restrictions.
These restrictions are mainly due to the various features of the micro-
architectures that are not supported by ISA simulators and that are
important when studying the behavior of processors in the presence
of faults, e.g., hardware interruptions, built-in peripherals (timers,
watchdogs, GPIO), and several runtime exceptions (memory not im-
plemented, unauthorized accesses, among others). A very valuable
secondary outcome of the experimental results for the fault tolerance
community has to do with the investigation of new fault mitigation
techniques. In fact, since fault coverage has similar effects in both
simulation and emulation (same trend in device resources involved),
we can choose any of the three proposed tools to pre-evaluate different
versions of a given hardening technique on the same device and thus
improve its effectiveness. In fact, we would recommend Naken-FIM
or MiFIT to perform a design space exploration of a parameterized
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hardening technique, due to their inherent campaign speed compared
to FIM. We have completed a detailed analysis of fault injections
affecting different computational resources and their effects on the
variability of simulation and emulation results. Some recommendations
have also been provided on when it is thought appropriate to use
either simulation or fault emulation campaigns to assess microprocessor
reliability under certain conditions.

In second place, irradiation experiments with neutrons were per-
formed on real devices running different versions of one benchmark
hardened with three mitigation techniques: high-level code replication,
low-level and non-intrusive (without including redundancy). We ob-
served that reasonable consistency was preserved between simulation
and radiation results when evaluating the effectiveness of the mitiga-
tion techniques. This conclusion is important, as fault injection offers
valuable information to reduce both the time and the cost of searching
for the most suitable protection-related configuration.
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