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Abstract: The random volume over ground (RVoG) model has been widely used in the field of
vegetation height retrieval based on polarimetric interferometric synthetic aperture radar (PolInSAR)
data. However, to date, its application in a time-series framework has not been considered. In this
study, the logistic growth equation was introduced into the PolInSAR method for the first time to
assist in estimating crop height, and an improved inversion scheme for the corresponding RVoG
model parameters combined with the logistic growth equation was proposed. This retrieval scheme
was tested using a time series of single-pass HH-VV bistatic TanDEM-X data and reference data
obtained over rice fields. The effectiveness of the time-series RVoG model based on the logistic growth
equation and the convenience of using equation parameters to evaluate vegetation growth status were
analyzed at three test plots. The results show that the improved method can effectively monitor the
height variation of crops throughout the whole growth cycle and the rice height estimation achieved
an accuracy better than when single dates were considered. This proved that the proposed method
can reduce the dependence on interferometric sensitivity and can achieve the goal of monitoring the
whole process of rice height evolution with only a few PolInSAR observations.

Keywords: PolInSAR; dynamic monitoring; logistic growth equation; RVoG; rice crop height

1. Introduction

Crops are important for the development of society and are closely related to the
stability of human life. Crop height, as one of the vegetation biophysical parameters, is a
critical indicator of growth, and is important for many applications, such as phenology
tracking, crop health evaluation, and total yield prediction [1]. Remote sensing technology
is able to monitor the land surface on a large scale and with a high spatial resolution and has
been demonstrated to be a powerful tool to monitor crop growth. In particular, polarimetric
interferometric synthetic aperture radar (PolInSAR) can penetrate into or through the crop
layer and record the vertical structure of the crop, and thus has great potential for crop
height monitoring [2–4].

To invert crop height from PolInSAR data, it is necessary to build the relationship
between the crop height and the PolInSAR observations. The oriented volume over ground
(OVoG) model, in which the attenuation of the microwave signal in the canopy changes
with the wave polarization, considers the scattering process corresponding to crops with
a preferred orientation. It has been proven that the assumption of the propagation of
microwaves in the canopy is polarization-dependent in most practical crop scenarios [5–9]
but the complexity of the solution process for the OVoG model increases the difficulty of
its application [10]. The random volume over ground (RVoG) model, which has a simpler
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form, has been widely used to describe the scattering process of electromagnetic waves
penetrating into vegetation media, which gives us the chance to invert vegetation height
from complex interferometric coherence values [11].

However, due to the short height of crops (compared to forests), and the fact that
the crops quickly evolve over time (showing clear changes in short periods of time), the
PolInSAR data used to measure crop height require both a short temporal baseline and
a long spatial baseline to provide sufficient sensitivity for crop height measurement. In
the early tests of this technique, only laboratory data and airborne data could meet the
above requirements, which are not conducive to complete a large-scale mapping of crop
height, nor can they meet the long-term demand for accurate monitoring of crops [7,8,10].
It was not until the completion of the TanDEM-X Science Phase that a bistatic synthetic
aperture radar (SAR) interferometer with an adjustable spatial baseline was introduced [12],
allowing the inversion of crop height to be implemented using single-pass interferometric
spaceborne data. During the Science Phase of the TanDEM-X mission, which spanned some
months in 2015, the bistatic configuration with zero temporal baseline not only avoided
the appearance of temporal decorrelation, but also employed spatial baselines of 2–3 km
to provide the required sensitivity to measure height for short vegetation, especially for
crops. Such spatial baselines produce heights of ambiguity of just a few meters; hence, they
are adapted for short vegetation. By comparing the signal diversity of rice in the different
polarization channels of X-band data, it has been found that the effect of a low vegetation
canopy on wave attenuation in the vertical direction can be ignored to some extent [13],
and the RVoG model can obtain a valid height estimation [14,15]. In view of the fact that
the multiple scattering of crops cannot be ignored, it is necessary to derive polarization
interferometric coherence formulas to distinguish monostatic and bistatic modes from a
uniform volume ground model [16,17]. The complete RVoG expression, considering both
surface scattering and dihedral scattering from the ground in the bistatic mode, has been
applied to crop areas [18] and research on rice height retrieval has been carried out in
Turkey, Spain, and other regions, providing a complete verification for the inversion of
rice height from sowing to maturity using TanDEM-X science phase data [19]. Through
the simulation of the system configurations and scene variables of crop and forest scenes,
the estimation errors of the parameters have been analyzed and the applicable conditions
for double-bounce scattering decorrelation have been further determined [20]. In order
to improve the efficiency and the reliability of the results, multiple model fusion, trace
coherence [21,22], and other methods have been proposed.

In all of the known PolInSAR inversion schemes, crop height is independently derived
from single dates and the consideration of the correlation of crop growth variation in the
temporal dimension is missing. In the RVoG model inversion with a single interferogram,
the plant height is extracted by separating the topographic phase and the pure volume
scattering phase. However, it is common to find limitations in the interferometric sensitivity
for very short heights and it is difficult to distinguish the phase difference at the initial stage
of rice growth [23]. As a result, in many cases, the results are not valid and the obtained
heights are severely overestimated [19,22]. In this study, to solve for these deficiencies, we
exploited the growth characteristics of the crop in the temporal domain, and we developed
a time-series RVoG growth model based on multi-temporal data. This kind of time-series
inversion method takes into account the correlation of SAR data in the temporal dimension
in the process of crop height retrieval and corrects the problem of current PolInSAR-based
methods, to a certain extent, through a theoretical growth equation. Here, we aimed to
provide a new inversion framework that can be used to describe or even predict height
changes for crop monitoring. HH-VV TanDEM-X dual-polarization data from Seville, Spain
were used in this study, where the ground-truth data for the rice fields are adequate for use
as a reference.

The rest of this article is organized as follows: Section 2 describes the test site and the
available datasets. Section 3 describes the fundamentals of combining the RVoG model
with the logistic growth equation. The proposed multi-temporal inversion scheme is
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introduced and the mathematical expression of the date selection index based on coherence
is presented. In Section 4, the results are presented and analyzed using the ground-truth
data. Finally, Section 5 explains the results and Section 6 concludes the article.

2. Materials
2.1. Test Site and Ground-Truth Data

The test site is close to the mouth of the Guadalquivir River and is located in Seville,
the capital of Andalusia, Spain (see Figure 1). The rice fields cover an area of about
30 km × 30 km. In the monitored land parcels, a long-grain type of rice called Puntal is
cultivated from May to October every year. Sowing is carried out by spreading seeds
randomly by airplane. It is worth noting that local agricultural practices ensure that these
areas are flooded during the whole growth cycle, and that the cultivation campaign lasts
approximately 135–150 days.
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Figure 1. The location of the test site in Seville, Spain is on the left. The locations of the ground
campaign plots are highlighted and magnified on the right.

Since 2009, the local association of rice farmers (Federacion de Arroceros de Sevilla)
has collected detailed ground measurements from several plots every year, including rice
height and phenological stage on a weekly basis, as well as total area (ha), sowing date, and
harvest date [24]. All the measurements are provided at the parcel level, i.e., an average
value of rice height represents the whole parcel. Crop height is taken as the distance from
the water surface to the highest point of the plants. It is measured at four random locations
within each field by using a measuring tape and the average value is recorded. From the
four fields with ground measurements from 2015, we selected the three plots covered by
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all available SAR data. These three paddy fields are labelled as Minima, Calonge, and
EIReboso (see Table 1). The specific locations are highlighted in Figure 1.

Table 1. Description of three test plots.

Parcel Name Surface (ha) Sowing Date Harvest Date

Minima 4.32 15 May 2015 6 October 2015
Calonge 12.93 20 May 2015 16 October 2015
ElReboso 17.25 22 May 2015 24 October 2015

2.2. TanDEM-X Data and InSAR Processing

In this study, we used bistatic dual-polarization data obtained in 2015 during the
Science Phase of the TanDEM-X mission [13]. They correspond to three time series acquired
with different incidence angles. The details of the selected time series are summarized in
Table 2. The observation interval covers most of the growth cycle of the monitored plots,
from June to early September. Dual-polarization images with HH and VV channels are
available in the standard co-registered single-look slant-range complex (CoSSC) product
and, for each series, the acquisition interval is 11 days (except for some gaps in July for the
data with a 30◦ incidence angle). The spatial resolution of these images is 6.6 m in azimuth
and 1.17 m in slant range, whereas the pixel size is 2.18–2.45 m in azimuth and 0.91 m in
slant range. Considering the correlation between the incidence angle and the height of
ambiguity (HoA), due to the orbital configuration, each time series provides a different
level of sensitivity to the vertical distribution of scatterers within the vegetation volume.

Table 2. TanDEM-X system parameters and acquisition dates for the datasets from Seville.

Incidence Angle HoA (m) Date Range Number of
Interferograms

22◦ 2.53 15 June 2015–31 August 2015 8
30◦ 3.49 6 June 2015–2 September 2015 7
39◦ 5.81 10 June 2015–6 September 2015 9

As the spatial baselines of the input data are large (i.e., 2–3 km), which leads to notable
geometrical decorrelation derived from the changes in the wavenumber in the two images,
range spectral filtering was applied to compensate for this decorrelation. The flat earth
contribution was removed before forming the interferograms. Multi-looking was then
performed using a 21 × 21 average filter when forming the PolInSAR covariance matrices.

3. Methodology
3.1. RVoG Model Combined with the Logistic Growth Equation

The core of the RVoG model combined with the logistic growth equation consists of
describing the variation of rice height in the growth cycle by using a continuous function
with a specific form, transforming the process of retrieving crop heights directly into a
two-step procedure (by selecting all PolInSAR observations at different dates to fit growth
parameters with RVoG), and then carrying out the estimation of rice height in any date.

In this section, the consistency between the characteristics of the logistic growth
equation and the evolution process of rice plant height is described and the basic idea of
bridging the growth equation and RVoG model is presented in the first part. In order to
retrieve the rice height, a complete data processing and inversion strategy for modified
RVoG is proposed. Figure 2 displays the implementation of height inversion, and Figure 3
shows the evolution of rice height and growth rate with time. The specific data processing
is shown in Figure 4.
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Figure 3. Representation of the time-varying characteristics of the logistic growth equation. (a) Graph
of the rice crop height over time. (b) The variation in growth rate over time.

3.1.1. Logistic Growth Equation

The dynamic variation in crop plant height generally corresponds to an S-curve, i.e., the
crop vegetation quickly grows in the vegetative phase and then the growth rate gradually
declines. When the crop is mature, the vertical dimension of the plants tends to be static and
the adult plant height fluctuates within a small range. A typical way to make a scientific and
reasonable description of the vegetation growth trend in the temporal domain is to apply
a theoretical growth equation [25]. As a model describing the variation of an organism
or a population size with time, a theoretical growth equation can reflect the regularity
of the growth [26], and is characterized by parameters with biological meaning that can
theoretically predict the facts. Although several theoretical growth equations have been
proposed and applied in phytology [27], the logistic growth equation was chosen in this
study as a representative of the height time series for its universality and simple expression
of the standard S-curve form. The vegetation growth law applies trend constraints to the
rice growth, and the maximum height of the rice plants does not exceed H.

The theoretical growth equation for plant height considering actual conditions can be
expressed as:

H(t) =
H

1 + e−k0(t−t0)
(1)

where H represents the maximum plant height that can be achieved by this kind of crop,
k0 represents the intrinsic growth rate, and t0 indicates the time instant corresponding
to the maximum growth rate. The growth rate v derived from the logistic equation is
expressed as:

v =
dH
dt

= k0H(1− H
H
) (2)

The evolution of growth rate and height during the growth cycle are shown in Figure 3.
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3.1.2. The Modified RVoG Model

As the most broadly applied model in the field of PolInSAR-based vegetation height
inversion, the RVoG model considers a vegetated scene as composed of two layers. The
lower part represents the ground surface that cannot be penetrated by microwaves, and the
aboveground canopy is regarded as a volume composed of randomly oriented scattering
particles. The electromagnetic waves interact with leaves when penetrating the canopy,
which is dominated by volume scattering in this process. When the microwaves reach the
ground, the signal responses are mainly composed of two contributions: direct scattering
from the ground surface, and double-bounce scattering from the interactions between
stalks and the ground. The effective scattering center depends on the ground-to-volume
backscatter ratio and the attenuation effect of the canopy on the microwaves. On the basis
of this model, the complete expression of the complex interferometric coherence for a
PolInSAR bistatic system [16] is as follows:

γ̃(κZ, ω) = eiφ0 [
γ̃V + mD(ω) + γ̃DBmDB(ω)

1 + mD(ω) + mDB(ω)
] (3)

where φ0 is the topographic phase, γ̃V is the coherence from the volume contribution, γ̃DB
is the coherence of double-bounce scattering, and mD(ω) and mDB(ω) are the ground-
to-volume ratios corresponding to the direct and double-bounce scattering contributions,
respectively. In (3), ω indicates a specific polarimetric channel.

According to [19], the monitored plots are flooded during the cultivation cycle. Conse-
quently, the direct contributions that come from the ground surface are weak compared to
the double-bounce contribution. The RVoG model is simplified as follows:

γ̃(κZ, ω) = eiφ0 [
γ̃V + γ̃DBmDB(ω)

1 + mDB(ω)
] (4)

γ̃V =

∫ hv
0 eiκzze

2σz
cos θ dz∫ hv

0 e
2σz

cos θ dz
(5)

γ̃DB =
sin kzhv

kzhv
(6)

κz =
2πB⊥

λR sin θ
(7)

kz = κz sin2 θ (8)

where hv is the height of the plants, σ is the extinction coefficient, θ is the incidence angle
of the electromagnetic waves, λ is the wavelength of the radar waves, R is the range or
distance, and B⊥ is the length of the perpendicular baseline. κz is the vertical wavenumber,
which represents the sensitivity factor for the height. It can be seen in Equations (4)–(8)
that the model assumes that the double-bounce ground-to-volume ratio is polarization-
dependent. In addition, the decorrelation term denoted by γ̃DB, which depends on the crop
height, is caused by the different transmission and return paths to the antenna [23].

With dual-polarization TanDEM-X data, each observation provides 2 complex coher-
ences, i.e., 4 real datapoints. The RVoG model defined in (4)–(8) comprises 5 parameters:
topographic phase φ0, vegetation height hv, extinction σ, and 2 ground-to-volume ratios
mDB(ω) (1 for each polarization). The retrieval of the model parameters from the data is
usually based on two steps. First, a line is fitted to the coherence region on the complex
plane, which provides the topographic phase φ0. Second, the four remaining parameters
are estimated by a numerical minimization using the two complex coherences [19].

From the above RVoG model, among all of the scene parameters, plant height, as a
feature directly related to time, is the best bridge to establish the relationship between the
PolInSAR observations and the time variation characteristics. In this article, we assume
that the evolution of rice plant height in each pixel follows a logistic growth equation in the
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temporal domain and, consequently, a set of PolInSAR observations (acquired at selected
dates) are employed to fit the characteristic parameters of the logistic growth equation.
The formulae of the volume scattering coherence and the total coherence, employed for
inversion based on the time series, are derived by combining the theoretical equation of
crop height growth with the RVoG model:

γv(t) =

∫ H(t)
0 eiκzze

2σz
cos θ dz∫ H(t)

0 e
2σz

cos θ dz
=

2σ(e
2σH(t)

cos θ
+iκzz
− 1)

(2σ + iκz cos θ)(e
2σH(t)

cos θ − 1)
(9)

γ̃(ω, t) = eiφ0 [
γv(t) +

sin kz H(t)
kz H(t) mDB(ω)

1 + mDB(ω)
] (10)

in which hv has been substituted by H (t). If n represents the number of interferograms
(dates) used for the model inversion based on the time series and we assume that the
topographic phase is estimated by the line fit, there are 3 + 3n unknown parameters in
Equations (9)–(10) to be solved: H, k, t0, σn, mn

DB(ωmax), and mn
DB(ωmin). Consequently,

using 4 real measurements (2 complex coherences) from each date, in order to balance the
number of unknowns and measured data, at least 3 different dates are required to estimate
the height of rice over the whole growth cycle.

3.2. Inversion Scheme for Crop Height from TanDEM-X PolInSAR Data

The proposed RVoG height inversion scheme with dual-polarization TanDEM-X data
consists of four main steps, which are detailed in the following subsections. Due to the
properties of HH and VV PolInSAR data, the covariance matrix formalism was used and
the trace coherence was also employed to simplify the process of determining the extreme
coherences as in [22].

3.2.1. Compensation of the SNR and BAQ Decorrelation of the Covariance Matrix

The first processing step consists of compensating for the signal-to-noise ratio (SNR)
decorrelation, for which the annotated noise can be directly subtracted from the PolInSAR
measurements. After the SNR correction, the BAQ decorrelation is compensated by multi-
plying by the theoretical term γBAQ. In the scene dominated by crops, the value of γBAQ is
normally regarded as a constant, i.e., 0.965 [19,22,28].

3.2.2. Calculation of the TrCoh and Estimation of the Two Coherences with Maximum
Phase Separation

The trace coherence (TrCoh, γtr) was first defined in [29] and was used for vegetation
height retrieval in [22]:

γtr =
Trace([Ω12n f ])√

Trace([C11n f ])Trace([C22n f ])
(11)

where Trace(·) represents the sum of the diagonal elements of the matrix. The TrCoh
provides an approximation to the center of mass of the coherence region (CoRe), which
does not depend on a specific scattering mechanism and represents the overall contributions
of all of the coherences [28].

In the dual-polarization case, the set of all possible interferometric coherences defines
an ellipse in the complex plane. This enables an analytical solution to find the extreme co-
herences γ(

→
ωmin), γ(

→
ωmax) that maximize the phase separation, as it is detailed in [22]. The

intersection of the line defined by the extreme coherences and the circle with a radius γDB,
moving from γ(

→
ωmin) to γ(

→
ωmax), provides the estimation of the topographic phase φ0.
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The coherence loci of the RVoG model are considered to cross the TrCoh, which leads
to more stable results. The extreme coherences are obtained by crossing the line redefined
by the TrCoh γtr and the topographic phase φ0 with the ellipse [22],

γ̃max/min = eiφ0 + F(γtr − eiφ0
)

(12)

3.2.3. Determination of the Input Observations used for Inversion

According to the RVoG model combined with the logistic growth equation, the data
of n (n ≥ 3) different dates should be selected for enabling inversion. In the first instance,
one may consider the option of inputting all of the available interferograms (dates) to
retrieve the model parameters. However, this was not considered in this work for two
reasons. As a highly nonlinear model with multiple solutions, too many optimization
objectives make it difficult for any optimization algorithm to find a suitable solution. In
this study, we used the NSGA-II intelligent algorithm, which is mainly applied to two- or
three-objective optimization problems [30], so we only selected three dates (i.e., three pairs
of extreme coherences) as the observation input. In addition, it was found through previous
experimental exploration that the performance of the RVoG model inversion is dependent
on the interferometric sensitivity and the coherence magnitude (i.e., phase quality) provided
by the different interferograms [31–33]. The introduction of unsuitable measurements
to invert the model parameters can reduce the reliability of the results. The inversion
accuracy can also be affected by uncompensated nonvolumetric decorrelation contributions.
Interferograms with a low observation quality could distort the logistic curve and reduce
the successful implementation of the new model inversion. In conclusion, a choice criterion
should be introduced for the case of more than three available interferograms during the
period of the rice growth cycle.

As the TrCoh can be considered to be an overall indicator of the distribution of the
coherence, and hence, measurement quality, γtr is used to represent the interferometric
height accuracy and Haccuracy expresses the relationship of the interferometric phase to
height variations [34].

Haccuracy =
φtr

κz
(13)

The variance of the phase and height of each scene are defined as:

σ2
φ =

1−|γtr|2

2NL|γtr|2
(14)

σ2
H =

σ2
φ

κ2
z
=

1−|γtr|2

2κ2
z NL|γtr|2

(15)

where NL represents the number of looks and σ2
H is the index used to characterize the

quality of the input coherences at the pixel level. When the coherence amplitude increases,
the variance decreases, and the height accuracy improves. Considering this, for each pixel,
the three dates with the smallest variances of TrCoh are selected as the input data.

3.2.4. Numerical Estimation of the Unknown Parameters

The observations are 4 × n, i.e., there are n observation dates (expressed as days
after sowing) and 2× n measured complex coherences. The unknown parameters are the
three growth parameters, the n extinction coefficients, and the 2× n ground-to-volume
ratios. The objective of multi-objective optimization is to minimize the sum of the distances
between the extreme coherences and modeled coherences, i.e.,:

min
H,k,t0,σn ,mn

DB(ωmax),mn
DB(ωmin)

‖γn
max − γ̃n(ωmax, t)‖+ ‖γn

min − γ̃n(ωmin, t)‖ (16)
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The procedure of rice crop height estimation based on the proposed time-series RVoG
model with bistatic TanDEM-X dual-polarization data is shown in the flowchart in Figure 4.
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Figure 4. Flowchart of the time-series RVoG model based on the logistic growth equation.

In is important to note that the optimization results for the parameters in the logistic
growth equation can be applied to the estimations of rice crop height at any time during
the growth cycle, i.e., not only at the dates of the TanDEM-X acquisitions.

4. Results and Analysis
4.1. Feasibility Analysis of the Logistic Growth Equation

To illustrate the effectiveness of the logistic growth function at the three test plots,
we used the reference data of the rice crop height collected by the ground measurements
from 2016 to 2020 to carry out a logistic regression. According to Equation (1), the height is
expressed as a function of time, for which an initial date is implicitly required. Considering
that rice only lasts for 5 months from sowing to maturity and its maturity height is around
1 m (the magnitude is small compared to the general vegetation), the introduction of the
sowing date when relevant data are available helps the fitting of the growing evolution
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of rice at a more accurate level. At the same time, we used the logistic growth equation
to describe the evolution of rice height and considered the application of the growth
parameters. The results obtained by taking days after sowing as the input values could
be regarded as only related to the growth time but unnecessary for considering the effect
of input leading or lagging time. Therefore, the cumulative days after the sowing date
were taken as the input time magnitude in all of the processing described in this article.
The results of the logistic regression to the ground-truth data are illustrated in Figure 5.
Before discussing the results, it must be clarified that there are fluctuations in height along
time, which are especially visible in the last phenological stages and for some fields. From
the perspective of vegetation growth itself, the parameter of plant height continuously
increases, especially during the vegetative phase, until it reaches a maximum height, which
should be stable until harvest. However, due to the increase in the panicle weight and the
impact of wind, the rice plants cannot always be completely upright in the field; hence,
vegetation height can go up and down because plants may be more or less bent over time.
In addition, it should be emphasized that the height considered in this work is measured as
the distance from the water surface to the highest point of the plants; hence, the fluctuations
in water level have an impact upon the measurements. Finally, all measurements were
gathered manually with a measurement tape (see Section 2.1). Therefore, there is always
some experimental error when taking the height measurements. Despite the commented
fluctuations, which are inconsistent with the smooth curve, overall, it is possible to describe
the time-varying characteristic with a single function. The coefficient of the determination
of the fitting results is close to 1 and the root-mean-square error (RMSE) values are less
than 0.01 m. The accuracy measures are listed in Table 3, which indicate that the logistic
growth equation, defined with only three parameters, can describe the height variation of
rice over the whole growth cycle.
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Figure 5. Regression results for the logistic growth equation with ground-truth data for the rice crop
height collected from 2016 to 2020. The columns from left to right show the three monitored rice plots
in Seville.

4.2. Effectiveness of the Date Selection Strategy

This section shows a comparison of the accuracy of the height (estimated by arbitrarily
choosing three interferograms as the inputs) and the results of the proposed date selection
method. To further illustrate the necessity of this strategy, taking the EIReboso test plot as
an example, four combinations from all of the interferograms applied in this work were
manually chosen to invert under different incidence angle conditions. In Figure 6, the
corresponding results are compared to the results of the proposed method.
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Table 3. Regression results in the test sites with ground-truth data from 2016 to 2020.

TEST SITE YEAR R2 RMSE (M)

MINIMA

2016 0.984 5.52 × 10−3

2017 0.973 3.63 × 10−3

2018 0.969 2.21 × 10−3

2019 0.990 3.79 × 10−3

2020 0.946 5.36 × 10−3

CALONGE

2016 0.984 2.81 × 10−3

2017 0.983 2.75 × 10−3

2018 0.989 2.89 × 10−3

2019 0.984 1.16 × 10−3

2020 0.973 3.70 × 10−3

EIREBOSO
2016 0.975 2.23 × 10−3

2017 0.906 5.85 × 10−3

2018 0.976 6.40 × 10−3
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Figure 6. Graphical representation of the different combinations of dates (black squares) chosen to
compare to the proposed method with 22◦, 30◦, and 39◦ incidence angles. C1–C4 display the three
interferograms selected as the input data. The proposed method (red) corresponds to the strategy of
choosing inputs from all the observations available.

According to the four combinations shown in C1–C4, the complex coherences in the
EIReboso test plot for the selected InSAR images were used as the observation inputs to
retrieve the model parameters and the rice crop heights derived from the growth parameters
were compared to the inversion results obtained using the proposed date selection strategy.
The quantitative comparison presented in Figures 7 and 8 indicates that the inversion with
the proposed date selection can adaptively select the inputs at pixel level and it achieves
a relatively decent accuracy. As shown in the results, the input coherences selected by
the index did not achieve the highest accuracy, which is related to the particularity of
the PolInSAR data. When the influence of nonvolume decorrelation is significant, the
standard deviation of the interferometric phase is large and the height inversion accuracy
is reduced. For dual-polarization data, TrCoh was used to approximate the center of the
whole CoRe and was further used as a quality index of height accuracy in this work. When
this indicator is applied to the pixels with a large phase difference in different polarization
channels, an inaccurate approximation may be derived. At the same time, when the
complex coherences on the complex plane are dispersed, the dominant factor affecting the
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accuracy of data inversion is no longer the interferometric phase. As a result, it is necessary
to comprehensively consider the geometric structure of the CoRe. In order to reflect the
difference of the same block inversion, the date selection method is carried out at the pixel
level and the difference between the two may also cause statistical deviation. However, the
proposed accuracy index has strong universality, especially in the case of poor observation
data quality. In this verification, the best accuracy appears in C3 with 22◦, C2 with 30◦, and
C4 with 39◦, which implies that it is difficult to judge which selection might lead to the best
results. Since it is not a feasible approach to directly invert all possible combinations of
the existing interferograms and compare their accuracy from the perspective of inversion
efficiency, the proposed date selection strategy can ensure that we select more suitable
inputs from the miscellaneous observations and obtain a relatively reliable result, which
has overall stronger robustness and adaptability.
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Figure 7. Correlation plots of the rice height estimations with respect to the ground-truth data. C1–C4
correspond to the cases of the three manually selected interferograms that were used to estimate the
rice height evolution, whereas the proposed method corresponds to the proposed model with the
proposed date selection criterion.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 23 
 

 

the complex coherences on the complex plane are dispersed, the dominant factor affecting 
the accuracy of data inversion is no longer the interferometric phase. As a result, it is nec-
essary to comprehensively consider the geometric structure of the CoRe. In order to reflect 
the difference of the same block inversion, the date selection method is carried out at the 
pixel level and the difference between the two may also cause statistical deviation. How-
ever, the proposed accuracy index has strong universality, especially in the case of poor 
observation data quality. In this verification, the best accuracy appears in C3 with 22°, C2 
with 30°, and C4 with 39°, which implies that it is difficult to judge which selection might 
lead to the best results. Since it is not a feasible approach to directly invert all possible 
combinations of the existing interferograms and compare their accuracy from the perspec-
tive of inversion efficiency, the proposed date selection strategy can ensure that we select 
more suitable inputs from the miscellaneous observations and obtain a relatively reliable 
result, which has overall stronger robustness and adaptability. 

Figure 7. Correlation plots of the rice height estimations with respect to the ground-truth data. C1–
C4 correspond to the cases of the three manually selected interferograms that were used to estimate 
the rice height evolution, whereas the proposed method corresponds to the proposed model with 
the proposed date selection criterion. 

 
Figure 8. R² (bars) and RMSE (squares) of the rice crop height estimated with different combinations 
of inputs. 

  

Figure 8. R2 (bars) and RMSE (squares) of the rice crop height estimated with different combinations
of inputs.

4.3. Inversion Results of Rice Crop Height

Figure 9 shows the evolution of the results of rice height estimation obtained with
the date selection criterion introduced in Section 3. These results indicate the potential of
the proposed model. The retrieved growth parameters are listed in Table 4. According to
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the growth parameters, it is possible to evaluate the growth status of the rice crop at any
date. The retrieved height evolution at the Minima test plot is the most different from the
reference data, which do not really follow a logistic evolution. It should be noted that the
maximum growth height is not always equivalent to the mature height but it is a theoretical
value that should be comprehensively analyzed. In the Minima case, the final height did
not fluctuate much due to the ear weight at maturity, but the crop height continued to
increase until the end of the growth cycle, reaching a height that was still lower than the
theoretical maximum.
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Figure 9. Variation in the crop height considering the proposed date selection. The dates with InSAR
observations (red triangles) are introduced to calculate the parameters of the equations and the rice
height estimations. The predictions obtained from the proposed approach (orange) are compared to
the ground-truth data (black). The columns from left to right show the results for the three monitored
rice plots in Seville for incidence angles of 22◦, 30◦, and 39◦. The average results computed for all
the pixels inside each plot on days with ground-truth data are presented. The error bars denote the
standard deviation within each plot.

For a comparison of the height retrieval results of the proposed method under dif-
ferent incidence angle conditions, the correlation between the estimates and the ground
measurements is shown in Figure 10 and Table 5. Except for the Minima test plot, the RMSE
of the height estimations in the other test plots and for all cases is less than 0.1 m and the
determination coefficient is higher than 0.95.
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Table 4. Average values of the estimated growth parameters corresponding to the different test plots.

Incidence Angle Parameter
Test Plot

Minima Calonge EIReboso

θ = 22◦
H 0.903 0.938 0.915
k0 0.0617 0.0694 0.0699
t0 59 57 61

θ = 30◦
H 1.041 1.014 0.999
k0 0.0535 0.0638 0.0622
t0 41 43 47

θ = 39◦
H 1.045 1.029 1.027
k0 0.0726 0.0602 0.0500
t0 40 41 42
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Figure 10. Correlation plots of the rice height estimations with respect to the ground-truth data.
The height evolutions for Minima (triangles), Calonge (diamonds), and EIReboso (squares) with 22◦

(green), 30◦ (blue), and 39◦ (orange) incidence angles are plotted.

Table 5. Statistics of the correlation between the field measurements and height estimates obtained
with the time-series RVoG model based on the logistic growth equation.

Incidence Angle θ Precision Index
Test Plot

Total
Minima Calonge EIReboso

22◦
RMSE (m) 0.101 0.061 0.064 0.075

R2 0.970 0.989 0.990 0.980

30◦
RMSE (m) 0.197 0.054 0.053 0.114

R2 0.959 0.992 0.992 0.960

39◦
RMSE (m) 0.244 0.065 0.089 0.145

R2 0.926 0.992 0.994 0.949

In the PolInSAR literature, especially in studies on vegetation height retrieval, it has
been demonstrated that there is an optimum range of the product of vertical wavenumber
and vegetation height, κz·hv, to obtain accurate height estimates. For instance, this aspect is
discussed in detail in [23] (Sections 8.2–8.3, Figure 8.28). If the product is too small, there is
not enough separation of coherences and phases in PolInSAR data to provide an accurate
height estimation and this is what was found in [19,22,35] with the same dataset at 30◦

and 39◦ for all crop heights, and also at 22◦ at the beginning of the growth cycle. The
overestimation of crop height is noticeable for the datasets with associated large HoA and
a reduced vertical wavenumber (see Table 2), which in this case makes the 39◦ incidence
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angle set the worst. In contrast, the vegetation height calculated based on the growth
parameters is underestimated in the early stage under the case of a 22◦ incidence angle. At
this point, it is worth recalling the strong overestimation found in [19,35] with the same
dataset at 30◦ and 39◦ incidences for all dates, and at 22◦ in the initial dates. Using only the
RVoG model, without the time coordinate assistance employed in the present work, the
height results are extremely far from the actual values and the PolInSAR-based retrieval is
unable to provide valid estimates. The use of the logistic equation constrains the overall
evolution of rice height, producing results for which the maximum height reduces with
the decrease in the incidence angle. A single case is apparent in the results for the Minima
test plot. The time-series RVoG model is not able to capture the growth when the actual
crop growth does not fully comply with the changes described in Figure 3, but the best
results still come from the data with a 22◦ incidence angle. It is concluded that, even if the
application of the logistic growth equation reduces the variability of the RVoG model and
avoids the appearance of parameters that are inconsistent with the actual conditions, there
will always be some decorrelation in the data that cannot be offset. Therefore, datasets
with a smaller HoA should be given priority to provide more accurate estimations for short
crops, such as rice.

To further analyze the method performance, the mean relative errors of the crop
heights obtained from the different InSAR data at the three test plots were exhibited in
Figure 11. The statistics were computed for the range of the errors below 100% because
the part greater than 100% is considered invalid. Overall, the results derived from the
30◦ incidence angle produce the lowest estimation errors. However, the height estimation
error obtained from the data of 22◦ and 39◦ has increased; the main reason might be that
the variability of the height evolution trend is reduced when using the logistic growth
equation. Since all changes were derived from three fitting growth parameters, when
estimation errors appeared, the overall results may be overestimated or underestimated.
The optimum accuracy, on the whole, occurs late in the cultivation cycle, when the growth
rate is beginning to decline. The main reason for this is that the height measurement ability
in this observation condition is suitable for the whole dataset and the effect of the short
baseline is not as obvious as in the early stages (characterized by short crops). On the other
hand, the relative errors of the three test plots were quite different. Taking Minima with
obvious differences as an example, combined with Figure 9 and the ground measurement,
it could be found that the rice grown in this area was slower and did not reach the mature
height in later stages, which corresponds to a lower measured rice height. However, the
proposed model still retrieves the unknown parameters by optimizing the observation
coherences within three days and the accuracy of the inversion results is still subject to
interferometric sensitivity.

In view of the characteristics of the logistic growth equation, the initial value of rice
growth cannot start from 0, which obviously departs from the actual situation. When the
growth trend of the estimated equation parameters is far from the actual value, the initial
height deviation is more noticeable, which might be an inevitable limitation of the proposed
model. Unfortunately, the InSAR observations are not suitable for parameter calculation in
the initial growth stage due to the lack of enough sensitivity to the vertical coordinate.

Another limitation of the RVoG model combined with the logistic growth equation is
that the inversion accuracy cannot exceed the fitting result. Even if the optimal estimation
accuracy for the logistic growth equation can be achieved, it can still differ from the ground-
truth value, so that the logistic curve cannot fully fit the change in rice height in the time
series. For a more comprehensive analysis of this shortcoming, a comparison of the rice
height estimations obtained from the proposed method and the nonlinear fitting results
directly acquired by ground-truth data is shown in Figure 12. Considering the performance
of the model, as the regression results represent the highest accuracy that can be achieved,
it is clear that the inversion accuracy for the Calonge and EIReboso test plots is close to the
best. To some extent, the poor height retrieval accuracy for the Minima test plot can be
attributed to the divergence between the logistic growth equation and the growth trend in
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this area. In the majority of cases, rice growing conforms to the law of the logistic growth
equation and using the time-series model to restrict the height variation is an effective
approach. However, as previously mentioned, enough interferometric sensitivity is not
available for extremely short crops, such as rice, which increases the difficulty of capturing
the actual heights with the proposed algorithm.
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Finally, in order to display the spatial distribution of the rice height over the entire test
site, Figure 13 shows the maps of height estimated by the proposed method at different
incidence angles. As mentioned in Section 4.1, the application of the external data of
the sowing date can avoid some potential errors, but this information is not available in
every field, so it is necessary to propose a method for large-scale rice monitoring. The
TrCoh mentioned in Section 3.2.2 provides an approximation to the center of mass of
the CoRe and represents the overall contributions of all of the coherences. It has been
proven that the differential interferometric phase can be used to measure the evolution
of rice height over time and κz established a direct relationship between the phase of
TrCoh and vegetation height [34]. For each time series, the differences between the heights
extracted from the interferograms obtained from the current date and the previous date
constituted the vegetation height variation features. Since the position of the phase center
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depends on the morphological characteristics of the canopy and its interaction with the
radar signal, direct application of the phase center to retrieve crop height may not be
accurate, as described above, but the phase change in the time domains is sufficient to
distinguish the differences in rice growth between different pixels. The height changes
extracted from the three test plots with a known sowing date, according to the InSAR
phase-based methodology, were used as three training sets of different classifications and
support vector machine (SVM) was used to train the classification model. The classification
model is applied to predict the type of height changes in other fields, that is, three types
of rice with the same growth characteristics as rice in the three test plots are obtained and
the sowing dates were considered to be consistent with their corresponding plots. Thus, a
rough image of estimated sowing dates can be obtained and the cumulative growth days
calculated based on this image were used as the inputs of the proposed modified RVoG
model. Finally, the rice height inversion of the whole test site was completed. The height
maps were obtained at specific dates, which are annotated above the images. These maps
illustrate the potential of this technique to provide high resolution crop height maps over
the areas covered by the TanDEM-X images.
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5. Discussion

The RVoG model had been widely used to retrieve vegetation height. However, its
application in conjunction with the time domain information has not been attempted to
date. In order to establish an effective inversion model for physical variables of crops, we
assumed that the height evolution of rice conforms to the logistic growth equation in the
whole growth cycle and the crop height estimates at any date were obtained through the
three parameters of the equation. In contrast with a regression or fitting based on ground
measurements, we used height as a bridge to apply the RVoG model to a time series of data.
For this purpose, a date selection strategy was devised. The introduction of the theoretical
growth equation essentially restricted the variability of the model, which implied that the
plant height gradually increases and is irreversible.

There are some issues in predicting plant height with three growth parameters. The
height evolution of the proposed model was determined by a single equation, which may
lead to an overall deviation of height results in some dates when the parameter estimation
error is large. This effect is inevitable in the proposed model. In future work, we could
consider the application of the RVoG model combined with multiple logistic equations to
adaptively obtain growth parameters closer to the real scene.

Another limitation of the theoretical growth equation in this paper comes from the
dependence of the logistic growth equation on the sowing date. In order to directly use the
growth parameters to characterize the growth of rice, the sowing date was directly used as
the starting point for the cumulative dates, which avoided the emergence of many errors.
However, for large-scale applications, it is indispensable to discuss how the sowing date
can be estimated and what is the effect of sowing date estimation errors on the accuracy of
crop height retrieval. Unfortunately, only a small amount of ground measurements was
available in this study, so a quantitative analysis could not be conducted on other fields
except the selected test plots.

This paper aimed to convey the idea of adding growth constraints to physical models,
such as the RVoG. This strategy is effective for the inversion of vegetation height over
time. The key is to choose suitable theoretical growth equations for different vegetation
types in different applications, and hence modify the construction of the physical model
for the corresponding vegetation scenes and monostatic or bistatic types of spaceborne
data [20]. Moreover, in this work, the estimated growth parameters were not further
studied. However, the results can quantitatively characterize the overall growth of veg-
etation, describe crop health based on parameters, and be used for pest monitoring and
phenological tracking.

In order to select appropriate input data to fit the logistic equation, a date selection
method was established. The strategy used the interferometric height accuracy of the
current data as the evaluation index, which was a common idea in spatial multi-baseline
selection [32]. We applied this selection method to the multi-date selection in the time
domain. The height accuracy factor calculated from the TrCoh, as a representative of the
phase center, was constructed for its generalized applicability. It provides a reference for
measuring the accuracy of interferometry and only considers the applicability of input data
from the perspective of interferometric quality. However, for pixels with a large difference
in phase centers at different polarization channels, the TrCoh cannot fully reflect the data
features. Consequently, the date selection strategy adopted in this study ensured relatively
suitable inversion accuracy, but for an optimal selection strategy, more diversified factors
need to be integrated to find the most suitable index. More research is needed on different
indicators and their applicability analysis.

6. Conclusions

In this work, we propose a new methodology for crop height retrieval for a time series
of PolInSAR data. It is based on combining the RVoG model with the logistic growth model.
Using multi-temporal data, a monitoring method of PolInSAR-based rice height retrieval
considering growth constraints is proposed here for the first time. The core ideas of this
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article are: (1) the integration of the mathematical model describing the growth law of
natural features with the physical model (RVoG) characterizing the PolInSAR data and (2)
the transformation of the isolated plant height obtained from the single-date PolInSAR
data into the process of solving the growth parameters through the set of SAR observations
and estimating the rice height corresponding to any date, even in the absence of SAR
acquisitions. In this way, the complete evolution of rice plant height in the growth cycle
can be inverted through only a small amount of observation data. This not only reduces
the dependence on the observation time but also corrects the complex coherence applied
to the RVoG model through the change trend of the growth equation in the temporal
domain so that the crop height result estimations are based on a more stable and reliable
model. In addition to estimating the crop height, the growth parameters can also provide
basic data support for the subsequent monitoring of crop yield and refined phenology
estimation results. Specific applications of the proposed method will be further studied in
our future work.

Under the condition of limited data being available, we focused on the limitations of
the RVoG model dominated by double-bounce scattering in rice fields and aimed to reduce
the dependence of the model performance on interferometric sensitivity to height. The
improved model with the date selection criterion was evaluated.

Firstly, for the case of choosing between multiple observations on different dates,
by adding the observation quality index, three dates with coherences characterized by
the smallest variance can be selected at the pixel level in the time-series data to complete
the parameter calculation, and a better estimation result can be obtained. This scheme
reduces the errors caused by poor observation quality, to a certain extent, and increases
the inversion stability. Then, by using three sets of bistatic dual-polarization TanDEM-X
data with different incidence angles, it was found that the overall RMSE is 0.16 m, and the
overall determination coefficient is 0.94. Compared to the methods proposed in previous
studies, this method can not only achieve a certain improvement in accuracy but can also
be applied to estimate rice height in any instance by means of the logistic growth equation,
which reduces the time requirements for SAR observations and increases the freedom of
dynamic monitoring. At the same time, the three parameters of the growth equation have
physical significance and can assist in analyzing the speed of rice growth and form the
basis for further subsequent phenological estimations and health assessments.
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