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Abstract— OpenStreetMaps (OSM) is currently studied as the1

environment representation for autonomous navigation. It pro-2

vides advantages such as global consistency, a heavy-less map3

construction process, and a wide variety of road information4

publicly available. However, the location of this information is5

usually not very accurate locally. In this paper, we present a6

complete autonomous navigation pipeline using OSM information7

as environment representation for global planning. To avoid the8

flaw of local low-accuracy, we offer the novel LiDAR-based Naive-9

Valley-Path (NVP) method that exploits the concept of “valley”10

areas to infer the local path always furthest from obstacles.11

This behavior allows navigation always through the center12

of trafficable areas following the road’s shape independently13

of OSM error. Furthermore, NVP is a naive method that is14

highly sample-time-efficient. This time efficiency also enables15

obstacle avoidance, even for dynamic objects. We demonstrate16

the system’s robustness in our research platform BLUE, driving17

autonomously across the University of Alicante Scientific Park18

for more than 20 km with 0.24 meters of average error against19

the road’s center with a 19.8 ms of average sample time. Our20

vehicle avoids static obstacles in the road and even dynamic ones,21

such as vehicles and pedestrians.22

Index Terms— Autonomous navigation, unmanned ground23

vehicle, open street maps, path planning, obstacle avoidance,24

LiDAR point cloud.25

I. INTRODUCTION26

AUTONOMOUS navigation aims to reach a specific target27

without human intervention. This task requires knowl-28

edge about the environment to infer the vehicle’s pose [1]29

and to plan the path for goal-reaching [2]. For past decades,30

the problem of generating a model of the environment has31

been widely studied. Simultaneous Localization And Mapping32

(SLAM) [3] is one of the most researched approaches in33

the literature. The SLAM aims to incrementally generate a34

map through an unknown environment, using the map for35

localization simultaneously. However, the SLAM maps usually36

provide high local accuracy but no global consistency. Such37
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maps often show accumulated drifts and scale errors. GNSS 38

sensors don’t avoid these limitations due to multipath, shad- 39

owing, and atmospheric drift issues [4]. Such issues produce 40

deviations, in some cases, in the order of meters. Also, the 41

errors usually have different magnitudes depending on the 42

position and even the hour of the day, producing shifted and 43

smoothly distorted maps. A significant undesirable effect of 44

that behavior is that the maps created in different sessions 45

usually don’t coincide in their joint parts. Then, it is hard 46

to merge them in a common coordinates frame. In that case, 47

the global path planning becomes unrealizable due to the 48

maps being unconnected. Furthermore, SLAM-based systems 49

require a previous exploration of the work area that produces 50

an increment of the application complexity [5], Especially 51

when the area size increases and when exploring new places 52

becomes necessary. 53

As a SLAM alternative, OpenStreetMaps (OSM) has been 54

studied in the last years. OSM is a knowledge collective that 55

provides user-generated street maps publicly available [6]. Its 56

use yields different advantages, such as global consistency, 57

the simplicity of the map construction process that lightens 58

the application’s setup, and the amount of publicly available 59

data. Given these benefits, there has been a wide variety of 60

OpenStreetMaps-based autonomous navigation works, such as 61

[7], [8], and [9], where the authors use OSM information 62

for localization and even, in the case of [9], for mapping. 63

In [10], [11], and [12], the authors use road networks from 64

OSM for Global Path Planning (GPP). Due to OSM graph- 65

like representation, the most common approach used in that 66

context for GPP is graph search algorithm [13], [14], [15] 67

and its variants, such as the Dijkstra algorithm [16], A* 68

algorithm [17], DFS algorithm [18], and BFS algorithm [19]. 69

However, while OSM is well-fitting to the GPP problem due to 70

its high global consistency, it is, in fact, locally inaccurate and 71

usually entails a shift in the road representation. This behavior 72

can produce deviations in the local paths inferred by the Local 73

Path Planning (LPP) module. 74

In LPP approaches such as sample-based methods [20], 75

[21], the local environment is represented as a cost map 76

sampled, usually as a grid map, built from LiDAR or cameras 77

data. Then, the local path that minimizes the cost in the map 78

is searched using algorithms such as A* [11] or RRT* [22]. 79

The cost maps are generally very informative about the 80

obstacles and the limits of the map but not at the center of 81

trafficable areas. Then, the non-center-informative LPP and the 82
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previously mentioned local inaccuracy of OSM-based GPP can83

produce lateral deviations in the trajectory. Furthermore, these84

lateral deviations can also occur in the case of sparse road85

network representation, where the vehicle would not follow86

the trajectory with the same shape as the road.87

In some OSM-based works, the authors focus on improv-88

ing localization systems by fusion techniques [23] or by89

sensor-based perception [24]. Nevertheless, they don’t con-90

sider the possible OSM inaccuracy, and the local trajectory can91

suffer deviations. In [25], the authors correct the OSM global92

trajectory by fitting it to the previously segmented road using93

a 3D-LiDAR sensor. However, the correction depends strongly94

on the road segmentation that could not be robust enough. In a95

recent work [11], the authors use a similar approach by cor-96

recting the OSM path using a cost map built, in this case, using97

combined camera and LiDAR information. As LPP, to follow98

the corrected OSM path, the authors implement A* using the99

cost map. In the previously-mentioned approaches [11], [25],100

each node from the OSM road network is corrected when101

the vehicle follows them. But due to possible localization102

errors, this correction can not be permanent, which entails103

that the methods should relocate the path in each autonomous104

navigation session. Given this assumption, we consider more105

elegant to maintain OSM information constant for GPP and106

avoid the problem of deviations in the LPP module.107

In this paper, we address the local inaccuracies that produce108

deviations problems in OpenStreetMap-based autonomous109

navigation systems by presenting the novel LiDAR-based110

Naive-Valley-Path (NVP), an LPP approach. It is worth111

noting that the NVP is not presented as a contribution to112

the general LPP problems but as a contribution applied to113

improve OSM-based systems, and we will evaluate it in that114

context. This method uses a potentials local environment115

representation that exploits the concept of “valley” areas,116

which have lower gradient values. Such areas always follow117

trafficable road shapes, avoiding the common deviations in the118

OSM-based applications. This work is developed in the context119

of a complete OpenStreetMap-based autonomous navigation120

pipeline using OSM road network as environment represen-121

tation for GPP.1 The presented method is a “naive” version122

very efficient in computational time terms, in contrast with123

the commons sample-based methods [11]. Due to this time124

efficiency, we can achieve real-time obstacle avoidance, even125

for dynamic obstacles.126

To summarize, the main contributions are the following:127

• A novel real-time method so-called Naive-Valley-Path128

(NVP). That LPP is developed to avoid local inaccura-129

cies of OSM-based autonomous navigation systems. This130

method infers a naive cost map represented as concentric131

circles around the robot to obtain the optimal local path132

using points in “valley” areas. It provides two main133

advantages: navigation always following the center of134

the trafficable regions, avoiding the common deviation135

1This work is in the context of a real application for a project that addresses
the problem of garbage “pick and place” in the University of Alicante campus
using Unmanned Ground Vehicles (UGV). For this reason, we assume an
unstructured outdoor environment for our application, where the localization
is GPS-IMU based, in a global frame coordinates system.

problems in OSM-based applications, and low execution 136

time. 137

• A complete outdoor autonomous navigation system for 138

unstructured environments, based on GPS-IMU fusion 139

localization, OSM for GPP, and a sampled-based LPP 140

for road center correction and obstacle avoidance using 141

LiDAR measurements. 142

• Test and comparison with other state-of-the-art 143

OSM-based autonomous navigation: Li et al. [11]. 144

To perform that OSM-based implementations, we use 145

our own developed research platform BLUE [26] and 146

our navigation framework [27]. 147

The rest of the paper is organized as follows: In Section II, 148

we present an overview of the complete autonomous naviga- 149

tion pipeline proposed. Then, local Path Planning and Global 150

Path Planning modules are described in Sections III and IV, 151

respectively. Next, in Seccion V, we show the experimental 152

results obtained using our own real robot BLUE. Finally, 153

in Section VI, we present the main conclusions obtained from 154

this work and possible future works. 155

II. PROPOSED APPROACH ARCHITECTURE 156

In Fig. 1, we show the proposed approach, which is divided 157

into different modules. The path planning is organized hierar- 158

chically. At the top-level, we compute the GPP that receives 159

a graph obtained from the online application OSM, the final 160

global goal provided by the user, and the pose obtained from 161

the localization module. In this work, we assume that we 162

have a georeferenced global localization. This is required 163

to use the environment representation directly from OSM, 164

which provides geolocalized information about roads and 165

intersections. The GPP infers the best path through the graph 166

using the A* algorithm, and it gives as output a local goal, 167

which is the nearest node of the calculated path. 168

This goal is an input for the LPP module. Moreover, the LPP 169

receives as inputs the vehicle’s localization and 3D LiDAR 170

scans from the sensor. We divided the LPP hierarchically into 171

three layers. In the “Free-space” calculation layer, we remove 172

ground points and the points above the upper part of the 173

vehicle. Then, we consider the rest of the points as obstacles 174

that we use as borders of a free-space representation 2D map. 175

In the Naive-Valley-Path NVP layer, we use a naive cost map 176

representation in the free-space map to infer an optimal path 177

exploiting the concept of “valley” areas. Finally, we evaluate 178

the possible actions, among ones without collision risk, that 179

minimize the error between the vehicle pose and the local path. 180

In Section III and Section IV, we explain in more detail 181

each module of the proposed approach. 182

III. GLOBAL PATH PLANNING 183

At the GPP level, we represent the environment as a road 184

network described as a graph G = (W,A), where W is a set 185

of nodes, and A is a set of links defined over nodes. In such 186

representation, each node wi ∈ W is a georeferenced point 187

in a trafficable area. Each node contains information about 188

latitude, longitude, and unique identification. Each link ai j ∈ 189

A indicates that two points are connected through a passable 190
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Fig. 1. The complete autonomous navigation pipeline, where path plan-
ning approach is organized hierarchically. First, the GPP gets information
about global localization from the robot and global information about the
environment from OSM to plan a global path. Then, the LPP module, using
the presented Naive-Valley-Path (NVP) method, recalculates the local path to
obtain the optimal way to follow.

Fig. 2. Example of road network (graph) used in the GPP module, in this
case, extracted from the Scientific Park area in the University of Alicante.
The red points describe the georeferenced position of nodes, while the blue
lines represent the links that indicate a trafficable connection between nodes.
We can extract the graph directly from current OSM data or create it manually
in the JOSM application.

road. In Fig. 2, we show an example of a graph built from191

OSM information and plotted over an aerial image. We can192

obtain the graph representation by downloading directly from193

OSM. However, in this work, following the roads’ shape falls194

on the LPP module. For this reason, if the roads described in195

OSM are dense, we can subsample them to give a more sparse196

representation. Additionally, we can add nodes manually to197

areas that we know are trafficable using the software of OSM198

called JOSM.199

We can define wstart ∈ W as the nearest node to the 200

vehicle’s pose pvehicle . And wend ∈ W as the node closest to 201

the global goal gg provided by the user. Then, given a graph 202

G, we find the best global path Pg between wstart and wend 203

using the A* algorithm. Then, we describe the global path as 204

a set of waypoints Pg = (wg
1 , wg

2 , . . . , wg
n ). Once the path Pg

205

has been obtained, we store the waypoints in a buffer. Finally, 206

we send each waypoint sequentially as a local goal gl = wg
i 207

to the LPP module as they are being reached. We consider a 208

local goal reached when the Mahalanobis Distance (MD) [28] 209

is less than a certain configurable threshold. We measure the 210

MD between the graph node (local goal gl) and the localization 211

distribution X ∼ N(x,�), where x is the vehicle’s pose, and 212

� is the covariance. Using this probabilistic distance, we can 213

evaluate if a goal is reached depending on the covariance 214

� in the localization system. In this way, we can prevent 215

severe deviation from achieving goals in considerable noisy 216

localization. 217

IV. LOCAL PATH PLANNING 218

In this section, we describe the Local Path Planning module, 219

which is divided hierarchically into three levels. This module 220

aims to infer the final control actions to send to the vehicle’s 221

actuators. Also, in this process, we use the LiDAR sensor to 222

follow the center of the road and avoid possible obstacles in 223

the local goal-reaching process. 224

A. Obstacles and Free-Space Calculation 225

We consider as obstacles the points in a LiDAR point cloud 226

that are not part of the surface on which the vehicle circulates, 227

i.e., the ones that are representing objects above the ground, 228

or even points under the ground, such as descending steps. 229

Besides, we consider obstacles only the points that are under 230

the upper part of the vehicle, which is the collision risk fringe. 231

Given this definition, we need to detect the ground points 232

to consider obstacles to the rest. In large part of the scenar- 233

ios, we observed the ground surface is usually flat. Hence, 234

we make a plane assumption using the LiDAR point cloud P 235

for a nonlinear Least-Squares optimization (based on [29]) to 236

find the optimal ground plane parameters (1) that minimize 237

the accumulated point-to-plane error for all points p ∈ P : 238

pl∗ = argmin
pl

∑
p∈P

ρ
(
||e(pl, p)||2

)
(1) 239

where e(pl, p) denotes the distance vector between p and its 240

plane projection point. The loss function ρ is chosen to be the 241

Cauchy loss with a small scale to be robust against outliers. 242

We then remove all points from the point set with a distance 243

below a threshold to the pl∗ plane. To consider possible slope 244

changes in the terrain, we apply this threshold proportionally 245

to the distance to the sensor center. Finally, we displace the 246

plane in the z axis to the upper part of the vehicle, and we 247

then remove the points over this second plane. The points that 248

remain in P after this process are what we consider obstacles 249

in a new point cloud Po. In Fig. 3 a), we show an example 250

of Po projected in a top-view 2D plane. 251

Starting from Po, we build a 2D representation of the free 252

space. We define free space as the area inside a polygon 253
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Fig. 3. Different top-view 2D representations of LiDAR information for Valley-Path calculation given a target goal represented as a red star: a) Projection
in a top-view 2D plane of obstacles point cloud Po. b) Free-space map, where the blue area represents the space free of obstacles. c) Cost map defined in
(2). d) Inverted representation of the gradient magnitude of c), which shows clear possible paths in the valley areas.

where the contours are obstacle points. We implement the254

polygon calculation in a two-stage process. In stage 1, each255

Cartesian point (x, y, z) ∈ Po is transformed into spherical256

coordinates (φ, θ, ρ). Then, we use φ and θ as an index to257

build a front-view image IF V ∈ R
H×W , where H and W258

depend on the LiDAR resolution and the range limits of φ259

and θ respectively. The value in each cell of IF V is the range260

value ρ. The cells with no point information have an empty261

value. In Section IV-A of [30], the authors derive with more262

detail this representation. In stage 2, we sweep the columns in263

IF V . If the column contains non-empty points, we choose the264

one with the lowest ρ value, named ρ′ from now on. Then, for265

each selected point for each non-empty column, we transform266

(φ, θ, ρ)′ into a top-view 2D Cartesian representation (x, y).267

The points selected are the ones that form the free-space268

polygon. In Fig. 3 b), we show an example of a free-space269

map.270

B. Valley-Path Calculation271

Once we know the free space around the vehicle, we need to272

determine a path in that space to reach the local goal. For this,273

we use a cost representation of free space based on potentials.274

We consider the local goal as an attractor pa = gl and the 275

nearest obstacle point as a repulsor pr . Then, we can sample 276

the space around the polygon as a grid defined as a matrix F, 277

where we represent each cell as fi j ∈ F. For each fi j inside 278

the free space polygon, we obtain the cost as follows: 279

fi j = wr∥∥pi j − pr
∥∥γr

− wa∥∥pi j − pa
∥∥γa

(2) 280

where wa and wr are the weight of the attractive potential 281

and the repulsive potential, respectively. And where γa and γr 282

are the parameters to control the decay of the potential with 283

respect to the distance. In Fig. 3 c), we show an example 284

of our cost map representation F for single LiDAR scan. 285

We consider that to follow the shape of the road; we always 286

want to navigate through the areas furthest from obstacles. 287

Then, focusing on yellow areas in Fig. 3 c), we can observe 288

that these areas are ones around local minimal. We name 289

these areas as “valleys” from now on. Following that valleys, 290

we ensure that the local path can correct lateral deviations 291

derived from OSM-based GPP, which is the main advantage 292

of presented NVP. 293
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To segment valleys given the cost map F, we first obtain294

the gradient:295

∇F =
[
∂F
∂x

,
∂F
∂y

]
(3)296

Next, we can also obtain the magnitude of gradient as297

follows:298

|∇F| =
√(

∂F
∂x

)2

+
(

∂F
∂y

)2

(4)299

Then, to segment the valleys in the map, we assume that the300

values of the magnitude of the gradient at point
∣∣∇ fi j

∣∣ ∈ |∇F|301

close to zero can be considered a point in a valley. Hence, each302

point that satisfies (5) is labeled as a valley.303 ∣∣∇ fi j
∣∣ < ξ (5)304

where ξ is a configurable threshold. Fig. 3 d) shows an305

example of a segmented valley. In the example, the darkest306

points mark the lowest magnitude of gradient points. We can307

see that this representation define clearly the shape of the road308

and possible Valley-Paths that can correct local inaccuracies309

of the OSM-based GPP.2310

To infer a Valley-Path between the robot pose and the311

global minimum in the map, we could use the gradient cost312

map for an optimization process such as A* or Dijkstra [31]313

among others [32]. However, this approach has the flaw of314

being excessively time-consuming in computational terms. For315

this reason, we develop a “naive” version of this Valley-Path316

calculation that we explain in Section IV-C.317

C. Naive Version of the Valley-Path Calculation318

Given a circle around the sensor pose, for each polar319

coordinate (r, ϕi ) we can derive a 1D cost function f , where320

for each fi ∈ f we apply the expression (6), which is the 1D321

version of (2).322

fi = wr

‖pi − pr‖γr
− wa

‖pi − pa‖γa
(6)323

where pi = polar T oCartesian(r, ϕi). If we represent this324

1-dimensional signal as a magnitude of the gradient, we can325

label as valley points the ones that satisfy ∇ fi < ξ . We can326

do the same process in inner concentric circles. In this way,327

we can make the following naive assumption: given a valley328

point pc1
i in a circle c1, and given the nearest valley point pc2

nn329

in an inner circle c2, the line that connects pc1
i with pc2

nn is330

considered part of a path in the same valley. The subscript nn331

means the index of the nearest valley point.332

Under this assumption, given a set of N circles333

(c0, c1, . . . , cN ), we can define the local Naive-Valley-Path334

(NVP) as a set of join waypoints Pl = (
pc0

nn, pc1
nn, . . . , pcN

nn
)

335

in which each element is connected with the nearest previous336

2Differences between Valley-Path and the classical Potential Fields
method: In PF, the potential gradient is used to infer the control actions
directly. This approach usually suffers due to local minimums present in
the potentials representation. In contrast, we do not infer the control actions
from the potential field; we infer the local path (aka Valley-Path). Hence, the
local minimums in the representation (cost map) are not an inconvenience.
Conversely, the local minimums are parts we want to cross on the local path
because they are furthest from obstacles.

Fig. 4. The Naive-Valley-Path (NVP) Calculation. The red points are the ones
that form the local path Pl =

(
pc0

nn, pc1
nn , . . . , pcN

nn

)
. The green connections

describe the naive assumption and define the angle of the points. For the
sake of clarity, this representation shows the NVP superpose with non-naive
representation.

one. The first waypoint pc0
nn is the valley point in the external 337

circle nearest to the local goal pa . As N increases, the time 338

consumption also increases, and the result can converge to the 339

non-naive version of the Valley-Path calculation. The process 340

described in this section is executed each time a LiDAR scan 341

is received, i.e., the local path is recalculated in each iteration. 342

In Fig. 4 we show an example of NVP and the circles used 343

for the inference. To more clearly show how NVP follows the 344

valley areas, in Fig. 4 we superpose it to the original non-naive 345

representation. 346

D. Control Actions Calculation 347

The local path calculation doesn’t consider the vehicle’s 348

kinematic, then to follow that path, we implement in the 349

lower-level layer the controller that depends on the vehicle’s 350

kinematic. 351

Given a local path, we obtain the control actions u = (v, α) 352

that are the output of the LPP module. v is the linear absolute 353

velocity of the vehicle, and α is the steering position. For 354

this, we compute a prediction of trajectories for any possible 355

α at the front and rear directions (Fig. 5). Given a sampled 356

i -th trajectories and the size of the vehicle, we evaluate the 357

collision risk for each one. If some part of the vehicle (with an 358

added security margin) is out from the free-space map at any 359

point of a i -th trajectory, the whole trajectory is considered 360

to be at risk of collision, and it associated αi is discarded 361

as possible variable for the control action. Fig. 5 shows an 362

example of estimated trajectories where the red ones are 363

labeled as collision-risk. 364

Once we have the collision-free trajectories (green ones in 365

Fig. 5), we evaluate the error between each j -th pose in a i -th 366

trajectory xi j and each k-th waypoint pose wk = pck
nn in the 367

complete local path Pl . We compute error as follows: 368

ei jk = c p
(∥∥∥xp

i j − wp
k

∥∥∥)
+ co

(
xo

i j − wo
k

)
(7) 369
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Fig. 5. The arcs represent the possible trajectories of control actions ui . The
red ones are the collision-risk trajectories, and their corresponding control
actions are discarded. In contrast, the green ones are collision-free.

And we minimizes it as:370

i∗ = min∀i

⎛
⎝∑

j

∑
k

ei j k

⎞
⎠ (8)371

where superscripts p and o mean position and orientation,372

respectively, and where c p and co are configurable constants373

to relate the different magnitudes. The result i∗ is the index374

for the control action variable αi . The variable v of the control375

action is computed as follows:376

v = vmax − |αi | vmax − vmin

αmax
(9)377

where vmax , vmin , and αmax , are configurable parameters378

that depends on the vehicle’s characteristics. In case of no379

collision-free trajectories, control action variables are α =380

0 and v = 0.381

V. EVALUATION382

We evaluated the autonomous navigation system presented383

in this paper in our research platform BLUE: roBot for384

Localization in Unstructured Environments [26] (Fig. 6). This385

robot includes actuators for speed and steering, traction and386

steering encoders, IMU, GPS Ublox M8P, camera RGBD387

Intel Realsense D435, and LiDAR 3D Velodyne VLP16.388

All them integrated into Robot Operating System (ROS). The389

developed software is included in the framework for fast390

experimental testing presented in [27]. We use a fusion of391

wheel-encoders, IMU, and GPS as a localization system that392

provides localization in global coordinates. We use GPS-RTK393

for ground truth generation, but for the autonomous appli-394

cation, we decided to lighten the context design avoiding395

dependence on an RTK base station. It is worth noting that396

besides the mentioned OSM errors, we also have localization397

errors that could also produce deviations in trajectory. Our398

NVP module demonstrated robustness against these OSM and399

localization measurement errors.400

Fig. 6. Our UGV BLUE: roBot for Localization in Unstructured
Environments [26].

We carried out the experiments in the Scientific Park at 401

the University of Alicante. This area contains parking lots 402

and pedestrian walkable areas with trees, benches, and curbs 403

(Fig. 2). We chose this scenario for the experiments because 404

it is where the “pick and place” application commented in the 405

introduction is projected. 406

In Section V-A, we demonstrate the main advantage of the 407

OSM-based GPP module, which is the possibility of global 408

goal reaching in an extensive area where other approaches 409

such as grid-based ones fail. Also, in Section V-A, we eval- 410

uate one of our LPP module (NVP) advantages, which is 411

the navigation in the center of the road, independently of 412

OSM local inaccuracy, compared to another state-of-the-art 413

one [11]. In Section V-B, we evaluate the presented NVP for 414

obstacle avoidance and compare it with the same previous 415

commented method, demonstrating how our system recovers 416

better the center of the road after obstacle avoidance. Finally, 417

in Section V-D, we evaluate the execution time, which is the 418

other main advantage of our NVP, by comparing with [11]. 419

A. Trajectory Evaluation in Global Goal-Reaching 420

We test the global goal-reaching for our system using 421

the graph shown in Fig. 2. Due to this area being newly 422

constructed, there is no information in OSM concerning traf- 423

ficable paths. Hence, we created the road network by hand 424

using the JOSM application. Given this graph and the current 425

localization, we send a global goal by hand at a certain point 426

of the network and record the vehicle’s autonomous trajectory 427

during the process. Once the goal is reached, we repeat the 428

global goal sending sequentially to cover most of the area of 429

the experiment. In Fig. 7, we show the results after doing the 430

process described above, where we mark the start of each path 431

and its sent global goal. 432

It is worth noting that the road network built is a sparse 433

representation. Then, graph connections have only topological 434
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Fig. 7. Evaluation of global goal-reaching. The red marks indicate the vehicle
location when a goal was sent, and the blue marks indicate the sent goal
locations.

meaning in the context of the GPP layer and don’t describe435

the shape of the road. For this reason, we cannot use the436

black lines in Fig. 7 as reference for trajectory evaluation.437

Driving the vehicle through the center of the road following438

its shape falls on the LPP layer. Then, to evaluate the system439

quantitatively and compare it with another state-of-the-art440

one, we drove manually the same paths through the center441

of the road to use them as ground truth by recording the442

localization during driving. To obtain enough accuracy, we use443

(exceptionally for ground truth) a GPS-RTK utilizing a base444

station on the roof of the main building in the Scientific park445

area. The accuracy of the RTK system is 0.1m for the parts446

running in RTK-floating point mode and 0.02m for the places447

where RTK-fixed point is achieved.448

Given the ground truth, it was impossible to compare our449

system with others that use grid maps for GPP because we450

have problems generating this kind of map in this extensive451

and highly unstructured environment using maps generators452

such as Gmapping [33]. Another challenge using grid maps453

is to reference it in a global coordinates frame. Such barriers454

demonstrate the improvement of our GPP module against a455

vast part of state-of-the-art works [34]. Hence, we compared456

our approach with another OSM-based autonomous navigation457

system: Li et al. [11]. In this work, the authors aim at the458

problem of OSM error by correcting OSM nodes using a local459

cost map as a reference. The LPP layer on Li et al. [11]460

uses that cost map constructed from road edge detection461

from the camera and a classic A∗ algorithm for optimization.462

Fig. 8. Our system behavior in the face of a static obstacle in the center of
the road.

TABLE I

DEVIATION FROM THE CENTER OF THE ROAD

Fig. 9. Absolute error evolution against the black line in Fig. 8 of our system
comparing with the error evolution in the same obstacle avoidance for [11].

Fig. 10. Example of different error evolution for different γr parameter
configurations in our NVP potential cost map (4).

In Table I, we show the comparison of error measures against 463

ground truth for both systems. We can see that our method 464

follows better the center of the road, and then its shape, for 465

this environment. The average speed during the experiments 466

was vav = 1.1 m
sec . 467

B. Obstacle-Avoidance Evaluation 468

In the previous section, we evaluated the whole trajectory, 469

which is a task that combines GPP and LPP. However, this 470
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Fig. 11. Obstacle avoidance experiments: Example of pedestrian avoidance in an image sequence. A pedestrian crosses the vehicle trajectory twice (images
2 and 4 from left to right). In both cases, the vehicle avoids this dynamic obstacle by doing rear maneuvering.

Fig. 12. Obstacle avoidance experiments: Example of car avoidance in an image sequence. The vehicle circulates in a straight-line way and modifies its
trajectory when a car crosses its path.

trajectory evaluation is for an application in a university471

campus environment, and, hence, we need to evaluate the472

behavior of our LPP in the face of unforeseen obstacles.473

In Fig. 8, we show our system behavior in the face of a474

static obstacle in the center of the road. In this case, the black475

line can serve as a reference, due to, in this case, the road is476

straight. In order to test how the system recovers the center477

of the road after obstacle avoidance, in Fig. 9, we show478

the absolute error evolution against the black line in Fig. 8479

and compare it with the error evolution in the same obstacle480

avoidance for [11]. We can see that our NVP method can481

recover the center of the road in less time and distance than the482

tested [11] method. Concretely, our method recovers the road’s483

center 83 samples before the compared one. Given sample484

time T = 0.1sec, we can assure that our method recovers485

the center 8.3sec earlier than the compared one, which means486

9.12 m behind in terms of distance.487

How our system avoids obstacles depends on the parameter488

γr described in (4), due to it defining the decay of our potential489

cost map (Fig. 3 c)). When γr > 0, while γr increases, the490

decay in the cost map increases and the trajectory could pass491

closer to the obstacles. In Fig. 10, we show an example of this492

behavior for three different gamma configurations in the same493

scenario as the previous experiment. The parameter γa models494

the behavior of obstacle avoidance only in the area close to495

the local goal. For this reason, we configure it constant for the496

example.497

We also evaluate obstacle avoidance for dynamic obstacles498

such as pedestrians and vehicles qualitatively. Fig. 11 shows499

an image sequence of repeated pedestrian avoidance, where500

the time evolution is from left to right. We enumerate these501

images from 1 to 5. In image 1, we can see a pedestrian502

running to cross the vehicle’s trajectory. The vehicle rectifies503

his local path, but the pedestrian stops just in the front of the504

vehicle (image 2). In the transition from image 2 to image 3,505

the vehicle maneuvers, first in the rear direction and after506

in the front direction, to avoid the pedestrian, but then the507

pedestrian stops in front of the vehicle again (image 4). Finally, 508

in image 5, the vehicle avoids the pedestrian and continues the 509

travel to reach the goal. 510

In Fig. 12, we show another example of obstacle avoidance: 511

a car in a parking lot. In this case, the vehicle follows a 512

straight trajectory, but a car drive to cross this trajectory. 513

However, due to the NVP local path planning module, the 514

vehicle recalculates the path to avoid this dynamic obstacle, 515

as shown in the sequence of Fig. 12. 516

C. Multiple Obstacle-Avoidance Evaluation 517

We performed previous experiments with only one obstacle 518

in the environment. However, it can be interesting to evaluate 519

how multiple obstacles affect the NVP. For it, we performed 520

an experiment where three pedestrians crossed the vehicle’s 521

trajectory repetitively, simulating even more pedestrians in the 522

environment. For more resolution, we show the results for 523

that experiment divided into different rows in Fig. 13. The 524

photo sequence of the multiple obstacle-avoidance performed 525

is shown in the upper and third rows. While the second and 526

bottom rows shows the corresponding top-view representation 527

of the environment, where the blue points indicate the obsta- 528

cles, magenta points represent the local path for N = 4, the 529

yellow circle draws the outer ring of NVP, and the red line 530

represents the vehicle’s trajectory. 531

Fig. 13 shows that multiple obstacle scenarios don’t cause 532

problems to our NVP local path planning, and all obstacles 533

were avoided smoothly. We represent the real-time path gen- 534

eration as magenta points for N = 4. It is worth noting that 535

when there is an obstacle in the front, the nearest point in the 536

local path is in the rear part of the vehicle, allowing the rear 537

maneuverings to avoid it. 538

D. Execution Time Evaluation 539

The other advantage of our NVP path planning method is 540

that it is speedy compared to other optimization approaches. 541
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Fig. 13. Multiple obstacle avoidance experiments: We show the photo sequence of the multiple obstacle-avoidance performed in the upper and third rows.
While in the second and bottom rows, we show the corresponding representation of the environment, where the blue points indicate the obstacles, magenta
points represent the local path for N = 4, the yellow circle draws the outer ring of NVP, and the red line represents the vehicle’s trajectory.

To compare the time efficiency, we measured the sample time542

and total time3 of the NVP experiment shown in Fig. 11,543

where the number of circles (Section IV-C) is configured544

N = 4 (NVP4). Also, we repeat this process by configuring545

N = 8 (NVP8). Finally, we run the same experiment for the546

Li et al. [11] approach. We performed the time measurement547

for this experiment by running the algorithms as C++ com-548

piled codes on an i7-7700HQ CPU with 16 GB of RAM.549

We can see in Table II that our approach can complete the550

scenario shown in Fig. 11 faster than the Li et al. [11] one.551

The average sample time defines the frequency of the552

method and hence, the maximum velocity of operation.553

3Sample time refers to the execution time of NVP. In contrast, total time
refers to the time spent to perform the complete experiment.

TABLE II

EXECUTION TIME COMPARISON

We cannot evaluate the upper-speed limits of the method 554

because our experimental vehicle’s maximum velocity is 555

1.3 m
sec . However, although the sensor frequency limits the 556

upper-speed de-facto, if we suppose a high-frequency sensor 557

(greater than NVP frequency), we can estimate it analytically 558

as follows. The average sample time of our NVP is �t = 559

0.0198sec for N = 4. Then, if we consider d as a security 560
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margin to avoid an obstacle, we can calculate the approximate561

upper-speed limit as vup = d/�t .562

VI. CONCLUSION AND FUTURE WORKS563

In this paper, we have presented a complete OSM-based564

autonomous navigation pipeline for Unmanned Ground Vehi-565

cles (UGV) in unstructured outdoor environments. As a566

topological representation, we use road networks from OSM567

for global path planning. That demonstrates several advan-568

tages, such as global consistency and an easy map setup569

of autonomous navigation applications. At the local path570

planning level, we presented the novel Naive-Valley-Path571

method. We demonstrate how this method achieves navigation572

at the center of the trafficable areas, always following the573

shape of the road, avoiding the common deviation problems574

in OSM-based applications. Additionally, given its time effi-575

ciency, we show how our NVP method achieves fast and robust576

obstacle avoidance even in dynamic cases, such as cars and577

pedestrians, and how it recovers the center of the road after578

avoidance.579

As future works, we plan to use an online interface with580

JOSM to make a dynamic graph for the GPP. In this way,581

we could navigate in an exploration mode into completely582

unknown areas. Also, we plan to research localization using583

OSM information, and use more sophisticated perception584

techniques, such a Convolutional Neural Networks (CNN),585

to classify obstacles and landmarks in the environment.586
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