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a b s t r a c t 

This paper deals with the problem of finding a way to distribute the cost of a minimum cost spanning 

tree problem between the players. A rule that assigns a payoff to each player provides this distribution. 

An optimistic point of view is considered to devise a cooperative game. Following this optimistic ap- 

proach, a sequential game provides this construction to define the action sets of the players. The main 

result states the existence of a unique cost allocation in subgame perfect equilibria. This cost allocation 

matches the one suggested by the folk rule. 
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1 Non-emptiness of the core in minimum cost spanning tree problems has been 

h

0

. Introduction 

In this paper, we study the implementation of the folk solution 

ssociated with a minimum cost spanning tree problem. This re- 

earch is part of a relevant agenda known as the Nash program for 

ooperative games. The Nash program arises from Nash (1953) as 

 tool to bridge the gap between cooperative and non-cooperative 

ames by finding non-cooperative procedures yielding cooperative 

olutions as their equilibrium payoffs ( Serrano, 2020 ). 

To this end, we consider an optimistic point of view to devise 

 cooperative game. Following this optimistic approach, we define 

 sequential game that allows players, acting strategically, to con- 

truct an optimal network. The main result states the existence of 

 unique cost allocation in subgame perfect equilibria. This cost al- 

ocation matches the one suggested by the folk rule. 

The situation of constructing a tree with the lowest possible 

ost known as minimum cost spanning tree problems is quite fa- 

iliar in the literature of operations research, economics or man- 

gement, among others. Let us assume that a group of players re- 

uires a service that can only be provided by a source. A network, 

he edges of which entail some cost to build or to use, provides 

ccess to this source. Players can either connect to the source di- 

ectly or through an existing network that already provides the ser- 

ice to other players. No congestion nor depreciation of the service 
∗ Corresponding author. 

E-mail addresses: penelope.hernandez@uv.es (P. Hernández), peris@ua.es (J.E. 

eris), vidalpuga@uvigo.es (J. Vidal-Puga) . 
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s assumed, which implies that the optimal network is always a 

ree. Videostream, voice-conference or software distribution appli- 

ations, or an irrigation system that supplies water from a water 

am, are some examples of such situations. 

Assuming that players agree to build a network and decide on 

ow to share its cost, there are two possible approaches to tackle 

his situation. 

The first approach arises when the players leave the decision 

o a central planner. This planner may either be a regulator whose 

ecision is mandatory for the players, or an adviser whose pro- 

osal is not compulsory, but all the players have incentives to fol- 

ow. In this sense, a fundamental property is core selection , which 

nsures that no coalition of players can connect to the source by 

hemselves at a lower cost than the one suggested by the cen- 

ral planner. 1 A relevant core-selection rule is the folk solution 

 Bergantiños & Vidal-Puga, 2007a; Bogomolnaia & Moulin, 2010; 

eltkamp, Tijs, & Muto, 1994 ) which, moreover, also satisfies many 

ther relevant properties ( Bergantiños & Vidal-Puga, 2008 ). The 

econd approach arises when the players achieve agreements di- 

ectly among themselves, following the rules of a non-cooperative 

ame. In this second case, the final network in equilibrium is not 
rst noted by Bird (1976) and deeply studied by Granot & Huberman (1981, 1984) . 

ore recently, Dutta & Mishra (2012) and Sziklai, Fleiner, & Solymosi (2016) proved 

he non-emptiness of the core in two more general classes of games, and Kobayashi 

 Okamoto (2014) focus on concave problems, where the core has a well-known 

tructure. 
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uaranteed to be optimal nor the final payoff allocation to be ef- 

cient. Joining the two approaches, it could be suitable to find a 

echanism leading to an optimal network along with a fair alloca- 

ion of its cost. 

In this paper, we focus on the second approach. We define a 

on-cooperative game in which utility-maximizing players agree 

n how to share the cost of an efficient graph. The non-cooperative 

ame is as follows: first, we fix a random order of choices of 

he players. Then, players act sequentially according to the above 

rder: the first player selects to whom she connects to, looking 

or the cheapest connection; then, the second player decides with 

hom she wants to connect taking into account that, in case the 

rst player had previously connected to her, then she can choose 

n edge adjacent to the first player, and so on. 2 The only restric- 

ion is that no cycles are allowed. At the end of the last round, an

ptimal tree arises. The cost allocation that arises by charging each 

layer with the cost of her chosen edge provides a stable share of 

he total cost such that the final share is fair. Consequently, play- 

rs accept both the optimal tree and a cost-share given by the folk 

olution. 

Mutuswami & Winter (2002) , in a more general framework, 

ropose a mechanism in which players move sequentially. When 

t is a player’s turn to move, she announces a set of links that 

he wants to see formed and her conditional cost contribution to 

he spanning tree. Given the announcement, a planner selects the 

argest compatible coalition, and proposes a tree to be built and 

he allocation of each player. Unlike this mechanism, in our non- 

ooperative game there is no planner, and the players choose only 

ne link and agree to pay the cost of the selected link. The re-

ults of this paper applied to minimal cost spanning tree prob- 

ems, imply that the allocations to players in all subgame perfect 

quilibria correspond with the Kar rule ( Kar, 2002 ), defined as the 

hapley value of the associated cooperative game. As mentioned in 

utuswami & Winter (2002) : 

Immunity to deviations by coalition is a desirable property of 

any mechanism. Unfortunately, our mechanisms do not possess 

this property [... ]. 

In contrast, the equilibrium payoff allocations in our non- 

ooperative game satisfy immunity to deviations by coalitions, i.e., 

hey satisfy core selection . 

Norde, Moretti, & Tijs (2004) present the Subtraction Algorithm 

hat computes for every minimum cost spanning tree a population 

onotonic allocation scheme which, in turn, also recovers the folk 

olution. Contrary to our approach, they compute the contribution 

f each player, for each possible coalition of players that contain 

er. 

Bergantiños & Vidal-Puga (2010) propose a non-cooperative 

ame in which players always agree on an optimal tree and a cost- 

hare given by the folk solution. In the first stage, the players of- 

er prices to each other. These prices represent the amount that 

he players are willing to pay to other players if they connect to 

he source. Then, the player with a maximum net offer is asked to 

onnect to the source or to propose a different network. Unlike this 

echanism, in our non-cooperative game the players only propose 

o construct an edge, and there are no offers to other players to 

ncentivize their connection to the source. 

Moulin & Velez (2013) and Hougaard & Tvede (2012) consider 

wo mixed approaches, respectively. In Moulin & Velez (2013) , ver- 

ices are sellers who bid to supply individual edges, so that a sin- 

le buyer purchases a minimum cost spanning tree. They show 

hat an optimal tree arises in equilibrium. In Hougaard & Tvede 

2012) , a planner asks for the costs of the edges to the adjacent
2 Such a mechanism resembles Kruskal’s and Prim’s algorithms. 

d

t

v

923 
layers, who have a priori private information about their actual 

osts. With this information, the planner builds the optimal net- 

ork (under the assumption of truth-telling), so that costs become 

ommon knowledge for the edges that belong to this optimal net- 

ork. They show that the folk rule causes truthful announcements 

o be a Nash equilibrium for every allocation problem. 

As opposed to these previous results, the non-cooperative game 

e propose in this paper does not require neither the presence of 

 planner to implement the cost sharing nor the players to offer 

rices nor bids to make proposals, making the strategies signifi- 

antly simpler. Moreover, we have two relevant properties. Firstly, 

he equilibrium is strong, i.e., no coalition of players can improve 

heir aggregate payoff by coordinating their strategies. Secondly, 

layers use undominated strategies in equilibrium. In particular, 

heir strategies in equilibrium are optimal independently of the 

trategies of other players, which make them immune to irrational 

eviations by other players. 

Finally, in Hernández, Peris, & Silva-Reus (2016) , a different 

trategic game is defined associated to a minimum cost spanning 

ree problem. This game is based on the existence of a social trans- 

er structure that establishes side-payments to ensure that a par- 

icular tree is obtained. Under this approach, the minimum cost 

panning tree appears as a subgame perfect equilibrium. The allo- 

ation associated with this subgame perfect equilibrium depends 

n the initial social transfer structure, and may coincide or not 

ith the folk rule. Moreover, in the game defined in Hernández 

t al. (2016) subgame perfect equilibria may appear, such that the 

rovided spanning tree is not efficient. This inefficiency cannot oc- 

ur under our approach. 

The rest of the paper is organized as follows. In Section 2 , we

resent the model. In Section 3 , we introduce the non-cooperative 

ame. In Section 4 , we discuss the results. We close with the ac- 

nowledgements. 

. The model 

Let N 0 = N ∪ { 0 } be a set of vertices where N = { 1 , 2 , . . . , n } is a
nite set of players and 0 is the source they need to connect to. 

Let C = (c i j ) i, j∈ N 0 be the cost matrix , where c i j ∈ R + represents

he connection cost between vertices i and j. We assume, as usual, 

hat c ii = 0 and c i j = c ji for all i, j ∈ N 0 . We denote the set of all

ost matrices on N as C N . A minimum cost spanning tree problem , 

riefly mcstp , is a pair (N 0 , C) . 

A network g over N 0 is a subset of { (i, j) : i, j ∈ N 0 } . The ele-

ents of g are called edges . We assume that the edges are undi- 

ected, i.e. (i, j) and ( j, i ) represent the same edge. 

Given a network g and a pair of vertices i and j, a path from i to

j in g is a sequence of distinct vertices { i 0 , . . . , i l } satisfying i = i 0 , 

j = i l and (i h −1 , i h ) ∈ g for all h ∈ { 1 , 2 , . . . , l} . 
A spanning tree over N 0 is a network t such that for all i, j ∈

 0 there exists a unique path in t from i to j. Let T N 
0 

denote the

et of all spanning trees over N 0 . Given t ∈ T N 0 , we define the cost

ssociated with t in (N 0 , C) as 

 ( N 0 , C, t ) = 

∑ 

(i, j) ∈ t 
c i j . 

hen there is no ambiguity, we write c(t) instead of c(N 0 , C, t) . 

A minimum cost spanning tree for (N 0 , C) , briefly an mt , is a

panning tree t ∗ ∈ T N 
0 

such that c(t ∗) = min 

t∈T N 
0 
{ c(t) } . Given a mc-

tp (N 0 , C) , an mt always exists, but it may not be unique. We de-

ote the cost associated with any mt on (N 0 , C) as c(N 0 , C) . 

There are several algorithms in the literature to construct an mt . 

rim (1957) provides one. Sequentially, the players connect, either 

irectly or indirectly to the source. At each stage, we add one of 

he cheapest edges between the connected and the unconnected 

ertices. 
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3 The irreducible cost matrix C ∗ is the corresponding matrix such that no edge 

cost can be reduced without reducing the cost of the grand coalition to connect to 

the source. 
4 See Bergantiños & Vidal-Puga (2007a,b) for details and additional properties. 
xample 2.1. Consider the mcstp (N 0 , C) with N = { 1 , 2 , 3 } and a

ost matrix C ∈ C N satisfying c 12 < c 13 < c 23 < c 01 < c 02 < c 03 . The

rim’s algorithm proceeds as follows: At stage 1, the edge formed 

s (0,1), because this is the cheapest one between a connected ver- 

ex (the source), and a non-connected one (players in N). At stage 

, the edge formed is (1,2) because this is the cheapest one be- 

ween a connected vertex (the source and player 1) and a non- 

onnected one (players 2 and 3). At stage 3, the edge formed is 

1,3) because this is the cheapest one between a connected vertex 

the source and players 1 and 2) and a non-connected one (player 

). The mt formed is then { (0 , 1) , (1 , 2) , (1 , 3) } , which in this ex- 

mple is unique. 

Given S ⊂ N, we denote the restriction to S of the mcstp (N 0 , C)

s ( S 0 , C ) , and the cost associated with any mt on ( S 0 , C ) as 

(S 0 , C) ; that is, c ( S 0 , C ) is the cost of connection of the players 

n S to the source. 

Given N a finite set of players, a cooperative cost game for N

s given by a characteristic function v : 2 N → R where v (S) ∈ R for

ach S ⊆ N represents the cost of providing service to players in S. 

oreover, v (∅ ) = 0 , i.e., it is costless to provide no service. 

For each minimum cost spanning tree problem ( N 0 , C ) , we con- 

truct an associated cooperative cost game v C given by v C (S) = 

 ( S 0 , C ) for each S ⊆ N, where the worth of a coalition S depends 

n vertices only in S, i.e. , those vertices outside S are unavailable. 

his approach is pessimistic because each coalition S should build 

heir network without counting with players in N \ S. 

xample 2.2. With the data in Example 2.1 , the cost game 

 C is given by v C ( { i } ) = c 0 i for all i ∈ N, v C ( { 1 , 2 } ) = c 01 +
 12 , v C ( { 1 , 3 } ) = c 01 + c 13 , v C ( { 2 , 3 } ) = c 02 + c 23 , and v C (N) = c 01 +
 12 + c 13 . 

Nevertheless, we may consider an optimistic approach by defin- 

ng for each S, the cost matrix C S given by c S 
i j 

= c i j for all i, j ∈ S

nd c S 
i 0 

= min 

{
c i j : j ∈ N 0 \ S 

}
for all i ∈ S. This formulation means 

hat each coalition S can build a network assuming that players 

n N \ S are already connected. The cooperative cost game v + 
C 

is 
924 
hen defined where v + 
C 
(S) = c 

(
S 0 , C 

S 
)

for all S ⊆ N. Bergantiños & 

idal-Puga (2007b) are the first to propose this alternative asso- 

iated cooperative cost game v + 
C 

. See Christian Trudeauand Vidal- 

uga (2020) for other possible associated cost games for (N 0 , C) . 

xample 2.3. With the data in Example 2.1 , the optimistic 

ost game v + 
C 

is given by v + 
C 
({ 1 } ) = v + 

C 
({ 2 } ) = c 12 , v + 

C 
({ 3 } ) = c 13 ,

 

+ 
C 
({ 1 , 2 } ) = c 12 + c 13 , v + 

C 
({ 1 , 3 } ) = c 13 + c 12 , v + 

C 
({ 2 , 3 } ) = c 12 + c 13 ,

 

+ 
C 
(N) = c 01 + c 12 + c 13 . 

Let �N be the set of orders π : { 1 , . . . , n } → N. For simplicity,

e denote π(k ) as πk for all k ∈ { 1 , . . . , n } . Then, given some π ∈
N , the marginal contributions payoff allocation of the optimistic 

ame v + 
C 

with order π is m 

π given by m 

π
π1 

= v + 
C ( { π1 } ) and, for 

 = 2 , . . . , n , 

 

π
πk 

= v + C ( { π1 , π1 , . . . , πk } ) − v + C ( { π1 , π1 , . . . , πk −1 } ) . 
 rule is a function that assigns to each mcstp a payoff allocation. 

otice that a payoff corresponds to each player whereas a payoff

llocation is a vector whose coordinates are the respective players’ 

ayoffs. 

The folk rule ( Bergantiños & Vidal-Puga, 2007a ), provides a cri- 

erion for sharing the cost of an mt between the players. The defi- 

ition of the folk rule is made by applying the Prim’s algorithm to 

n irreducible 3 cost matrix C ∗. Remarkably, the folk rule can also 

e defined as the Shapley value of the optimistic game v + 
C 

or as 

he Shapley value of the pessimistic cost game v ∗
C 

obtained from 

he irreducible cost matrix. 4 

xample 2.4. Since the Shapley value is the average of marginal 

ontributions payoff allocations, we can obtain the folk rule by 

omputing these payoff allocations in the optimistic game v + 
C 

for 

ach possible order. Table 1 represents these vectors with the data 

n Example 2.1 and the average of these contributions that corre- 

ponds with the folk rule. 

. The non-cooperative extensive game 

We define the non-cooperative game inductively as follows: 

• At the first stage ( k = 0 ), nature chooses some order π ∈ �N ,

being each π chosen with the same probability 1 
n ! . We de- 

fine �0 
i 

= { i } for all i ∈ N 0 . 

• At stage k = 1 , player π1 chooses an action from the follow- 

ing set: 

S π1 
= 

{
(i, j) : i ∈ �0 

π1 
, j ∈ N 0 \ �0 

π1 

}
. 

That is, player π1 selects edge s π1 
= (i 1 = π1 , j 1 ) ∈ S π1 

to be

built. Once done, vertices i 1 and j 1 become connected, and 

we set �1 
i 1 

= �1 
j 1 

= { i 1 , j 1 } . We also define �1 
i 

= �0 
i 

for any 

other i ∈ N 0 \ { i 1 , j 1 } . 
• In general, at stage k ≥ 1 , player πk chooses an action from 

the set: 

S πk 
= 

{
(i, j) : i ∈ �k −1 

πk 
, j ∈ N 0 \ �k −1 

πk 

}
. 

That is, player πk selects some edge s πk 
= ( i k , j k ) ∈ S πk 

to

be built. Once this action is done, vertices i k and j k become 

connected and we set �k 
i k 

= �k 
j k 

= �k −1 
i k 

∪ �k −1 
j k 

. We also de- 

fine �k 
l 

= �k 
i k 

for all l ∈ �k −1 
i k 

∪ �k −1 
j k 

, and �k 
l 

= �k −1 
l 

in an- 

other case. 
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Table 1 

Marginal contributions of Example 2.1 . 

order player 1 player 2 player 3 

[ 123 ] v + 
C ( { 1 } ) = c 12 v + 

C ( { 1 , 2 } ) − v + 
C ( { 1 } ) = c 13 v + 

C ( N ) − v + 
C ( { 1 , 2 } ) = c 01 

[ 132 ] v + 
C ( { 1 } ) = c 12 v + 

C ( N ) − v + 
C ( { 1 , 3 } ) = c 01 v + 

C ( { 1 , 3 } ) − v + 
C ( { 1 } ) = c 13 

[ 213 ] v + 
C ( { 1 , 2 } ) − v + 

C ( { 2 } ) = c 13 v + 
C ( { 2 } ) = c 12 v + 

C ( N ) − v + 
C ( { 1 , 2 } ) = c 01 

[ 231 ] v + 
C 
(N) − v + 

C 
({ 2 , 3 } ) = c 01 v + 

C ( { 2 } ) = c 12 v + 
C ( { 2 , 3 } ) − v + 

C ( { 2 } ) = c 13 

[ 312 ] v + 
C ( { 1 , 3 } ) − v + 

C ( { 3 } ) = c 12 v + 
C ( N ) − v + 

C ( { 1 , 3 } ) = c 01 v + 
C ( { 3 } ) = c 13 

[ 321 ] v + 
C ( N ) − v + 

C ( { 2 , 3 } ) = c 01 v + 
C ( { 2 , 3 } ) − v + 

C ( { 3 } ) = c 12 v + 
C ( { 3 } ) = c 13 

Average 
2 c 01 + 3 c 12 + c 13 

6 

2 c 01 + 3 c 12 + c 13 

6 

2 c 01 + 4 c 13 

6 
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• At stage k = n + 1 , the game finishes and the payoff for each

player i ∈ N is given by 

u i (s i ) = c s i . 

That is, player i pays the cost of the edge she selected. 

Notice that, in the first stage, for each i ∈ inN, �0 
i 

is a singleton

ecause player i is not connected to anyone else. 

Following Maschler, Solan, & Zamir (2013) , we define the non- 

ooperative game in extensive form with perfect information and 

hance moves as: 

= (N, V, E, x 0 , (V i ) i ∈ N 0 , (p x ) x ∈ V 0 , u ) 

here 

• N = { 1 , 2 , . . . , n } is the set of players. 
• V is the set of nodes in the game tree. 5 

Each v ∈ V is determined by the following triple (k, π, f π
k 

) : 
• stage k ∈ { 0 , 1 , . . . , n + 1 } , 
• π ∈ �N that determines the order (only for k > 0 ), 
• some function f π

k 
: { 1 , . . . , k − 1 } → N × N 0 such that 

f π
k 

(l) ∈ S πl 
for all l = 1 , . . . , k − 1 . 

Therefore, for k = 1 , . . . , n , pairs 
(
π, f π

k 

)
determine the his- 

tory, i.e., the (feasible) choice of each predecessor of πk in 

π . Hence, the set of edges already paid, before πk chooses, 

is {
f πk ( π1 ) , f 

π
k ( π2 ) , . . . , f 

π
k ( πk −1 ) 

}
. 

Notice that this set is empty for k = 1 . For k = n + 1 , the

node is a terminal one. If k = 0 , it is nature’s decision node,

and πk ’s otherwise. 
• E ⊂ V × V is the set of arcs. For a node v determined by(

k, π, f π
k 

)
, arc 

(
v , v ′ 

)
belongs to E when v ′ is determined by (

k + 1 , π, f π
k +1 

)
such that f π

k +1 
(l) = f π

k 
(l) for all l < k . 

• x 0 is the node determined by k = 0 . 
• (V i ) i ∈ N 0 is a partition of the set of non-terminal nodes, and it 

determines which player (or nature, when i = 0 ) makes the 

decision at that node. In particular, V 0 = { x 0 } and, given i ∈
N, we have v ∈ V i when v is determined by (k, π, f π

k 
) with

k ∈ { 1 , . . . , n } and πk = i . 
• p 0 is a probability distribution over the arcs emanating from 

x 0 . In particular, p 0 (e ) = 

1 
n ! for each such an arc e . 

• u is the function that associates each terminal node with a 

game outcome. In particular, if the terminal node is given 

by 
(
n + 1 , π, f π

n +1 

)
, the game outcome is the payoff allo- 

cation 

(
c f π

n +1 
(k ) 

)
k ∈{ 1 , ... ,n } 

provided by the spanning tree t = 

{
f π
n +1 ( k ) 

}
k ∈{ 1 , ... ,n } . 

Given π ∈ �, we denote as �π the subgame that begins after 

ature chooses π . 
5 To avoid ambiguities, we use the terms nodes and arcs in the game tree, as 

pposed to vertices and edges defined for the spanning tree. 

g

m

925 
xample 3.1. With the data in Example 2.1 , let us now construct 

π with πi = i for all i . Initially, �0 
i 

= { i } for all i ∈ N 0 . 

• At the first stage, player 1 decides the edge she wants to 

pay, s 1 ∈ { (0 , 1) , (1 , 2) , (1 , 3) } . Say, for example s 1 = (1 , 2) . 

Hence, �1 
1 

= �1 
2 

= { 1 , 2 } , �1 
3 

= { 3 } and �1 
0 

= { 0 } . 
• Now, player 2 decides which edge s 2 to pay by taking 

into account s 1 . Assuming that s 1 = (1 , 2) , we have s 2 ∈
{ (0 , 1) , (0 , 2) , (1 , 3) , (2 , 3) } , i.e., player 2 cannot choose (1,2)

(already taken) but she can choose (0,1) or (1,3) (because 

she is already connected to player 1). Say, for example, s 2 = 

(1 , 3) . 

Hence, �2 
1 

= �2 
2 

= �2 
3 

= { 1 , 2 , 3 } 
and �2 

0 
= { 0 } . 

• Finally, player 3 decides which edge s 3 to pay by taking 

into account s 1 and s 2 . Assuming s 1 = (1 , 2) and s 2 = (1 , 3) ,

we have s 3 ∈ { (0 , 1) , (0 , 2) , (0 , 3) } . In either case, the three 

players get connected to the source simultaneously through 

a spanning tree. Say, for example, s 3 = (0 , 1) . 

Hence, �3 
1 

= �3 
2 

= 

�3 
3 

= �3 
0 

= N 0 . 

Figure 1 depicts the nodes in V and the arcs in E that follow 

his particular path. 

The formed spanning tree determines the payoffs. For instance, 

f the players select their cheapest available options, the span- 

ing tree is { (1 , 2) , (1 , 3) , (0 , 1) } and the cost of each edge is dis-

ributed in the following way: Player 1 pays c s 1 = c 12 ; player 2 pays

 s 2 = c 13 ; and player 3 pays c s 3 = c 01 . Table 2 represents the payoff

llocation for each π , assuming each player selects her cheapest 

vailable option. 

Given the sequential structure of �π , we will study the sub- 

ame perfect equilibria. The equilibrium strategies should specify 

ptimal behavior from any information node up to the end of the 

ame. That is, any player’s strategy should prescribe what is opti- 

al from that node onwards given the other players’ strategies. 

As Example 3.1 shows, the only equilibrium payoff in �π is 

f π
−1 

, where π−1 ∈ �N is the order defined as π−1 
k 

= πn −k +1 . 
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Fig. 1. Game tree in Example 3.1. The digit at each non-terminal node (squared) represents the player (or nature) that makes the decision at that particular node. 

Table 2 

Payoff allocation with the cheapest available option. 

order mt in C player 1 player 2 player 3 

[ 123 ] { ( 1 , 2 ) , ( 1 , 3 ) , ( 0 , 1 ) } c 12 c 13 c 01 

[ 132 ] { ( 1 , 2 ) , ( 1 , 3 ) , ( 0 , 1 ) } c 12 c 01 c 13 

[ 213 ] { ( 1 , 2 ) , ( 1 , 3 ) , ( 0 , 1 ) } c 13 c 12 c 01 

[ 231 ] { ( 1 , 2 ) , ( 1 , 3 ) , ( 0 , 1 ) } c 01 c 12 c 13 

[ 312 ] { ( 1 , 3 ) , ( 1 , 2 ) , ( 0 , 1 ) } c 12 c 01 c 13 

[ 321 ] { ( 1 , 3 ) , ( 1 , 2 ) , ( 0 , 1 ) } c 01 c 12 c 13 

Average 
2 c 01 + 3 c 12 + c 13 

6 

2 c 01 + 3 c 12 + c 13 

6 

2 c 01 + 4 c 13 

6 
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ables 1 and 2 show that the marginal contributions allocation of 

he optimistic game v + 
C 

coincides with the payoff allocation when 

layers select their cheapest available edge. Hence, in this example, 

he expected equilibrium payoff allocation in � is the one provided 

y the folk rule. 

Our main result establishes that this happens in general. 

heorem 3.1. Given π ∈ �N , there exists a unique subgame perfect 

quilibrium payoff allocation for �π , given by the marginal contribu- 

ions payoff allocation of the optimistic game v + 
C 

with order π . More- 

ver, this equilibrium is strong and uses undominated strategies. 

roof. We will prove that for all �π , each player πk has a strategy 

hat assigns her a cost so that she pays at most 

m 

π
πk 

= v + 
C ( { π1 , . . . , πk } ) − v + 

C 

({ π1 , . . . , πk −1 } 
)
, independently of 

he strategies of the other players. In other words, the payoff for 

ach player is bounded from above independently of the strategies 

f the other players. Also, this strategy is protected from any coor- 

inated actions by the other players, who cannot extract a higher 

ayment from her. Thus, this strategy profile constitutes a strong 

ubgame perfect equilibrium and the strategies are undominated. 

By a standard backwards argument, it is clear that there exists 

 subgame perfect equilibrium for each �π and, moreover, each 

layer will select one of her cheapest available edges. Hence, even 

hough the subgame perfect equilibrium may not be unique, the 

ubgame perfect equilibrium payoff is. 

Assume w.l.o.g. πi = i for all i ∈ N. Hence, at the first stage,

layer 1 would choose one of her cheapest adjacent edges f π
1 

(1) = 

 

1 , i ) for some i ∈ N 0 \ { 1 } , the cost of which is precisely v + 
C 
({ 1 } ) =

 

{ 1 } 
01 

. 

For clarification purposes, we analyse stage 2. At this stage, 

layer 1 has selected some edge ( 1 , j ) and player 2 would 
1 

926 
hoose her cheapest adjacent edge ( 2 , j 2 ) , whose cost is c 
{ 2 } 
02 

, un- 

ess 2 = f π
1 

(1) and j 2 = 1 . In this latter case, player 2 cannot

hoose edge ( 2 , 1 ) , but other edges (those adjacent to player 1) 

ould be available, and in particular the chosen edge would cost 

in 

{ 

c 
{ 1 , 2 } 
01 

, c 
{ 1 , 2 } 
02 

} 

. We show that, in either case, player 2 pays at 

ost v + 
C 
({ 1 , 2 } ) − v + 

C 
({ 1 } ) . We distinguish two cases: 

(a) If f π
1 

(1) � = 2 , or f π
1 

(1) = 2 and j 2 � = 1 , then player 2 chooses

her cheapest adjacent edge ( 2 , j 2 ) and pays c 2 j 2 = c 
{ 2 } 
02 

. In 

this case, 

v + C ({ 1 , 2 } ) = min 

{ 

c 12 + c 
{ 1 } 
01 

, c 12 + c 
{ 2 } 
02 

, c 
{ 1 } 
01 

+ c 
{ 2 } 
02 

} 

v + C ({ 1 } ) = c 
{ 1 } 
01 

and 

v + C ({ 1 , 2 } ) − v + C ({ 1 } ) = min 

{ 

c 12 , c 12 + c 
{ 2 } 
02 

− c 
{ 1 } 
01 

, c 
{ 2 } 
02 

} 

= c 
{ 2 } 
02 

so player 2 pays c 2 j 2 = v + 
C 
({ 1 , 2 } ) − v + 

C 
({ 1 } ) . 

(b) If f π
1 

(1) = 2 , and j 2 = 1 , then player 2 selects the edge that

minimizes c i j , i ∈ { 1 , 2 } , j ∈ N 0 \ { 1 , 2 } . We have two sub-

cases: 

• c 
{ 1 } 
01 

= c 12 , then player 2 pays min 

{ 

c 
{ 1 , 2 } 
01 

, c 
{ 1 , 2 } 
02 

} 

= 

v + 
C 
({ 1 , 2 } ) − v + 

C 
({ 1 } ) . 

• c 
{ 1 } 
01 

< c 12 , then player 2 pays c 
{ 1 } 
01 

< v + 
C 
({ 1 , 2 } ) −

v + 
C 
({ 1 } ) . 

We now prove the result in general. Assume that we are in 

tage k , so that player πk = k chooses an edge to be built. No-

ice that we do not assume that the previous players, denoted 



P. Hernández, J.E. Peris and J. Vidal-Puga European Journal of Operational Research 307 (2023) 922–928 

a  

P

m  

 

i  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

c

a

v

m

C

f

C

s

4

e

p

r

a

a

a

i

w

w

a

F

w

s

s

e

t

fi

�

a

p

f

l

t

c

t

a

t

r

d

s S = { 1 , . . . , k − 1 } , have followed any particular strategy profile.

layer k would choose one of her cheapest adjacent edges, that 

ay connect her to a previous player (some j ∈ S) or not (some

j / ∈ S ∪ { k } ). The cost of this edge is c k j k 
= min 

i ∈ N 0 ,i � = k 
{ c ki } . However, as

n the case of stage 2, this edge might be available or not. We dis-

inguish the following possibilities: 

(a) If k / ∈ 

⋃ 

i ∈ S �
k −1 
i 

, then we have three subcases: 
• If j k ∈ S and (k, j k ) is not one of the cheapest edges

that connects a vertex in S with a vertex in N 0 \ S, 

then v + 
C 
(S ∪ { k } ) = v + 

C 
(S) + c k j k 

, so player k would pay

c k j k 
= v + 

C 
(S ∪ { k } ) − v + 

C 
(S) . 

• If j k ∈ S and (k, j k ) is one of the cheapest edges that

connects a vertex in N 0 \ S with a vertex in S; that is, 

then there is some mt t S in S 0 such that k is connected 

with players S k ⊆ S throughout t S . In this case, 

v + C (S ∪ { k } ) = v + C (S) + min 

i ∈ S k ∪{ k } ,l / ∈ S k ∪{ k } 
{ c il } 

and min 

i ∈ S k ∪{ k } ,l / ∈ S k ∪{ k } 
{ c il } ≥ c k j . So player k would pay 

c k j k 
≤ min 

i ∈ S k ∪{ k } ,l / ∈ S k ∪{ k } 
{ c il } = v + C (S ∪ { k } ) − v + C (S) . 

• If j k / ∈ S, then v + 
C 
(S ∪ { k } ) = v + 

C 
(S) + c k j k 

, so player k

would pay c k j k 
= v + 

C 
(S ∪ { k } ) − v + 

C 
(S) . 

(b) If k ∈ 

⋃ 

i ∈ S �
k −1 
i 

, this means that edge (r, k ) has been built

for some r ∈ S, so k ∈ �k −1 
r . If there is j k ∈ N 0 \ �k −1 

r such

that c k j k 
= min 

i ∈ N 0 ,i � = k 
{ c ki } , edge (k, j k ) is available for player k ,

and the same reasoning as in the previous case applies. 

(c) Finally, it remains the case in which k ∈ 

⋃ 

i ∈ S �
k −1 
i 

and for 

each j k such that c k j k 
= min 

i ∈ N 0 ,i � = k 
{ c ki } , the edge (k, j k ) is not

available for player k ; that is, k, j k ∈ �k −1 
r , for some r ∈ S.

Then, player k would choose one of the cheapest available 

edges ( j, l) with j ∈ �k −1 
r and l / ∈ �k −1 

r , so that 

c jl = min 

i ∈ �k −1 
r ,i ∗ / ∈ �k −1 

r 

{ c ii ∗ } . (1) 

The cost of this edge and the final payoff for player k is c jl . 

Let t ∗ be an mt , and let t ∗
S 

= { (i, i ∗) ∈ t ∗ : i, i ∗ ∈ S} be the re-

striction of t ∗ to edges whose both vertices are in S. Clearly, 

t ∗
S 

induces a partition { S 1 , . . . , S λ} of S into λ ≥ 1 connected

components. For each α = 1 , . . . , λ, let ( i α, i ∗α) ∈ t ∗ such that 

i α ∈ S α , i ∗α / ∈ S α , and 

c i α i ∗α = min 

i ∈ S α,i ∗ / ∈ S α
{ c ii ∗ } . 

Clearly, i ∗α / ∈ S for all α (however, i ∗α = i ∗
α′ is possible for some 

α � = α′ ). Let t = t ∗S ∪ { ( i α, i ∗α) } λα=1 . It is not difficult to check

that 

v + (S) = 

∑ 

(i,i ∗) ∈ t 
c ii ∗ . (2) 

We have two subcases: 
• If k = i ∗α for some α, let ˆ S = 

⋃ 

α: k = i ∗α S α . Then, 

v + (S ∪ { k } ) = v + (S) + c hh ∗

where (h, h ∗) ∈ t ∗, h ∈ 

ˆ S ∪ { k } , h ∗ / ∈ 

ˆ S ∪ { k } , and 

c hh ∗ = min 

i ∈ ̂ S ∪{ k } ,i ∗ / ∈ ̂ S ∪{ k } 
{ c ii ∗ } . 

So, m 

π
k 

= c hh ∗ . 

Let (i, i ∗) be the first edge in the (unique) path in t

from k to l such that i ∈ �k −1 
r and i ∗ / ∈ �k −1 

r . Under 

(1) , c jl ≤ c ii ∗ . Under (2) , c ii ∗ ≤ c hh ∗ . Hence, c jl ≤ c hh ∗ =
v + 

C 
(S ∪ { k } ) − v + 

C 
(S) . 
927 
• If k � = i ∗α for all α, 

v + ( S ∪ { k } ) = v + (S) + c kk ∗

where (k, k ∗) ∈ t ∗ and 

c kk ∗ = min 

i � = k 
{ c ki } = v + ({ k } ) . 

So, m 

π
k 

= c kk ∗ . In case k ∗ / ∈ �k −1 
r , under (1) we deduce 

c jl ≤ c kk ∗ = v + 
C 
(S ∪ { k } ) − v + 

C 
(S) . In case k ∗ ∈ �k −1 

r , let

(i, i ∗) be the first edge in the (unique) path in t ∗

from k to l such that i ∈ �k −1 
r and i ∗ / ∈ �k −1 

r . Under 

(1) , c jl ≤ c ii ∗ . Under (2) , c ii ∗ ≤ c kk ∗ . Hence, c jl ≤ c kk ∗ =
v + 

C 
(S ∪ { k } ) − v + 

C 
(S) . 

Finally, observe that given an mt t ∗ in N 0 , with cost c(t ∗) ,
he following relations are fulfilled in equilibrium, where f (k ) = 

f π
k +1 

(k ) denotes the edge selected by player k 

(t ∗) ≤
n ∑ 

k =1 

c f (k ) ≤
n ∑ 

k =1 

v + C ({ 1 , . . . , k } ) − v + C ({ 1 , . . . , k − 1 } ) = c(t ∗) 

nd the equality in the above relationships is obtained, c f (k ) = 

 

+ 
C 
({ 1 , . . . , k } ) − v + 

C 
({ 1 , . . . , k − 1 } ) , for all k ∈ N. �

The next two corollaries present properties derived from our 

ain result. 

orollary 3.1. The folk rule arises as a unique expected subgame per- 

ect equilibrium payoff allocation for �. 

orollary 3.2. A minimum cost spanning tree always arises in any 

ubgame perfect equilibrium for �. 

. Concluding remarks 

The operations research literature has explored the design of 

fficient algorithms to build optimal trees, as well as their com- 

utational complexity. More recently, the cost-sharing aspect has 

eceived increasing attention, from both the operational research 

nd the economics literature. The idea is that the players involved 

re responsible for paying the total cost of the implementation of 

n optimal tree. This idea leads to taking into account the players’ 

ncentives to guarantee the construction of such an optimal net- 

ork. Within this context, the problem of finding an optimal net- 

ork structure does not rely only on its total cost but also on the 

mount that should be charged to each player. 

Our non-cooperative game gets the folk rule in expected terms. 

ollowing Bag & Winter (1999) and Mutuswami & Winter (2002) , 

e can achieve a complete implementation by adding a previous 

tage in which one of the players, chosen at random, proposes a 

panning tree and a cost-sharing allocation. If all the other play- 

rs accept this proposal (they vote sequentially in any order), both 

he tree and the cost-sharing allocation are imposed, and the game 

nishes. In case any of them rejects the proposal, they play game 

in the known terms. Assuming either that: a) players are risk- 

verse, or b) they are risk-neutral but prefer to finish as soon as 

ossible, then the only final cost allocation is the one given by the 

olk rule. 

Another relevant characteristic of our approach is that the equi- 

ibrium strategy profiles do not need to anticipate the moves of 

he following players in the order. Hence, we can define the non- 

ooperative game by choosing only the first player at random; af- 

er this player chooses her available edge, another player is chosen 

t random, and so on. Moreover, the optimal strategy is to choose 

he cheapest available edge. Hence, the subgame perfect equilib- 

ium is also a strong perfect equilibrium and an equilibrium with 

ominant strategies. 
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