
J. Appl. Numer. Optim. 4 (2022), No. 1, pp. 3-18
Available online at http://jano.biemdas.com
https://doi.org/10.23952/jano.4.2022.1.02

RELAXED LAGRANGIAN DUALITY IN CONVEX INFINITE OPTIMIZATION:
REVERSE STRONG DUALITY AND OPTIMALITY

NGUYEN DINH1,2, MIGUEL A. GOBERNA3,∗, MARCO A. LÓPEZ3,4, MICHEL VOLLE5
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Abstract. We associate with each convex optimization problem posed on some locally convex space
with an infinite index set T, and a given non-empty family H formed by finite subsets of T, a suit-
able Lagrangian-Haar dual problem. We provide reverse H -strong duality theorems, H -Farkas type
lemmas, and optimality theorems. Special attention is addressed to infinite and semi-infinite linear opti-
mization problems.
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1. INTRODUCTION

In a recent paper on convex infinite optimization [1], we provided reducibility, zero duality
gaps, and strong duality theorems for a new type of Lagrangian-Haar duality associated with
families of finite sets of indices. More precisely, given an optimization problem

(P) inf f (x) s.t. ft(x)≤ 0, t ∈ T, (1.1)

such that X is a locally convex Hausdorff topological vector space, T is an arbitrary infinite
index set, and { f ; ft , t ∈ T} are convex proper functions on X , as well as a family H of non-
empty finite subsets of the index set T, we consider the H -dual problem

(DH ) sup
H∈H , µ∈RH

+

inf
x∈X

{
f (x)+ ∑

t∈H
µ t ft(x)

}
, (1.2)

where µ ∈ RH
+ stands for (µ t)t∈H ∈ RH

+, with the rule 0× (+∞) = 0. When H is the family
F (T ) of all non-empty finite subsets of T , one obtains the standard Lagrangian-Haar dual of
(P),

(D) sup
H∈F (T ), µ∈RH

+

inf
x∈X

{
f (x)+ ∑

t∈H
µ t ft(x)

}
. (1.3)
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As in [1], this paper pays particular attention to the families H1 := {{t}, t ∈ T} of singletons
and (when T = N) HN := {{1, . . . ,m}, m ∈ N} of sets of initial natural numbers. The dual
pair (P)− (DHN) has been used in [2] in the framework of convex semi-infinite programming
(CSIP), where X = Rn. More precisely, [2] gives a sufficient condition for the optimal value of
a SIP problem (P) with T =N to be the limit, as m−→∞, of the optimal values of the sequence
of ordinary convex programs (Pm)m∈N which results of replacing T by {1, . . . ,m} in (P). This
assumption on T is not as strong as it can seem at first sight as, if T is an uncountable topological
space which contains a countable dense subset S and the mapping t 7−→ ft (x) is continuous on
T for any x ∈

⋂
t∈T dom ft , then (P) is equivalent to the countable subproblem which results of

replacing T by S in (P). In the particular case of linear semi-infinite programming (LSIP), we
can write

(P) inf〈c∗,x〉 s.t. 〈a∗t ,x〉 ≤ bt , t ∈ T, (1.4)

with {c∗; a∗t , t ∈ T} ⊂Rn and {bt , t ∈ T} ⊂R, where, in most applications, T is a convex body
(i.e., a compact convex set with non-empty interior) in some Euclidean space and the mapping
t 7−→ (a∗t ,bt) is continuous on T . Then, T can be replaced by any dense subset S to get an
equivalent countable LSIP problem.

There exists a wide literature on the dual pair (P)-(D); see e.g., the works [3, 4, 5, 6, 7, 8, 9].
Most of them focused on constraint qualifications and/or duality theorems, and some of them
made use, in order to obtain optimality conditions, of suitable versions of the celebrated Farkas’
Lemma that have been reviewed in [10].

The duality theorems for the pair (P)-(DH ) provide conditions guaranteeing a zero duality
gap, i.e., inf(P) = sup(DH ) (see, [1, Theorem 6.1]). Other duality theorems in [1] are strong
in the sense that the optimal value of (DH ) is attained, situation represented by the equation
inf(P) = max(DH ) (see, [1, Theorems 5.1-5.3]). Similarly, the reverse duality theorems, in
the third section of this paper, are duality theorems where the optimal value of (P) is attained,
situation represented by the equation min(P)= sup(DH ). Reverse (also called converse) duality
theorems for the classical Lagrange dual problem, that is, for H = F (T ), in convex infinite
programming (CIP in short), can be found in [6, Theorem 3.3] and [7, Theorem 3]. Section
4 provides ad hoc Farkas-type results oriented to obtain, in Section 5, optimality conditions
which are expressed in terms of multipliers associated to the indices belonging to the elements
of H .

2. PRELIMINARIES

Let X be a locally convex Hausdorff topological vector space, and suppose that its topological
dual X∗, with null element 0X∗ , is endowed with the weak*-topology. We denote by A and riA
the closure and the relative interior of a set A⊂ X , and by coA its convex hull. For a set /0 6= A⊂
X , by the convex cone generated by A we mean coneA :=R+(coA) = {µx : µ ∈R+, x ∈ coA},
by spanA its linear span, and by A∞ the recession cone of a convex set A. The negative polar
of /0 6= A⊂ X is the convex cone A− := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ 0,∀x ∈ A} . The lineality space of a
convex cone K ⊂ X is linK = K∩ (−K) .

The w∗-closure of a set A ⊂ X∗ is also denoted by A. If A ⊂ X∗×R, then A denotes the
closure of A w.r.t. the product topology. A set A⊂ X∗×R is said to be w∗-closed (respectively,
w∗-closed convex) regarding another subset B ⊂ X∗×R if Ā∩B = A∩B (respectively,
(coA)∩B= A∩B), see [11] (respectively, [12]).
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A function h : X → R := R∪{±∞} is proper if its epigraph epih is non-empty and never
takes the value −∞; it is convex if epih is convex; it is lower semicontinuous (lsc, in brief) if
epih is closed; and it is upper semicontinuous (usc, in brief) if −h is lsc. For a proper function
h, we denote by [h≤ 0] := {x ∈ X : h(x)≤ 0} its lower level set of 0, and by domh, h, ∂h, and
h∗ its domain, its lsc envelope, its Fenchel subdifferential, and its Legendre-Fenchel conjugate,
respectively. We also denote by Γ(X) the class of lsc proper convex functions on X . By δ A we
denote the indicator function of A⊂ X , with δ A ∈ Γ(X) whenever A 6= /0 is closed and convex.

We need to recall some basic facts about convex analysis recession. Given h ∈ Γ(X), the
recession cone of the closed convex set epih is the epigraph of the so-called recession function
h∞ of h: (epih)∞ = epih∞. The recession function h∞ coincides with the support function of the
domain of the conjugate h∗ of h (e.g., [13, Theorem 6.8.5]):

h∞ = (δ domh∗)
∗ . (2.1)

From (2.1),
[h∞ ≤ 0] = (domh∗)− = {x ∈ X : 〈x∗,x〉 ≤ 0,∀x∗ ∈ domh∗}, (2.2)

which is called the recession cone of the function h and provides the common recession cone to
all the non-empty sublevel sets [h≤ r]. Given {h1, · · · ,hm} ⊂ Γ(X) such that

⋂
1≤k≤m domhk 6=

/0, by [14, Proposition 3.2.3] (whose proof is independent of the dimension of X), one has for
all µ ∈ Rm

+ : (
m

∑
k=1

µkhk

)
∞

=
m

∑
k=1

µk(hk)∞. (2.3)

2.1. Classical Lagrange CIP duality. The support of λ : T → R is the set suppλ := {t ∈
T : λ t 6= 0}. Let R(T ) be the space of generalized finite sequences formed by all real-valued
functions on T with finite support, i.e.,

R(T ) := {λ : T → R+ such that suppλ is finite},

with positive cone R(T )
+ := {λ ∈ R(T ) : λ t ≥ 0,∀t ∈ T}. We can associate to each λ ∈ R(T )

+ the
function ∑t∈T λ t ft : X → R∪{+∞} such that(

∑
t∈T

λ t ft

)
(x) =

{
∑

t∈suppλ

λ t ft(x), if suppλ 6= /0,

0, if suppλ = /0.

So, we can reformulate (D) in (1.3) as

(D) sup
λ∈R(T )

+

inf
x∈X

{
f (x)+

(
∑
t∈T

λ t ft

)
(x)

}
.

It is known that the function ϕ : X∗→ R such that

ϕ(x∗) := inf
λ∈R(T )

+

(
f + ∑

t∈T
λ t ft

)∗
(x∗)

and the set

A :=
⋃

λ∈R(T )
+

epi

(
f + ∑

t∈T
λ t ft

)∗
⊂ X∗×R
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are both convex, and epiϕ = A (see, e.g., [1, 6, 7]).
We denote the feasible set of (P) by

E :=
⋂
t∈T

[ ft ≤ 0].

Then,
−∞≤ ( f +δ E)

∗(x∗)≤ ϕ(x∗)≤ f ∗(x∗)≤+∞, ∀x∗ ∈ X∗.

Taking x∗ = 0X∗ , one obtains the weak duality for the pair (P)− (D) :

−∞≤ infX f ≤ sup(D)≤ inf(P)≤+∞.

2.2. Relaxed Lagrange CIP duality. Let H be a non-empty family of non-empty finite sub-
sets of T, that is, /0 6= H ⊂F (T ), with associated dual problem (DH ) as in (1.2). Obviously,

sup(DH )≤ sup(DF (T )) = sup(D)≤ inf(P). (2.4)

Let us define the sets

EH :=
⋂

H∈H ,t∈H

[ ft ≤ 0],

AH :=
⋃

H∈H ,µ∈RH
+

epi

(
f + ∑

t∈H
µ t ft

)∗
,

and the function ϕH : X∗→ R such that

ϕH := inf
H∈H ,µ∈RH

+

(
f + ∑

t∈H
µ t ft

)∗
.

Obviously, AH ⊂A and ϕH ≥ ϕ .

Definition 2.1. (i) A family H ⊂F (T ) is said to be covering if
⋃

H∈H H = T .
(ii) A family H ⊂F (T ) is said to be directed if, for each H,K ∈H , there exists L ∈H such
that H ∪K ⊂ L.

The families F (T ) and HN are both covering and directed families, whereas H1 is just
covering.

As shown in [1, Proposition 3.2], for each directed covering family H ⊂F (T ), one has

AH = AF (T ) = A . (2.5)

Consequently,

ϕH = ϕF (T ) = ϕ, and sup(DH ) = sup(DF (T ))≡ sup(D). (2.6)

Let H ⊂ F (T ) be a covering family. Then, EH = E and, according to [1, Lemma 5.2],
{ f ; ft , t ∈ T} ⊂ Γ(X) entails

(ϕH )∗ = f +δ E , (2.7)
and if, additionnally, E ∩ (dom f ) 6= /0, then

epi( f +δ E)
∗ = coAH = co

 ⋃
H∈H ,µ∈RH

+

epi

(
f + ∑

t∈H
µ t ft

)∗ .
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Moreover, by [1, Theorem 5.1], H -strong duality holds at a given x∗ ∈ X∗, i.e.,

( f +δ E)
∗(x∗) = min

H∈H , µ∈RH
+

(
f + ∑

t∈H
µ t ft

)∗
(x∗), (2.8)

if and only if AH is w∗-closed convex regarding {x∗}×R.

2.3. The H -dual problem as a limit. It is easy to see that the mapping F (T ) ⊃H 7−→
sup(DH ) ∈ R is non-decreasing w.r.t. the inclusion ⊂ in F (T ). Consequently, if the family
H ⊂F (T ) is directed, we can express sup(DH ) as the limit of a net as follows:

sup(DH ) = sup
H∈H

sup(DH) = lim
H∈H

sup(DH).

If, moreover, H is covering, then

sup(D) = lim
H∈H

sup(DH). (2.9)

In particular, if T = N, we consider the countable program

(PN) inf f (x) s.t. fk(x)≤ 0,k ∈ N, (2.10)

and the sequence of finite subproblems

(Pm) inf f (x) s.t. fk(x)≤ 0, k ∈ {1, · · · ,m}, m ∈ N, (2.11)

whose ordinary Lagrangian dual problems are

(Dm) sup
µ∈Rm

+

inf
x∈X

{
f (x)+

m

∑
k=1

µk fk(x)

}
, m ∈ N. (2.12)

From (2.9), the Lagrangian-Haar dual of (PN),

(DN) sup
λ∈R(N)

+

inf
x∈X

{
f (x)+ ∑

k∈N
λ k fk(x)

}
, (2.13)

and its HN-dual Lagrange problem (DHN) can be expressed as limits in this way:

sup(DN) = sup(DHN) = lim
m→∞

sup(Dm). (2.14)

Corollary 3.3 below provides a sufficient condition for the primal counterpart of (2.14):

inf(PN) = lim
m→∞

inf(Pm).

3. H -REVERSE STRONG DUALITY

Let us go back to the general convex infinite optimization problem (P) in (1.1). Along this
section, we assume that { f ; ft , t ∈ T} ⊂ Γ(X) and E ∩dom f 6= /0, meaning that inf(P) 6=+∞.

Definition 3.1. Given a covering family H ⊂ F (T ), we say that H -reverse strong duality
holds if

min(P) = sup(DH ),

equivalently, that there exists x̄ ∈ E ∩dom f such that

f (x̄) = sup(DH ) ∈ R.
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We first show that H -reverse strong duality can be described in terms of subdifferentiability
of the function ϕH .

Recall that the subdifferential of a function g : X∗→ R at a point a∗ ∈ X∗ is given by

∂g(a∗) :=

{
{x ∈ X : g(x∗)≥ g(a∗)+ 〈x∗−a∗,x〉 , ∀x∗ ∈ X∗} , if g(a∗) ∈ R,
/0, if g(a∗) /∈ R.

We have
x ∈ ∂g(a∗)⇔ g(a∗)+g∗(x) = 〈a∗,x〉 . (3.1)

Lemma 3.1. Let H be a covering family. Then, H -reverse strong duality holds if and only if
ϕH is subdifferentiable at 0X∗ . In such a case, one has ∂ϕH (0X∗) = sol(P), where sol(P) is
the optimal solution set of (P).

Proof. Let x ∈ ∂ϕH (0X∗). Since we are assuming that H is covering, we conclude from (2.7)
and (3.1) that

( f +δ E)(x) = (ϕH )∗(x) =−ϕH (0X∗) ∈ R.
Then x ∈ E and

inf(P)≤ f (x) =−ϕH (0X∗) = sup(DH )≤ inf(P).
Consequently, if ϕH is subdifferentiable at 0X∗ , then H -reverse strong duality holds and
∂ϕH (0X∗)⊂ sol(P).

Assume now that H -reverse strong duality holds. There exists x ∈ E ∩ (dom f ) such that

(ϕH )∗(x) = f (x) = sup(DH ) =−ϕH (0X∗) ∈ R, (3.2)

that means x ∈ ∂ϕH (0X∗) and the first part of Lemma 3.1 is proved with, in addition, the
inclusion ∂ϕH (0X∗)⊂ sol(P). It remains to prove that if H -reverse strong duality holds, then
sol(P)⊂ ∂ϕH (0X∗). Now, for each x ∈ sol(P), we have (3.2). So, ϕH (0X∗)+(ϕH )∗(x) = 0,
that means x ∈ ∂ϕH (0X∗). �

In favorable circumstances, we know that ϕH is a convex function. For instance, when the
covering family H is also directed, by (2.5) and (2.6), AH = A and ϕH = ϕ, respectively,
implying the convexity of both AH and ϕH . Another important example is furnished by

ϕH1
= inf

(t,µ)∈T×R+

( f +µ ft)∗,

which is convex under the assumptions (a), (b), (c) of Corollary 3.1 below (see [1, Remark
5.5]). In order to propose a tractable subdifferentiability criterion when ϕH is convex, we need
to recall some facts about quasicontinuous convex functions and convex analysis recession.

Definition 3.2. A convex function g : X∗ → R is said to be τ(X∗,X)-quasicontinuous ([15],
[16]), where τ is the Mackey topology on X∗, if the following four properties are satisfied:

(1) aff(domg) is τ(X∗,X)-closed (or σ(X∗,X)-closed),
(2) aff(domg) is of finite codimension,
(3) the τ(X∗,X)-relative interior of domg, say ri(domg), is non-empty,
(4) the restriction of g to aff(domg) is τ(X∗,X)-continuous on ri(domg).
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Lemmas 3.2, 3.3, 3.4 below will be used in the sequel.

Lemma 3.2 ([15, Proposition 5.4]). Let h ∈ Γ(X). The conjugate function h∗ is τ(X∗,X)-
quasicontinuous if and only if h is weakly inf-locally compact; that is to say [h ≤ r] is weakly
locally compact for each r ∈ R.

Lemma 3.3 ([17, Theorem II.4]). A convex function g : X∗ → R majorized by a τ(X∗,X)-
quasicontinuous one is τ(X∗,X)-quasicontinuous, too.

Lemma 3.4 ([17, Theorem III.3]). Let g : X∗→R be a τ(X∗,X)-quasicontinuous convex func-
tion such that g(0X∗) 6=−∞ and conedomg is a linear subspace of X∗. Then ∂g(0X∗) is the sum
of a non-empty weakly compact convex set and a finite dimensional linear subspace of X.

We define the recession cone of (P) by setting

(P)∞ :=
⋂
t∈T

[( ft)∞ ≤ 0]∩ [ f∞ ≤ 0].

For the theorem and the corollaries below, recall that inf(P) 6=+∞ as E ∩dom f 6= /0.

Theorem 3.1 (H -reverse strong duality). Let H be a covering family such that ϕH is convex
τ(X∗,X)-quasicontinuous and (P)∞ is a linear subspace of X. Then H -reverse strong duality
holds:

min(P) = sup(DH ) ∈ R.

Moreover, sol(P) is the sum of a weakly compact convex set and a finite dimensional linear
subspace of X.

Proof. One has

ϕH (0X∗) =−sup(DH )≥− inf(P)>−∞

(the last strict inequality holds as E ∩ dom f 6= /0). In order to apply Lemma 3.4 to the convex
function ϕH , we have to prove that conedomϕH is a linear subspace. We have

conedomϕH = (domϕH )−−

= {x∗ ∈ X∗ : 〈x∗,x〉 ≤ 0,∀x ∈ (domϕH )−}.

Therefore, conedomϕH is a linear subspace if and only if (domϕH )− is a linear subspace.
Now,

domϕH =
⋃

H∈H

⋃
µ∈RH

+

dom

(
f + ∑

t∈H
µ t ft

)∗

and we can write
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(domϕH )− =
⋂

H∈H

⋂
µ∈RH

+

(
dom

(
f + ∑

t∈H
µ t ft

)∗)−

=
⋂

H∈H

⋂
µ∈RH

+

[(
f + ∑

t∈H
µ t ft

)
∞

≤ 0

]
(by (2.2))

=
⋂

H∈H

⋂
µ∈RH

+

[(
f∞ + ∑

t∈H
µ t( ft)∞

)
≤ 0

]
(by (2.3))

=
⋂

H∈H

[(
sup

µ∈RH
+

(
f∞ + ∑

t∈H
µ t( ft)∞

))
≤ 0

]

=
⋂

H∈H

[(
f∞ + sup

µ∈RH
+

∑
t∈H

µ t( ft)∞

)
≤ 0

]
=

⋂
H∈H

[(
f∞ +δ [supt∈H( ft)∞≤0]

)
≤ 0
]

=
⋂

H∈H

⋂
t∈H

[( ft)∞ ≤ 0]∩ [ f∞ ≤ 0]

=
⋂
t∈T

[( ft)∞ ≤ 0]∩ [ f∞ ≤ 0] = (P)∞,

the penultimate equality coming from the fact that H is covering. We conclude the proof of
Theorem 3.1 with Lemmas 3.1 and 3.4. �

Remark 3.1. Note that if X = X∗ = Rn, then the function ϕH , when convex, is automat-
ically τ(X∗,X)-quasicontinuous since any extended real-valued convex function on Rn with
non-empty domain is quasicontinuous (e.g., [18, Theorem 10.1]).

Corollary 3.1 (H1-reverse strong duality). Assume that (P) satisfies the following conditions:
(a) dom f ⊂

⋂
t∈T dom ft .

(b) T is a convex and compact subset of some locally convex topological vector space.
(c) T 3 t 7→ ft(x) is concave and usc on T for each x ∈

⋂
t∈T dom ft .

(d) There exists (t̄, µ̄) ∈ T ×R+ such that f + µ̄ ft̄ is weakly inf-locally compact.
(e) (P)∞ is a linear subspace.
Then,

min(P) = sup
(t,µ)∈T×R+

inf
x∈X

{
f (x)+µ ft(x)

}
∈ R.

Proof. From the first three assumptions and [1, Remark 5.5], we obtain that ϕH1
is convex.

Moreover, ϕH1
= inf(t,µ)∈T×R+

( f + µ ft)∗ is majorized by the function ( f + µ̄ ft̄)∗, which is
τ(X∗,X)-quasicontinuous by Lemma 3.2 as, by (d), f + µ̄ ft̄ ∈ Γ(X) is weakly inf-locally com-
pact. So, by Lemma 3.3, ϕH1

is τ(X∗,X)-quasicontinuous, and we conclude the proof by
applying Theorem 3.1 with H = H1 thanks to (e). �

The following result recovers a variant of the reverse duality theorem of [6, Theorem 3.3].
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Corollary 3.2 (F (T )-reverse strong duality). Assume that E ∩ dom f 6= /0 and that the two
following conditions are satisfied:

(f) ∃λ ∈ R(T )
+ such that f +∑t∈T λ t ft is weakly inf-locally compact.

(e) (P)∞ is a linear subspace.

Then

min(P) = sup(D) = sup
λ∈R(T )

+

inf
x∈X

{
f (x)+ ∑

t∈T
λ t ft(x)

}
∈ R.

Proof. Condition (f) amounts to

∃H ∈F (T ),∃µ ∈ RH
+ such that f + ∑

t∈H
µ t ft weakly inf-locally compact.

Moreover, ϕF (T ) is majorized by ( f +∑t∈H µ t ft)
∗, which is τ(X∗,X)-quasicontinuous by Lemma

3.2. By Lemma 3.3, ϕF (T ) is then τ(X∗,X)-quasicontinuous. Taking H = F (T ) in Theorem
3.1, we obtain, by (2.5) and (2.6), that

min(P) = sup(DH ) = sup(D).

The proof is complete. �

We finally consider the countable case when T = N. Let (PN), (Pm), (DN), and (Dm) be as
in (2.10), (2.11), (2.12), and (2.13), respectively.

Corollary 3.3 (HN-reverse strong duality). Assume inf(PN) 6= +∞ and the two conditions be-
low are satisfied:

(g) ∃ (N,µ) ∈ N×RN
+ such that f +∑

N
k=1 µk fk is weakly inf-locally compact,

(e) (P)∞ is a linear subspace.

Then
min(PN) = lim

m→∞
inf(Pm) = lim

m→∞
sup(Dm) = sup(DN).

Moreover, the optimal solution set of (PN) is the sum of a weakly compact convex set and a
finite dimensional linear subspace.

Proof. Since the covering family HN is directed, we know that ϕHN
is a convex function. More-

over, ϕHN
is majorized by

(
f +∑

N
k=1 µk fk

)∗, which is τ(X∗,X)-quasicontinuous by Lemma
3.2. By Lemma 3.3, ϕHN

is then τ(X∗,X)-quasicontinuous and, by [1, Formula (5.6)], sup(DN)=
limm→∞ sup(Dm). Applying Theorem 3.1 with H = HN, we obtain

min(PN) = sup(DN) = sup
m∈N

sup(Dm) = lim
m→∞

sup(Dm)≤ lim
m→∞

inf(Pm)≤min(PN),

and the proof is complete. �

Remark 3.2. We now comment conditions (a)− (g) when X =Rn, that is, in CSIP. Conditions
(d), (f), and (g) are obviously satisfied while condition (e) is equivalent [19, Exercise 8.15] to
(h) f∞ (x)> 0,∀x ∈

[
(0+E)∩M⊥

]
�{0n} ,

where M = {x ∈ lin(0+E) : f∞ (x) = 0 = f∞ (−x)} . So, Corollary 3.2 is, in the CSIP setting,
equivalent to [2, Theorem 3.2] (see also [19, Theorem 8.8(i)]). Analogously, [2, Corollary 4.2]
is the CSIP version of Corollary 3.3.
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If (P) is the LSIP problem in (1.4), we can write f (x) = 〈c∗,x〉 and ft(x) = 〈a∗t ,x〉−bt , t ∈ T.
Then since all functions have full domain, (a) trivially holds. Moreover, since

(P)∞ =
⋂
t∈T

[a∗t ≤ 0]∩ [c∗ ≤ 0],

condition (e) can be expressed as follows:
(e′) {x ∈ Rn : 〈c∗,x〉 ≤ 0; 〈a∗t ,x〉 ≤ 0,∀t ∈ T} is a linear subspace.

Taking into account that a convex cone K is a subspace if and only if−K ⊂K, (e′) is equivalent
to

(e′′) [〈c∗,x〉 ≤ 0; 〈a∗t ,x〉 ≤ 0,∀t ∈ T ] =⇒ [〈c∗,x〉= 0 = 〈a∗t ,x〉 ,∀t ∈ T ] .
Moreover, condition (e′) can be reformulated in terms of the data as

(e′′′) The pointed cone of cone({c∗;a∗t , t ∈ T}×R+) (i.e., its intersection with the orthogonal
subspace to its lineality) is a half-line in Rn+1 [19, Theorem 5.13(ii)] (or, more precisely, the
half-line R+ (0n,1) [20, page 155]).
In the same vein, since dom f = Rn, f∞ = 〈c∗, ·〉 , 0+E =

⋂
t∈T [a

∗
t ≤ 0], and

M⊥ = {x ∈ Rn : 〈c∗,x〉= 0 = 〈a∗t ,x〉 ,∀t ∈ T}⊥ = span{c∗;a∗t , t ∈ T} ,

condition (h) can be expressed as
(h′) 〈c∗,x〉> 0,∀x ∈ (

⋂
t∈T [a

∗
t ≤ 0])∩ span{c∗;a∗t , t ∈ T}�{0n} .

Example 3.1. Consider the linear semi-infinite programming problem

(P) inf
x∈R2

f (x) = 〈c∗,x〉

s.t. −tx1 +(t−1)x2 + t− t2 ≤ 0, t ∈ [0,1] ,

with c∗ ∈R2
+�{(0,0)} (see [1, Example 3.1]). According to Remark 3.2, (a), (d), (f), and (g)

hold independently of the data. Condition (b) holds because [0,1] ⊂ R is compact and convex
and (c) because t 7−→ −tx1 +(t−1)x2 + t− t2 is concave on R for any x ∈ R2. Regarding (e),
the set in (e′){

x ∈ R2 : 〈c∗,x〉 ≤ 0;−tx1 +(t−1)x2 ≤ 0,∀t ∈ [0,1]
}
=
{

x ∈ R2
+ : 〈c∗,x〉 ≤ 0

}
is {(0,0)} when c∗ belongs to the interior R2

++ of R2
+ and a positive axis when c∗ belongs to its

boundary. Hence, (e) only holds for c∗ ∈ R2
++. Observe that the cone in (e′′) is

cone
{(

c∗1
c∗2

)
,

(
−1
0

)
,

(
0
−1

)}
×R+,

and its pointed cone is

R+

 0
0
1

 resp., cone


 −1

0
0

 ,

 0
0
1

 ,cone


 0
−1
0

 ,

 0
0
1


 ,

when c∗ ∈ R2
++ (c∗ ∈ R++ (1,0) ,c∗ ∈ R++ (1,0) , respectively). So, we obtain again that (e)

only holds for c∗ ∈ R2
++. Regarding condition (h), if c∗ ∈ R2

++, since
⋂

t∈[0,1][a
∗
t ≤ 0] = R2

+

and span{c∗;a∗t , t ∈ T} = R2, (h) holds; otherwise, span{c∗;a∗t , t ∈ T} is a positive axis and
(h) fails, otherwise. Thus, (e) and (h) hold or not simultaneously.
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In conclusion, by Corollary 3.1, H1-reverse strong duality holds whenever c∗ ∈ R2
++ while,

by Corollary 3.2, F (T )-reverse strong duality holds whenever c∗ ∈ R2
++. Observe that, from

the direct computations carried out in [1, Example 3.1], H1-reverse strong duality actually holds
for all c∗ ∈ R2

+�{(0,0)} .

Example 3.2. The countable linear semi-infinite programming problem

(PN) inf
x∈R2

x2

s.t. x1 + k (k+1)x2 ≥ 2k+1, k ∈ N,

violates the assumptions of Corollaries 3.1, 3.2, and 3.3, as (b) and (c) obviously fail, as well
as (e) and (h). In fact, (e′) and (e′′) fail because{

x ∈ R2 : x2 ≤ 0,−x1− k (k+1)x2 ≤ 0, k ∈ N
}
= R+×{0}

is not a linear subspace and the pointed cone of

cone{(0,1) ;(−1,−k (k+1)) ,k ∈ N}×R+ =
{

x ∈ R3 : x1 ≤ 0,x3 ≥ 0
}

is not a half-line, respectively, while (h) fails because x2 vanishes on an edge of(
0+E

)
∩M⊥ = 0+E ∩R2 = cone{(−2,1) ,(1,0)} .

So, we cannot apply the mentioned corollaries to conclude that H -reverse strong duality holds
for H = H 1,HN,F (T ). Actually, H -reverse strong duality does not hold for these three
families because the feasible set of (PN) is

E = co
({(

k,
1
k

)
,k ∈ N

}
∪
{

x ∈ R2 : x1 +2x2 = 3,x1 ≤ 1
})

,

which implies inf(PN) = 0 with sol(PN) = /0, while sup(D) = −∞, which in turn implies
sup(DH ) =−∞ for any H such that /0 6= H ⊂F (T ), by (2.4).

4. H −FARKAS LEMMA

We now establish some new versions of Farkas lemma relative to a given family H ⊂
F (T ). These results assert the equivalence between some inclusion (i) of the solution set E of
{ ft(x)≤ 0, t ∈ T} into certain set involving f and some condition (ii) involving { f ; ft , t ∈ T}
and H . We first provide a Farkas-type result relative to the family H1 without assuming the
lower semicontinuity of the involved functions. Stronger results (characterizations of Farkas
lemma) will be then obtained under the lower semicontinuity (or even continuity) assumption.

Proposition 4.1 (H1-Farkas lemma). Assume conditions (a),(b),(c) in Corollary 3.1 altogether
with the generalized Slater condition:

∃x̄ ∈ dom f : ft(x̄)< 0, ∀t ∈ T.

Then, for any α ∈ R, the following statements are equivalent:
(i) [ ft(x)≤ 0,∀t ∈ T ] =⇒ f (x)≥ α.
(ii) There exist t̄ ∈ T and µ̄ ∈ R+ such that

f (x)+ µ̄ ft̄(x)≥ α, ∀x ∈ X . (4.1)
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Proof. We observe first that (i) is equivalent to inf(P)≥ α, where (P) is the CIP in (1.1). So, it
follows from [1, Theorem 5.3] that inf(P) = max(DH1)≥ α; i.e., (i) is equivalent to

max
(t,µ)∈T×R

inf
x∈dom f

{ f (x)+µ ft(x)} ≥ α.

In other words, there exists (t̄, µ̄) ∈ T ×R+ satisfying (4.1), which is (ii), and we are done. �

Observe that statement (i) means that E is contained in the reverse convex set {x ∈ X : f (x)
≥ α} while (ii) would be the same replacing the infinite family { ft , t ∈ T} by the singleton one
{ ft̄} , so that Proposition 4.1 characterizes when an inequality f (x)≥ α is consequence of some
single constraint ft(x)≤ 0.

The following two propositions provide, under the lower semicontinuity assumption, a char-
acterization in terms of AH (statement (I)) of the Farkas lemma (statement (II)) relative to an
arbitrary non-empty covering family H ⊂F (T ).

Proposition 4.2 (Characterization of H -Farkas lemma). Let H ⊂F (T ) be a covering family.
Assume that { f ; ft , t ∈ T} ⊂ Γ(X), E ∩ (dom f ) 6= /0, and consider the following statements:

(I) AH is w∗-closed convex regarding {0X∗}×R.
(II) For α ∈ R, the next two conditions are equivalent:

(i) [ ft(x)≤ 0,∀t ∈ T ] =⇒ f (x)≥ α,
(ii) there exist H ∈H and µ ∈ RH

+ such that

f (x)+ ∑
t∈H

µ t ft(x)≥ α,∀x ∈ X . (4.2)

Then, [(I) =⇒ (II)], and the converse implication, [(II) =⇒ (I)], holds when inf(P) ∈ R.

Proof. By the characterization of H -strong duality at a point in (2.8), applied to x∗ = 0X∗ , one
obtains that (I) is equivalent to

inf(P) = max(DH ), (4.3)
which is itself equivalent to the existence of H ∈H and µ ∈ RH

+ such that

inf(P) = inf
x∈X

(
f (x)+ ∑

t∈H
µ t ft(x)

)
.

Since (i) is equivalent to inf(P)≥ α, it now follows that [(I) =⇒ (II)].
Conversely, if inf(P) ∈ R and (II) holds, then just take α = inf(P). As (II) holds, it follows

that there are H ∈H and µ ∈ RH
+ such that (4.2) holds, and

sup(DH )≥ inf
x∈X

(
f (x)+ ∑

t∈H
µ t ft(x)

)
≥ α = inf(P).

In other words, sup(DH ) = inf(P), sup(DH ) is attained at H ∈H and µ ∈ RH
+, meaning that

(4.3) holds, which is (I), and the proof is complete. �

Remark 4.1. In the special case when H = F (T ), the condition (ii) in Proposition 4.2 reads
as

(ii′) there exists λ ∈ R(T )
+ such that f (x)+ ∑

t∈T
λ t ft(x)≥ α, for all x ∈ X ,

and Proposition 4.2 goes back to the Farkas lemma given in [3, Theorem 2] under a slightly
different qualification condition. So, Proposition 4.2 is a variant of [3, Theorem 2].
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Let us get back to the linear case, where

f (x) = 〈c∗,x〉 , ft(x) = 〈a∗t ,x〉−bt , t ∈ T, (4.4)

with {c∗;a∗t , t ∈ T} ⊂ X∗ and {bt , t ∈ T} ⊂ R. Then, AH = {(c∗,0)}+KH (see [1, (4.4)]),
where

KH =
⋃

H∈H
cone({(a∗t ,bt), t ∈ H}+{0X∗}×R+) .

In particular,
KH1 =

⋃
t∈T

cone{(a∗t ,bt + ε) : ε ≥ 0}

and, by [1, Proposition 4.1],

KF (T ) = cone({(a∗t ,bt), t ∈ T}+{0X∗}×R+) .

For instance, for the LSIP problem in Example 3.1,

KH1 =
⋃

t∈[0,1]
cone

{(
−t, t−1, t2− t + ε

)
: ε ≥ 0

}
while KF (T ) is (see [1, Example 4.1]) the union of the origin with the epigraph of the convex
function

ψ (x) :=
{ x1x2

x1+x2
, x ∈ R2

−�{02} ,
+∞, else.

We finish this section with a characterization, in terms of KH , of the Farkas lemma (state-
ment (II) below) relative to an arbitrary non-empty covering family H ⊂F (T ).

Proposition 4.3 (H -Farkas lemma for linear infinite systems). Consider the linear functions
{ f ; ft , t ∈ T} defined in (4.4), and suppose that inf(P) is finite and that H is a covering family.
Given c∗ ∈ X∗, the following statements are equivalent:
(I) co(KH )∩ ({−c∗}×R+) = KH ∩ ({−c∗}×R+).
(II) For α ∈ R, the following statements are equivalent:

(i) [〈a∗t ,x〉 ≤ bt ,∀t ∈ T ] =⇒ 〈c∗,x〉 ≥ α.
(ii) There exist H ∈H and µ ∈ RH

+ such that ∑
t∈H

µ ta
∗
t =−c∗ and − ∑

t∈H
µ tbt ≥ α.

Proof. When H is a covering family and E 6= /0, according to [1, Corollary 5.3], one has(
inf(P) = max(DH )

)
⇐⇒

(
(co KH )∩ ({−c∗}×R+) = KH ∩ ({−c∗}×R+)

)
. (4.5)

The rest of the proof is similar to that of Proposition 4.2, using (2.8) and (4.5). �

5. H -OPTIMALITY CONDITIONS

In this section, we establish the optimality conditions for the problem (P) associated with
some family H ⊂F (T ). We shall represent by sol(DH ) the set of optimal solutions of (DH ).
In particular, when H = F (T ), one obtains the classical KKT conditions involving finitely
many multipliers and, when H = H1, optimality conditions involving a unique multiplier.
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Theorem 5.1 (Primal-dual H −optimality condition). Let x̄ ∈ E ∩ (dom f ), H ∈H , and µ ∈
RH
+. Then, the following statements are equivalent:

(i) x̄ ∈ sol(P), (H,µ) ∈ sol(DH ), and inf(P) = sup(DH ).

(ii) f (x̄) = infX

(
f + ∑

t∈H
µ t ft

)
, and µ t ft(x̄) = 0, for all t ∈ H.

(iii) 0X∗ ∈ ∂

(
f + ∑

t∈H
µ t ft

)
(x), and µ t ft(x̄) = 0, for all t ∈ H.

Proof. [(i)⇒ (ii)] We have

inf
X

(
f + ∑

t∈H
µ t ft

)
= sup(DH ) = inf(P) = f (x̄),

and

f (x̄) = inf
X

(
f + ∑

t∈H
µ t ft

)
≤ f (x̄)+ ∑

t∈H
µ t ft(x̄)≤ f (x̄).

Hence, ∑
t∈H

µ t ft(x̄) = 0 and (ii) holds.

[(ii)⇒ (iii)] We have(
f + ∑

t∈H
µ t ft

)
(x̄) = f (x̄) = inf

X

(
f + ∑

t∈H
µ t ft

)
.

Thus, x̄ ∈ argmin
(

f + ∑
t∈H

µ t ft

)
or, equivalently, 0X∗ ∈ ∂

(
f + ∑

t∈H
µ t ft

)
(x).

[(iii)⇒ (i)] Now we write

inf(P)≤ f (x̄) =
(

f + ∑
t∈H

µ t ft

)
(x̄) = inf

X

(
f + ∑

t∈H
µ t ft

)
≤ sup(DH )≤ inf(P),

and (i) holds. �

Corollary 5.1 (1st H −optimality condition for (P)). Assume that inf(P) = max(DH ) and let
x̄ ∈ E ∩ (dom f ). Then, the following statements are equivalent:
(i) x̄ ∈ sol(P).
(ii) For each (H,µ) ∈ sol(DH ), we have

0X∗ ∈ ∂

(
f + ∑

t∈H
µ t ft

)
(x), and µ t ft(x̄) = 0, ∀t ∈ H. (5.1)

(iii) There exists (H,µ) ∈ sol(DH ) such that (5.1) is fulfilled.

Proof. [(i)⇒ (ii)] is just [(i)⇒ (iii)] in Theorem 5.1.
[(ii)⇒ (iii)] is due to the assumption sol(DH ) 6= /0.
[(iii)⇒ (i)] follows from [(iii)⇒ (i)] in Theorem 5.1. �

Corollary 5.2 (2nd H −optimality condition for (P)). Let H ⊂F (T ) be a covering family.
Assume that { f ; ft , t ∈ T} ⊂ Γ(X) and E ∩ (dom f ) 6= /0. Assume further that AH is w∗-closed
convex regarding {0X∗}×R. Then x̄ ∈ sol(P) if and only if there exist H ∈H and µ ∈RH

+ such
that (5.1) holds.

Proof. Taking x∗ = 0X∗ in (2.8) one has inf(P) = max(DH ). Corollary 5.1 concludes the proof.
�



RELAXED LAGRANGIAN DUALITY IN CONVEX INFINITE OPTIMIZATION 17

Remark 5.1. When H = F (T ), the conclusion of Corollary 5.2 is that x̄ ∈ sol(P) if and only
if there exists λ ∈ R(T )

+ such that

0X∗ ∈ ∂

(
f + ∑

t∈T
λ t ft

)
(x̄) and λ t ft(x̄) = 0,∀t ∈ T,

which recalls us about the optimality condition given in [3, Theorem 3] under the assumption
that both the sets KF (T ) and epi f ∗+KF (T ) are w∗-closed.

Corollary 5.3 (H −optimality condition for linear (P)). Let (P) be linear with E 6= /0. Let
H be a covering family. Assume that KH is weak∗-closed convex regarding {−c∗}×R. Then
x̄ ∈ sol(P) if and only if there exist H ∈H and µ ∈ RH

+ such that

∑
t∈H

µ ta
∗
t =−c∗ and ∑

t∈H
µ tbt =−〈c∗, x̄〉 . (5.2)

Proof. By [1, Corollaty 5.3], one has inf(P) = max(DH ). In the linear case one has (5.1)⇔
(5.2). We conclude the proof with Corollary 5.1. �

Corollary 5.4 (Optimality condition for (DH )). Assume that min(P) = sup(DH ) 6=+∞, and
let H ∈H and µ ∈ RH

+. Then, the following statements are equivalent:
(i) (H,µ) ∈ sol(DH ).
(ii) For each x̄ ∈ sol(P), (5.1) holds.
(iii) There exists x̄ ∈ sol(P) such that (5.1) is fulfilled.

Proof. [(i)⇒ (ii)] follows from [(i)⇒ (iii)] in Theorem 5.1.
[(ii)⇒ (iii)] is due to the assumption sol(P) 6= /0.
[(iii)⇒ (i)] follows from [(iii)⇒ (i)] in Theorem 5.1. �

We finish by revisiting again Example 3.1, with H = H 1. For c∗ ∈ R2
++, let us check the

fulfilment of (5.2) at x̄ =
((

c∗2
c∗1+c∗2

)2
,
(

c∗1
c∗1+c∗2

)2
)
. Taking H = {t} , with t = c∗1

c∗1+c∗2
∈ ]0,1[ , and

µ ∈ R([0,1])
+ such that µ t = c∗1 + c∗2 > 0 and µ t = 0 for all t ∈ [0,1]�{t} , one has

∑
t∈H

µ ta
∗
t = (c∗1 + c∗2)

(
−

c∗1
c∗1 + c∗2

,−
c∗2

c∗1 + c∗2

)
=−c∗

and

∑
t∈H

µ tbt = (c∗1 + c∗2)

((
c∗1

c∗1 + c∗2

)2

−
c∗1

c∗1 + c∗2

)
=−

c∗1c∗2
c∗1 + c∗2

=−〈c∗, x̄〉 ,

so that x̄ ∈ sol(P) (recall that KH1 is closed). Moreover, (H,µ) ∈ sol(DH ) by Corollary 5.4 as

∂

(
c∗+ ∑

t∈H
µ ta
∗
t

)
=

{
c∗+(c∗1 + c∗2)

(
−

c∗1
c∗1 + c∗2

,−
c∗2

c∗1 + c∗2

)}
= {(0,0)}

and the complementarity condition µ t ft(x̄) = 0, for all t ∈ T, holds.
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[1] N. Dinh, M.A. Goberna, M.A. López, M. Volle, Relaxed Lagrangian and convex infinite optimization duality:
reducibility and strong duality, Optimization, to appear.

[2] D.F Karney: A duality theorem for semi-infinite convex programs and their finite subprograms, Math. Pro-
gram. 27 (1983), 75-82.
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