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Abstract

In this paper we study finite support convolutional codes over Zpr by means of an input-state-output
representation. We show that the set of finite weight input-state-output trajectories associated to this
type of representations has the structure of a Zpr -submodule of Zn

pr and therefore is a (finite support)
convolutional code. Fundamental system-theoretical properties such as observability, reachability or
minimality, are investigated in this context.
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1. Introduction

Convolutional codes are an important class of error correcting codes that are used to achieve
reliable communications such as digital video transmission or satellite communications [14]. Since
the sixties it has been widely known that convolutional codes and linear systems defined over a
finite field are essentially the same objects [27, 34, 35]. In the last decades there has been a renew
interest in this connection and many advances have been derived from using the system theoretical
framework when dealing with convolutional codes, see [11, 12, 21, 23, 24, 28, 29, 30, 35, 36].

Most of the large body of literature on convolutional codes and on the relation of these codes with
linear systems has been devoted to the field case. But sometimes it is too restrictive to consider
fields and so, part of this theory has been extended to finite rings [8, 16, 18, 19, 20, 25, 33, 41].
This work continues this thread of research and we aim at studying convolutional codes over the
ring Zpr (where p is a prime and r is an integer) from a system theoretical point of view. Our
motivation for considering such a finite ring Zpr is due to the fact that this ring has a particular
interest since in [26] Massey and Mittelholzer showed that convolutional codes over the ring ZM are
the most appropriate class of codes for phase modulation. As by the Chinese Remainder Theorem
results on codes over Zpr can be easily extended to codes over ZM , most of the theory in the area
has been developed considering the ring Zpr . The algebraic structure of these codes was thoroughly
investigated [7, 13, 20, 22, 33] and it was immediately apparent that these codes were more involved
than the classical convolutional codes over finite fields. Indeed many important properties that hold
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in the field case, fail to be true in the ring case. We denote by Zpr [d] the ring of polynomials in the
indeterminate d, with coefficients in Zpr . Mathematically, a convolutional code C over Zpr of rate
k/n can be defined as a free Zpr -submodule of Zn

pr and as such can be described as

C = ImZpr [d]G(d) = {u(d)G(d) : u(d) ∈ Zpr [d]k},

where G(d) ∈ Zpr [d]k×n is a full row rank matrix. Such G(d) is called a generator matrix of C. The
degree or complexity of C is the maximum of the degrees of the full size minors of one and hence
any generator matrix of C.

State representations of convolutional codes over finite rings have been previously investigated in
[4, 5, 17, 20], see also references therein. Here we propose to study finite support convolutional codes
using the state framework proposed by J. Rosenthal et al., see [24, 28, 29, 36]. Within this approach
the codewords are constituted by both the input and output of an associated linear system and
therefore is different from the setting considering driving variable representations [9, 11], (K,L,M)-
type representations [37], or other type of representations [3, 10, 16, 38]. In [6] the authors studied
state representations of convolutional codes over the ring R = F1 × F2 × . . .Fi × . . .× Ft, where for
i = 1, 2, . . . , t, Fi is a finite field.

More concretely, in this work we consider the linear system given by the updating equations{
xt+1 = xtA+ utB
yt = xtC + utD

(1)

where A ∈ Zℓ×ℓ
pr , B ∈ Zk×ℓ

pr , C ∈ Zℓ×n−k
pr and D ∈ Zk×n−k

pr and x0 = 0. We will represent the system
(1) by Σ = (A,B,C,D) or shortly by Σ. Σ is said to have dimension ℓ and ut represents the input,
xt the state vector and yt the output, each at time t.

If we introduce a variable d, usually called the delay operator, to indicate the instant in which
each input is introduced into the system, we can represent the input as a formal power sequence

u(d) = u0 + u1d+ .... =
∑
t∈N0

utd
t ∈ Zk

pr [[d]],

and in a similar way,

y(d) = y0 + y1d+ .... =
∑
t∈N0

ytd
t ∈ Zn−k

pr [[d]] and x(d) = x0 + x1d+ .... =
∑
t∈N0

xtd
t ∈ Zℓ

pr [[d]].

We focus on the set of trajectories (x(d), u(d), y(d)) ∈ Zpr [[d]]ℓ×Zpr [[d]]k×Zpr [[d]]n−k of the sys-
tem

∑
= (A, B, C, D) having finite support, i.e., when x(d), u(d) and y(d) are polynomial vectors,

see for instance [36]. We show that the set of such (u(d), y(d)) has the structure of a Zpr [d]-submodule
of Zpr [d]n and therefore is a convolutional code. We investigate properties of these convolutional
codes such as noncatastrophicity, freeness or complexity, in terms of the system-theoretical properties
of the input-state-out representation (1). Finally we discuss the issue of minimal realizations. The
main results of the paper are presented in Section 3 but previously we need to establish the necessary
background on linear systems, polynomial and rational polynomial matrices over Zpr . Some results
in these preliminaries (Section 2) are new and others easy adaptations to the ring case of results
derived for finite fields.

2. Linear systems and polynomial rational matrices over Zpr

In this section, we present definitions and results that we will use throughout the paper regarding
the theory of primeness of polynomial matrices over Zpr , linear systems and rational matrices over
Zpr , including an algorithm to construct a state realization from a given rational matrix.
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2.1. Primeness of polynomial matrices over Zpr

When the coefficients of the polynomials are elements in a field, the notion of left primeness is
well understood and fully characterized. For the case of multivariable polynomials matrices over a
field three classes of left primeness were defined: minor prime, zero prime and weakly zero prime,
see [32, 39, 40]. Similarly, when the coefficients of the polynomial in one variable belong to the ring
Zpr , one can distinguish two distinct notions of primeness, namely, zero prime and factor prime.

The trailing coefficient of a nonzero polynomial q(d) ∈ Zpr [d] is defined as the coefficient of the
smallest power of d in q(d). Consider the multiplicative closed subset of Zpr [d]

S = {q(d) ∈ Zpr [d] : the trailing coefficient of q(d) is a unit}.

We denote by Zpr (d) the ring of rational functions over Zpr defined, see [13], as the localized ring

Zpr (d) = S−1Zpr [d] =

{
p(d)

q(d)
: p(d) ∈ Zpr [d], q(d) ∈ S

}
.

Since S has no zero divisors the localization S−1Zpr [d] is the set of equivalent classes in the equival-
ence relation

p(d)

q(d)
∼ p1(d)

q1(d)
if and only if p(d)q1(d) = p1(d)q(d).

Any element a ∈ Zpr has a p-adic expansion [2], i.e., it can be written uniquely as a linear
combination of 1, p, p2, . . . . . . , pr−1, with coefficients in Ap = {0, 1, . . . , p− 1} ⊂ Zpr ,

a = α0 + α1p+ · · ·+ αr−1p
r−1, αi ∈ Ap, i = 0, 1, . . . , r − 1.

Note that all elements in Ap\{0} are units. Given a matrix A(d) ∈ Zpr [d]s×t, denote by [A(d)]p or
Ā(d) its (componentwise) projection over Zp.

Definition 2.1. A polynomial matrix A(d) ∈ Zpr [d]s×t is right factor-prime (rFP ) if in all factor-
izations

A(d) = Ā(d)∆(d) with ∆(d) ∈ Zpr [d]t×t and Ā(d) ∈ Zpr [d]s×t,

the right factor ∆(d) is unimodular, that is, it has a polynomial inverse or, equivalently, its determ-
inant is a unit in Zpr .

Definition 2.2. A polynomial matrix A(d) ∈ Zpr [d]s×t, with s > t, is right zero-prime (rZP ) if the
ideal generated by all the t-th order minors of A(d) is Zpr [d].

Left factor-prime (rFP) and left zero-prime (rZP) matrices are defined in the same way, upon
taking transposes. It can be shown that factor-primeness does not imply zero-primeness but the
converse is true [31]. For the purpose of this paper we only need the characterization of zero prime
polynomial matrices over Zpr , see [31, Theorem 2.3].

Theorem 2.1. Let A(d) ∈ Zpr [d]s×t. The following are equivalent:

1. A(d) is right zero-prime;

2. there exists a unimodular matrix V (d) ∈ Zpr [d]s×s such that V (d)A(d) =

[
It
0

]
;

3. A(d) admits a polynomial left inverse;

4. Ā(α) has rank t, mod p, for all α ∈ Z̄p, where Z̄p denotes the algebraic closure of Zp;

5. [A(d)]p is right prime over Zp.

We next present a new result in the context of Zpr that will be needed in Section 3.
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Theorem 2.2. Let X(d) ∈ Zpr [d]s×t be right zero-prime and Y (d) ∈ Zpr [d](s−t)×s left zero-prime
such that Y (d)X(d) = 0. The complementary full size minors 2 of X(d) and Y (d) are equal up to
the multiplication by a unit of Zpr .

Proof: Write X(d) =

[
XLs−t(d)
XLt(d)

]
where XLs−t(d) corresponds to the first s − t rows of

X(d) and XLt
(d) to the last t rows and Y (d) =

[
YCs−t

(d) YCt
(d)

]
where YCs−t

(d) and YCt
(d)

are formed by the first s − t and last t columns of Y (d) respectively. Consider the two full size
complementary minors of X(d) and Y (d): det(XLt

(d)) and det(YCs−t
(d)) respectively.

AsX(d) is right zero-prime there exists, by Theorem 2.1, X̃(d) ∈ Zpr [d]t×s such that X̃(d)X(d) =
It. As by assumption Y (d)X(d) = 0, we have that for some matrix Z(d) ∈ Zpr [d]t×(s−t) it holds
that: [

YCs−t
(d) 0

Z(d) It

]
=

[
Y (d)

X̃(d)

] [
Is−t XLs−t

(d)
0 XLt(d)

]
.

It follows that
det(YCs−t(d)) = r(d) det(XLt(d)) (2)

for some r(d) ∈ Zpr [d].

On the other hand, as Y (d) is a left zero-prime matrix, there exists, by Theorem 2.1, Ỹ (d) ∈
Zpr [d]s×(s−t) such that Y (d)Ỹ (d) = Is−t. Taking into account that Y (d)X(d) = 0 we obtain[

Is−t 0
B(d) XLt(d)

]
=

[
YCs−t

(d) YCt
(d)

0 It

] [
Ỹ (d) X(d)

]
,

for some matrix B(d) ∈ Zpr [d]t×(s−t). Thus det(XLt
(d)) = s(d) det(YCs−t

(d)) for some s(d) ∈ Zpr [d]
and according to (2),

det(XLt(d)) = s(d)r(d) det(XLt(d)),

that is, r(d) and s(d) are units of Zpr [d]. We obtain this for any complementary full size order minors
by permutation of rows/columns of X(d) e Y (d). □

2.2. Linear systems

We next present the property of reachability of linear systems over Zpr and its characterization.

Definition 2.3. A system
∑

= (A, B, C, D) is said to be reachable if for every given state x ∈ Zℓ
pr

of the system there exist a finite sequence of inputs u0, u1 . . . uθ ∈ Zk
pr , θ ∈ N0, that drives the

system from the initial state x0 = 0 to xθ = x.

Theorem 2.3. Let
∑

= (A, B, C, D) be a linear system of dimension ℓ over Zpr . The following
statements are equivalent:

1.
∑

is reachable;

2. The rows of the matrix


B
BA
...

BAℓ−1

 generate Zℓ
pr (over Zpr);

2Let x(d) be the full t-size minor of the matrix X(d) corresponding to the submatrix X(d) formed by the rows
with indices i1, i2, . . . , it and y(d) the full (s − t)-size minor of the matrix Y (d) corresponding to the submatrix of
Y (d) formed by the columns with indices j1, j2, . . . , js−t. We say that x(d) and y(d) are complementary minors if
{i1, i2, . . . , it} ∩ {j1, j2, . . . , js−t} = ∅ (note that {i1, i2, . . . , it} ∪ {j1, j2, . . . , js−t} = {1, 2, . . . , s}).
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3. The ideal generated by the minors of order ℓ of the matrix

[
Iℓd−A
−B

]
is Zpr ;

4. The matrix

[
Iℓd−A
−B

]
is right-zero prime.

The equivalence of the first three statements was proven in [1] and the last statement, commonly
known by the PBH test (Popov-Belevitch-Hautus [15]) was recently shown in [31].

Given a sequence of inputs u(d) and the corresponding sequence of states x(d), the system∑
= (A, B, C, D) generates the output sequence y(d). The triple (x(d), u(d), y(d)) ∈ Zpr [[d]]l ×

Zpr [[d]]k ×Zpr [[d]](n−k) is called a trajectory of the system. From the first equation of (1) it follows

that ∑
t∈N0

xt+1d
t =

∑
t∈N0

xtd
tA+

∑
t∈N0

utd
tB

and, as we have that x0 = 0 then

x(d)d−1 = x(d)A+ u(d)B,

which is equivalent to
x(d) = u(d)Bd(Iℓ −Ad)−1.

From the second equation of (1) we obtain the input-output relation

y(d) = u(d)
[
Bd (Iℓ −Ad)

−1
C +D

]
.

The rational matrix T (d) = D +
[
Bd (Iℓ −Ad)

−1
C
]
is called the transfer matrix of the system∑

= (A, B, C, D) and we say that
∑

= (A, B, C, D) is a realization of T (d). A rational matrix
that admits a realization is said to be realizable. Observe that a realizable rational matrix admits
several realizations.

2.3. Rational matrices over Zpr

Next, we study rational matrices over Zpr and address the realization problem of these matrices.
We consider left matrix fraction description of a rational matrix and introduce the novel notion of
irreducible left matrix fraction description. We also give an algorithm that provides a realization of
a realizable rational matrix.

As explained above rational functions can be represented by the quotient of two polynomials
p(d)

q(d)
, where p(d), q(d) ∈ Zpr [d] and the coefficient of the smallest power of d in q(d) is a unit of

Zpr . Analogously, a rational matrix T (d) ∈ Zpr (d)k×(n−k) can be described as the “quotient” of
two polynomial matrices. Let N(d) ∈ Zpr [d]k×(n−k) and J(d) ∈ Zpr [d]k×k be an invertible matrix
such that the coefficient of the smallest degree of det(J(d)) ∈ Zpr [d] is a unit of Zpr . We say that
J−1(d)N(d) is a left matrix fractional representation (ℓMFD) of T (d), if T (d) = J−1(d)N(d).

Obviously T (d) =

[
pij(d)

qij(d)

]
∈ Zpr (d)k×(n−k) always admit a ℓMFD. Indeed, consider q(d) =∏

i=1,..., k
j=1,..., n−k

qij(d) and T (d) = J−1(d)N(d), for

J(d) =

 q(d)
. . .

q(d)

 ∈ Zpr [d]k×k and N(d) =

[
pij(d)q(d)

qij(d)

]
∈ Zpr [d]k×(n−k).
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We say that a ℓMFD J−1(d)N(d) of T (d) ∈ Zpr (d)k×(n−k) is irreducible if the polynomial matrix[
J(d) N(d)

]
is left factor prime. There exist rational matrices that admit an irreducible ℓMFD

J−1(d)N(d) such that
[
J(d) N(d)

]
is left zero-prime. In this case, all irreducible ℓMFD have

the same properties, as we show in the following theorem.

Theorem 2.4. Let T (d) ∈ Zpr (d)k×(n−k) and J−1
1 (d)N1(d) e J−1

2 (d)N2(d) be two irreducible ℓMFD
of T (d). If

[
J1(d) N1(d)

]
is left zero-prime then

[
J2(d) N2(d)

]
is left zero prime. Moreover,[

J2(d) N2(d)
]
= U(d)

[
J1(d) N1(d)

]
for some unimodular matrix U(d) ∈ Zpr [d]k×k.

Proof: As T (d) = J−1
1 (d)N1(d) = J−1

2 (d)N2(d) then

J−1
1 (d)

[
J1(d) N1(d)

]
= J−1

2 (d)
[
J2(d) N2(d)

]
and therefore

J2(d)J
−1
1 (d)

[
J1(d) N1(d)

]
=
[
J2(d) N2(d)

]
. (3)

Thus,
[
J1(d) N1(d)

]
is left zero prime and

[
J2(d) N2(d)

]
is a polynomial matrix and so ac-

cording to Theorem 2.1 the matrix J2(d)J
−1
1 (d) is also polynomial. On the other hand

[
J2(d) N2(d)

]
is left factor-prime, since J−1

2 (d)N2(d) is irreducible. By (3) it follows that J2(d)J
−1
1 (d) is unimod-

ular and then
[
J2(d) N2(d)

]
is left zero-prime. □

However, not all rational matrices admit this type of representation as we illustrate in the next
example.

Example 2.1. The fractional representation t(d) =
1 + 4d

1 + d
∈ Z9(d) is irreducible as the matrix[

1 + d 1 + 4d
]
is left factor-prime. However, it is not left zero-prime because [1 + d 1 + 4d]3 =

(1 + d)[1 1] mod 3 and therefore by Theorem 2.4, t(d) does not admit a fractional representation
p(d)

q(d)
, where

[
p(d) q(d)

]
is a left zero-prime matrix.

As defined in the last section, a realizable matrix is a rational matrix that is the transfer matrix
of a linear system. Thus, these matrices establish a causal relation between inputs and outputs. The
next result characterizes the rational functions that are realizable by means of ℓMFD.

Proposition 2.1. [13] Let T (d) ∈ Zpr (d)k×(n−k) and J−1(d)N(d) a ℓMFD of T (d). The matrix
T (d) is realizable if and only if J(0) is invertible.

Next we present an algorithm that gives the realization of a realizable matrix T (d) ∈ Zpr (d)k×(n−k)

that admits a ℓMFD J−1(d)N(d) where J(0) is invertible. Similar algorithms in the context of finite
fields were first presented in [9] and later on in [11]. The proof that the algorithm actually provides
a realization of T (d) is very analogous to the one given for fields and therefore we omit its proof.

Algorithm 1
Input data: T (d) ∈ Zpr (d)k×(n−k).

Step 1: Consider J(d) ∈ Zpr [d]k×k and N(d) ∈ Zpr [d]k×(n−k) such that T (d) = J−1(d)N(d) where
J(0) is invertible.
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Step 2: Rewrite T (d) of the form

T (d) = J−1(0)N(0) + J−1(d)N̂(d),

with N̂(d) = N(d)− J(d)J−1(0)N(0).

Step 3: Define D = J−1(0)N(0).

Step 4: Denote by ν1, ν2, . . . νk the degrees of the rows 1, 2, . . . , k of the matrix
[
J(d) N̂(d)

]
.

Consider that for i = 1, 2, . . . , k, νi > 0 and ℓ =

k∑
i=1

νi. For i = 1, 2, . . . , k consider the

nilpotent Jordan block νi × νi:

Ai =


0 1

. . .
. . .

0 1
0

 .

Step 5: Define the matrix
Ã = diag{A1, A2, . . . , Ak}. (4)

Step 6: Define the matrix

B̃ =



e1
eν1+1

eν1+ν2+1

...

...
eν1+ν2+···+νk−1+1


, (5)

where ei, i = 1, . . . , ν1 + ν2 + · · ·+ νk−1 + 1 is the i− th canonical vector of Zℓ
pr .

Step 7: Define the matrix C ∈ Zℓ×m
pr where m = ν1 + ν2 + · · ·+ νk such that N̂(d) = Ψ(d)C and

Ψ(d) =


d · · · dν1

d · · · dν2

. . .

d · · · dνk

 .

Step 8: Define the matrix
B = J−1(0)B̃.

Step 9: Define the matrix
A = Ã+ ĀB̃,

where Ā ∈ Zℓ×k
pr with ℓ = ν1 + ν2, · · ·+ νk is such that J(d) = (Ik −Ψ(d)Ā)J(0).

Output:
∑

= (A, B, C, D).
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Remark 2.1. In case νi = 0 for some i, the procedure is the same as above, however the i-th row
in B̃ and in Ψ(d) has to be zero, and the i-th diagonal block Ai is empty.

Lemma 2.1. The matrix

[
Isd− Ã

−B̃

]
, where Ã and B̃ are the matrices defined in (4) and (5) and

s = ν1 + ν2 + . . .+ νk, is left zero-prime over Zpr [d].

Proof: For all d ∈ Zpr\{0},
[

Isd− Ã

−B̃

]
has full column rank with rank equal to s = ν1 + ν2 + . . .+ νk

where νi, i = 1, . . . , k is defined in Step 4 of the algorithm. We observe that the same holds for d = 0,

as

[
−Ã

−B̃

]
is full column rank. □

Although the next result follows the same reasoning of the counterpart result for finite fields, we
opt to present its short proof as it is new in this context.

Theorem 2.5. Let T (d) = J(d)−1N(d) ∈ Zpr [d]k×k with J(0) invertible and N(d) ∈ Zpr [d]k×(n−k).
Every realization of T (d) ∈ Zpr (d)k×(n−k) by means of the algorithm given above is reachable.

Proof: Let
∑

= (A, B, C, D) be a realization given by Algorithm 1, T (d) = D +Bd(I −Ad)−1C.
AsA = Ã+ ĀB̃ andB = J−1(0)B̃ it follows that Isd−A = Isd−Ã−ĀB̃ where s = ν1 + ν2 + . . .+ νk.
Further, [

Isd−A
−B

]
=

[
Is Ā
0 J−1(0)

] [
Isd− Ã

−B̃

]
.

Now observe that

[
Is Ā
0 J−1(0)

]
p

is invertible over Zp, i.e.,

[
Is Ā
0 J−1(0)

]
is invertible over Zpr .

By Lemma 2.1,

[
Isd− Ã

−B̃

]
is right zero-prime . This implies that

[
Isd−A
−B

]
is right zero-prime

and therefore (A, B, C, D) is a reachable realization of T (d) according to Lemma 2.3. □

3. State representations of finite support convolutional codes over Zpr

We consider convolutional codes described by the input-state-output representations as in (1)
where the codewords are the finite-support input-output trajectories v(d) =

[
u(d) y(d)

]
of the

system. Moreover, for a finite-support input-output trajectory to be a codeword it is required that
the corresponding state sequence has also finite support in order to avoid having the corresponding
state vector infinitely excited. This leads to the following definition.

Definition 3.1. [36, Definition 2.3] A trajectory (x(d), u(d), y(d)) ∈ Zpr [[d]]ℓ×Zpr [[d]]k×Zpr [[d]]n−k

of a system
∑

= (A, B, C, D) is a finite-weight codeword if x(d), u(d) e y(d) are polynomial vec-
tors. Under these conditions the pair (u(d), y(d)) is called finite-weight input-output trajectory and
(x(d), u(d), y(d)) a finite-weight trajectory.

As explained above, one can use the linear system (1) description{
x(d) = x(d)Ad+ u(d)Bd
y(d) = x(d)C + u(d)D
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or equivalently {
(Iℓ −Ad)x(d)− u(d)Bd = 0
y(d)− x(d)C − u(d)D = 0

. (6)

In this way we obtain the matrix

X(d) =

 Iℓ −Ad −C
−Bd −D
0 In−k

 (7)

and [x(d) u(d) y(d)] is a trajectory of the system if and only if
[
x(d) u(d) y(d)

]
X(d) = 0. That

is, the set of trajectories of (A, B, C, D) coincides with the kernel of X(d).
Before showing that the set of input-output finite-weight trajectory of a linear system is a

convolutional code over Zpr we need the following lemma.

Lemma 3.1. Let
∑

=(A, B, C, D) be a reachable system. The matrix X(d) =

 Iℓ −Ad −C
−Bd −D
0 In−k


defined in (7) is right zero-prime .

Proof: It is easy to check that if

[
Iℓd−A
−B

]
is right zero prime then

[
Iℓ −Ad
−Bd

]
is right zero

prime. Thus, since Σ is reachable, the matrix

[
Iℓ −Ad
−Bd

]
is right zero-prime and so admits a polyno-

mial left inverse. Let
[
U(d) V (d)

]
be such inverse. Then, the matrix

[
U(d) V (d) U(d)C + V (d)D
0 0 In−k

]
,

is the polynomial left inverse matrix of X(d) and therefore X(d) is right zero-prime . □

Theorem 3.1. The set of finite-weight input-output trajectories of a reachable linear system
∑

=
(A, B, C, D) is a free convolutional code over Zpr of rate k/n.

Proof: By Lemma 3.1 the matrix X(d) =

 Iℓ −Ad −C
−Bd −D
0 In−k

 is right zero-prime . Fur-

ther by Theorem 2.1 X(d) admits a unimodular extension, that is, there exists a matrix Y (d) ∈

Zpr [d]
(ℓ+n)×k

such that
[
X(d) Y (d)

]
is unimodular. Let U(d) =

[
L0(d) G0(d)
L(d) G(d)

]
be an in-

verse of
[
X(d) Y (d)

]
where L0(d) ∈ Zpr [d](ℓ+n−k)×ℓ, G0(d) ∈ Zpr [d](ℓ+n−k)×n, L(d) ∈ Zpr [d]k×ℓ

and G(d) ∈ Zpr [d]k×n. Then, we have that

U(d)
[
X(d) Y (d)

]
= Iℓ+n (8)[

X(d) Y (d)
]
U(d) = Iℓ+n. (9)

Further, ImZpr [[d]]

[
L(d) G(d)

]
coincides with the kernel of X(d). According to (8) we have that[

L(d) G(d)
]
X(d) = 0, i.e.,

ImZpr [[d]]

[
L(d) G(d)

]
⊆ kerZpr [[d]](X(d)).

For the converse consider a vector of kerZpr [[d]](X(d)), that is a vector s(d) ∈ Zpr [[d]]ℓ+n such that
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s(d)X(d) = 0. By (9) we have that

s(d)Iℓ+n = s(d)
[
X(d) Y (d)

]
U(d) =

[
0 s(d)Y (d)

] [ L0(d) G0(d)
L(d) G(d)

]
.

Then, s(d) = t(d)
[
L(d) G(d)

]
with t(d) = s(d)Y (d) ∈ Zpr [[d]]k and then s(d) ∈ ImZpr [[d]]

[
L(d) G(d)

]
.

Therefore ImZpr [[d]]

[
L(d) G(d)

]
= kerZpr [[d]](X(d)).

As
[
L(d) G(d)

]
is formed by rows of the unimodular matrix U(d), then

[
L(d) G(d)

]
is

left zero-prime. Thus, by Theorem 2.1, the set of finite-weight trajectories of the system
∑

=
(A, B, C, D), kerZpr [[d]] X(d) ∩ Zpr [d]ℓ+n is given by

ImZpr [[d]]

[
L(d) G(d)

]
∩ Zpr [d]ℓ+n = ImZpr (d)

[
L(d) G(d)

]
∩ Zpr [d]ℓ+n

= ImZpr [d]

[
L(d) G(d)

]
.

In this way, for every finite-weight trajectory of
∑

= (A, B, C, D), (x(d), u(d), y(d)) where x(d) ∈
Zpr [d]ℓ, u(d) ∈ Zpr [d]k and y(d) ∈ Zpr [d](n−k) there exists an r(d) ∈ Zpr [d]k such that

(x(d), u(d), y(d)) = r(d)
[
L(d) G(d)

]
and therefore (u(d), y(d)) = r(d)G(d). Then, ImZpr [d]G(d) coincides with the set of finite-weight
input-output trajectories of

∑
= (A, B, C, D) and G(d) is a generator matrix of this set. It

remains to show that G(d) is full row rank. For the left zero-prime matrix
[
L(d) G(d)

]
of

size k × (ℓ + n) and the right zero-prime matrix X(d) of size (ℓ + n) × (ℓ + n − k) we have that[
L(d) G(d)

]
X(d) = 0. Let G̃(d) be the matrix that is obtained from

[
L(d) G(d)

]
deleting

the first ℓ and last n− k columns. From Theorem 2.2 we have that

det(G̃(d)) = α det

([
Iℓ −Ad −C

0 In−k

])
,

with α a unit of Zpr . Finally, since det

([
Iℓ −Ad −C

0 In−k

]
p

)
̸= 0 then det([G̃(d)]p) ̸= 0 and

therefore rank(G(d)) = k. □

We denote by C(A, B, C, D) the convolutional code constituted by the finite-weight input-output
trajectories of a reachable system

∑
= (A, B, C, D). We denote

∑
an input-state-output repres-

entation of C = C(A, B, C, D).

Theorem 3.2. Let C be a convolutional code with complexity δ with input-state-output representa-
tion

∑
= (A, B, C, D) that is reachable and with dimension ℓ. Then, ℓ ≥ δ.

Proof: Take the right zero-prime matrix X(d) =

 Iℓ −Ad −C
−Bd −D
0 In−k

 and the matrices L(d) ∈

Zpr [d]
k×ℓ

and G(d) ∈ Zpr [d]
k×n

such that[
L(d) G(d)

]
X(d) = 0,

with
[
L(d) G(d)

]
a left zero-prime matrix and G(d) a generator matrix of C , as shown in the

proof of Theorem 3.1. Note that the full size minors of X(d) have degree less than or equal to ℓ since
the first ℓ columns of X(d) have degree less than or equal to 1 and the remaining have degree zero. As
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[
L(d) G(d)

]
X(d) = 0 then

[
L(d) G(d)

]
is left zero-prime and X(d) is right zero-prime and,

by Theorem 2.2, the full size minors of G(d) coincide with the full size minors of X(d) up to the
multiplication of a unit in Zpr . Thus, the complexity of G(d) is less than or equal to ℓ. □

A catastrophic generator matrix G(d) is a generator matrix for which there exists a sequence
u(d) ∈ F(d)k of infinite support such that w(d) = u(d)G(d) ∈ F(d)n has finite support, i.e., it is
polynomial. It was shown in [31] that G(d) is noncatastrophic if and only if G(d) is left zero-prime.
Moreover, equivalent generator matrices are full row rank matrices that are generator matrices of
the same code. Then, two equivalent generator matrices, G1(d), G2(d) ∈ Zpr [d]k×n, are such that
G2(d) = U(d)G1(d), for some unimodular matrix U(d) ∈ Zpr [d]k×k. Thus, it follows that if a
convolutional code admits a left zero-prime generator matrix then all its generator matrices are also
left zero-prime. We call such codes noncatastrophic codes. Next we present a characterization of the
state reachable representations of noncatastrophic codes.

Theorem 3.3. Let
∑

= (A, B, C, D) be a reachable system of dimension ℓ. The convolutional
code C(A, B, C, D) is noncatastrophic if and only if

[
Iℓ −Ad −C

]
is left zero-prime.

Proof: As
∑

is reachable the matrix X(d) =

 Iℓ −Ad −C
−Bd −D
0 In−k

 is right zero-prime and there

exist matrices L(d) ∈ Zpr [d]
k×ℓ

and G(d) ∈ Zpr [d]
k×n

such that
[
L(d) G(d)

]
X(d) = 0, where[

L(d) G(d)
]
is left zero-prime and G(d) is a generator matrix of C(A, B, C, D). Suppose that[

Iℓ −Ad −C
]
is left zero-prime. If C(A, B, C, D) is catastrophic G(d) is not left zero-prime or

equivalently, there exists u(d) ∈ Zpr (d) not polynomial such that u(d)G(d) is polynomial. From[
L(d) G(d)

]
X(d) = 0 it follows that

u(d)
[
L(d) G(d)

]
X(d) = 0.

Further,

u(d)L(d)
[
Iℓ −Ad −C

]
= −u(d)G(d)

[
−Bd D
0 In−k

]
.

Since −u(d)G(d)

[
−Bd D
0 In−k

]
is polynomial and

[
Iℓ −Ad −C

]
is a left zero-prime matrix we

conclude that u(d)L(d) is polynomial and therefore u(d)
[
L(d) G(d)

]
is also polynomial which

contradicts that
[
L(d) G(d)

]
is left zero-prime and u(d) ∈ Zpr (d) is not a polynomial. Thus,

C(A, B, C, D) is noncatastrophic.

For the converse suppose that
[
I −Ad −C

]
is not a left zero-prime matrix. Then, by Theorem

2.2, the minors of order ℓ of
[
Iℓ −Ad −C

]
admit a common factor, say q(d), that is not a unit

in Zpr [d]. Then, q(d) is also a common factor of the minors of order n− k + ℓ of X(d) with respect
to the matrices that admit

[
Iℓ −Ad −C

]
as submatrices. Consequently, according to Theorem

2.2 q(d) is a common factor of the minors of order k of G(d). Thus, G(d) is not a left zero-prime
matrix and therefore C(A, B, C, D) is catastrophic. Thus, we conclude that if C(A, B, C, D) is
noncatastrophic then

[
Iℓ −Ad −C

]
is left zero-prime. □

From this theorem it follows that if
∑

= (A, B, C, D) is a reachable state representation of a
noncatastrophic convolutional code C then the codewords of C are the polynomial input-output tra-
jectories of Σ. Next, we show how to obtain an ISO representation of a noncatastrophic convolutional
code.
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Consider G(d) ∈ Zpr [d]k×n a generator matriz of a noncatastrophic convolutional code C. As
G(d) is left zero-prime, G(d) admits a polynomial right inverse and therefore G(0) has full row rank.
Write

G(d) =
[
J(d) N(d)

]
,

where J(d) ∈ Zpr [d]k×k, N(d) ∈ Zpr [d]k×(n−k) and J(0) is an invertible matrix. Observe that by a
permutation of columns of G(d) it is always possible obtain a matrix with these conditions.

Theorem 3.4. Let C be a noncatastrophic convolutional code and G(d) a generator matrix of C such
that

G(d) =
[
J(d) N(d)

]
,

where J(d) ∈ Zpr [d]k×k, N(d) ∈ Zpr [d]k×(n−k) and J(0) an invertible matrix. Consider T (d) =
J−1(d)N(d) and

∑
= (A, B, C, D) a realization of T (d). If

∑
is a reachable realization of T (d)

such that
[
Iℓ −Ad −C

]
is a left zero-prime matrix then

∑
is an ISO representation of C.

Proof: Note that if (u(d), y(d)) is an finite-weight input-output trajectory of
∑

then y(d) =
u(d)T (d). Thus, y(d) = u(d)J−1(d)N(d). Considering v(d) = u(d)J−1(d) we obtain that[

u(d) y(d)
]
= v(d)

[
J(d) N(d)

]
= v(d)G(d),

for some v(d) ∈ Zpr [[d]]k. Since G(d) is left zero-prime it follows that v(d) ∈ Zpr [d]k. In this way we
conclude that the input-output polynomial trajectories of

∑
are codewords of C. We now check that∑

is an ISO representation of G(d), that is, the input-output trajectories of
∑

that are polynomials
coincide with the finite-weight input-output trajectories of

∑
. To this end we consider (u(d), y(d))

a polynomial input-output trajectory of
∑

and x(d) ∈ Zpr [[d]]ℓ the corresponding state. It follows
that

[
x(d) u(d) y(d)

]  Iℓ −Ad −C
−Bd −D
0 In−k

 = 0

is equivalent to

x(d)
[
Iℓ −Ad −C

]
= −

[
u(d) y(d)

] [ −Bd D
0 In−k

]
.

Hence, since
[
u(d) y(d)

]
is polynomial it follows that −

[
u(d) y(d)

] [ −Bd D
0 In−k

]
is also

polynomial. Then we conclude that x(d) is polynomial because [Iℓ − Ad − C] is left zero prime.
Therefore

∑
is an ISO representation of G(d). □

Thus, to obtain an ISO representation of a noncatastrophic convolutional code we consider
G(d) ∈ Zpr [d]k×n one of its generator matrices. Suppose, without loss of generality, that G(d) =[
J(d) N(d)

]
with J(d) ∈ Zpr [d]k×k, N(d) ∈ Zpr (d)k×(n−k) and J(0) an invertible matrix. Let

T (d) = J−1(d)N(d) and
∑

= (A, B, C, D) a realization of T (d) of dimension ℓ derived from Al-
gorithm 1.

∑
is an ISO representation of

∑
.

Now consider a particular class of noncatastrophic codes: the convolutional codes that admit
a generator matrix G(d) ∈ Zpr [d]k×n left zero-prime such that the constant matrix formed by the
coefficients of degree equal to the maximum degree of the entries in each row, [G(d)]hc, is full row
rank. If C is a convolutional code that admits such generator matrixG(d) ∈ Zpr [d]k×n and Σ is an ISO
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representation of C obtained by the methodology described above, then, Σ is an ISO representation
of C of minimal dimension. Indeed, if [G(d)]hc is full row rank then G(d) has complexity equal to
the sum of the row degrees of G(d), that is, has complexity equal to the dimension of the system. It
follows from Theorem 3.2 that

∑
= (A, B, C, D) is a state representation of minimal dimension of

the code.

4. Conclusions

A vast number of results of convolutional encoders have been extended from the context of finite
fields to the finite ring case. In this work we have extended many fundamental results of input-state-
output representations of finite support convolutional codes to the context of the finite ring Zpr .
Notions such as noncatastrophicity, reachability or minimality have been investigated in the work.
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