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Abstract

The adequate correlation of experimental phase equilibrium data by using any thermo-

dynamic model represents a key point for the rigorous design of the chemical processes.

However, this data correlation process remains a challenging problem, due to the high

nonlinearity of the models used and the consequent problems of convergence. The pre-

sent work analyzes the nonrandom two-liquids mode (NRTL) model to check the rela-

tion between the values of the binary interaction parameters and the corresponding

phase equilibria that the NRTL model can or cannot reproduce. Additionally, in the case

of the LLE, empirical equations have been established as a function of the nonrandom-

ness parameter, to model the trajectory of the different miscibility boundaries observed.

These functions can be used as constraints in the experimental data correlation proce-

dure to reduce the search space and guarantee the consistency of the obtained binary

interaction parameters with the experimental behavior of the system under study.

K E YWORD S

experimental data correlation, Gibbs energy of mixing, LLE, miscibility boundaries, NRTL
model, phase equilibria, VLE

1 | INTRODUCTION

Nowadays, chemical engineers are fully focused on developing more

efficient and sustainable separation processes, regarding process sys-

tems engineering and process-product design. The use of computer-

aided process engineering is essential to reach this goal. The current

computational capacity allows calculating hundreds of simulations to

obtain the optimal design of the separation process under study, in a

relatively short time, considering not only the economic point of view,

but also the corresponding environmental impacts associated using

multiobjective optimization (MOO) techniques, life cycle assessment,

sustainable profits, and so on. All these simulations and optimal

designs can be done in different ways:

• Using commercial chemical process simulators1 such as Aspen-

Plus®, Aspen-Hysys®, or ChemCad®.

• Using classical or extended tray by tray methods for instance

in the case of reactive distillation,2 quaternary liquid–

liquid extractors,3 or internally heat-integrated distillation

columns.4

• Using specific optimization algorithms based on generalized dis-

junctive programming or stochastic programming to optimize from

single equipment to complex superstructures regarding, for exam-

ple, distillation or extraction sequences,5–7 water pretreatment

networks,8 and so on.

• Or even using hybrid proposals that combine the advantages of

the previous alternatives.9–14
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In any case, the precision of any approach to modeling and repro-

ducing any separation process will largely depend on the consistency

and quality of the model used, and its parameters, to correctly predict

and represent the corresponding phase equilibria. There are several

examples of the current relevance of this topic. For instance, the ther-

modynamic modeling of mixtures with new solvents such as ionic liq-

uids (cataloged as more environmentally friendly solvents due to their

low volatilities) that present high selectivity and normally complex

equilibrium behaviors,15–18 with interest also as bio-solvents and cell

disrupting agents19 Other relevant examples, are the development of

new and more sustainable continuous pharmaceutical manufacturing

processes,20 where the optimal design of liquid–liquid extraction cas-

cades is required, the design of advanced distillation process

(as extractive distillations), or new CO2 capture procedures, both

using ionic liquids.21,22

In this context, as has been pointed out previously,23–25 the cor-

relation of the experimental equilibrium data to obtain the corre-

sponding parameters of any model to reproduce that phase equilibria

is a nontrivial issue, and it is not exempt from mathematical problems

associated with the high nonlinearly and non-convexity of the equa-

tions used. All these problems generate strong convergence difficul-

ties, dependence on the starting strategy used, and the presence of

local optima. For these reasons, it is especially necessary to double-

check the total consistency of the behavior and the quality of the

phase equilibria that the model predicts (with the parameters obtained

in the correlation process), regarding the experimental behavior of the

system under study in the whole range of compositions (not only

around the experimental data used).

To avoid all these difficulties when correlating experimental

data from different kinds of phase equilibria, including liquid–liquid

equilibrium (LLE), vapor–liquid equilibrium (VLE), liquid–liquid–liquid

equilibrium (LLLE), liquid–solid equilibrium (LSE), liquid–liquid–solid

equilibrium (LLSE), and so on, different approaches have been pub-

lished over the years. For instance, analyzing the own limitations of

the models such as the existence of gaps in the nonrandom two-

liquids mode (NRTL) model where solutions for binary homogeneous

liquid behavior do not exist26 or considering higher temperature or

pressure dependence in the binary interaction parameters when it is

required.27–29 It is also possible to find different mathematical

strategies30–35 and algorithms based on the Gibbs energy of mixing

(GM),36–42 for improving the convergence and robustness of phase

equilibria calculations in complex systems. These alternatives normally

include topological strategies for the selection of more adequate sup-

posed phase equilibrium compositions (to start the correlation pro-

cess) or for the confirmation of the consistency of the correlation

results, for example, in the case of LLE for ternary systems with three

partially miscible binary subsystems (type 3) including a three-liquid-

phase region. Specific mathematical restrictions quite useful have also

been developed and applied successfully43–45 in the thermodynamic

modeling of type 0 (island), type 1, and 2 systems, for systems that

had not been previously adjusted using the NRTL model or presented

in the literature correlation results inconsistent with the experimental

behavior of the system. Additionally, different extensions of classical

models, such as the NRTL model, can also be found for complex LLE44

or VLE,46–49 and non-azeotropic or azeotropic VLLE.50–52

In the present article, a deep analysis of the NRTL model has been

carried out, studying the existence of different liquid–liquid (LL) and

vapor–liquid (VL) equilibrium regions and boundaries in the space

defined by its binary interaction parameters, for obtaining a clear pic-

ture of this model, its possibilities and flexibility. In this sense, the dif-

ferent boundaries observed in the case of the LLE have been

mathematically modeled, with the final aim of obtaining relationships

between the binary interaction parameters that can be used as con-

straints for avoiding directly inconsistent results with the experimen-

tal behavior of the system under study, when the NRTL model is used

in the correlation of experimental equilibrium data.

Therefore, the main objective of the present work is to help

researchers and engineers, that need to deal with the task of corre-

lating experimental phase equilibrium data, to obtain consistent

binary interaction parameters, in this case for the NRTL model, that

nowadays still being one of the most used models to calculate

phase equilibria in the optimal design or rigorous simulation of

chemical process or equipment. Unfortunately, it is important to

remark at this point that parameters of thermodynamic models

(such as NRTL and UNIQUAC) that are inconsistent with the experi-

mental behavior that is intended to be correlated are still being

published.

Thus, the article is organized as follows: in Section 2, the NRTL

equation and its flexibility are briefly revised. In Section 3, binary spi-

nodal surfaces and LLE maps have been calculated with the NRTL

model for different values of the nonrandomness parameter. Next,

the correlation of the boundaries detected, by using empirical equa-

tions, is presented and formulated as constraints using generalized

disjunctive representations. In Section 5, the VLE is analyzed by repre-

senting the corresponding phase equilibrium maps of NRTL binary

interaction parameters and checking all the different phase equilib-

rium behaviors found (including different azeotropic behaviors)

remarking that, in this case, the maps obtained also depend on the

vapor pressure of the pure components. Finally, the main conclusions

of the present study are summarized.

2 | NRTL EQUATION

The NRTL model53 is still one of the most widely used models to cal-

culate the equilibrium between phases in multicomponent systems,

including totally miscible or partially miscible liquid mixtures. The

NRTL equation for the Gibbs energy of excess for the liquid phase is

the following:

GE,L NRTLð Þ

RT
� gE,L NRTLð Þ ¼

Xn
i¼1

xi �
Pn

j¼1 τj,i �Gj,i �xj
� �

Pn
l¼1 Gl,i �xl,ið Þ

 !

where: τj,i ¼1
T
� gj,i�gi,i

R
¼Aj,i

T
Gj,i ¼ exp �αj,i � τj,i

� �
ð1Þ
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F IGURE 1 Examples of the
flexibility of the NRTL model to
generate different LLE behaviors
(Treybal classification54): (A) type
1, (B) type 2, (C) type 3, and
(D) type 0
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where n represents the number of components of the mixture. As it is

possible to observe, this equation only contains binary interaction

parameters where gj,i is a characteristic energetic parameter for the

binary interaction between the components j–i. αj,i = αi,j is a positive

parameter related to the nonrandom distribution of the mixture and it

will only be zero for completely random mixtures.

With this expression, the NRTL equation can reproduce a large

amount of VL and LL equilibrium behaviors. Figure 1 shows the com-

position diagram and Gibbs Energy of Mixing function (Equation 2)

as examples of the flexibility of the NRTL model55,56 for reproducing

the different types of LLE following the Treybal classification.54

In the case of type 2 and 0 systems, the analysis of the Hessian

Matrix (spinodal curve)45 is also included to confirm the typology of

the system.

GM,L NRTLð Þ

RT
¼Gideal,L

RT
þGE,L NRTLð Þ

RT
¼
Xn
i¼1

xi � ln xið ÞþGE,L NRTLð Þ

RT
ð2Þ

However, despite the flexibility shown to reproduce complex

behaviors, as mentioned earlier in the introduction section, certain

precautions must be taken when using the NRTL model, as with any

other model, to correlate experimental equilibrium data. On the one

hand, that a model presents great flexibility in general, does not mean

that it cannot additionally present certain specific limitations.26–28 On

the other hand, it is always necessary to double-check if the solution

obtained in the experimental data correlation process is totally consis-

tent with the experimental behavior of the system under study, ana-

lyzing the entire range of compositions.23–25,29,35 In this sense,

Figure 2 shows two examples of Gibbs mixing energy surfaces calcu-

lated from recently published NRTL binary interaction parameters

obtained by correlation of ternary LL experimental data, which, how-

ever, are inconsistent with the experimental behavior of the studied

system when the whole range of compositions is analyzed (not only

the tie lines used in the correlation process). In both cases, the system

under study corresponds to a type 1 system, but the calculated Gibbs

mixing energy surface shows that all the binary subsystems are het-

erogeneous (corresponding therefore to a type 3 system) and that

there exists additionally a tie triangle with three liquids in equilibrium.

3 | NRTL LLE MAPS: BINARY SPINODAL
SURFACES AND MISCIBILITY BOUNDARIES

In a previous article,57 two different equilibrium regions (and the cor-

responding boundary) were detected when representing the dimen-

sionless conjugated binary interaction parameters τi,j and τj,i, (with

αi,j = 0.2) of the NRTL model, for 300 systems obtained from

DECHEMA Data Collection.58 In order to check in a first step the

dependence of this miscibility boundary on the nonrandomness

parameter (αi,j), a set of different equilibrium maps in the τi,j–τj,i–xi

space, for different values of αi,j from 0 to 0.95 has been generated by

discrete scanning.

Although the use of values of 0.2 and 0.3 can produce very good

results in an important number of examples, there are also a large

number of published cases where these values cannot generate the

expected experimental behavior. This is the case for instance of sev-

eral ionic liquids that presents huge binodal curves, or a strong varia-

tion of the slope of the tie-lines, and so on. Additionally, although

there may be some specific cases with values of αi,j greater than

1, for example in the case of some VLE data58 such as the systems

water + phenol, water + 6-caprolactam, or 2-butanone + phenol

correlated with αi,j values of 1.196, 5.297, and 6.557, respectively, the

immense majority of the fluid phase equilibria correlated with the

NRTL model present values of αi,j lower than one.

The possibility of the existence of LLE phase splitting has been

analyzed through zeros of the second derivative (inflection points) of

the Gibbs energy of mixing function (respect to mole fraction), for

each set of τi,j�τj,i values, in the whole composition range (xi ϵ [0,1]).

F IGURE 2 Examples of inconsistent results in experimental data correlations (analyzing the whole range of compositions). Calculated GM(L)/
RT surfaces and initial experimental LLE tie-lines correlated
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Figure 3 shows the Gibbs energy of mixing function and its derivatives

for different examples. Figure 3A represents the situation for a homo-

geneous liquid where the second derivative of the Gibbs energy of

mixing function does not present any zero, while Figure 3B shows the

case of a LL splitting, where the second derivative of the Gibbs energy

of mixing function presents two zeros. The location of these zeros in

F IGURE 3 Representation of the Gibbs energy of mixing function curve and its first and second derivatives for different situations: (A) a
homogeneous liquid, (B) one LLE splitting (xI1–x

II
1), and (C) two LLE splits (xIa1–x

IIa
1 and xIb1–x

IIb
1)
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the ordinate axis allows defining upper and lower bounds for the cal-

culated equilibrium compositions. Thus, in this example, the molar

fraction of the two liquid phases in equilibrium (xI1 and xII1) would be

located, as a first approximation, in the ranges (0.0, 0.109) and (0.614,

1.0), respectively. Finally, Figure 3C shows a case where two different

LLE splits (xIa1–x
IIa

1 and xIb1–x
IIb

1) are possible in the whole range of

compositions.

In this sense, Figure 4A shows the τi,j–τj,i–xi 3D map correspond-

ing to the αi,j value of 0.2, used normally in the correlation of experi-

mental LLE data. The axes of this graph correspond to the mole

fraction of one component (i), and the dimensionless binary interac-

tion parameters τi,j and τj,i, respectively. The plotted points represent

the combination of the variables xi, τi,j, and τj,i where the correspond-

ing second derivative of the Gibbs energy of mixing is equal to zero,

that is, this series of inflection points represents a kind of binary spi-

nodal surface in this 3D space. The points in dark blue represent the

combinations of τi,j and τj,i parameters that present only one LL split-

ting in the whole range of compositions (e.g., Figure 3B). On the other

hand, the points marked in light pink indicate the presence of more

than one LLE (mLLE) for the corresponding combination of τi,j and τj,i

parameters, because there are more than two compositions that pre-

sent a value of zero in the second derivative of the Gibbs energy of

mixing (e.g., Figure 3C). The rest of the space corresponds to homoge-

neous liquid mixtures (L). As it can be observed, there exists spinodal

(inflection) points (and therefore, LL splitting) distributed in the whole

range of τj,i–τi,j–xi values. Only for extreme values of τj,i–τi,j, higher

than 10 and lower than �5, respectively, these spinodal points are

located in a narrow range of compositions near the pure components.

Additionally, Figure 4B represents the situation for αi,j = 0.5. In

this case, it can be noticed that the location of most of the spinodal

points is near to the pure components, and therefore there exist a

large range of compositions where no liquid–liquid equilibrium can be

predicted. This situation is even more remarkable for higher values

of αi,j.

Figure 5 shows the projection of these spinodal surfaces (for αi,j

values of 0.2 and 0.5) on the τi,j–τj,i plane. These projections generate

interesting 2D graphs where two regions are differentiated, as well as

the corresponding miscibility boundaries. The bisector of the first and

F IGURE 4 3D representation of the binary spinodal surface of the NRTL model for αi,j values of (A) 0.2 and (B) 0.5

F IGURE 5 τj,i vs. τi,j LL equilibrium map for the NRTL model dependent on the value αi,j. (A) αi,j = 0.2, (B) αi,j = 0.5
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third quadrant has been included as an auxiliary line. The light cyan

blue region (L) below the boundary (red curve) corresponds to the

region where no LL splitting exits, that is, the liquid homogeneous

region. On the other hand, the zone above the boundary represents

the liquid heterogeneous region, and two different sub-regions can be

observed. One sub-region that includes all the combinations of τi,j–τj,i

values that present only one LLE splitting (the black one), and another

sub-region at high values of the τi,j or τj,i parameters showing multiple

LLE splits (mLLE). The border between the L and LLE regions in

Figure 5A represents the miscibility boundary previously found57 for

the NRTL model for αi,j = 0.2. Figure 5B corresponds to the situation

for αi,j = 0.5. It is possible to observe how, in this case, the miscibility

boundary suffers significant changes and evolves to intersect the

mLLE region over the first and third quadrant bisector. Additionally, it

is possible to see that if we use the value of 10 as the upper bound

for τj,i, in both cases, the miscibility boundary exists in the range of

values of τi,j from �5 to 10. At this point, it is also important to remark

the symmetric behavior that these figures present with the bisector of

the first and third quadrant (dotted line) and some characteristic

change points (τi,
p,k) that we will explore in the next sections.

If we extend this analysis to a larger range of αi,j values, it is possi-

ble to obtain the complete 3D map represented in Figure 6 (in the

Supporting Information all the individual graphics for αi,j from 0 to

0.95 can be found). In this figure, we can see how the LLE miscibility

boundary starting from a straight line at αi,j = 0, remains a smooth

curve until an αi,j value of 0.4. After this value, when increasing the

value of αi,j, the boundary curve begins to show a progressive distor-

tion that ends with the intersection of the miscibility boundary with

the mLLE region (over the plotted bisector) at αi,j = 0.43 and higher.

The mLLE region appears approximately from αi,j = 0.15 onward and

includes in some cases metastable LLE solutions (e.g., when the corre-

sponding GM curve presents two local maximum and a global mini-

mum). To help the direct visualization of all these charts and

calculations, in a similar way to the previous graphical user interface

(GUI) developed to systematically check the consistency of LLE or

LVE data correlation results,29,56 a new GUI, also publicly available

online, has been created in the MatLab® software. This Boundar-

ies_LL_NRTL GUI59 allows to visualize and calculate, for the NRTL

model, all the previous LL equilibrium maps and miscibility boundaries,

and also to generate a grid with individual Gibbs energy of mixing

curves in the whole range of composition, for a set of pairs τij–τji

tested in the corresponding discrete scanning (see also Figure S2A–D).

4 | CORRELATION OF THE MISCIBILITY
BOUNDARIES DETECTED

In order to mathematically model the previous NRTL miscibility

boundaries and their dependence on the nonrandomness parameter

(αi,j), the following empirical equation has been used, where the differ-

ent coefficients pq depend on the αi,j value:

τboundary,calj,i ¼ fboundary τi,j,αi,j
� �¼ p1 � τ3i,jþp2 � τ2i,jþp3 � τi,jþp4 ð3Þ

pq ¼ aqþbq � ln αi,jþ cq
� �þdq �αi,jþeq �α2i,j q¼ 1,2,3,4f g ð4Þ

Note that the parameter cq is needed to include, in the correlation

process, the miscibility boundary corresponding to αi,j = 0, otherwise,

this parameter would be unnecessary.

Taking advantage of the symmetry observed in the miscibility

boundaries, only the first smooth boundary sections above the bisector

of the 1st and 3rd quadrants (until the point we will denominate change

point: τi,j
cp,k, see Figure 5) have been simultaneously correlated for differ-

ent αi,j values. Thus, in order to carry out the correlation process, differ-

ent sets of boundaries have been defined. The first group includes all

the L–LLE miscibility boundaries (those from αi,j = 0 to αi,j = 0.4) that are

quite smooth in the whole range of existence, for example, from

τi,j = �10 to τi,j = 10. In this case, τi,j
cp,1 corresponds with the inter-

section of the boundary with the mentioned bisector (Figure 5A). The

second group includes a set of L–LLE boundaries for αi,j values higher

than 0.4 and that present a change point, τi,j
cp,2, before the inter-

section with the bisector (Figure 5B). Regarding the LLE–mLLE bound-

aries, there exist also two different behaviors as commented before. The

first group of LLE–mLLE boundaries for αi,j between 0.15 and 0.43 that

present a smooth curve starting approximately at τi,j = 2.21, with a

change point τi,j
cp,3 (Figure 5A), which corresponds with the inter-

section of the LLE–mLLE boundary with the 1st and 3rd quadrants

bisector. The second group of LLE–mLLE boundaries from αi,j = 0.43 to

αi,j = 0.95 corresponds to straight lines starting from the bisector. As it is

possible to observe in Figure 5B, this second group of LLE–mLLE bound-

aries also intersects with the corresponding L–LLE miscibility boundary.

The location on the abscissa axis of the change points τi,j
cp,k

(Figure 5) for each group of boundaries (k = 1, 2, 3) has been corre-

lated using a polynomial equation of order three: gk(αi,j):

τcp,ki,j � gk αi,j
� �¼ t1,k �α3i,jþ t2,k �α2i,jþ t3,k �αi,jþ t4,k ð5Þ

F IGURE 6 τj,i vs. τi,j LL equilibrium maps for the NRTL model (αi,j
� [0.0, 0.95])
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After that, the different equilibrium boundaries have been corre-

lated simultaneously for different values of αi,j using Equations (3) and

(4). In the case of the L–LLE boundaries, both boundary groups have

been simultaneously correlated with the same set of parameters of

Equations (3) and (4), for 29 values of αi,j between 0 and 0.95 (both

included). In the case of the observed boundary curves between the

LLE and mLLE regions in the range of αi,j values from 0.15 to 0.43, the

parameters cq are equal to zero, because the value αi,j = 0 is not

included in the simultaneous correlation of this set of boundaries.

Tables 1–3 show all the parameters obtained in the simultaneous

correlation. The quality of the correlations has been quantified by

using the relative standard deviation or variation coefficient:

RSD %ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
r¼1

τboundary,cal,r
j,i

�τboundary,r
j,i

� �2r
= N�Pð Þ

PN
r¼1

τboundary,rj,i =N

����������

����������
�100 ð6Þ

where N is the total number of correlated points, P is the number of

parameters to be fitted, τi,j
boundary,cal,r corresponds to the calculated

values from the proposed Equations (1) and (2) for each boundary point

r, and τi,j
boundary,r, represents the original boundary value obtained from

the corresponding NRTL equilibrium map (e.g., Figure 6).

Finally, Figure 7 shows the evolution of the calculated L–LLE

and LLE–mLLE boundaries in the range of αi,j values studied, to

visualize their main general characteristics. This figure represents

the trajectories of the calculated τj,i vs. τi,j boundaries (L–LL and

LL–mLL) obtained for the different values of the αi,j parameter,

in consonance with the behavior of these boundaries described in

previous sections.

5 | MATHEMATICAL FORMULATION OF
THE MISCIBILITY BOUNDARY CONSTRAINTS

To take advantage of the previous characterization and modeling of

the existing NRTL miscibility boundaries and their dependence on

the αi,j values, and thus be able to directly avoid inconsistent results

when dealing with an experimental data correlation problem, the fol-

lowing formulation is proposed. This approach allows including all

the knowledge about the miscibility boundaries in any calculation

algorithm, as a way to restrict the feasible searching space of the

corresponding binary interaction parameters. Thus, using a general-

ized disjunctive representation, the constraint corresponding to a

binary subsystem with a liquid homogeneous phase (located below

the corresponding L–LLE miscibility boundary) could be formulated

as follows:

The disjunctions included in Equation (7), first divide the two dif-

ferent behaviors observed in the LLE boundary with the αi,j values,

that is, in the ranges [0, 0.4] and (0.4, 0.95]. Inside each of these inter-

vals, it has been used the shape and symmetry that presents the cor-

responding boundary, as it has been analyzed in Section 3, using the

location of the changing points, τi,j
cp,k, defined in Section 4 and

Figure 5. Thus, to use the obtained equation (fLLE) below the bisector

of the first and third quadrant, a change in the order of the compo-

nents i and j, in the binary interaction parameters, has to be done.

In the case of a heterogeneous binary subsystem presenting two

liquid phases in equilibrium, two constraints could be used for the cor-

responding correlation data. The first one, by simply changing the

sense of the zero inequalities at each disjunction of Equation 7,

because the heterogeneous equilibria are located above the L–LLE

miscibility boundary, and a second constraint (Equation 9) to avoid

the mLLE region (e.g., Figure 5A,B):

TABLE 1 Parameters of Equations (3) and (4) obtained from the
simultaneous fitting of the different L–LLE miscibility boundaries: fLLE
(τi,j, αi,j) with αi,j from 0.0 to 0.95

fLLE (τi,j,αi,j) pq: p1 p2 p3 p4

aq 0.17018 0.94122 �15.8026 7.41426

bq 1.18745 0.38618 6.61230 8.99112

cq 0.86617 0.08518 9.30456 0.54484

dq �1.29669 �2.15462 �2.06603 �11.2860

eq 0.45992 1.95455 3.08991 3.68998

Note: RDS(%) = 0.03 (N = 1755 and P = 20).

αi,j � 0,0:4½ �

τi,j � �10,τcp,1i,j

h i

τj,i� fLLE τi,j,αi,j
� �

<0

2
64

3
75_ τi,j � τcp,1i,j ,10

� i

τi,j� fLLE τj,i,αi,j
� �

< 0

2
64

3
75

2
66664

3
77775

_
αi,j � 0:4,0:95½ �

τi,j � �5,τcp,2i,j

h i

τj,i� fLLE τi,j ,αi,j
� �

<0

2
64

3
75_

τi,j � τcp,2i,j , fLLE τcp,2i,j ,αi,j
� �� i

τj,i� fLLE τcp,2i,j ,αi,j
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TABLE 2 Parameters of Equations (3) and (4) obtained from the simultaneous fitting of the different LLE–mLLE boundaries: fmLLE (τi,j, αi,j) with
αi,j from 0.15 to 0.43

fmLLE (τi,j,αi,j) pq: p1 p2 p3 p4

aq 0.17970 3.66704 �12.2321 �169.867

bq 0.04713 1.09335 �2.70716 �78.5291

dq �1.00726 �11.9808 66.6629 299.304

eq 2.93938 0.38653 �69.0533 �146.868

Note: RDS(%) = 0.03 (N = 1755 and P = 20).

TABLE 3 Parameters of the polynomial equations gk(αi,j) used to correlate the different selected changing points τi,j
cp,k (P = 4)

Boundary k αi,j t1,k t2,k t3,k t4,k N RDS (%)

L–LLE 1 [0,0.4] 11.0599 �7.61356 2.78799 0.94847 14 0.03

2 [0.4,0.95] �18.9354 46.0735 �37.9180 10.6231 16 5.51

LLE–mLLE 3 [0.15,0.43] �712.144 769.320 �297.731 44.5980 13 0.47

τ j,
i

τ j,
i

τ j,
i

τi,j

αi,j=0.95

αi,j=0.15

αi,j=0.43

αi,j=0.95

αi,j=0.43

αi,j=0

τi,j τi,j

F IGURE 7 Calculated τj,i vs. τi,j miscibility boundaries for the NRTL model: (A) L–LLE boundaries (αi,j � [0.0, 0.95]); (B) LLE–mLLE boundaries
(αi,j � [0.15, 0.43]); (C) LLE–mLLE boundaries (αi,j � [0.43, 0.95])
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Obviously, for the case of a binary subsystem with mLLE, the con-

straint would be:

The mathematical application of the previous constraints can be

done directly in the case of using any spreadsheet (such as Microsoft

Excel and its solver toolbox) for the correlation calculations.60–63 In

the case of using a specific optimization software such as GAMS,64

the previous disjunctions could be reformulated as an MINLP model

by using the Big M reformulation or the general hull reformulation in

the case of nonlinear equations.65,66

6 | MAPPING NRTL BINARY
VAPOR–LIQUID EQUILIBRIA REGIONS

The previous analysis can be applied in the same way to the case of

the binary vapor–liquid equilibria, including different azeotropic

behaviors. One important difference in the case of VLE is that the

equilibrium maps, in the range of binary interaction parameters stud-

ied, depend additionally on the vapor pressure of the pure compo-

nents selected, through the corresponding parameters of the equation

used (e.g., Antoine's Equation).

Figure 8 shows, as an example, the results obtained for a system

where the boiling temperatures of the pure components are around:

αi,j � 0,0:4½ �

τi,j � �10,τcp,1i,j

h i

τj,i� fLLE τi,j,αi,j
� �

>0

2
64

3
75_ τi,j � τcp,1i,j ,10

� i

τi,j� fLLE τj,i,αi,j
� �

> 0

2
64

3
75

2
66664

3
77775

_
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� �

>0

2
64

3
75_

τi,j � τcp,2i,j , fLLE τcp,2i,j ,αi,j
� �� i

τj,i� fLLE τcp,2i,j ,αi,j
� �

>0

2
664

3
775_

τi,j � fLLE τcp,2i,j ,αi,j
� �

,10
� i

τi,j� fLLE τj,i,αi,j
� �

>0

2
64

3
75

2
666664

3
777775

ð8Þ

αi,j � 0:15,0:43½ Þ
τi,j � 2:21,τcp,3i,j

h i
τj,i� fmLLE τi,j,αi,j

� �
<0

2
664

3
775_

αi,j � 0:15,0:43½ Þ
τi,j � τcp,3i,j , fmLLE 2:21,αi,j

� �� i
τi,j� fmLLE τj,i,αi,j

� �
<0

2
664

3
775_

αi,j � 0:43,0:95½ Þ
τi,j � fLLE τcp,2i,j ,αi,j

� �
,10

h i

τj,i� fLLE τcp,2i,j ,αi,j
� �

<0

2
6664

3
7775 ð9Þ

αi,j � 0:15,0:43½ Þ
τi,j � 2:21,τcp,3i,j

h i
τj,i� fmLLE τi,j,αi,j

� �
>0

2
664

3
775_

αi,j � 0:15,0:43½ Þ
τi,j � τcp,3i,j , fmLLE 2:21,αi,j

� �� i
τi,j� fmLLE τj,i,αi,j

� �
>0

2
664

3
775_

αi,j � 0:43,0:95½ Þ
τi,j � fLLE τcp,2i,j ,αi,j

� �
,10

h i

τj,i� fLLE τcp,2i,j ,αi,j
� �

>0

2
6664

3
7775 ð10Þ

F IGURE 8 Αj,i vs. Ai,j VL equilibrium map for the NRTL model with
αi,j = 0.2 at atmospheric pressure. Antoine's parameters: A1 = 6.9547;
B1 = 1170.97, C1 = 226.232, A2 = 8.0713, B2 = 1730.63, and
C2 = 233.426. Tref to check additionally possible LLE = 56�C
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60 and 100�C, in the matrix of binary interaction parameters analyzed

(within a range including the typical values observed in DECHEMA).

Different phase equilibrium regions67 and the transition between

them can be observed, dependent on the values of the binary interac-

tion parameters of the NRTL equation. Note that in this case, the Ai,j

binary interaction parameters have been used instead of the τi,j

parameters to exclude the effect of the temperatures in the parame-

ters, taking into account that in this case, each point of the equilibrium

map has a different temperature. The L–LL miscibility boundary has

also been included to facilitate the visualization of homogeneous and

heterogeneous liquid regions. Thus, it is possible to observe how

depending on the Ai,j values, different phase equilibrium behaviors can

be obtained such as:

In the homogeneous liquid region:

i. VLE without azeotropes.

ii. VLE with a homogeneous VL minimum boiling temperature

azeotrope.

iii. VLE with a homogeneous VL maximum boiling point azeotrope.

iv. VLE with two homogeneous azeotropes, one minimum

boiling point azeotrope and one maximum boiling point azeotrope.

In the LL heterogeneous region:

v. LLE and VLE without azeotropes.

vi. LLE and VLE with one (homogeneous) minimum boiling point

azeotrope.

vii. VLLE with a heterogeneous azeotrope.

viii. VLLE with two different LLE including one heterogeneous

azeotrope.

ix. LLE and VLE with one (homogeneous) maximum boiling point

azeotrope.

x. VLLE with one heterogeneous azeotrope and one homogeneous

maximum boiling point azeotrope.

xi. LLE and VLE with two homogeneous azeotropes, one minimum

boiling point azeotrope and one maximum boiling point

azeotrope.

Figure 9 represents the qualitative temperature-composition

diagrams of the different phase equilibrium behaviors observed. In

any case, the size and evolution of these regions depend on the boil-

ing temperatures of the pure components studied. In general, the

regions without azeotropes increase with the difference in these

temperatures, decreasing the regions with homogeneous and het-

erogeneous azeotropes. In the Supporting Information, the calcu-

lated maps for different sets of Antonie's parameters have been

included.

F IGURE 9 Qualitative temperature-composition diagrams (T vs. x, y) for the different VL equilibrium behaviors observed
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7 | CONCLUSIONS

The existing boundaries for different phase equilibrium regions, using

the NRTL model, have been analyzed by representing the correspond-

ing equilibrium maps of binary interaction parameters, for the case of

LLE and VLE, in this last case with 11 different regions, including dif-

ferent kinds of homogeneous and heterogeneous azeotropes, and

with sizes that depend on the vapor pressure of the pure components.

For the case of the LLE and its experimental data correlation problem,

a set of equations have been developed to model, in the τj,i–τi,j space,

the trajectory of all the different L–LL and LL–mLL miscibility bound-

aries observed in the present work, which depend on the nonrandom-

ness parameter (αi,j). Additionally, different mathematical constraints

have been formulated, in order to reduce the corresponding search

space (depending on the characteristics of the experimental system

under study), and helping not only the convergence of the calcula-

tions, but also avoid the possibility of finding solutions inconsistent

with the experimental behavior of the equilibrium studied. A GUI

(publicly available online) has also been created to easily view all the

spinodal surfaces and miscibility boundaries analyzed and modeled.

In this sense, future works will include the theoretical definition

and calculation of the boundaries for different equilibrium behavior

regions previously observed, by analyzing the Gibbs energy of mixing

function and its corresponding second and third derivatives.

Finally, to conclude, the knowledge and characterization of the

different types of phase equilibrium behaviors, in relation to the corre-

sponding binary interaction parameters, can be of great interest in the

binary interaction parameter optimization when correlating experi-

mental phase equilibrium data, to establish consistent initial points for

the optimization algorithm, and therefore in the posterior use of these

parameters in the simulation or optimal design of the process and/or

equipment related.
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NOMENCLATURE

Aij binary interaction parameters (K) for components i,j

Ai,Bi,Ci parameters of Antoine's equation for component i

aq,bq,cq,dq,eq parameters of the equation used for the calculation

of pq as a function of αi,j

αi,j nonrandomness NRTL factor

GE,L, gE,L excess Gibbs energy of the liquid phase (J mol�1

and dimensionless, respectively)

Gidea,L ideal Gibbs energy of mixing of the liquid phase

(J mol�1)

GM,L Gibbs energy of mixing of the liquid phase (J mol�1)

gj,i characteristic energetic parameter for the binary

interaction between the components j–i

Gj,i NRTL parameter dependent on αi,j and τi,j

(Equation 1)

GUI graphical user interface

mLLE multiple liquid–liquid equilibria

N total number of correlated miscibility boundary

points (r)

n number of components

NRTL nonrandom two-liquids model

LLE liquid–liquid equilibrium

LLLE liquid–liquid–liquid equilibrium

LSE liquid–solid equilibrium

LLSE liquid–liquid–solid equilibrium

P number of parameters to be fitted

pq Parameters dependent on αi,j used for correlating

the observed NRTL miscibility boundaries with

q = {1, 2, 3, 4}

R universal gas constant

RSD relative standard deviation or variation coefficient

T temperature (K)

τij binary interaction parameters (dimensionless) for

components i,j

τi,
boundary binary interaction parameters (dimensionless) for

components i,j in the corresponding miscibility

boundary, obtained from the corresponding NRTL

equilibrium map (e.g., Figure 5)

τi,
boundary,cal =

fboundary(τi,j,αi,j)

binary interaction parameters (dimensionless) for

components i,j in the corresponding miscibility

boundary, calculated from the proposed Equa-

tions (1) and (2)

τi,
cp,k = gk(αi,j) characteristic change points (dependent on αi,j) used

to take advantage of the symmetric behavior pre-

sented by the observed boundaries with the bisec-

tor of the first and third quadrant (k = {1, 2, 3},

Figure 5)

Tref reference temperature used in the VLE calculations

to check additionally possible LLE

VLE vapor–liquid equilibrium

xi liquid molar fraction of component i

xFi equilibrium molar fraction of component i in liquid

phase F

Superscripts

cal calculated value

L liquid phase

r miscibility boundary point

Subscr ipts

i, j, l components
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