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Abstract
In this paper, we develop the notion of c-almost periodicity for functions defined on
vertical strips in the complex plane. As a generalization of Bohr’s concept of almost
periodicity, we study the main properties of this class of functions which was recently
introduced for the case of one real variable. In fact, we extend some important results
of this theorywhichwere already demonstrated for some particular cases. In particular,
given a non-null complex number c, we prove that the family of vertical translates of a
prefixed c-almost periodic function defined in a vertical stripU is relatively compact on
any vertical substrip ofU , which leads to proving that every c-almost periodic function
is also almost periodic and, in fact, cm-almost periodic for each integer number m.

Keywords Almost periodic functions · c-almost periodic functions · Almost
anti-periodic functions · Functions of a complex variable

Mathematics Subject Classification 42A75 · 43A60 · 30Axx · 30D20

1 Introduction

Let E be a complex Banach space and c ∈ C\{0}. It is said that a continuous function
f : R → E is c-periodic if there exists w > 0 such that f (x + w) = c f (x) for all
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x ∈ R. This concept, which was proposed in [1], extends the more known notions
of anti-periodicity (with c = −1) and Bloch periodicity (with c depending on w in
the form c = eikw, k ∈ R), which constitute variants of the usual periodicity with
practical relevance for engineering science (especially condensed matter physics). See
also [2, 10, 13, 14] for more information on these spaces of functions. In particular, it
is easy to see that any anti-periodic function is also periodic (because of the fact that
f (x + 2w) = f ((x + w) + w) = − f (x + w) = f (x) for all x ∈ R), and the class of
Bloch (w, k)-periodic functions is equal to the class of anti-periodic functions when
kw = π . In fact, if kw ∈ Q (put kw = p

q , with p ∈ Z and q ∈ Z\{0}), then a Bloch
(2πw, k)-periodic function f (x) is also periodic because of the fact that

f (x + qw) = f ((x + (q − 1)w) + w) = e2π ikw f (x + (q − 1)w)

= e2π ikw f (x + (q − 2)w + w) = e2π i2kw f (x + (q − 2)w)

= · · · = e2π iqkw f (x) = e2π i p f (x) = f (x).

As a generalization of purely periodic functions defined on the set of the real
numbers, H. Bohr introduced the concept of almost periodicity during the 1920’s. A
continuous function f : R → E , where E is a complex Banach space whose norm is
denoted by ‖ · ‖, is said to be almost periodic (in Bohr’s sense) if for every ε > 0 there
corresponds a number l = l(ε) > 0 such that any open interval of length l contains
a number τ satisfying ‖ f (x + τ) − f (x)‖ ≤ ε for all real numbers x . The number τ

described above is called an ε-almost period or an ε-translation number of f (x) and,
equivalently, the property of almost periodicity means that the set of all ε-translation
numbers of f (x) is relatively dense on the real line. We will denote as AP(R,C) the
space of almost periodic functions in the sense of this definition (Bohr’s condition).
As in classical Fourier analysis, it can be seen that every almost periodic function is
bounded and is associated with a Fourier series with real frequencies (see for example
[3, 5]). Shortly after its development, this theory acquired numerous applications to
various areas of mathematics, from harmonic analysis to differential equations.

In connectionwith the notion of almost periodicity,Khalladi et al. [12] have recently
considered the following generalization, which is called c-almost periodicity: a con-
tinuous function f : R → E (where E is a complex Banach space whose norm is
denoted by ‖ · ‖) is said to be c-almost periodic if for every ε > 0 there corresponds
a number l = l(ε) > 0 such that any open interval of length l contains a number τ

satisfying ‖ f (x + τ) − c f (x)‖ ≤ ε for all x . It is clear that any c-periodic function is
also c-almost periodic. The number τ described above is now called an (ε, c)-almost
period or an (ε, c)-translation number of f (x). Hence c-almost periodicity means that
the set of all (ε, c)-translation numbers of f (x) is relatively dense on the real line. We
will denote as APc(R, E) the space of c-almost periodic functions in the sense of this
definition. Note that the case c = 1 leads to the space AP(R, E). Moreover, if c = −1
the functions in the space AP−1(R, E) are called almost anti-periodic (in this respect,
Cheban considered this notion in two papers [6, 7] written around 1980). See also [2,
10, 13, 14] for more information on these spaces of functions defined on the real line.

In this paper, we will extend the concept of c-almost periodicity to the case of
functions defined on vertical strips of the complex plane (see Definition 1). For the
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case c = 1, this notion corresponds with the setAP(U ,C) of almost periodic functions
defined on a vertical strip of the form U = {z ∈ C : α < Re z < β}, with −∞ ≤
α < β ≤ ∞. This space, which was theorized in [4], has been widely studied in the
literature as an extension of the real case (see for example Chapter 3 of the books [3,
8] and the references [5, 9, 11, 16]). As it can be seen, many properties of this space
of functions are closely related to the theory of analytic functions.

Given an arbitrary c ∈ C\{0}, in comparison with the real case and the almost
periodicity, we will establish in Sect. 2 the main properties of the space of c-almost
periodic functions in a vertical stripU (see particularly Propositions 1, 3, 4 and Corol-
lary 1). It is worth noting that, in general, this space of functions is not a vector space
with the usual operations (see Example 2). However, many other properties associated
with the class of almost periodic functions (such as Propositions 1, 2, 4, 7, Corollary 1
or Theorems 1, 2) are also true for this new class of c-almost periodic functions.

In Sect. 3, we will demonstrate that the set of all the values of a c-almost periodic
function on any vertical substrip included in its domain is relatively compact inC (see
Proposition 7), which represents an extension of [8, Theorem 6.5]. Moreover, we will
prove that the family of vertical translates of a prefixed c-almost periodic function
defined in U is relatively compact on the vertical substrips of U (see Theorem 2),
which represents an extension of the necessary condition of [8, Theorem 6.6]. This
will allow us to prove that every c-almost periodic function defined inU is also almost
periodic and, in fact, cm-almost periodic for each m ∈ Z (see Proposition 3, point i),
and Corollary 3). The proof of this result can be immediately adapted to the real case
in order to state that APc(R,C) is included in AP(R,C) for any c ∈ C\{0}, which
constitutes an extension of a result proved by Khalladi et al. for the case |c| = 1 (see
[12, Proposition 2.11 and comments above]).

2 The property of c-almost periodicity for the case of functions of a
complex variable

Our starting point is the following definition which is based on the concept of c-almost
periodicity for the case of functions defined onR (see [12, Definition 2.1]) and Bohr’s
notion of almost periodicity for the case of functions of a complex variable (see for
example [16, p. 246], [11, p. 311], [8, pp. 83,86] or [3, pp. 141,142]).

Definition 1 Let f : U → C be a complex function continuous in a strip U = {z ∈
C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞, and c ∈ C\{0}. Given ε > 0 and a
reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U (with α < α1 < β1 < β), a real
number τ satisfying the condition

| f (z + iτ) − c f (z)| ≤ ε, for all z ∈ U1,

is called an (ε, c)-translation number of f (z) (or a c-translation number belonging to
ε) associated withU1. The set of all (ε, c)-translation numbers of f (z) associated with
a reduced strip U1 ⊂ U will be denoted by Ec{ f (z),U1, ε} or simply Ec{ f (z), ε}
(we will omit U1 in the notation when it is clear from the context).
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If the sets Ec{ f (z),U1, ε} are relatively dense for every prefixed ε > 0 and reduced
strip U1 ⊂ U (which means that there corresponds a number l > 0 such that every
open interval of length l contains points in Ec{ f (z),U1, ε}), then the function f (z)
will be called c-almost periodic in the strip U . We will denote as APc(U ,C) the set
of c-almost periodic functions in the sense of this definition.

The case c = 1 of the set of the almost periodic functions defined onU will be also
denoted as AP(U ,C).

In the particular case that c = −1, it is said that f (z) is almost anti-periodic in the
strip U .

Remark 1 Given c∈C\{0}, f ∈APc(U ,C) and ε > 0, note that the sets
Ec{ f (z),U1, ε} ⊂ R are closed for every reduced stripU1 ⊂ U . Indeed, fixed such a
stripU1 ⊂ U and {τn}n≥1 ⊂ Ec{ f (z),U1, ε} a sequence converging to a value τ ∈ R,
then

| f (z + iτn) − c f (z)| ≤ ε, for all z ∈ U1 and n ∈ N,

and we deduce from the continuity of f (z) that

| f (z + iτ) − c f (z)| ≤ ε, for all z ∈ U1,

which yields that τ ∈ Ec{ f (z),U1, ε}.
Remark 2 Let f : U → C be a complex function continuous in a strip U , c ∈ C\{0},
and take ε > 0 and U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U . If τ1 ∈ Ec{ f (z),U1,

ε
2|c| }

and τ2 ∈ Ec{ f (z),U1,
ε
2 }, then τ1 + τ2 ∈ Ec2{ f (z),U1, ε}. Indeed, we have

∣
∣
∣ f (z + i(τ1 + τ2)) − c2 f (z)

∣
∣
∣ ≤ | f (z + i(τ1 + τ2)) − c f (z + iτ1)|

+
∣
∣
∣c f (z + iτ1) − c2 f (z)

∣
∣
∣ ≤ ε, for all z ∈ U1.

If c 	= 1 andU is an arbitrary vertical strip of the complex plane, it is straightforward
to see that the non-zero constant functions are not c-almost periodic in U (but they
are almost periodic inU ). However, if c is a unitary complex number, the exponential
monomials of the form aeλz , with a ∈ C and λ ∈ R\{0}, are representative examples
of c-almost periodic functions in U .

Example 1 Let c ∈ C be a complex number so that |c| = 1 (put c = eiθc with
θc ∈ (−π, π ]). Given an arbitrary vertical strip U = {z ∈ C : α < Re z < β}, with
−∞ ≤ α < β ≤ ∞, a ∈ C andλ ∈ R\{0}, consider the function f (z) = aeλz , z ∈ U .
Then f (z) ∈ APc(U ,C). Indeed, given ε > 0 andU1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂
U , note that the choice τ = θc

λ
+ 2πk

λ
, k ∈ Z, satisfies

| f (z + iτ) − c f (z)| = |a||eλ(z+iτ) − ceλz | = |a||eiθc eλz − eiθc eλz | = 0 < ε,

for all z ∈ U1. Hence the sets of the (ε, c)-translation numbers of f (z) (associated
with every reduced strip of U ) are relatively dense.
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Given c ∈ C\{0}, we next show that the setsAPc(U ,C) andAP1/c(U ,C) are equal.

Lemma 1 Let c ∈ C\{0} and U = {z ∈ C : α < Re z < β} (with −∞ ≤ α < β ≤
∞). Then f (z) ∈ APc(U ,C) if and only if f (z) ∈ AP1/c(U ,C).

Proof Given ε > 0, U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U , τ ∈ R and z ∈ U1, note
that

∣
∣
∣
∣
f (z − iτ) − 1

c
f (z)

∣
∣
∣
∣
= 1

|c| |c f (z − iτ) − f (z)| = 1

|c| | f (z) − c f (z − iτ)| .

This means that τ ∈ Ec{ f (z),U1, |c|ε} if and only if −τ ∈ E1/c{ f (z),U1, ε}, which
proves the result. 
�

As usual, put z = x + iy. Note that a c-almost periodic function f (z) in a certain
vertical strip U is also a c-almost periodic function of the real variable y on any
vertical line included inU . That is, for every ε > 0 and an arbitrary x0 ∈ (α, β), there
corresponds a number l = l(ε) > 0 such that any open interval of length l contains a
number τ satisfying | f (x0 + i(y + τ)) − c f (x0 + iy)| ≤ ε for all y. We next analyse
the converse of this property.

Proposition 1 Let f : U → C be an analytic function in a certain vertical strip
U = {z ∈ C : α < Re z < β} (with −∞ ≤ α < β ≤ ∞) which is bounded in any
substrip {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β. Given c ∈ C \ {0},
suppose that f (x0 + iy) is a c-almost periodic function of the real variable y for some
x0 ∈ (α, β). Then f (z) is c-almost periodic in U.

Proof Take c ∈ C \ {0} and U1 = {z ∈ C : α1 ≤ Re z ≤ β1} a reduced vertical
strip of U , with α1 < x0 < β1. Let U2 = {z ∈ C : α2 ≤ Re z ≤ β2} ⊃ U1, with
α < α2 < α1 < β1 < β2 < β. By hypothesis, we can assure the existence of a
positive number M such that | f (z)| ≤ M ∀z ∈ U2, which yields that

| f (z + iτ1) − c f (z)| ≤ (1 + |c|)M, for all z ∈ U2, (1)

for any τ1 ∈ R. Also, by c-almost periodicity of f on the vertical line x = x0 (included
in the interior ofU1), we know that for every δ1 > 0 there exists a relatively dense set
of (δ1, c)-translation numbers of f (x0 + iy). Let τ be an (δ1, c)-translation number
of f (x0 + iy), which means that

| f (x0 + i(y + τ)) − c f (x0 + iy)| ≤ δ1, for all y ∈ R. (2)

For every value τ defined as above, by (1) and (2) the function given by gτ (z) := f (z+
iτ)−c f (z), z ∈ U , is analytic inU and it satisfies the following inequalities: |gτ (z)| ≤
(1 + |c|)M for all z ∈ U2 and |gτ (x0 + iy)| ≤ δ1 for all y ∈ R. Consequently, we
can apply [3, p. 138] (or [8, Theorem 3.5]) in order to assure that to any ε > 0 (with
ε < (1 + |c|)M) corresponds δ > 0 satisfying

|gτ (z)| = | f (z + iτ) − c f (z)| ≤ ε, ∀z ∈ U1,
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712 H. Ounis, J. M. Sepulcre

provided that |gτ (x0 + iy)| = | f (x0 + i(y + τ)) − c f (x0 + iy)| ≤ δ for all y ∈ R.

However, by taking δ1 = δ in (2), it is clear that this last inequality is true for a
relatively dense set of (δ, c)-translation numbers of f (x0 + iy). Consequently, the set
of (ε, c)-translation numbers of f (z) is also a relatively dense set of the real line, and
f (z) is c-almost periodic in U . 
�
As a consequence of the result above, we can establish in a simple way certain

properties of the c-almost periodic analytic functions defined on vertical strips by using
the corresponding properties of the c-almost periodic functions of a real variable.

In any case, we next show that every function in APc(U ,C) is bounded on any
vertical substrip included in U .

Proposition 2 Given c ∈ C\{0}, let f : U → C be a c-almost periodic function in a
certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then
f (z) is bounded in any strips {z ∈ C : a < Re z < b} and {z ∈ C : a ≤ Re z ≤ b}
with α < a < b < β.

Proof Take U2 = {z ∈ C : a < Re z < b} ⊂ U with α < a < b < β. As f (z)
is continuous on clU2, it is bounded on any compact subset included in clU2. Now,
take ε = 1 and U1 = clU2. By c-almost periodicity, there exists a number l > 0
such that every open interval of length l contains an (ε, c)-translation number of f (z)
associated withU1. If z = x + iy is an arbitrary complex number inU1, we can assure
the existence of an (ε, c)-translation number τ ∈ R of f (z) so that y+τ ∈ [0, l]. Also,
let M = max{| f (w)| : w = x + iy with y ∈ [0, l] and x ∈ [a, b]}. Consequently,

|c f (z)| ≤ | f (z + iτ) − c f (z)| + | f (x + i(y + τ))| ≤ 1 + M,

which yields that

| f (z)| ≤ 1 + M

|c| .

This proves that f (z) is bounded in U1 (and hence also in U2). 
�
Remark 3 In general, the boundedness of the function is not true in the whole strip
U . For example, the function f (z) = 1

sinh z is in AP1(Ur ,C), where Ur is of the form
Ur = {z ∈ C : 0 < Re z < r} for any r > 0, but it is not bounded in Ur (see [8, p.
86]).

As a consequence of the definition of c-almost periodicity and the proposition
above, we obtain the following results.

Corollary 1 Given c ∈ C\{0}, let f : U → C be a c-almost periodic function in a
certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Also,
consider an arbitrary reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U, with
α < α1 < β1 < β. Then the following properties are satisfied:

(i) The function f (z) is uniformly continuous in U1.
(ii) If f (z) is analytic in U, then all its derivatives are uniformly continuous in U1.
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The class of c-almost periodic functions defined on… 713

Proof (i) Fixed ε > 0 and a reduced stripU1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U , take l
the length associated with ε1 = |c|ε

3 according to the definition of c-almost periodicity
of f (z) in U1, which means that every open interval of length l > 0 contains an
(ε1, c)-translation number of f (z) associated with U1. As f (z) is continuous on U ,
we know that f (z) is uniformly continuous on the compact set K = {z ∈ C : α1 ≤
Re z ≤ β1, −1 ≤ Im z ≤ 1+ l}. Let δ < 1 be the positive number associated with ε1
according to the property of uniform continuity of f (z) in K , i.e.

| f (z1) − f (z2)| ≤ ε1 when z1, z2 ∈ K with |z1 − z2| < δ.

In this way, consider z1, z2 ∈ U1 with |z1 − z2| < δ, and take a number
τ ∈ (− Im z1,− Im z1 + l) which is an (ε1, c)-translation number of f (z) associ-
ated with U1. Hence Im z1 + τ ∈ [0, l] ⊂ [−1, 1 + l] (i.e. z1 + iτ ∈ K ) and
| Im(z1 − z2)| ≤ |z1 − z2| < δ < 1, which yields that Im z2 + τ ∈ [−1, 1 + l] (i.e.
z2 + iτ ∈ K ). Then it is satisfied

|c f (z1) − c f (z2)| ≤ |c f (z1) − f (z1 + iτ)|
+ | f (z1 + iτ) − f (z2 + iτ)|
+ | f (z2 + iτ) − c f (z2)| ≤ 3ε1 = |c|ε,

which means that f is uniformly continuous on U1.
(ii) Since f (z) is analytic in U and it is bounded in any substrip {z ∈ C : α1 ≤

Re z ≤ β1} ⊂ U with α < α1 < β1 < β (by Proposition 2), this result is now a direct
consequence of [8, Theorem 3.7]. 
�

Corollary 2 Given c ∈ C\{0}, let f : U → C be a c-almost periodic function in a
certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then
for every ε > 0 and reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U there exist
two positive numbers l and δ with the property that any interval of length l (of the real
line) contains a subinterval of length δ whose points are (ε, c)-translation numbers of
f (z) associated with U1.

Proof Fix ε > 0 and take an arbitrary reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤
β1} ⊂ U with α < α1 < β1 < β. By Corollary 1 there exists δ1 > 0 such that, under
the condition |h| < δ1, it is accomplished that

| f (z + ih) − f (z)| <
ε

2|c| , for every z ∈ U1. (3)

Moreover, by c-almost periodicity, there exists a number l1 > 0 such that every open
interval of length l1 contains an ( ε

2 , c)-translation number of f (z) associated withU1,
i.e. a real number τ satisfying

| f (z + iτ) − c f (z)| ≤ ε

2
, for every z ∈ U1. (4)
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714 H. Ounis, J. M. Sepulcre

If τ ∈ [r , r + l1] for some r ∈ R, then τ + h ∈ [r − δ1, r + l1 + δ1] for any real
number h such that |h| < δ1. Thus we deduce from (3) and (4) that

| f (z + i(τ + h)) − c f (z)| ≤ | f (z + i(τ + h)) − c f (z + ih)|
+ |c f (z + ih) − c f (z)|

<
ε

2
+ |c| ε

2|c| = ε,

for every z ∈ U1. This means that every τ + h with |h| < δ1 is an (ε, c)-translation
number of f (z) associated with U1. Thus the result holds by taking l = l1 + 2δ1 and
δ = 2δ1. 
�

If f ∈ APc(U ,C) and h ∈ R, it is clear from the definition of c-almost periodicity
that the function f (z + ih) is also in APc(U ,C). Among other properties, we next
analyse the c-almost periodicity of the product by scalars, the complex conjugate,
the real and imaginary part, and the multiplicative inverse (or reciprocal) of c-almost
periodic functions.

Proposition 3 Given c ∈ C\{0}, let f : U → C be a c-almost periodic function in a
certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then
the following properties are satisfied:

(i) f (z) is also a cm-almost periodic function in U for each m ∈ Z\{0}.
(ii) f (z) is a cm-almost periodic function in U for each m ∈ Z\{0}.
(iii) f (z) is a 1

c -almost periodic function in U (and hence a cm-almost periodic
function in U for each m ∈ Z\{0}).

(iv) λ f (z) is a cm-almost periodic function in U for each m ∈ Z\{0} and λ ∈ C.
(v) f 2(z) := ( f (z))2 is a c2k-almost periodic function in U for each k ∈ Z\{0}.
(vi) If | f (z)| ≥ m > 0 ∀z ∈ U, then 1

f (z) := 1
f (z) is a

1
c -almost periodic function

in U (and hence a cm-almost periodic function in U for each m ∈ Z\{0}).
(vii) If |c| = 1, then | f | : U → [0,∞) is an almost periodic function in U.
(viii) If c ∈ R, then the functions Re f and Im f are c-almost periodic in U.

Proof Fix c ∈ C\{0} and f ∈ APc(U ,C).We first recall that, for every arbitrary ε > 0
and reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β,
the set Ec{ f (z), ε} (of all (ε, c)-translation numbers of f (z) associated with U1) is
relatively dense. So, fix ε > 0 and such a reduced strip U1 ⊂ U .

(i) Fixed m ∈ N, consider the value a = 1 + |c| + . . . + |c|m−1

=
{

m if |c| = 1
(
1−|c|m
1−|c|

)

if |c| 	= 1
.
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The class of c-almost periodic functions defined on… 715

Note that every τ ∈ Ec{ f (z), ε/a} satisfies
∣
∣ f (z + imτ) − cm f (z)

∣
∣ ≤ | f (z + imτ) − c f (z + i(m − 1)τ )|

+
∣
∣
∣c f (z + i(m − 1)τ ) − c2 f (z + i(m − 2)τ )

∣
∣
∣ + · · · +

+
∣
∣
∣cm−1 f (z + iτ) − cm f (z)

∣
∣
∣

≤ ε

a

(

1 + |c| + . . . + |c|m−1
)

, ∀z ∈ U1.

This shows thatmτ ∈ Ecm { f (z), ε}. Hence f (z) is a cm-almost periodic function
in U . Finally, by Lemma 1, f (z) is also 1

cm -almost periodic function in U . This
proves the result.

(ii) Note that every τ ∈ Ec{ f (z), ε} satisfies
∣
∣ f (z + iτ) − c f (z)

∣
∣ = | f (z + iτ) − c f (z)| ≤ ε, ∀z ∈ U1,

which yields that τ ∈ Ec{ f (z), ε}. This shows that f ∈ APc(U ,C). Finally, we
deduce from i) that f ∈ APcm (U ,C) for any m ∈ Z\{0}.

(iii) Let g(z) := f (z), z ∈ U . Note that every τ ∈ Ec{ f (z), |c|ε} satisfies
∣
∣
∣
∣
g(z + iτ) − 1

c
g(z)

∣
∣
∣
∣
=

∣
∣
∣
∣
f (z + iτ) − 1

c
f (z)

∣
∣
∣
∣
=

∣
∣
∣
∣
f (z − iτ) − 1

c
f (z)

∣
∣
∣
∣

= 1

|c| | f (z) − c f (z − iτ)| ≤ |c|ε
|c| = ε, ∀z ∈ U1,

which yields that τ ∈ E 1
c
{g(z), ε}. This shows that g(z) ∈ AP1/c(U ,C) and, by

(i), g(z) ∈ APcm (U ,C) for any m ∈ Z\{0}.
(iv) Fixed λ ∈ C\{0} (the case λ = 0 is trivial), note that every τ ∈ Ec{ f (z), ε

|λ| }
satisfies

|λ f (z + iτ) − cλ f (z)| = |λ| | f (z + iτ) − c f (z)| ≤ |λ| ε

|λ| = ε, ∀z ∈ U1,

which, jointly with (i), proves the result.
(v) As f is bounded in any reduced strip U1 ⊂ U (by Proposition 2), there

exists M > 0 such that | f (z)| ≤ M ∀z ∈ U1. Now, note that every
τ ∈ Ec{ f (z), ε

M(1+|c|) } satisfies
∣
∣
∣ f 2(z + iτ) − c2 f 2(z)

∣
∣
∣ = |( f (z + iτ) − c f (z))( f (z + iτ) + c f (z))|
≤ | f (z + iτ) − c f (z)| M(1 + |c|)
≤ ε

M(1 + |c|)M(1 + |c|) = ε, ∀z ∈ U1,

which proves that τ ∈ Ec2{ f 2(z), ε}. This shows that f 2(z) ∈ APc2(U ,C).
Finally, we deduce from i) that f 2(z) ∈ APc2k (U ,C) for any k ∈ Z\{0}.
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(vi) If | f (z)| ≥ m1 > 0 ∀z ∈ U , note that every τ ∈ Ec{ f (z), ε|c|m2
1} satisfies

∣
∣
∣
∣

1

f (z + iτ)
− 1

c

1

f (z)

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

f (z) − 1
c ( f (z + iτ))

f (z) f (z + iτ)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

f (z + iτ) − c f (z)

c f (z) f (z + iτ)

∣
∣
∣
∣

≤ ε|c|m2
1

|c|m2
1

= ε,

for all z ∈ U1, which proves that themultiplicative inverse, or reciprocal, of f (z)
is in AP1/c(U ,C). Therefore, we deduce from i) that it is also in APcm (U ,C)

for each m ∈ Z\{0}.
(vii) Note that every τ ∈ Ec{ f (z), ε} satisfies

|| f (z + iτ)| − | f (z)|| = || f (z + iτ)| − |c f (z)||
≤ | f (z + iτ) − c f (z)| ≤ ε, ∀z ∈ U1,

which proves that τ ∈ E1{| f (z)|, ε}. This shows the result.
(viii) Note that every τ ∈ Ec{ f (z), ε} satisfies

|Re( f (z + iτ)) − cRe( f (z))| = |Re ( f (z + iτ) − c f (z))|
≤ | f (z + iτ) − c f (z)| ≤ ε,

for all z ∈ U1, which proves that τ ∈ Ec{Re( f (z)), ε}. The case Im f is analo-
gous. 
�

Remark 4 Let c ∈ C be a complex number so that |c| = 1. Consider the vertical
strip U = {z ∈ C : α < Re z < β}, with −∞ < α < β < ∞. By Example 1,
the function f (z) = ez , z ∈ U , is in APc(U ,C). However, if c 	= ±1, the function
Re f (x + iy) = ex cos(y) is not c-almost periodic in U . Indeed, if τ ∈ R, note that

|Re f (z + iτ) − cRe f (z)| = |ex cos(y + τ) − cex cos(y)|
= ex | cos(y + τ) − c cos(y)|

for all z = x + iy ∈ U . Consequently, Re f (x + iy) is c-almost periodic in U if
and only if the function g(y) = cos(y) is in APc(R,C). But we know that g(y) is
in APc(R,C) if and only if c = ±1 (see [12, Example 2.15]). In fact, given ε > 0
and c = eiθc 	= ±1 (with θc ∈ R), the definition of c-almost periodicity leads to the
existence of real values τ satisfying | cos(x + τ) − c cos x | < ε for every x ∈ R. In
particular, we have

| cos τ − eiθc | < ε.

However, since | cos τ − eiθc | = | cos τ − cos θc − i sin θc| ≥ | sin θc| 	= 0, the choice
0 < ε < | sin θc| represents a contradiction.
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We next prove that the set APc(U ,C) is closed with respect to the topology of
uniform convergence on the reduced strips of the vertical strip U .

Proposition 4 Given c ∈ C\{0}, let fn : U → C be a sequence of c-almost periodic
functions in a certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α <

β ≤ ∞. If { fn(z)}n≥1 converges uniformly on the reduced strips of U to a function
f : U → C, then f (z) is a c-almost periodic function in U.

Proof By hypothesis, given ε > 0 and a reduced strip U1 ⊂ U , there exists n0 ∈ N

such that

| fn(z) − f (z)| < min

{
ε

3
,

ε

3|c|
}

for each n ≥ n0 and for all z ∈ U1.

Therefore, every τ in the set of ( ε
3 , c)-translation numbers of fn0(z) associated with

U1 satisfies

| f (z + iτ) − c f (z)| ≤ | f (z + iτ) − fn0(z + iτ)| + | fn0(z + iτ) − c fn0(z)|
+ |c fn0(z) − c f (z)|

≤ ε

3
+ ε

3
+ |c| ε

3|c| = ε, for all z ∈ U1,

which shows that τ in the set of (ε, c)-translation numbers of f (z) associated with
U1. Thus the result holds. 
�

Given an arbitrary c ∈ C\{0}, we already know that the set APc(U ,C) is closed
with respect to product by scalars. However, generally speaking, we next show that
it is not closed with respect to addition or multiplication and, therefore, it is not a
vector space with the usual operations (except for the vector space AP(U ,C) which
corresponds with the case c = 1).

Example 2 Take |c| = 1 (with c 	= 1) and λ ∈ R\{0}. Then the functions f1(z) = eλz

and f2(z) = e−λz are in APc(U ,C) (see Example 1). However, it is clear that the
function f1(z) · f2(z) ≡ 1 is not in APc(U ,C).

Now, take c = −1 andU = {z ∈ C : a < Re z < b}, with a < 0 < b, and consider
the function g(z) = g1(z) + g2(z), z ∈ U , where g1(z) = 1

2e
4z and g2(z) = 2e2z .

Note that, by Example 1, g1(z) and g2(z) are in AP−1(U ,C). Suppose that g(z) ∈
AP−1(U ,C). Thus for every ε ∈ (0, 1) and U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U ,
with α1 < 0 < β1, we can find τ ∈ R such that

|g(z + iτ) − cg(z)| =
∣
∣
∣
∣

1

2
e4(z+iτ) + 2e2(z+iτ) + 1

2
e4z + 2e2z

∣
∣
∣
∣
≤ ε, for all z ∈ U1.

(5)
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In particular, for z = i t ∈ U1 we get

|g(z + iτ) + g(z)| =
∣
∣
∣
∣

1

2
e4i(t+τ) + 2e2i(t+τ) + 1

2
e4i t + 2e2i t

∣
∣
∣
∣

≥
∣
∣
∣
∣
Re

(
1

2
e4i(t+τ) + 2e2i(t+τ) + 1

2
e4i t + 2e2i t

)∣
∣
∣
∣

=
∣
∣
∣
∣

1

2
cos(4(t + τ)) + 2 cos(2(t + τ)) + 1

2
cos(4t) + 2 cos(2t)

∣
∣
∣
∣

=
∣
∣
∣
∣
4 cos4(t + τ) − 3

2
+ 4 cos4 t − 3

2

∣
∣
∣
∣
, for all t ∈ R.

Indeed, for any x ∈ R, we have that

1

2
cos(4x) + 2 cos(2x) = cos2(2x) + 2 cos(2x) − 1

2

= (2 cos2 x − 1)2 + 2 cos(2x) − 1

2

= 4 cos4 x + 1

2
− 4 cos2 x + 2(2 cos2 x − 1) = 4 cos4 x − 3

2
.

Therefore, for z = π i it is accomplished that

|g(z + iτ) + g(z)| ≥ 4 cos4 τ + 1 ≥ 1,

which is a contradiction with (5). Consequently, g(z) is not in AP−1(U ,C). This
example is inspired by [12, Example 2.15].

3 Close connections with Bohr’s almost periodicity

We next show some important inclusions which extend some results incorporated in
[12, Corollary 2.10 and Proposition 2.11].

Proposition 5 Let c be a non-zero complex number such that arg c
2π ∈ Q. Take

U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then

APc(U ,C) ⊂ AP|c|q (U ,C),

where q ∈ N is so that arg c
2π = p

q for a certain p ∈ Z such that (p, q) = 1.
In particular, under the same condition, the case |c| = 1 yields the inclusion
APc(U ,C) ⊂ AP(U ,C).

Proof Put arg c = 2π p
q with p ∈ Z and q ∈ N so that (p, q) = 1 (i.e. the greatest

common divisor of p and q is equal to 1). Then cq = |c|qeqi arg c = |c|qe2pπ i = |c|q .
Let f ∈ APc(U ,C). By Proposition 3(i), it is accomplished that f ∈ APcq (U ,C) =
AP|c|q (U ,C), which proves the result. 
�
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The class of c-almost periodic functions defined on… 719

Proposition 6 Let c be a non-zero complex number such that arg c
π

/∈ Q and |c| = 1.
Take U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then APc(U ,C) ⊂
AP(U ,C).

Proof Let f ∈ APc(U ,C), and fix ε > 0 and a reduced strip U1 = {z ∈ C :
α1 ≤ Re z ≤ β1} ⊂ U . We recall that, by Proposition 2, there exists M > 0 such
that | f (z)| < M for all z ∈ U1. Suppose that arg c is not a rational multiple of π ,
which yields that eni arg c 	= 1 for all n ∈ N. Now, choose n1, n2 ∈ N such that
|en2i arg c − en1i arg c| < ε

2M (note that the existence of n1 and n2 is assured in virtue
of {eni arg c : n ∈ N} ⊂ {z ∈ C : |z| = 1} and the length of the unit circumference is
finite). Hence

|e(n2−n1)i arg c − 1| = |en2i arg c − en1i arg c| <
ε

2M
.

Take mε = n2 − n1. Then, by Proposition 3(i), it is accomplished that f ∈
APcmε (U ,C). Consequently, every τ ∈ Ecmε { f (z),U1, ε/2} satisfies

| f (z + iτ) − f (z)| ≤ ∣
∣ f (z + iτ) − cmε f (z)

∣
∣ + ∣

∣cmε f (z) − f (z)
∣
∣ ≤ ε, ∀z ∈ U1,

which proves the result. 
�
We already know some conditions under which it can be assured that the sets

of c-almost periodic functions are also almost periodic in some vertical strips of the
complex plane. However, wewill improve these results in the subsequent development
(see Corollary 3 at the end of this section).

For this purpose, we next show a result concerning the set of values of a c-almost
periodic function on a vertical line, which extends [3, p. 144, 9◦. Theorem]. In this
respect, given a function f (z) defined in a vertical stripU and a real number σ0 ∈ U ,
consider the notation Img( f (σ0+ i t)) = {w ∈ C : ∃t ∈ R such that w = f (σ0+ i t)},
i.e. Img( f (σ0+i t)) is the set of values assumed by f (z) on the straight line Re z = σ0.

Theorem 1 Given c ∈ C\{0}, let f : U → C be an analytic c-almost periodic
function in a certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤
α < β ≤ ∞. Consider σ0 ∈ (α, β) and take Img( f (σ0 + i t)) = {w ∈ C : ∃t ∈
R such that w = f (σ0 + i t)}. Then the function f (z) assumes all the values in the
set of the accumulation points of Img( f (σ0 + i t)) in any vertical strip of the form
{z ∈ C : σ0 − δ < Re z < σ0 + δ}, with δ > 0.

Proof Let w0 be an accumulation point of the set Img( f (σ0 + i t)), and consider the
function g(z) := f (z) − w0, z ∈ U . If g(z) vanishes at z = σ0 + i t for some t ∈ R,
then the result is straightforward. Suppose that g(z) does not vanish at the vertical
line x = σ0. Thus there exists a sequence of points of the form {σ0 + i tn}n≥1 such
that {g(σ0 + i tn)}n≥1 tends to 0 as n goes to ∞ (hence {cg(σ0 + i tn)}n≥1 also tends
to 0 as n goes to ∞). Now, take y0 ∈ R such that ε = | f (σ0 + iy0) − z0| > 0,
where z0 = cw0 (if y0 did not exist, the set Img( f (σ0 + i t)) = {z0} would not have
accumulation points). By c-almost periodicity, the set Ec{ f (z), ε/2} of the (ε/2, c)-
translation numbers of f (z) associated with the vertical line {z ∈ C : Re z = σ0} is
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relatively dense, which yields that there exists lε > 0 such that any interval of length
lε in the vertical line x = σ0 contains a point τ at which

| f (σ0 + i t + iτ) − c f (σ0 + i t)| ≤ ε

2
, for all t ∈ R.

Thus

|cg(σ0 + iy0 − iτ)| = |c f (σ0 + iy0 − iτ) − z0|
= |c f (σ0 + iy0 − iτ) − f (σ0 + iy0) + f (σ0 + iy0) − z0|
≥ ε − | f (σ0 + iy0) − c f (σ0 + iy0 − iτ)|
≥ ε

2
> 0.

Furthermore, given δ > 0, take Uδ = {z ∈ C : σ0 − δ < Re z < σ0 + δ}. We know
that f (z) is bounded inUδ (by Proposition 2). Consequently, by [3, p. 139, theorem],
the function g(z) = f (z) − w0 has zeros in Uδ , which proves the result. 
�

We next show that the set of all the values of a c-almost periodic function (in
APc(U ,C)) on any vertical substrip ofU is relatively compact in C, which represents
an extension of [8, Theorem 6.5].

Proposition 7 Given c ∈ C\{0}, let f : U → C be a c-almost periodic function
in a certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤
∞. Then for any reduced vertical substrip V ⊂ U, the image set {w ∈ C : ∃z ∈
V such that w = f (z)} is relatively compact in C.
Proof Let us demonstrate that for any ε > 0 the set of values of f in any vertical
reduced substrip ofU can be covered by finitely many balls of radius ε (recall that, in
the Banach spaces, the relatively compact sets coincide with the precompact sets). By
c-almost periodicity, for every reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U ,
there exists a number l > 0 such that every open interval of length l contains an (ε, c)-
translation number of f (z) associated with U1. So, fix a reduced strip U1 = {z ∈ C :
α1 ≤ Re z ≤ β1} with α < α1 < β1 < β. As f (z) is continuous on the vertical
stripU , recall first that the set of values of f (z) on any compact subset included inU
is compact. In this way, consider a finite amount of balls of radius ε

2|c| which cover
the set { f (z) : z = x + iy with y ∈ [0, l] and x ∈ [α1, β1]}, and let {z1, z2, . . . , z p}
denote the centers of these balls. Now, if z = x + iy is an arbitrary complex number
in U1, we can assure the existence of an (ε/2, c)-translation number τ ∈ R (in the
interval [y − l, y]) of f (z) so that y − τ ∈ [0, l]. Also, let z j be the center of the ball
of radius ε

2|c| which contains f (x + i(y − τ)). Therefore

| f (z) − cz j | ≤ | f (z) − c f (z − iτ)| + |c f (z − iτ) − cz j | ≤ ε

2
+ |c| ε

2|c| = ε.

This proves that the balls of centers {cz1, cz2, . . . , cz p} and radius ε cover the set
{ f (z) : z ∈ U1}. 
�
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As a consequence of the result above, given a vertical strip U1 = {z ∈ C : α1 ≤
Re z ≤ β1} (or U1 = {z ∈ C : α1 < Re z < β1}), with α < α1 < β1 < β, from any
sequence { f (z j ) : z j ∈ U1} j≥1 we can extract a subsequence which is convergent.
In particular, for every z ∈ U1, the sequence { f (z + ih j )} j≥1 admits a subsequence
{ f (z + ih jk )}k≥1 which is convergent.

If c ∈ C\{0} and h ∈ R, recall that the vertical translate fh(z) := f (z + ih)

is in APc(U ,C) for any function f ∈ APc(U ,C). We next prove that the family of
functions { fh(z) : h ∈ R} is relatively compact on the vertical substrips ofU (in the set
of bounded continuous complex functions defined on U ). This property, whose proof
is similar to that for the case of almost periodic functions, represents an extension of
the necessary condition of [8, Theorem 6.6].

Theorem 2 Given c ∈ C\{0}, let f : U → C be a c-almost periodic function in a
certain vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then
the family of vertical translates { fh(z) : h ∈ R} (with fh(z) := f (z + ih), z ∈ U) is
relatively compact on any reduced vertical strip of U.

Proof Let { fhk (z)}k≥1 be a sequence of vertical translates of f , and consider S =
{sn}n≥1 a dense set in U (for example S = (Q + iQ) ∩ U = (Q ∩ (α, β)) + iQ).
In this way, from the sequence of complex values { f (s1 + ihk)}k≥1 we can extract
a subsequence { f (s1 + ihk, j1)} j1≥1 which is convergent in C (by Proposition 7).
Analogously, from the sequence { f (s2 + ihk, j1)} j1≥1 we can extract a subsequence
{ f (s2 + ihk, j2)} j2≥1 which is convergent in C, and so on. In general, by using a
diagonal procedure of extraction, the sequence { f (sk + ihk, jk )}k≥1 is convergent, and
thus { f (z + ihk, jk )}k≥1 is convergent for every z ∈ S. In fact, let us demonstrate that
the sequence { f (z + ihk, jk )}k≥1 is uniformly convergent in every reduced substrip
U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U , with α < α1 < β1 < β. Indeed, given ε > 0,
by c-almost periodicity there exists a number l > 0 such that every open interval of
length l contains a (

|c|ε
5 , c)-translation number of f (z) associated with U1, i.e. a real

number τ satisfying the condition

| f (z + iτ) − c f (z)| ≤ |c|ε
5

, for all z ∈ U1. (6)

Also, by Corollary 1, we know that f (z) is uniformly continuous in any reduced
vertical substrip of U , which yields the existence of δ > 0 such that

| f (z j ) − f (zk)| <
|c|ε
5

for any z j , zk ∈ U1 with |z j − zk | < δ. (7)

Now, take a subdivision of the square Cl = [α1, β1] × [0, l] in such a way that
Cl = ⋃n

j,k=1 Cl, j,k , where every Cl, j,k = [γ j−1, γ j ] × [ξk−1, ξk], j, k = 1, . . . , n,
is so that |(γ j + iξk) − (γ j−1 + iξk−1)| < δ (the length of the diagonal of every
subsquare is less than δ). Choose a point of S in each subsquare Cl, j,k of Cl , and
denote the set of all them as S0 = {p1, p2, . . . , pt }. Since S0 is a finite set, the
sequence { f (z + ihk, jk )} j≥1 is uniformly convergent with respect to z ∈ S0. Hence,
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we can determine a positive integer number N such that for n,m ≥ N we have

| f (pk + ihn, jn ) − f (pk + ihm, jm )| <
|c|ε
5

, k = 1, 2, . . . , t . (8)

Finally, take an arbitrary z = x + iy ∈ U1, and let τ be an (ε, c)-translation number
of f (z) (associated with U1) with τ ∈ [−y,−y + l], which yields that y + τ ∈ [0, l]
and z + iτ belongs to a certain subsquare of Cl . Denote by p j the complex number in
S0 (corresponding with this subsquare) such that |z + iτ − p j | < δ. Consequently, if
n,m ≥ N (recall that N does not depend on the point z ∈ U1) then

|c|| f (z + ihn, jn ) − f (z + ihm, jm )| = |c f (z + ihn, jn ) − c f (z + ihm, jm )|
≤ |c f (z + ihn, jn ) − f (z + ihn, jn + iτ)|

+ | f (z + ihn, jn + iτ) − f (p j + ihn, jn )|
+ | f (p j + ihn, jn ) − f (p j + ihm, jm )|
+ | f (p j + ihm, jm ) − f (z + ihm, jm + iτ)|
+ | f (z + ihm, jm + iτ) − c f (z + ihm, jm )|

<
|c|ε
5

+ |c|ε
5

+ |c|ε
5

+ |c|ε
5

+ |c|ε
5

= |c|ε,

where (6) was used in the first and the last terms of the strict inequality, (7) in the
second and fourth terms, and (8) in the third term. Hence the last inequality shows that
the sequence { f (z+ ihn, jn )}n≥1 satisfies Cauchy’s condition for uniform convergence
on U1 (in fact, also on V = {z ∈ C : α1 < Re z < β1} and any reduced strip of V ).
We deduce from Proposition 4 that the limit function is in APc(V ,C). Consequently,
the initial sequence of vertical translates { fhk (z)}k≥1 contains a subsequence that
converges uniformly on every reduced strip (in APc(V ,C)), and the result holds. 
�

It is known that Bohr’s notion of almost periodicity of a function defined on R

is equivalent to the relative compactness of the set of its translates with respect to
the topology of the uniform convergence (see e.g. [3, 16, 17]). In the same terms, the
property of relative compactness of the vertical translates, with respect to the topology
of the uniform convergence on reduced strips, identifies the class of almost periodic
functions defined on vertical strips of the complex plane. This means that the converse
of Theorem 2 is only true for the case c = 1. Although this result is known, we provide
their proof here for the sake of completeness.

Lemma 2 Given a vertical strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤
∞, then f ∈ AP(U ,C) if and only if the family of vertical translates { fh(z) : h ∈ R}
(with fh(z) := f (z + ih), z ∈ U) is relatively compact on any reduced vertical strip
of U.

Proof The necessity is proved in Theorem 2 (which is also true for the case c = 1).
To prove the sufficiency, suppose by reductio ad absurdum that f is not an almost

periodic function in the strip U . Thus there exists at least one real value ε > 0 and a
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reduced substripU1 ⊂ U such that for any l > 0we can determine an interval of length
l in the real line which does not contain any ε-translation number of f (z) (associated
with U1). Now, consider an arbitrary real number h1 and an interval (a1, b1) ⊂ R

of length greater than 2|h1| which does not contain any ε-translation number of f (z)
(associated with U1). If we take h2 = 1

2 (a1 + b1), then h2 − h1 ∈ (a1, b1) and,
consequently, h2 − h1 cannot be an ε-translation number of f (z) (associated with
U1). In the same way, there exists an interval (a2, b2) ⊂ R of length greater than
2(|h1| + |h2|) which does not contain any ε-translation number of f (z) (associated
withU1). If we take h3 = 1

2 (a2 +b2), this fact yields that h3 −h1, h3 −h2 ∈ (a2, b2)
and hence h3 − h1 and h3 − h2 are not ε-translation numbers of f (z) (associated
with U1). If we reiterate this process in a similar manner, we construct a sequence of
real numbers h1, h2, h3, . . . such that none of the differences hi − h j , i, j ≥ 1, is an
ε-translation number of f (z) (associated withU1). Therefore, for any i and j we have

sup{∣∣ f (z + ihi ) − f (z + ih j )
∣
∣ : z ∈ U1}

= sup{∣∣ f (w + i(hi − h j )) − f (w)
∣
∣ : w ∈ U1} > ε.

In fact, we know that there exists w0 ∈ U1 satisfying the inequality
∣
∣ f (w0 + i(hi − h j )) − f (w0)

∣
∣ > ε, which yields that the point z0 = w0 − ih j ∈ U1

satisfies
∣
∣ f (z0 + ihi ) − f (z0 + ih j )

∣
∣ > ε. Consequently, the sequence of vertical

translates { f (z + ihn)}n≥1 does not contain any subsequence uniformly convergent
on U1. This contradicts our hypothesis. Hence the result holds. 
�

Now,we formulate the following corollary of Theorem 2 and Lemma 2which states
that every c-almost periodic function in a vertical stripU is also almost periodic inU .

Corollary 3 Let c be a non-null complex number and U = {z ∈ C : α < Re z < β},
with −∞ ≤ α < β ≤ ∞. Then APc(U ,C) ⊂ AP(U ,C).

Remark 5 As a consequence of Corollary 3, we have proved that Proposition 3, point
i), is also true for the case m = 0, i.e. if f ∈ APc(U ,C) then f ∈ APcm (U ,C) for
each m ∈ Z.

It is worth noting that, mutatis mutandi, Theorem 2 can be analogously proved
for the case of c-almost periodic functions f (x) defined on R (with respect to the
topology of the uniform convergence on R). In this respect, the paper [12, p. 181]
includes the statement that APc(R,C) ⊂ AP(R,C) is true for the case |c| = 1 (see
[12, Proposition 2.11 and comments above]). In our case, we have extended this result
for every value c ∈ C\{0}.
Corollary 4 Let c be a non-null complex number. Then APc(R,C) ⊂ AP(R,C).

Remark 6 During the refereeing process, a reviewer informed us of the notion intro-
duced in the ArXiv paper [15, Definition 2.6] in connection with our Definition 1,
where it is necessary to use the identification of vertical strips in the complex plane
with the corresponding subsets of the Euclidean space R2.
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