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Abstract: Crop identification and classification are of great significance to agricultural land use
management. The physically constrained general model-based decomposition (PCGMD) has proven
to be a promising method in comparison with the typical four-component decomposition methods
in scattering mechanism interpretation and identifying vegetation types. However, the robustness
of PCGMD requires further investigation from the perspective of final applications. This paper
aims to validate the efficiency of the PCGMD method on crop classification for the first time. Seven
C-band time-series RADARSAT-2 images were exploited, covering the entire growing season over an
agricultural region near London, Ontario, Canada. Firstly, the response and temporal evolution of the
four scattering components obtained by PCGMD were analyzed. Then, a forward selection approach
was applied to achieve the highest classification accuracy by searching an optimum combination
of multi-temporal SAR data with the random forest (RF) algorithm. For comparison, the general
model-based decomposition method (GMD), the original and its three improved Yamaguchi four-
component decomposition approaches (Y4O, Y4R, S4R, G4U), were used in all tests. The results
reveal that the PCGMD method is highly sensitive to seasonal crop changes and matches well with
the real physical characteristics of the crops. Among all test methods used, the PCGMD method using
six images obtained the optimum classification performance, reaching an overall accuracy of 91.83%.

Keywords: polarimetric synthetic aperture radar (PolSAR); crop classification; agriculture; model-
based decomposition; RADARSAT-2

1. Introduction

The spatial distribution information of crops is essential for farm management and
government decision-making [1,2]. Traditional field surveys are time-consuming and
labor-intensive, making it difficult to meet the requirements of large-scale operational
monitoring [3]. Compared with optical sensors, synthetic aperture radar (SAR) sensors
are not affected by cloud, fog, and light rain, and they can acquire ground information
during the day and at night. Moreover, measured backscattering shows high sensitivity
to the vertical structure and dielectric constant of vegetation, hence it can be used as an
effective means for crop identification and classification. In addition, due to dynamic
evolution during crop growth, the geometric structure and physical property of crops at
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different growth stages exhibit significant differences [4,5]. Therefore, time-series SAR
images acquired throughout the growing season have been increasingly used for crop
classification with promising results [6–10].

Polarimetry is the inherent vector characteristic of electromagnetic waves. SAR polar-
ization exploits the polarization state of radar electromagnetic waves in applications, and
is sensitive to the shape structure, orientation, and dielectric properties of the targets [2].
The fully polarimetric synthetic aperture radar (PolSAR), adding observations in the po-
larimetric dimension, can acquire rich information from the interaction between ground
objects and SAR waves. Based on this, PolSAR decomposition can be employed to separate
diverse scattering mechanisms and extract various polarimetric parameters and has been
extensively applied for crop classification [11,12]. In general, polarimetric decomposition
methods with use in natural scenarios (i.e., polarimetric incoherent decomposition) ex-
ploiting the covariance/coherency matrix of the second-order statistics, can be generally
attributed into three categories, i.e., the Huynen-type phenomenological dichotomy, the
eigenvalue–eigenvector-based decomposition, and the model-based decomposition [13–17].
The last one, first introduced by Freeman and Durden [18], describes the backscattering
contributions from the ground, the ground and trunk interaction, and the top of the vegeta-
tion canopy, respectively. Due to its clear physical meaning and simplicity of calculation, it
has been widely used in scattering mechanism interpretation and land-cover classification
over vegetated areas.

The traditional Freeman–Durden three-component decomposition method assumed
that the canopy consists of dipoles obeying uniform distribution, and its cross-polarization
terms are zero in surface and double-bounce scattering models [18]. In practical applica-
tions, however, highly oriented built-up areas generate strong scattering power in cross-
polarization and are mistaken as strong volume scattering, hence overestimating the contri-
bution of volume scattering. In model parameter calculation, the observed matrix is first
subtracted by the volume scattering component, which implies the assumption of model
priority. In this vein, the negative power of surface scattering or double-bounce scattering
may occur. Moreover, polarimetric information in the observed matrix has not been used
completely, leading to the underdetermined problem in the solution of the model. To deal
with it, the branch conditions have to be set in the solution process. The above deficiencies
limit the applicability of the traditional model-based decomposition methods in many
scenarios and spark broad interest in the research community [19–27].

In past decades, a variety of modifications have been proposed to further improve model-
based decompositions. For example, Yamaguchi et al. [19] proposed a four-component de-
composition (Y4O) approach to represent the reflection asymmetry case by introducing the
helix scattering component. In addition, two probability density functions were proposed
to construct two types of volume scattering matrix corresponding to horizontal and vertical
dipoles models. Later, a series of Yamaguchi-based four-component decomposition meth-
ods by considering the rotation of polarimetric orientation angle (e.g., Y4R [20], S4R [21],
and G4U [22]), or adding more physical scattering models to describe other scattering
components (e.g., five-component [23], six-component [24], and seven-component [25,26]
decomposition methods) were proposed to reduce the effects caused by overestimation of
volume scattering and negative powers. From a mathematic viewpoint, Van Zyl et al. [27]
introduced the non-negative eigenvalue decomposition, which requires that all eigenvalues
of the covariance matrix are non-negative to overcome the problem of negative powers. In
addition, some generalized volume scattering models using a continuous range of shape
and scattering randomness to characterize complex volume scenes were proposed and
incorporated into the decomposition framework to achieve better scattering mechanism
interpretation over regions with different types of vegetation [28–31].

Although all the aforementioned methods can improve model performance to a certain
extent, most of them only partially addressed the well-known limitations. By incorporating
many advances, Chen et al. [32] developed a general model-based decomposition (GMD)
approach by considering four kinds of volume scattering models, introducing independent
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orientation angles into surface and double-bounce scattering models for considering the
cross-polarization power. Different from the traditional decomposition models, the nonlin-
ear equations are constructed to solve all polarization parameters simultaneously using
complete polarization information, which can avoid the assumptions of model inversion
priority and the constraints of branch conditions. The experimental results showed supe-
riority over the traditional decomposition methods. However, the accuracy of nonlinear
solutions often depends on the selection of initial values and boundary conditions of model
parameters. Regarding these issues, Xie et al. [33] further proposed a physically constrained
general model-based decomposition (PCGMD) method, which redefined the initial values
and boundaries of model parameters by taking account of a popular physical range for
dielectric constant, and introduced a variable transformation to make the inversion easier.
Later on, several modified PCGMD methods were proposed by further considering sev-
eral generalized volume scattering models [34,35]. The results indicate that the PCGMD
methods produce more reasonable results in scattering mechanism interpretation and out-
perform the traditional methods. Moreover, physically constrained boundaries contribute
more than the other two modifications to improve the decomposition result [33]. Unfortu-
nately, the ground truth is unknown in practice; directly and quantitatively validating the
performance of polarimetric decomposition methods is still a tough task. While the Monte
Carlo simulation tests designed for different scattering scenes were used in [33–35], the
current method for evaluating polarimetric decomposition method is mainly limited to scat-
tering power analysis of different scattering components over various land cover types and
to make some physical explanations according to theoretical expectations. However, users
are more interested in choosing the proper polarimetric decomposition method in practice.
Therefore, the performance of the PCGMD method needs to be further investigated from
the perspective of final applications.

Regarding this issue, this paper aims to validate the efficiency of the PCGMD method
on crop classification employing time-series PolSAR data across the entire growing season.
The selected study area was an agricultural area in southwestern Ontario, Canada. Seven
C-band RADARSAT-2 images were acquired across the entire growth period of major crops.
The responses of the PCGMD method to seasonal crop changes were analyzed, and the
application potential of the method for crop classification was evaluated by employing the
random forest (RF) algorithm.

Although multi-temporal SAR data containing the structural and physical parameters
change information covering the crops growing cycle can improve the classification accu-
racy, it does not mean that the more images involved in the classification, the higher the
accuracy of classification [36–38]. The accuracy may reach saturation even worse because
the added SAR image at a certain date may not further increase the difference between
crops, but increase the similarity of some crops. Previous studies suggested that a com-
bination of images acquired on critical dates during the peak biomass stage and autumn
periods may provide even better crop classification accuracy [3,38]. Consequently, we
adopted a forward selection procedure recently proposed in [3] by selecting image set
for classification iteratively with a step of one image to achieve the highest classification
accuracy. The optimal image subset giving the highest classification accuracy was selected
in the previous round and kept as the start point in the next round.

This paper is organized as follows. Section 2 introduces the image dataset and ground
measurements. Section 3 reviews the original GMD method and introduces the PCGMD
algorithm, followed by a brief introduction of the classification method in experiments. In
Section 4, the results of six PolSAR decomposition methods and crop classification results
based on decomposition scattering powers are presented. In Section 5, a discussion and
insights from the results of temporal evolution and classification are given. Finally, the
conclusion is drawn in Section 6.



Remote Sens. 2022, 14, 2668 4 of 21

2. Study Area and Dataset
2.1. Study Area and PolSAR Data

In this paper, the test site is located in an agricultural area near London, Ontario,
Canada. The Pauli RGB image on 27 September 2015 and the optical image from Google
Earth on 23 October 2015 overlaying our study site are presented in Figure 1. The topog-
raphy of this area is flat. The area experiences a temperate continental humid climate
with moderate temperature and abundant rainfall, which is very suitable for agricultural
production. The main land cover types are crops, forests, and a few built-up areas. The
main crop types are corn, soybean, winter wheat, and forage, and a small amount of tobacco
and watermelon also exist on the site.
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Figure 1. Geographical location of study site. (a) Optical image from Google Earth acquired on
23 October 2015; (b) Pauli RGB image obtained on 27 September 2015. (RADARSAT-2 Data and
Products © MacDonald, Dettwiler, and Associates Ltd., Brampton, ON, Canada. (2015)—all rights
Reserved. RADARSAT is an official trademark of the Canadian Space Agency.)

Generally, winter wheat in this area is planted in October of the former year, and
the harvest time is July of the current year. In contrast, the seeding time of corn and
soybean is May, and the harvest time is around October in the same year. Due to the crop
rotation mechanism in this region, different crop types will be planted after the harvest
in October. For the purpose of crop classification using multi-temporal data across the
growing season, seven FQ10W (fine quad-pol wide) RADARSAT-2 data obtained between
April and September in 2015 were selected in this paper. Detailed information of the SAR
dataset is listed in Table 1. All images share the same observation mode, incidence angle,
and pixel resolution.
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Table 1. Description of RADARSAT-2 dataset.

Acquisition Date Mode Incidence Resolution Orbit Look
Direction

12 April 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right
6 May 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right
23 June 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right
17 July 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right

10 August 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right
3 September 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right

27 September 2015 FQ10W 28.4–31.6◦ 5.5 m × 4.7 m Ascending Right

2.2. Ground Truth Data

During the crop growth cycle from April to September 2015, we conducted intensive
fieldwork and collected ground measurements. Figure 2 shows crop photos at key growth
stages corresponding to the SAR image acquisition dates (exact or closest). No ground
photos for corn and soybean were taken on 12 April and 6 May because they had not
emerged yet. It should be noticed that wheat straws from the current year’s winter wheat
harvest can be seen in the photo in Figure 2. Therefore, only one field survey of winter
wheat fields was taken during the harvest, on 10 August. After inspecting the field photos
shown in Figure 2, it is expected that the acquired time-series PolSAR images reflect the
morphological and structural changes throughout the crop growing season.
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Figure 2. Field photos of three major crops corresponding to image acquisition date. Top row: corn;
middle row: soybean; bottom row: winter wheat. The blank areas correspond to days when no crops
were grown.

According to field surveys, the land cover types of 85 fields were identified, and the
spatial distribution is shown in Figure 3. Through random selection at the field level, all
the fields were divided into two groups without overlap, with one group of the fields used
for training the classifiers and the other for testing. Table 2 shows the detailed statistics of
pixels for training and testing.
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Table 2. Training and testing samples for crop classification.

Land Cover

Training Samples Testing Samples

Number
of Pixels

Number
of Fields

Number
of Pixels

Number
of Fields

Corn 6257 4 20,246 16
Soybean 6505 4 15,995 12
Forage 3700 5 3615 7

Winter wheat 6018 3 17,723 16
Watermelon 310 1 309 1

Tobacco 416 1 301 1
Forest 5148 4 7292 6

Built-up 1267 1 1117 1
Soil 2331 1 1592 1

3. Methodology
3.1. General Model-Based Decomposition (GMD)

The GMD method proposed by Chen et al. [32] considers four types of physical
scattering models of the scene.

3.1.1. Surface Scattering Model

The basic surface scattering model is the well-known Bragg model, which simulates
the scattering from a slightly rough surface and ignores the cross-polarization component.
The coherency matrix is expressed as [14]:

Ts = fs

1 β∗ 0
β |β|2 0
0 0 0

 (1)

where β is related to the Bragg reflection coefficients and is expressed as:

β =
RH − RV
RH + RV

(2)
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The two coefficients (RH , RV) are functions of the local incidence angle θ and the
relative dielectric constant of the rough surface εS, which are defined as:

RH =
cosθ −

√
εS − sin2θ

cosθ +
√

εS − sin2θ
(3)

RV =
(εS − 1)

(
sin2θ − εS

(
1 + sin2θ

))(
εScosθ +

√
εS − sin2θ

)2 (4)

The imaginary part of εS can be ignored for most natural scenes in model inversions,
and thus β is approximately considered to be a real value instead of a theoretical complex
value. In the GMD algorithm, Chen et al. [32] introduced a rotation angle θs to represent the
cross-polarization component caused by terrain slopes [39]. The modified general surface
scattering model is written as:

Ts(θs) = R3(θs)TsRH
3 (θs) (5)

R3(θs) =

1 0 0
0 cos2θs sin2θs
0 −sin2θs cos2θs

 (6)

where RH
3 (θs) is the conjugate transpose of R3(θs).

3.1.2. Double-Bounce Scattering Model

In general, the double-bounce scattering mechanism is modeled to simulate the scatter-
ing from ground-trunk or ground-wall by a dihedral corner formed by two perpendicular
reflector surfaces with different dielectric properties. The corresponding coherence matrix
has the form:

Td = fd

|α|2 α 0
α∗ 1 0
0 0 0

 (7)

where the value of α is determined by two aspects: the Fresnel reflection coefficients
(RiH , RiV for horizontal and vertical polarized waves where i ∈ {S, T} represents surface
and vertical surface, respectively), and the phase difference φ between co-polarization chan-
nels, which may be affected by different attenuations during the radar wave propagation.
It is expressed as:

α =
RTH RSH + ejφRTV RSV

RTH RSH − ejφRTV RSV
(8)

RiH =
cosθi −

√
εi − sin2θi

cosθi +
√

εi − sin2θi

(9)

RiV =
εicosθi −

√
εi − sin2θi

εicosθi +
√

εi − sin2θi

(10)

where εi represents the dielectric constant, and θi (θT = π/2− θS) describes the incidence
angles for surface and vertical planes. Similarly, a rotation angle is also used to simulate
the effect caused by oriented build-up in the double-bounce scattering model and the final
expression is:

Td(θd) = R3(θd)TdRH
3 (θd) (11)

R3(θd) =

1 0 0
0 cos2θd sin2θd
0 −sin2θd cos2θd

 (12)
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3.1.3. Volume Scattering Model

Volume scattering from vegetation canopy is generally described as a cloud of uni-
formly distributed and randomly oriented particles. Assuming the coherency matrix of a
single particle is T(θ), the coherence matrix of volume scattering is described by integrating
over the probability density function of the orientation angle p(θ) within a specific range,
which can be expressed as:

Tv =
∫ 2π

0
T(θ)p(θ)dθ =

 a d e
d∗ b f
e∗ f ∗ c

 (13)

The GMD method considers four commonly used volume scattering models, which
are: the Freeman–Durden volume scattering model [18] following a uniform angular
distribution width, two Yamaguchi volume scattering models obeying sine and cosine
distributions [19], and the maximum entropy model proposed by An et al. [40,41]. Their
expressions can be written as:

Tvol−random =
fv

4

2 0 0
0 1 0
0 0 1

 (14)

Tvol−entropy =
fv

3

1 0 0
0 1 0
0 0 1

 (15)

Tvol−horizontal =
fv

30

15 5 0
5 7 0
0 0 8

 (16)

Tvol−vertical =
fv

30

 15 −5 0
−5 7 0
0 0 8

 (17)

3.1.4. Helix Scattering Model

The helix scattering model is proposed to describe the situation when the assumption
of reflection symmetry is not valid [19]. The corresponding coherence matrix is rotation
invariable, and its form is given as [42]:

Tc =
1
2

0 0 0
0 1 ±j
0 ∓j 1

 (18)

where j represents pure imaginary number.

3.1.5. Model Parameters Inversion

According to the GMD method [32], the observed coherency matrix is given as:

T = Ts(θs) + Td(θd) + Tv + Tc + Tresidual (19)

where Tresidual is the residual matrix, indicating the difference between the model
and observations.

Since T is a Hermitian matrix, it can provide nine real-valued observations at most.
There are also nine unknowns in the GMD model ( fs, fd, fv, fc, Re[α], Im[α], β, θs, θd).
To invert this model, nine nonlinear equations are constructed, and parameters are solved
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based on the criterion of the minimization of residuals. This optimization criterion is
expressed as:

min : ‖Tresidual‖2
2 (20)

In addition, Chen et al. [32] choose the outputs obtained from the Y4O method as
the initial values of the major parameters ( fs, fd, fv, fc, Re[α], Im[α], β) in the nonlinear
optimization algorithm. The initial values of θs and θd are the negative values of the
polarization orientation angle. Also, the boundary conditions of parameters are set as:

0 ≤ fv, fs, fd ≤ SPAN 0 ≤ fc ≤ 2|Im(T23)|
−π

4 ≤ θs, θd ≤ π
4 |β|, |α| < 1

(21)

where SPAN is the total power.

3.2. Physically Constrained General Model-Based Decomposition (PCGMD)

Although the GMD method proposed by Chen et al. [32] offers multiple advan-
tages, the process for solving the final parameters depends on nonlinear optimization
algorithms, which may face the issues of local optimal solutions and even physically
unfeasible solutions. These issues are mainly caused by inaccurate initial value selec-
tion and unreasonable parameter boundary setting. To address these issues, without
changing the original GMD framework, the PCGMD approach was further developed by
Xie et al. [33] which includes three modifications (The matlab code of PCGMD is available
at https://www.researchgate.net/publication/315657548_Matlab_implementation_of_a_
general_model-based_decomposition_for_PolSAR_data, (accessed on 29 May 2022)).

3.2.1. Redefined Boundary Conditions

From Equations (3), (4), (9) and (10), it is clear that parameters α and β are related to
incidence angle and relative dielectric constants. The value of α depends on the polarization
phase difference φ, with a range of [−π, π]. Therefore, in theory, all possible values of
α and β can be calculated using the given incidence angle and phase difference over a
particular range of dielectric constants, and the maximum and minimum values can be
found as the basis for redefining the upper and lower boundaries, respectively. Previous
studies have shown that the relative dielectric constant has a certain physical range for
most natural scenarios [43]. A frequently used and wide enough empirical physical range
of ε is [2,41,44,45].

By setting the physical ranges and incidence angle, an analysis of values of unknown
parameters in the decomposition model was conducted using numeric simulation experi-
ments [33]. The results showed that it is difficult to obtain the boundary of Re[α] and Im[α]
according to the existing conditions, hence these two unknown parameters are equivalently
replaced by the magnitude |α| and the argument arg(α). The boundaries of |α| and arg(α)
are obviously dependent on the phase difference φ, which is unknown in practice and,
consequently, some assumptions must be made. As it is known, the physical meaning
of the Pauli decomposition shows that the scattering mechanisms dominated by surface
scattering and double-bounce scattering are corresponding to HH + VV and HH − VV
polarization modes, respectively. It assumes for the double-bounce contribution that the
power of HH + VV is less than that of HH − VV, which is equivalent to say that T11 is
less than T22 in the coherence matrix Td. Combined with Equation (7), the upper boundary
condition of |α| is expressed as |α| < 1, and the value of φ will be automatically constrained.
Based on the above analysis, for any pixel i, the boundary conditions of parameter α are
redefined as:

|α|min{φ = 0, θ = θi} < |α| < 1 (22)

Arg(α)min{φ = 90◦, θ = θi} < arg(α) < Arg(α)max{φ = −90◦, θ = θi} (23)

https://www.researchgate.net/publication/315657548_Matlab_implementation_of_a_general_model-based_decomposition_for_PolSAR_data
https://www.researchgate.net/publication/315657548_Matlab_implementation_of_a_general_model-based_decomposition_for_PolSAR_data
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Similarly, the boundary conditions of parameter β are redefined as:

βmin{θ = θi} ≤ β ≤ βmax{θ = θi} (24)

Furthermore, the powers of scattering components are smaller than the total power
SPAN and are non-negative. The boundaries have the following expressions:

0 ≤ Ps = fs

(
1+|β|2

)
≤ SPAN (25)

0 ≤ Pd = fd

(
1+|α|2

)
≤ SPAN (26)

They are two additional inequality conditions among parameters. In order to simplify
the process of parameter inversion, the boundary conditions of these two parameters are
properly relaxed, and the obtained boundary conditions are expressed as:

0 ≤ fs ≤
SPAN(

1+
∣∣β|2min

) 0 ≤ fd ≤
SPAN(

1+
∣∣α|2min

) (27)

In summary, the PCGMD algorithm redefines the following parameters: (a) the lower
boundary of |α|; (b) the upper and lower boundaries of arg(α); (c) the upper boundary and
lower boundary of β; (d) the upper and lower boundaries of fs and fd. For any pixel, the
redefined boundaries adaptively change with the incidence angle.

3.2.2. Variable Transformation

The idea of variable transformation can be used to transform the constrained variables
into unconstrained variables for nonlinear least-square optimization. For example, for
variable X, we can make a change of variable using the inverse tangent function based on
the boundary conditions. The transformation can be written as:

X = LB + (UB− LB)×
atan(U) + π

2
π

(28)

where UB and LB are the upper and lower bounds of parameter X, respectively. The
relationship between the transformed variable and the original one is illustrated in Figure 4.
The value of the new variable U is unrestricted, which makes the range of all parameters
consistent and the solution process easier. As the transformation is substituted into the
objective function of the parameter, the solution of the model parameters becomes an
unconstrained optimization problem dependent on variable U.

3.2.3. Initial Values of Parameters

The GMD algorithm uses the outputs obtained from the traditional Yamaguchi four-
component decomposition as the initial values of parameters [32]. However, the traditional
decomposition method meets an underdetermined problem (i.e., unknowns are more than
observations) in the last step of parameter solving. It needs to fix parameter α or β to get
the values of fs and fd under branching conditions, which may lead to wrong solutions, i.e.,
beyond reasonable physical boundaries. In order to solve this problem, the initial values of
α and β can be set as middle values of their physical boundaries. The final step in common
three or four component model-based decomposition methods for solving α, β, fs, and fd is
an undetermined problem because unknowns are more than equations [22]. Since α and β
are redefined and already known, it becomes an overdetermined problem [33]. The initial
values of fs and fd are thereby set from the least-squares solutions based on the redefined
initial values of α and β. The initial values of the remaining parameters are the same as the
original GMD method.
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3.3. Classification Method

In this paper, the efficiency of PolSAR decomposition methods for crop classification
was evaluated using the random forest (RF) [46] classifier. The RF algorithm can generate
a number of decision trees by randomly selecting N sample units out of the training
samples with replacement, which is an ensemble learning method. It not only produces
good accuracy but can also assess the importance of each feature’s contribution to the
classification. Due to its advantages, it has been popular in crop classification using SAR
data [47–49]. Previous studies show that the accuracy of crop classification tends to be
stable as the decision trees exceed 50 [48,50]. The number of RF decision trees in this study
was set to 100.

By applying four-component polarization decompositions, four scattering component
parameters (Ps, Pd, Pv, Pc) were obtained for each image. Usually, a combination of all
images is adopted in crop classification with time-series data. For example, a total of
28 scattering component parameters from each decomposition method can be merged as
the input features for crop classification. However, previous investigations also show that
combining selected images acquired on critical dates may provide comparable or even
better classification accuracy [36–38]. Furthermore, it can reduce the cost due to image
purchase and processing burden for users.

Recently, Li et al. [3] proposed a forward image selection algorithm to achieve the
highest classification accuracy by searching the optimal set of SAR images. In this algorithm,
the images were iteratively chosen to construct the image set (starting from null) for
classification by adding one image along the SAR acquisition time. For example, a single
image along the SAR acquisition time obtaining the highest classification accuracy will be
chosen in the first round and set as the basic image set in the second round. By adding
images gradually, we can finally obtain the image combination with the best accuracy
among all combinations of images. This approach has also been exploited in this work.

4. Results
4.1. PolSAR Decomposition Results

After a series of PolSAR data preprocessing steps, the time-series RADARSAT-2 images
were transformed to multi-temporal geocoded coherency matrices. Then, six types of the
four-component decomposition methods were applied to produce the scattering powers
(i.e., Ps, Pd, Pv, Pc). For comparison, besides the GMD and PCGMD methods, the Y4O,
Y4R, S4R, and G4U were tested as well.
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By calculating the scattering contributions over all fields with the same land-cover
type, the temporal evolutions of the resulting four scattering power parameters from six
polarimetric decomposition methods were obtained. The series measuring built-up areas,
forests, and three main crops are given in Figure 5. The results show that Yamaguchi
modifications (i.e., Y4R, S4R, G4U) reveal similar patterns with reduced volume scattering
overestimation compared with the original Yamaguchi method (Y4O). Therefore, the latter
analysis does not emphasize the differences among Yamaguchi modifications. In detail,
the double-bounce scattering is not dominant as expected over the built-up area, and the
volume scattering mechanism is dominant using all six decomposition methods. From
the optical image in Figure 1 and the ground survey map shown in Figure 3, we found
that the built-up area in this site is actually a small power station consisting of open
concrete ground and some electric power facilities with ordered arrangement. This kind
of structure may generate volume scattering. However, it can still be found that the GMD
and PCGMD methods have lower volume scattering power compared to the traditional
methods. Moreover, the PCGMD shows the largest double-bounce scattering contribution,
which is in line with the common interpretation of radar scattering in built-up areas.

In forest area, as expected, volume scattering is dominant in all decomposition models.
With respect to the Y4O method, Yamaguchi modifications can significantly reduce the
volume scattering overestimation, but it is still on the high side. Compared with Yamaguchi
modifications, both GMD and PCGMD show higher double-bounce scattering, which
somehow reflects the vertical structure of forest-covered areas.

Over crop areas, the contributions of double-bounce scattering using GMD and
PCGMD methods are higher than those using traditional decomposition methods. Since
the planting and harvesting dates of corn and soybean are roughly the same, the scattering
mechanisms have the same changing trend: they are dominated by surface scattering
and then gradually change to volume scattering. However, the double-bounce scattering
component increases significantly on the last date due to the presence of crop residues after
harvest, especially over corn fields. For winter wheat, volume scattering is the dominant
scattering mechanism only during the vigorous growth stage from June to August, and it
decreases gradually until right before harvest.
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4.2. Crop Classification Results

As depicted in Figure 6, in case of a single image for classification, the image in June
produced the best overall accuracy (OA) using the four traditional Yamaguchi methods
(Y4O, Y4R, S4R, G4U), whereas the image in early September was selected for the two
general decomposition methods (GMD and PCGMD) with the highest value of OA. Also, it
should be noted that all but the GMD reached OAs of 65–68% using a single image.

As more images were added, the classification accuracy gradually improved until
it reached saturation. It is interesting to see that using all images does not produce the
optimal accuracy in all decomposition methods. Six images produced the best results for
Y4O, GMD, and PCGMD, while five images achieved the best accuracy for Y4R, S4R, and
G4U. The images acquired on 6 May, 23 June, 10 August, and 3 September are selected in
the optimal combination of images for all six polarimetric decomposition methods. Finally,
the optimal classification OAs of all six decomposition methods are 89.57% (Y4O), 89.83%
(Y4R), 89.71% (S4R), 89.96% (G4U), 88.67% (GMD), and 91.83% (PCGMD). The PCGMD



Remote Sens. 2022, 14, 2668 14 of 21

shows the best OA in most cases employing a different number of images. Comparing GMD
and PCGMD in all seven cases using different numbers of images, the PCGMD always
produced better OAs. Finally, it is worth noting that all six methods produced a notable
classification improvement (reaching up to 85%) with just three images, which confirms
again the expected positive effect of image timing on crop classification performance.
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Figure 6. The random forest classification OAs of the optimal image combinations obtained by using
a forward image selection procedure with the six decomposition methods. (a) Y4O; (b) Y4R; (c) S4R;
(d) G4U; (e) GMD; (f) PCGMD. Note that the numbers represent the optimal OA (bottom row) and
abbreviations for the corresponding image combinations (top row) of each step. For instance, “6, 9(1),
8” denotes a collection of images acquired on 23 June, 3 September, and 10 August. The circles and
triangles represent OAs of arbitrary and optimal image combination in each round, respectively.
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The producer’s and user’s accuracies (i.e., PA and UA), as well as Kappa coefficient
and OA for each crop type corresponding to the optimal classification accuracy after the
forward image selection procedure are listed in Table 3. It illustrates that the optimal
OAs obtained by the four traditional four-component decomposition methods are similar.
Although the three Yamaguchi modifications mitigate the issues in the original Yamaguchi
four-component decomposition, they show only a limited contribution in improving crop
classification accuracy. The optimal classification accuracy using GMD method is the
worst among all the methods, with an OA of 88.67%. Table 3 also shows that, due to their
similar temporal evolutions, winter wheat and corn cannot be accurately distinguished,
resulting in large omission error of the winter wheat class in GMD method compared with
Yamaguchi methods.

Table 3. PAs, UAs, OAs and Kappa coefficients corresponding to the optimal crop classification
accuracy in different methods.

Crop Type
Y4O Y4R S4R G4U GMD PCGMD

PA UA PA UA PA UA PA UA PA UA PA UA

Corn 95.08 85.75 95.13 85.98 95.25 85.30 95.56 86.29 94.71 84.20 96.59 88.28
Forest 99.81 97.39 99.16 98.73 99.23 98.60 99.25 98.50 99.35 96.92 99.30 98.26
Forage 84.98 61.91 86.92 61.13 85.89 62.08 86.58 61.35 85.67 65.56 88.22 67.95

Soil 93.78 100 95.04 100 94.97 100 95.67 100 92.21 100 93.84 99.87
Soybean 95.42 92.34 94.95 93.02 94.99 93.17 94.52 93.34 94.59 89.96 93.07 94.23
Tobacco 55.81 98.25 59.47 94.71 59.47 98.35 61.13 97.35 55.15 98.22 62.79 99.47

Watermelon 76.05 100 72.82 99.56 78.64 99.18 75.40 99.15 74.43 99.57 77.67 100
Wheat 75.14 96.78 76.26 96.88 75.71 96.69 76.54 96.49 73.16 96.65 83.48 97.76

OA 89.57 89.83 89.71 89.96 88.67 91.83
Kappa 86.44 86.79 86.62 86.95 85.26 89.36

In contrast, the classification PAs and UAs from the PCGMD method are generally
high for all crops, even for winter wheat and forage that are difficult to distinguish. The final
OA is also the highest among all the methods used, reaching 91.83%. To further illustrate
the classification results generated by different methods, Figure 7 shows the classified maps
corresponding to the optimal classification obtained by the six decomposition algorithms.
In general, all the results present a good clustering pattern, especially the results obtained
by the PCGMD method. However, it is also apparent that some scattered errors exist
in all methods. This is an expected behavior in pixel-based classification. Object-based
classification could overcome this issue.
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Figure 7. RF classification maps with optimal overall classification accuracies obtained by applying
the six decomposition methods in the study area. (a) Y4O; (b) Y4R; (c) S4R; (d) G4U; (e) GMD;
(f) PCGMD.

5. Discussion

Some well-known limitations exist for the model-based polarimetric decomposition
method, such as model inversion priority, branch conditions, deorientation effect, nega-
tive powers, and incomplete polarimetric information utilization [51]. By incorporating
many advances in previous studies, the GMD in [32] mitigated these issues. However, the
full-parameter inversion scheme in this method relies on solving nine unknowns from
nine nonlinear equations, which is affected by the selection of initial values and boundary
conditions of model parameters. It probably leads to physically incorrect decomposition
results. To address this issue in parameter solving, without changing the original GMD
framework, the physically constrained general model-based decomposition (PCGMD)
method was further proposed in [33], which redefined the initial values and boundaries
of model parameters incorporating a popular physical range of dielectric constants, and
introduced a variable transformation. Due to the lack of ground truth in practice, the perfor-
mance of PCGMD was evaluated by analyzing the balance among scattering mechanisms
over different land cover types according to theoretical expectations as usual and Monte
Carlo simulation tests [33–35]. However, a direct comparison of final applications based on
polarimetric decomposition methods with ground-truth collected simultaneously makes
the interpretations more convincing. In this paper, the performance of the PCGMD method
and the other five methods (i.e., GMD method and four traditional types of Yamaguchi
decomposition methods (Y4O, Y4R, S4R, G4U)) on crop classification using multi-temporal
PolSAR data was evaluated. A forward selection approach was applied in the classifi-
cation procedure to pursue optimal classification accuracy by searching for an optimum
combination of multi-temporal SAR images with the random forest (RF) algorithm.
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5.1. Temporal Evolution of PolSAR Decomposition Outputs

The results of temporal evolution reveal that the GMD and PCGMD methods produce
lower volume scattering power than the traditional Yamaguchi-based decomposition meth-
ods over all land cover types, which is consistent with previous results [32–35]. Although
Yamaguchi modifications applied deorientation processing (e.g., Y4R, S4R, G4U) and added
volume scattering from oriented dihedral scatter (e.g., S4R, G4U) to reduce overestimation
of volume scattering and obtain improvements with respect to original Yamaguchi method
(Y4O), misinterpretation still occurs because of the model inversion priority, ignored cross-
polarization contributions from surface and double-bounce scattering models, and branch
conditions [32]. Besides, the decomposition results also indicate the highly coherent behav-
iors of Y4R, S4R, and G4U, especially that between S4R and G4U. It can be explained by
the fact that our study site is mainly composed of the vegetation area and has no highly
oriented buildings, resulting in less volume scattering from dihedral structure, which is in
good agreement with decomposition performance in previous studies [22,33]. In contrast,
GMD and PCGMD adopt the generalized surface and double-bounce models to account
for the cross-polarization power, and use nonlinear equations to solve model parameters
at the same time. It can avoid the above limitations and further improved performance
is obtained.

Although all six decomposition methods reflect the variation trend as crops grow,
Yamaguchi modifications show a relatively lower double-bounce scattering component
than the two generalized decomposition methods, which is in line with previous investiga-
tions [32–35]. In addition, PCGMD further shows higher double-bounce scattering than
GMD, which somehow indicates the potential of PCGMD in polarimetric SAR urban area
classification as the case study in [52].

The dynamic range of scattering mechanism components obtained from the GMD
method is the smallest among all methods, whereas the range from the PCGMD method is
the largest one. It somehow indicates that the PCGMD method shows the highest sensitivity
to the structural changes of crops during their growth. This feature is expected to help
applications such as crop monitoring and crop classification.

5.2. Crop Classification Accuracy

In the case of a single image for classification, the images in June and September pro-
duced the best overall accuracy. The reason may be attributed to the significant differences
in growth status and morphological structure of crops in these two periods. According to
the field photos in Figure 2, corn and soybean in June were at their early growth stages,
and the bare ground can be seen, while winter wheat was at its vigorous stage of growth,
and the ground was almost completely covered by leaves. In contrast, the winter wheat
was harvested by early September, whereas both corn and soybeans were at the ripening
stage and showed apparent differences in height, leaf structure, and moisture content. It
somehow shows that the most important images for crop classification are acquisitions
dated during the peak biomass stage due to significant structural differences between
most crops, which show a similar phenomenon as reported in the previous study [3]. In
addition, the results are in line with the study of crop classification in [38] using the same
SAR data and ground truth. In [38], using 27 polarimetric observables including three types
of decomposition methods, the single image to produce the best overall accuracy was the
image from June or September. In the case of multiple images for classification, four images
acquired on 6 May, 23 June, 10 August, and 3 September were selected for all methods to
produce the best OAs. This illustrates that selected images acquired on critical dates are
possible to provide a better classification result as reported in previous studies [3,36–38].

Compared with traditional four-component decomposition methods, GMD shows
lower OA for crop classification. This result can be explained according to the analysis based
on Figure 5. Although the GMD method can inhibit the volume scattering overestimation
and improve the contribution from double-bounce scattering, it produces the smallest
variation range of the scattering especially for the winter wheat class, leading to poorer
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separability among classes. The further explanation may be attributed to the numerical
variability associated with the non-realistic inversion in the GMD method [33,34]. Although
the GMD can enhance the scattering mechanism interpretation performance in urban areas,
especially in highly oriented built-up regions as illustrated in the original study [32] and was
successfully applicated for urban damage level mapping [53], this study somehow indicates
its limitation for the application of crop classification. After considering the physical
constraints in PCGMD, the classification performance improved, which shows the best OA
of 91.83%. Since the forage type here refers to different morphological structures, such as
alfalfa, hay, and grass, it may cause confusion in classification. If the grass is not taken into
account in the accuracy calculation, the OA of the PCGMD method would be improved to
94.27%. These results indicate that the modifications involved in the PCGMD model with
respect to the GMD method enhance the sensitivity of the decomposition parameters to
crop scattering characteristics, which is beneficial to increasing classification performance.

It is noteworthy that all classification methods in this study only rely on the use of
the backscattering powers. Additional output features (e.g., α and β) produced by the
decompositions should also be paid attention [33]. The results suggest that the physical
constraints added to the original GMD method can not only improve the feasibility of
dielectric constant-related parameters, but also the backscattering powers. A complete
study of the performance of all outputs from PolSAR decomposition techniques should be
investigated. In this vein, further research could emphasize the need of PolSAR decom-
position methods to improve parameter retrieval, beyond the mere use of backscattering
powers. For example, the performance of the PCGMD method could be further evaluated
in other applications, such as soil moisture inversion, urban area classification, and forest
type mapping, etc.

6. Conclusions

In this study, a physically constrained general model-based decomposition (PCGMD)
method was applied to crop classification for the first time and its performance was evalu-
ated. The GMD method and four traditional types of Yamaguchi decomposition methods
(Y4O, Y4R, S4R, G4U) were adopted for comparison. Multi-temporal RADARSAT-2 data
across the growing season over a typical agricultural area in southwestern Ontario, Canada,
were exploited. Before classification, the temporal evolutions of the scattering components
were analyzed. These results indicate that polarimetric decomposition methods can char-
acterize the temporal variations of crop geometric structure and physical characteristics
in different classes. The PCGMD method, which retains the original advantages of the
GMD method, is more consistent with physical reality and shows higher sensitivity to
the temporal evolution of crops. In crop classification tests, based on the random forest
classifier, a forward selection procedure was employed to find an optimal image set to
achieve the highest classification accuracy. The tests show that the PCGMD produced the
best classification accuracy among all six polarimetric decomposition methods, with an OA
of 91.83%. Although three Yamaguchi modifications mitigated the problems in the original
Yamaguchi four-component decomposition, they produced very limited improvements on
crop classification accuracy. Instead, the PCGMD brings apparent improvements, especially
with respect to its base method, i.e., the GMD method. It proves again the effectiveness
of the modifications included in the PCGMD method. In addition, results from all six
methods reveal that using multi-temporal images acquired on critical dates can obtain
optimal classification performance.
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